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Summary so far

Representation of directed and undirected networks

Inference in these networks:

Variable elimination
Exact inference in trees via message passing
MAP inference via dual decomposition
Marginal inference via variational methods
Marginal inference via Monte Carlo methods

The rest of this course:

Learning Bayesian networks (today)
Learning Markov random fields
Learning with incomplete data (the EM algorithm)
Structured prediction
Advanced topics (if time)

Today we will refresh your memory about what learning is
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How to acquire a model?

Possible things to do:

Use expert knowledge to determine the graph and the potentials.
Use learning to determine the potentials, i.e., parameter learning.
Use learning to determine the graph, i.e., structure learning.

Manual design is difficult to do and can take a long time for an expert.

We usually have access to a set of examples from the distribution we wish to
model, e.g., a set of images segmented by a labeler.
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More rigorous definition

Lets assume that the domain is governed by some underlying distribution p∗,
which is induced by some network model M∗ = (G∗, θ∗)
We are given a dataset D of M samples from p∗

The standard assumption is that the data instances are independent and
identically distributed (IID)

We are also given a family of models M, and our task is to learn some
model M̂ ∈ M (i.e., in this family) that defines a distribution pM̂

We can learn model parameters for a fixed structure, or both the structure
and model parameters
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Goal of learning

The goal of learning is to return a model M̂ that precisely captures the
distribution p∗ from which our data was sampled

This is in general not achievable because of

computational reasons
limited data only provides a rough approximation of the true underlying
distribution

We need to select M̂ to construct the ”best” approximation to M∗

What is ”best”?
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What is “best”?

This depends on what we want to do

1 Density estimation: we are interested in the full distribution (so later we can
compute whatever conditional probabilities we want)

2 Specific prediction tasks: we are using the distribution to make a prediction

3 Structure or knowledge discovery: we are interested in the model itself
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1) Learning as density estimation

We want to learn the full distribution so that later we can answer any
probabilistic inference query

In this setting we can view the learning problem as density estimation

We want to construct M̂ as ”close” as possible to p∗

How do we evaluate ”closeness”?

KL-divergence (in particular, the M-projection) is one possibility:

D(p∗||p̂) = Ex∼p∗

[
log

(
p∗(x)

p̂(x)

)]
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Expected log-likelihood

We can simplify this somewhat:

D(p∗||p̂) = Ex∼p∗

[
log

(
p∗(x)

p̂(x)

)]
= −H(p∗)− Ex∼p∗ [log p̂(x)]

The first term does not depend on p̂.

Then, finding the minimal M-projection is equivalent to maximizing the
expected log-likelihood

Ex∼p∗ [log p̂(x)]

Asks that p̂ assign high probability to instances sampled from p∗, so as
to reflect the true distribution
Because of log, samples x where p̂(x) ≈ 0 weigh heavily in objective

Although we can now compare models, since we are not computing H(p∗),
we don’t know how close we are to the optimum

Problem: In general we do not know p∗.
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Maximum likelihood

Approximate the expected log-likelihood

Ex∼p∗ [log p̂(x)]

with the empirical log-likelihood:

ED [log p̂(x)] =
1

|D|
∑
x∈D

log p̂(x)

Maximum likelihood learning is then:

max
M̂

1

|D|
∑
x∈D

log p̂(x)
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2) Likelihood, Loss and Risk

We now generalize this by introducing the concept of a loss function

A loss function loss(x,M) measures the loss that a model M makes on a
particular instance x

Assuming instances are sampled from some distribution p∗, our goal is to
find the model that minimizes the expected loss or risk,

Ex∼p∗ [loss(x,M)]

What is the loss function which corresponds to density estimation? Log-loss,

loss(x,M̂) = − log p̂(x).

p∗ is unknown, but we can approximate the expectation using the empirical
average, i.e., empirical risk

ED
[
loss(x,M̂)

]
=

1

|D|
∑
x∈D

loss(x,M̂)
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Example: conditional log-likelihood

Suppose we want to predict a set of variables Y given some others X,
e.g., for segmentation or stereo vision

We concentrate on predicting p(Y|X), and use a conditional loss
function

loss(x, y,M̂) = − log p̂(y | x).

Since the loss function only depends on p̂(y | x), suffices to estimate
the conditional distribution, not the joint

This is the objective function we use to train conditional random
fields (CRFs), which we discussed in Lecture 3

output: disparity!input: two images!
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Example: structured prediction

In structured prediction, given x we predict y by:

argmax
y

p̂(y|x)

What loss function should we use to measure error in this setting?

