Markov chain Monte Carlo Lecture 9

David Sontag New York University

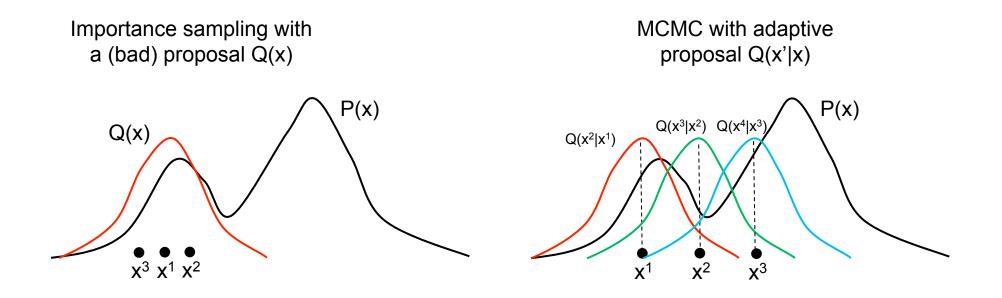
Slides adapted from Eric Xing and Qirong Ho (CMU)

Limitations of Monte Carlo

- Direct (unconditional) sampling
 - Hard to get rare events in high-dimensional spaces
 - Infeasible for MRFs, unless we know the normalizer Z
- Rejection sampling, Importance sampling
 - Do not work well if the proposal Q(x) is very different from P(x)
 - Yet constructing a Q(x) similar to P(x) can be difficult
 - Making a good proposal usually requires knowledge of the analytic form of P(x) – but if we had that, we wouldn't even need to sample!
- Intuition: instead of a fixed proposal Q(x), what if we could use an adaptive proposal?

Markov Chain Monte Carlo

- MCMC algorithms feature adaptive proposals
 - Instead of Q(x'), they use Q(x'|x) where x' is the new state being sampled, and x is the previous sample
 - As x changes, Q(x'|x) can also change (as a function of x')



Metropolis-Hastings

- Let's see how MCMC works in practice
 - Later, we'll look at the theoretical aspects
- Metropolis-Hastings algorithm
 - Draws a sample x' from Q(x'|x), where x is the previous sample
 - The new sample x' is **accepted** or **rejected** with some probability A(x'|x)

This acceptance probability is
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- A(x'|x) is like a ratio of importance sampling weights
 - P(x')/Q(x'|x) is the importance weight for x', P(x)/Q(x|x') is the importance weight for x
 - We divide the importance weight for x' by that of x
 - Notice that we only need to compute P(x')/P(x) rather than P(x') or P(x) separately
- A(x'|x) ensures that, after sufficiently many draws, our samples will come from the true distribution P(x) – we shall learn why later in this lecture

- 1. Initialize starting state $x^{(0)}$, set t = 0
- 2. Burn-in: while samples have "not converged"
 - **X=X**^(t)
 - *t* = *t* + 1,
 - sample $x^* \sim Q(x^*|x)$ // draw from proposal
 - sample *u* ~ Uniform(0,1) // draw acceptance threshold

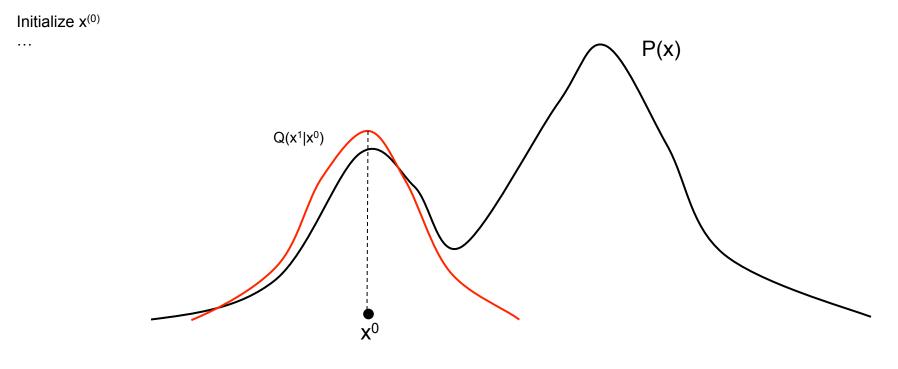
- if
$$u < A(x^* | x) = \min\left(1, \frac{P(x^*)Q(x | x^*)}{P(x)Q(x^* | x)}\right)$$

