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Undirected graphical models

Reminder of lecture 2

@ An alternative representation for joint distributions is as an undirected
graphical model (also known as Markov random fields)

@ As in BNs, we have one node for each random variable

@ Rather than CPDs, we specify (non-negative) potential functions over sets
of variables associated with cliques C of the graph,

p(X1, ..y Xn) = % I 6<(xc)

ceC

Z is the partition function and normalizes the distribution:

Z= Z H(bc(ic)

X1y...,%, c€C
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Undirected graphical models

p(X1, ..., Xn) = % H dc(xc), Z= Z H Pc(Re)

ceC X1y Xp c€C

Simple example (potential function on each edge encourages the variables to take
the same value):

B c
danla,b)= ¢ | o¢Bclc)=4 | daclac)=o0 1

e ol 10| 1 ol 10| 1
o—o bl O

p(a, b,c) = %¢A,B(3, b) - ¢B,c(b,c) - da,c(a,c),

where

Z= > ¢as(3b) ¢s.c(b &) pac(d ) =2-1000+6- 10 = 2060.
3,b,ee{0,1}3
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Example: Ising model

@ Theoretical model of interacting atoms, studied in statistical physics and
material science

@ Each atom X; € {—1,+1}, whose value is the direction of the atom spin

@ The spin of an atom is biased by the spins of atoms nearby on the material:

1
p(x1, -+ Xn) = Z &P (Z Wi jXiXj — Z UiXi)
i<j i
@ When w;; > 0, nearby atoms encouraged to have the same spin (called
ferromagnetic), whereas w; j < 0 encourages X; # X;

@ Node potentials exp(—u;x;) encode the bias of the individual atoms

@ Scaling the parameters makes the distribution more or less spiky
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Today's lecture

@ Markov random fields

© Bayesian networks = Markov random fields (moralization)
@ Hammersley-Clifford theorem (conditional independence = joint
distribution factorization)

@ Conditional models

© Discriminative versus generative classifiers
© Conditional random fields
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Converting BNs to Markov networks

What is the equivalent Markov network for a hidden Markov model?
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Moralization of Bayesian networks

@ Procedure for converting a Bayesian network into a Markov network

@ The moral graph M[G] of a BN G = (V, E) is an undirected graph over V
that contains an undirected edge between X; and X; if

@ there is a directed edge between them (in either direction)
@ Xi and X; are both parents of the same node

Q%‘ e Moralization ° e
— \/

O—® (O—

(term historically arose from the idea of "marrying the parents” of the node)

@ The addition of the moralizing edges leads to the loss of some independence
information, e.g., A — C < B, where A L B is lost
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Converting BNs to Markov networks

© Moralize the directed graph to obtain the undirected graphical model:

e Moralization o e
— \/
©O—® O—®)

@ Introduce one potential function for each CPD:

®i(Xis Xpa(i)) = P(Xi | Xpa(i)

@ So, converting a hidden Markov model to a Markov network is simple:
TITY— T T
O O O O O

David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 8 /27



Factorization implies conditional independencies

e p(x) is a Gibbs distribution over G if it can be written as

p(X17 e ,Xn) = % H ¢c(xc)7

ceC
where the variables in each potential ¢ € C form a clique in G
@ Recall that conditional independence is given by graph separation:

Xa

X

@ Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G, then G is an I-map for p(x), i.e. I(G) C I(p)
Proof: Suppose B separates A from C. Then we can write

1
p(Xa,Xg, Xc) = = f(Xa, Xg)g(Xe, Xc).
y4
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Conditional independencies implies factorization

Theorem (soundness of separation): If p(x) is a Gibbs distribution
for G, then G is an I-map for p(x), i.e. I(G) C I(p)

What about the converse? We need one more assumption:

A distribution is positive if p(x) > 0 for all x

Theorem (Hammersley-Clifford, 1971): If p(x) is a positive
distribution and G is an |-map for p(x), then p(x) is a Gibbs
distribution that factorizes over G

Proof is in book (as is counter-example for when p(x) is not positive)

This is important for learning;:
o Prior knowledge is often in the form of conditional independencies (i.e.,
a graph structure G)
o Hammersley-Clifford tells us that it suffices to search over Gibbs
distributions for G — allows us to parameterize the distribution
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Today's lecture

@ Markov random fields

© Bayesian networks = Markov random fields (moralization)
@ Hammersley-Clifford theorem (conditional independence = joint
distribution factorization)

@ Conditional models

© Discriminative versus generative classifiers
© Conditional random fields
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Discriminative versus generative classifiers

@ There is often significant flexibility in choosing the structure and
parameterization of a graphical model

It is important to understand the trade-offs

@ In the next few slides, we will study this question in the context of
e-mail classification
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From lecture 1. .. naive Bayes for classification

o Classify e-mails as spam (Y = 1) or not spam (Y = 0)
o Let 1: nindex the words in our vocabulary (e.g., English)
e X; =1 if word i appears in an e-mail, and 0 otherwise
o E-mails are drawn according to some distribution p(Y, Xi,...,X,)

@ Words are conditionally independent given Y:
Label

@O6-®

Features
o Prediction given by:

Xp) = p(Yzl)H7:1P(Xi|Y:1)
VS ey PY = NI P [ Y =)

p(Y=1|x,...
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Discriminative versus generative models

@ Recall that these are equivalent models of p(Y, X):

Generative Discriminative

® ®

@ However, suppose all we need for prediction is p(Y | X)

@ In the left model, we need to estimate both p(Y') and p(X | Y)
@ In the right model, it suffices to estimate just the conditional
distribution p(Y | X)
o We never need to estimate p(X)!
o Not possible to use this model when X is only partially observed
o Called a discriminative model because it is only useful for
discriminating Y's label
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Discriminative versus generative models

@ Let's go a bit deeper to understand what are the trade-offs inherent in
each approach
@ Since X is a random vector, for Y — X to be equivalent to X — Y,

we must have:
Generative Discriminative

We must make the following choices:

@ In the generative model, how do we parameterize p(X; | Xpa(i), Y')?
@ In the discriminative model, how do we parameterize p(Y | X)?
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Discriminative versus generative models

We must make the following choices:

© In the generative model, how do we parameterize p(X; | Xy, Y)?
@ In the discriminative model, how do we parameterize p(Y | X)?