One reasonable choice would be the classification error:

E(x,y)∼p∗ [1I{ ∃y′ 6= y s.t. p̂(y′|x) ≥ p̂(y|x) }]

which is the probability over all (x, y) pairs sampled from p∗ that we predict
the wrong assignment

We will go into much more detail on this in two lectures
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Empirical Risk and Overfitting

Empirical risk minimization can easily overfit the data

For example, consider the case of N random binary variables, and M number
of training examples, e.g., N = 100,M = 1000

Thus, we typically restrict the hypothesis space of distributions that we
search over

David Sontag (NYU) Graphical Models Lecture 10, April 11, 2013 13 / 22



Bias-Variance trade off

If the hypothesis space is very limited, it might not be able to represent p∗,
even with unlimited data

This type of limitation is called bias, as the learning is limited on how close
it can approximate the target distribution

If we select a highly expressive hypothesis class, we might represent better
the data

When we have small amount of data, multiple models can fit well, or even
better than the true model

Moreover, small perturbations on D will result in very different estimates

This limitation is call the variance.

There is an inherent bias-variance trade off when selecting the hypothesis
class

Error in learning due to both things: bias and variance.
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How to avoid overfitting?

Hard constraints, e.g. by selecting a less expressive hypothesis class:

Bayesian networks with at most d parents
Pairwise MRFs (instead of arbitrary higher-order potentials)

Soft preference for simpler models: Occam Razor.

Augment the objective function with regularization:

objective(x,M) = loss(x,M) + R(M)

Can evaluate generalization performance using cross-validation
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Summary of how to think about learning

1 Figure out what you care about, e.g. expected loss

Ex∼P∗ [loss(x,M)]

2 Figure out how best to estimate this from what you have, e.g. regularized
empirical loss

ED [loss(x,M)] + R(M)

When used with log-loss, the regularization term can be interpreted as a
prior distribution over models, p(M) ∝ exp(−R(M))

(called maximum a posteriori (MAP) estimation)

3 Figure out how to optimize over this objective function, e.g. the
minimization

min
M

ED [loss(x,M)] + R(M)
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ML estimation in Bayesian networks

Suppose that we know the Bayesian network structure G

Let θxi |xpa(i) be the parameter giving the value of the CPD p(xi | xpa(i))
Maximum likelihood estimation corresponds to solving:

max
θ

1

M

M∑
m=1

log p(xM ; θ)

subject to the non-negativity and normalization constraints

This is equal to:

max
θ

1

M

M∑
m=1

log p(xM ; θ) = max
θ

1

M

M∑
m=1

N∑
i=1

log p(xMi | xMpa(i); θ)

= max
θ

N∑
i=1

1

M

M∑
m=1

log p(xMi | xMpa(i); θ)

The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.
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3) Knowledge Discovery

We hope that looking at the learned model we can discover something
about p∗, e.g.

Nature of the dependencies, e.g., positive or negative correlation
What are the direct and indirect dependencies

Simple statistical models (e.g., looking at correlations) can be used for the
first

But the learned network gives us much more information, e.g. conditional
independencies, causal relationships

In this setting we care about discovering the correct model M∗ , rather than
a different model M̂ that induces a distribution similar to M∗.
Metric is in terms of the differences between M∗ and M̂.
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This is not always achievable

The true model might not be identifiable

e.g., Bayesian network with several I-equivalent structures.
In this case the best we can hope is to discover an I-equivalent
structure.
Problem is worse when the amount of data is limited and the
relationships are weak.

When the number of variables is large relative to the amount of training
data, pairs of variables can appear strongly correlated just by chance
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Structure learning in Bayesian networks: Score-based approaches

Given G , assume prior distribution for CPD parameters θxi |xpa(i) is Dirichlet
(this is called the Bayesian score)

Choose G which maximizes the posterior, p(G | D) ∝ p(D | G )p(G )

To compute the first term (called the marginal likelihood), use the chain rule
together with your solution to problem 5 of PS 3

Obtain a combinatorial optimization problem over acyclic graphs:

Finding highest scoring graph is 
NP-hard – must disallow cycles:!
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Independence tests

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

The network structure implies!
several conditional independence!
statements:"

D ? I

G ? S | I

L ? S | G

L ? S | I

D ? S

D ? L | G

If two variables are (conditionally) independent, !
structure has no edge between them"

Must make assumption that data is drawn from an I-map of the graph

Possible to learn structure with polynomial number of data points and
polynomial computation time (e.g., the SGS algorithm from Spirtes,
Glymour, & Scheines ’01)

Very brittle: if we say that Xi ⊥ Xj |Xv and they in fact are not, the resulting
structure can be very off
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Bayesian prediction

Rather than choose 1 graph structure, learn the full posterior

p(G | D)

Then, compute expectations with respect to this, e.g.

p(x1 = 1 | D) =
∑
G

p(G | D)p(x1 = 1 | G ,D)

This inference task is very difficult to approximate – typically done
using MCMC, but very slow
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