- $x^{(t)} = x^*$ // transition
 - else
- $x^{(t)} = x$ // stay in current state
- Take samples from P(x): Reset t=0, for t = 1:N
 - $x(t+1) \leftarrow \text{Draw sample } (x(t))$

Function Draw sample (*x*(t))

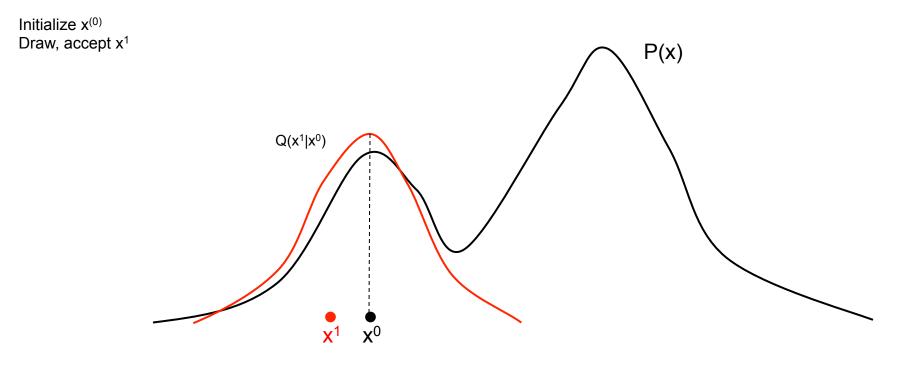
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



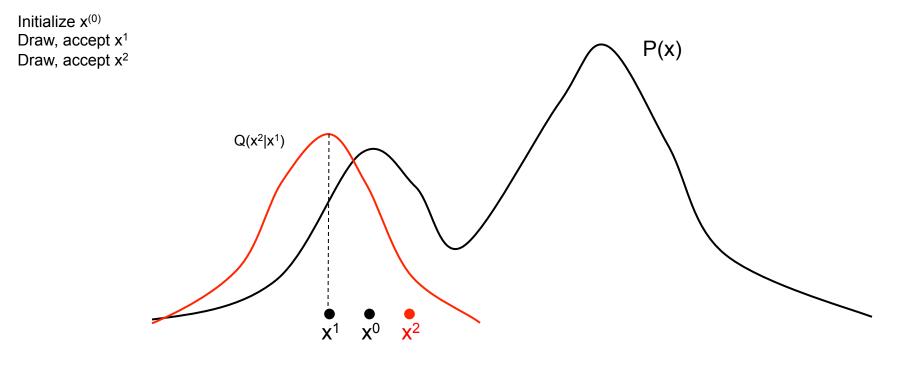
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



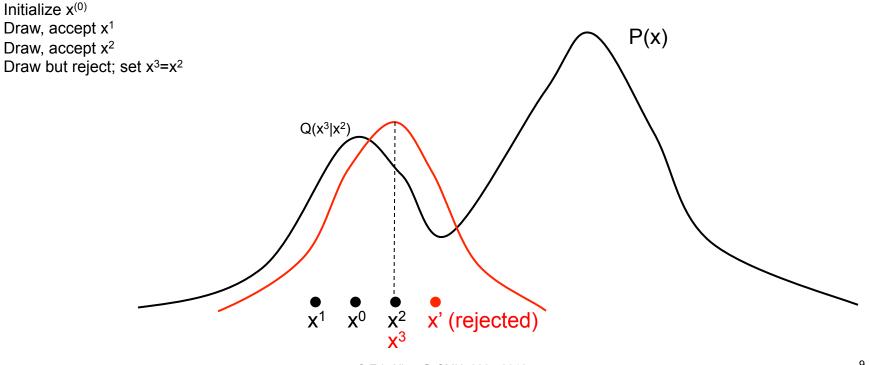
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