Generative Discriminative

s "

© For the generative model, assume that X; L X_; | Y (naive Bayes)
@ For the discriminative model, assume that

0+ ixi 1
14 e0tXiaiXi ] 4 @—00—X ig X

p(Y =1|xa) =

This is called |0gistic regression. (To simplify the story, we assume X; € {0,1})
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@ For the generative model, assume that X; L X_; | Y (naive Bayes)

(+)
@00 OO0 ®

David Sontag (NYU) Graphical Models Lecture 4, February 16, 2012 17 / 27



Logistic regression

@ For the discriminative model, assume that

ea0+z7:1 QX ]_
p(Y =1|xa)= 11 et o ] 1 e to—oig o

Let z(a,x) = o + D 1q @ix;. Then, p(Y =1 | x; ) = f(z(«r,x)), where
f(z) =1/(1+ e™#) is called the logistic function:

Same
graphical model
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Discriminative versus generative models

@ For the generative model, assume that X; L X_; | Y (naive Bayes)
@ For the discriminative model, assume that
0+ i X 1

p(Y = ]‘ ’ X; CM) = 1 + ea0+z7:1 QX - 1 + e—ao—27:1 QX

@ In problem set 1, you showed assumption 1 = assumption 2

@ Thus, every conditional distribution that can be represented using
naive Bayes can also be represented using the logistic model

@ What can we conclude from this?

With a large amount of training data, logistic regression
will perform at least as well as naive Bayes!
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Discriminative models are powerful

Generative (naive Bayes) Discriminative (logistic regression)

ONCRORND)

@ Logistic model does not assume X; L X_; | Y, unlike naive Bayes

@ This can make a big difference in many applications

@ For example, in spam classification, let X; = 1[“bank” in e-mail] and
X, = 1[%account” in e-mail]

@ Regardless of whether spam, these always appear together, i.e. X; = X;

@ Learning in naive Bayes results in p(X1 | Y) = p(Xz2 | Y). Thus, naive Bayes
double counts the evidence

@ Learning with logistic regression sets a; = 0 for one of the words, in effect

ignoring it (there are other equivalent solutions)
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Generative models are still very useful

@ Using a conditional model is only possible when X is always observed

o When some X; variables are unobserved, the generative model allows us
to compute p(Y | X.) by marginalizing over the unseen variables

@ Estimating the generative model using maximum likelihood is more
efficient (statistically) than discriminative training
e When only a small amount of training data is available, naive Bayes
can outperform logistic regression
o Relevant only when the model is reasonably accurate (i.e., the data
generating distribution respects the implied independencies)
o We will return to these questions in the second half of the course
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Conditional random fields (CRFs)

@ Conditional random fields are undirected graphical models of conditional
distributions p(Y | X)

e Y is a set of target variables
e X is a set of observed variables

@ We typically show the graphical model using just the Y variables

@ Potentials are a function of X and Y
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Formal definition

@ A CRF is a Markov network on variables X U'Y, which specifies the
conditional distribution

1
P(y | X) = > ¢C(XC)yC)
Z(x) CI;[C
with partition function

Z(X) = Z H Qf)c(xca 9c)

y ceC

@ As before, two variables in the graph are connected with an undirected edge
if they appear together in the scope of some factor

@ The only difference with a standard Markov network is the normalization
term — before marginalized over X and Y, now only over Y
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CRFs in computer vision

@ Undirected graphical models very popular in applications such as computer
vision: segmentation, stereo, de-noising

@ Grids are particularly popular, e.g., pixels in an image with 4-connectivity

input: two images output: disparity

@ Not encoding p(X) is the main strength of this technique, e.g., if X is the
image, then we would need to encode the distribution of natural images!

@ Can encode a rich set of features, without worrying about their distribution
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Parameterization of CRFs

@ Factors may depend on a large number of variables
@ We typically parameterize each factor as a log-linear function,

d)c(xca YC) = exp{w : fc(xm yC)}

o fc(xc,yc) is a feature vector

@ w is a weight vector which is typically learned — we will discuss this
extensively in later lectures
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NLP example: named-entity recognition

@ Given a sentence, determine the people and organizations involved and the
relevant locations:
“Mrs. Green spoke today in New York. Green chairs the finance committee.”

@ Entities sometimes span multiple words. Entity of a word not obvious
without considering its context

@ CRF has one variable X; for each word, which encodes the possible labels of
that word

@ The targets are, for example, "B-person, |-person, B-location, |-location,
B-organization, l-organization”

e Having beginning (B) and outcome (I) allows the model to segment
adjacent entities
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NLP example: named-entity recognition

This is typically represented having two factors for each word:
@ ¢l(Y4, Yiy1) represents dependencies between neighboring target variables

@ ¢?(Y:, X1, -, XT) represents dependencies between a target and its
context in the word sequence

The graphical model looks like:

B-PER Begin person name
I-PER ‘Within person na me
B-LOC Begin location name
I.LOC Within location name
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