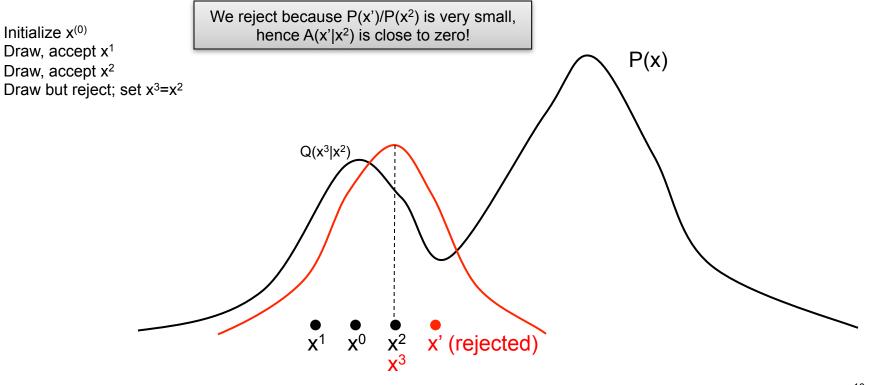
$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

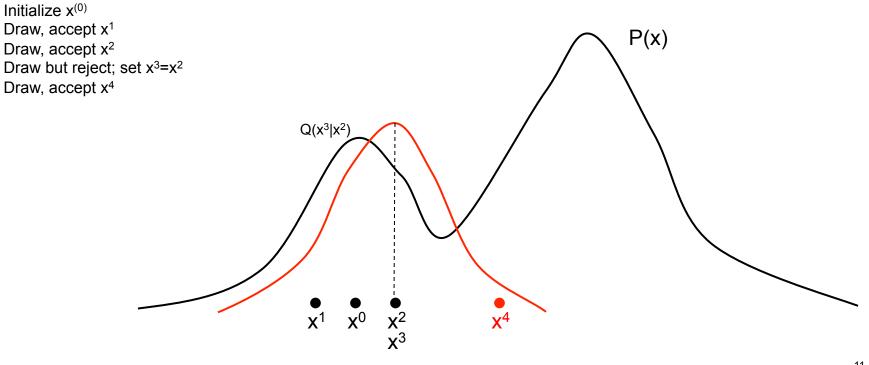
- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



© Eric Xing @ CMU, 2005-2012

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

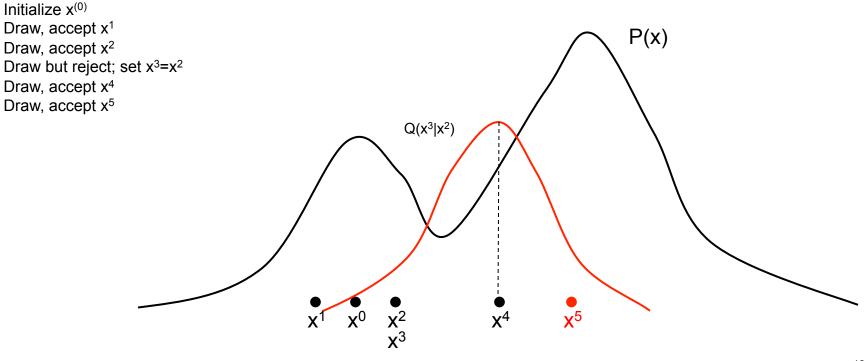
- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



© Eric Xing @ CMU, 2005-2012

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

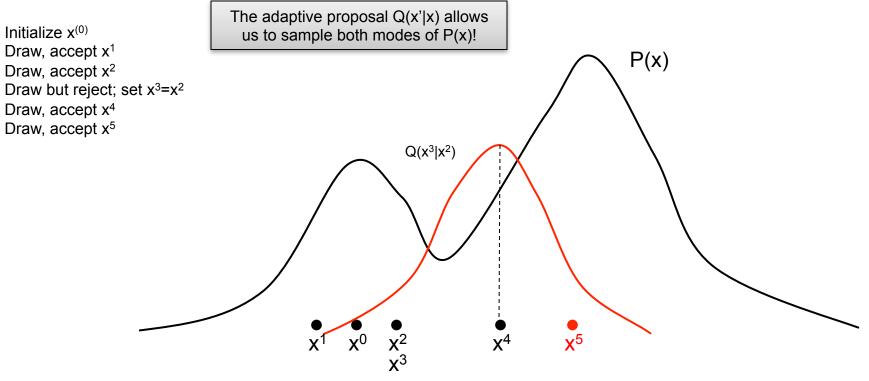
- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



© Eric Xing @ CMU, 2005-2012

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

- Example:
 - Let Q(x'|x) be a Gaussian centered on x
 - We're trying to sample from a bimodal distribution P(x)



Theoretical aspects of MCMC

- The MH algorithm has a "burn-in" period
 - Why do we throw away samples from burn-in?
- Why are the MH samples guaranteed to be from P(x)?
 - The proposal Q(x'|x) keeps changing with the value of x; how do we know the samples will eventually come from P(x)?
 - Has to do with the connection between Markov chains & MCMC
 - We will return to this later
- What are good, general-purpose, proposal distributions?

Gibbs Sampling

- Gibbs Sampling is an MCMC algorithm that samples each random variable of a graphical model, one at a time
 - GS is a special case of the MH algorithm

• GS algorithms...

- Are fairly easy to derive for many graphical models (e.g. mixture models, Latent Dirichlet allocation)
- Have reasonable computation and memory requirements, because they sample one r.v. at a time
- Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the sampling variance what we call **collapsed Gibbs sampling**

Gibbs Sampling

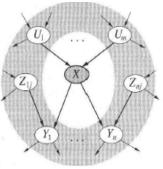
- The GS algorithm:
 - 1. Suppose the graphical model contains variables x_1, \ldots, x_n
 - 2. Initialize starting values for x_1, \dots, x_n
 - 3. Do until convergence:
 - 1. Pick an ordering of the n variables (can be fixed or random)
 - 2. For each variable x_i in order:
 - Sample x ~ P(x_i | x₁, ..., x_{i-1}, x_{i+1}, ..., x_n), i.e. the conditional distribution of x_i given the current values of all other variables
 - 2. Update $x_i \leftarrow x$
- When we update x_i, we <u>immediately</u> use its new value for sampling other variables x_i

Markov Blankets

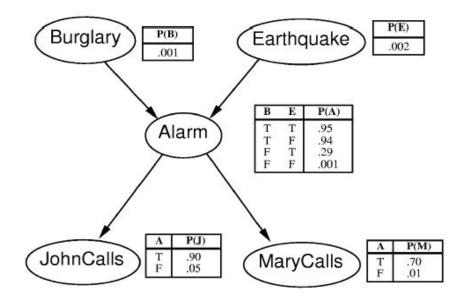
- The conditional P(x_i | x₁, ..., x_{i-1}, x_{i+1}, ..., x_n) looks intimidating, but recall Markov Blankets:
 - Let MB(x_i) be the Markov Blanket of x_i, then

$$P(x_i \mid x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i \mid MB(x_i))$$

• For a BN, the Markov Blanket of x_i is the set containing its parents, children, and co-parents



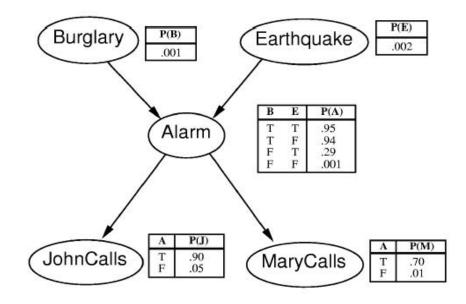
For an MRF, the Markov Blanket of x_i is its immediate neighbors



t	В	Ε	Α	J	Μ
0	F	F	F	F	F
1					
2					
3					
4					

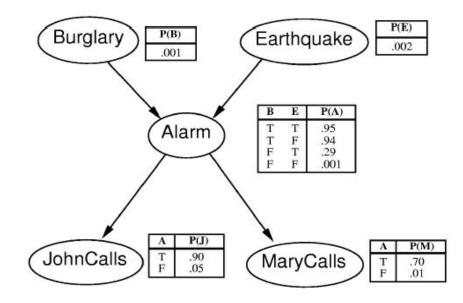
• Consider the alarm network

- Assume we sample variables in the order B,E,A,J,M
- Initialize all variables at t = 0 to False



t	В	Ε	Α	J	Μ
0	F	F	F	F	F
1	F				
2					
3					
4					

- Sampling P(B|A,E) at t = 1: Using Bayes Rule, $P(B \mid A, E) \propto P(A \mid B, E)P(B)$
- A=false, E=false, so we compute: $P(B = T \mid A = F, E = F) \propto (0.06)(0.01) = 0.0006$ $P(B = F \mid A = F, E = F) \propto (0.999)(0.999) = 0.9980$

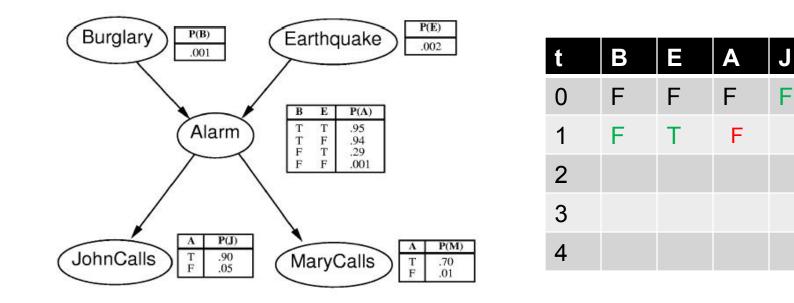


t	B	Ε	Α	J	Μ
0	F	F	F	F	F
1	F	Т			
2					
3					
4					

• Sampling P(E|A,B): Using Bayes Rule,

 $P(E \mid A, B) \propto P(A \mid B, E)P(E)$

• (A,B) = (F,F), so we compute the following, $P(E = T \mid A = F, B = F) \propto (0.71)(0.02) = 0.0142$ $P(E = F \mid A = F, B = F) \propto (0.999)(0.998) = 0.9970$



- Sampling P(A|B,E,J,M): Using Bayes Rule, $P(A \mid B, E, J, M) \propto P(J \mid A)P(M \mid A)P(A \mid B, E)$
- (B,E,J,M) = (F,T,F,F), so we compute: $P(A = T | B = F, E = T, J = F, M = F) \propto (0.1)(0.3)(0.29) = 0.0087$ $P(A = F | B = F, E = T, J = F, M = F) \propto (0.95)(0.99)(0.71) = 0.6678$

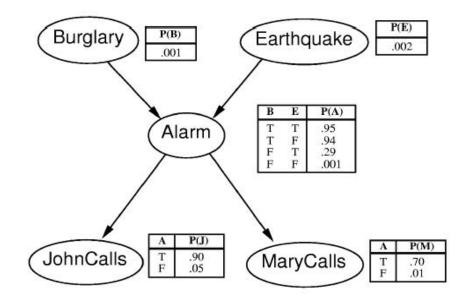
Μ

F



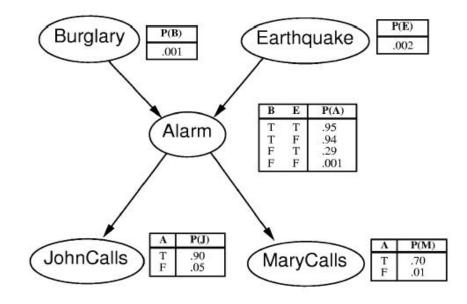
t	B	Ε	Α	J	Μ
0	F	F	F	F	F
1	F	Т	F	Т	
2					
3					
4					

- Sampling P(J|A): No need to apply Bayes Rule
- A = F, so we compute the following, and sample $P(J = T \mid A = F) \propto 0.05$ $P(J = F \mid A = F) \propto 0.95$



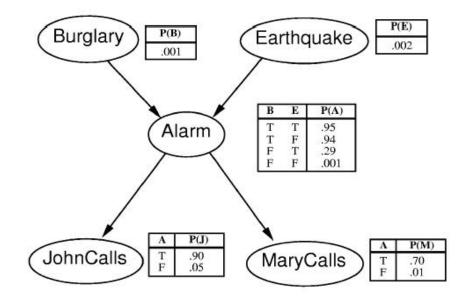
t	B	Е	Α	J	Μ
0	F	F	F	F	F
1	F	Т	F	Т	F
2					
3					
4					

- Sampling P(M|A): No need to apply Bayes Rule
- A = F, so we compute the following, and sample $P(M = T \mid A = F) \propto 0.01$ $P(M = F \mid A = F) \propto 0.99$



t	В	Ε	Α	J	Μ
0	F	F	F	F	F
1	F	Т	F	Т	F
2	F	Т	Т	Т	Т
3					
4					

 Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M …



t	Β	Ε	Α	J	Μ
0	F	F	F	F	F
1	F	Т	F	Т	F
2	F	Т	Т	Т	Т
3	Т	F	Т	F	Т
4	Т	F	Т	F	F

- Now t = 2, and we repeat the procedure to sample new values of B,E,A,J,M …
- And similarly for t = 3, 4, etc.

Gibbs Sampling is a special case of MH

• The GS proposal distribution is

$$Q(x'_i, \mathbf{x}_{-i} \mid x_i, \mathbf{x}_{-i}) = P(x'_i \mid \mathbf{x}_{-i})$$

 $(\mathbf{x}_{-i} \text{ denotes all variables except } \mathbf{x}_i)$

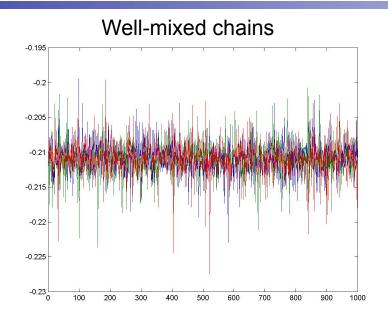
• Applying Metropolis-Hastings with this proposal, we obtain:

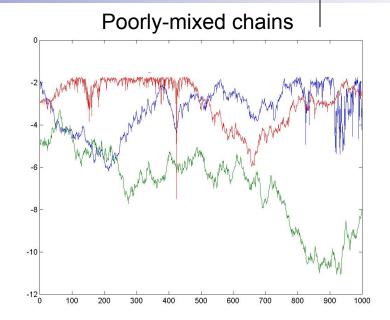
$$A(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i}) = \min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})Q(x_{i}, \mathbf{x}_{-i} \mid x'_{i}, \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})Q(x'_{i}, \mathbf{x}_{-i} \mid x_{i}, \mathbf{x}_{-i})}\right)$$

= $\min\left(1, \frac{P(x'_{i}, \mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i}, \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right) = \min\left(1, \frac{P(x'_{i} \mid \mathbf{x}_{-i})P(\mathbf{x}_{-i})P(x_{i} \mid \mathbf{x}_{-i})}{P(x_{i} \mid \mathbf{x}_{-i})P(x'_{i} \mid \mathbf{x}_{-i})}\right)$
= $\min(1, 1) = 1$

GS is simply MH with a proposal that is always accepted!

Sample Values vs Time





- Monitor convergence by plotting samples (of r.v.s) from multiple MH runs (chains)
 - If the chains are well-mixed (left), they are probably converged
 - If the chains are poorly-mixed (right), we should continue burn-in

Markov Chains

 A Markov Chain is a sequence of random variables x⁽¹⁾,x⁽²⁾, ...,x⁽ⁿ⁾ with the Markov Property

$$P(x^{(n)} = x \mid x^{(1)}, \dots, x^{(n-1)}) = P(x^{(n)} = x \mid x^{(n-1)})$$

- $P(x^{(n)} = x | x^{(n-1)})$ is known as the <u>transition kernel</u>
- The next state depends only on the preceding state recall HMMs!
- Note: the r.v.s x⁽ⁱ⁾ can be <u>vectors</u>
 - We define x^(t) to be the t-th sample of <u>all</u> variables in a graphical model
 - X^(t) represents the entire state of the graphical model at time t
- We study homogeneous Markov Chains, in which the transition kernel $P(x^{(t)} = x | x^{(t-1)})$ is fixed with time
 - To emphasize this, we will call the kernel T(x' | x), where x is the previous state and x' is the next state

Markov Chain Concepts

- To understand MCs, we need to define a few concepts:
 - Probability distributions over states: $\pi^{(t)}(x)$ is a distribution over the state of the system x, at time t
 - When dealing with MCs, we don't think of the system as being in one state, but as having a distribution over states
 - For graphical models, remember that x represents <u>all</u> variables
 - Transitions: recall that states transition from $x^{(t)}$ to $x^{(t+1)}$ according to the transition kernel T(x'|x). We can also transition entire distributions:

$$\pi^{(t+1)}(x') = \sum_{x} \pi^{(t)}(x) T(x' \mid x)$$

- At time t, state x has probability mass $\pi^{(t)}(x)$. The transition probability redistributes this mass to other states x'.
- Stationary distributions: $\pi(x)$ is stationary if it does not change under the transition kernel:

$$\pi(x') = \sum_{x} \pi(x) T(x' \mid x) \quad \text{for all } x'$$

Markov Chain Concepts

- Stationary distributions are of great importance in MCMC. To understand them, we need to define some notions:
 - Irreducible: an MC is irreducible if you can get from any state x to any other state x' with probability > 0 in a finite number of steps
 - i.e. there are no unreachable parts of the state space
 - This is a function of the transition kernel!
 - Aperiodic: an MC is aperiodic if you can return to any state x at any time
 - Periodic MCs have states that need ≥ 2 time steps to return to (cycles)
 - Ergodic (or **regular**): an MC is ergodic if it is <u>irreducible and aperiodic</u>
- Ergodicity is important: it implies you can reach the stationary distribution $\pi_{st}(x)$, no matter the initial distribution $\pi^{(0)}(x)$
 - All good MCMC algorithms must satisfy ergodicity, so that you can't initialize in a way that will never converge

Markov Chain Concepts

Reversible (detailed balance): an MC is reversible if there exists a distribution π(x) such that the detailed balance condition is satisfied:

$$\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$$

- Probability of $x' \rightarrow x$ is the same as $x \rightarrow x'$
- $\pi(x)$ is a stationary distribution of the MC! Proof: $\pi(x')T(x \mid x') = \pi(x)T(x' \mid x)$ $\sum_x \pi(x')T(x \mid x') = \sum_x \pi(x)T(x' \mid x)$ $\pi(x')\sum_x T(x \mid x') = \sum_x \pi(x)T(x' \mid x)$ $\pi(x') = \sum_x \pi(x)T(x' \mid x)$
 - The last line is the definition of a stationary distribution!

Why does Metropolis-Hastings work?

- Recall that we draw a sample x' according to Q(x'|x), and then accept/reject according to A(x'|x).
 - In other words, the transition kernel is

 $T(x' \mid x) = Q(x' \mid x)A(x' \mid x)$

- We can prove that MH is reversible:
 - Recall that

$$A(x'|x) = \min\left(1, \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}\right)$$

• Notice this implies the following:

if
$$A(x'|x) < 1$$
 then $\frac{P(x)Q(x'|x)}{P(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

Why does Metropolis-Hastings work?

if
$$A(x'|x) < 1$$
 then $\frac{\pi(x)Q(x'|x)}{\pi(x')Q(x|x')} > 1$ and thus $A(x|x') = 1$

• Now suppose A(x'|x) < 1 and A(x|x') = 1. We have

$$A(x'|x) = \frac{P(x')Q(x|x')}{P(x)Q(x'|x)}$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')$$

$$P(x)Q(x'|x)A(x'|x) = P(x')Q(x|x')A(x|x')$$

$$P(x)T(x'|x) = P(x')T(x|x')$$

- The last line is exactly the detailed balance condition
 - In other words, the MH algorithm leads to a stationary distribution P(x)
 - Recall we defined P(x) to be the true distribution of x
 - Thus, the MH algorithm eventually converges to the true distribution!

Why does Metropolis-Hastings work?

- Theorem: If a Markov chain is regular and satisfies detailed balance with respect to p(x), then p(x) is its unique stationary distribution
- Easy to verify that Gibbs sampling satisfies aperiodicity and is irreducible, and thus is regular
- The *mixing time*, or how long it takes to **reach** something close the stationary distribution, can be very long

Summary

- Markov Chain Monte Carlo methods use adaptive proposals Q(x'|x) to sample from the true distribution P(x)
- Metropolis-Hastings allows you to specify any proposal Q(x'|x)
 - But choosing a good Q(x'|x) requires care
- Gibbs sampling sets the proposal Q(x'|x) to the conditional distribution P(x'|x)
 - Acceptance rate always 1!
 - But remember that high acceptance usually entails slow exploration
 - In fact, there are better MCMC algorithms for certain models
- Knowing when to halt burn-in is an art