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Limitations of Monte Carlo 

  Direct (unconditional) sampling 
  Hard to get rare events in high-dimensional spaces 

  Infeasible for MRFs, unless we know the normalizer Z 

  Rejection sampling, Importance sampling 
  Do not work well if the proposal Q(x) is very different from P(x) 

  Yet constructing a Q(x) similar to P(x) can be difficult 

  Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample! 

  Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal? 
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Markov Chain Monte Carlo 

  MCMC algorithms feature adaptive proposals 
  Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 

sampled, and x is the previous sample 

  As x changes, Q(x’|x) can also change (as a function of x’) 
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Metropolis-Hastings 

  Let’s see how MCMC works in practice 
  Later, we’ll look at the theoretical aspects 

  Metropolis-Hastings algorithm 
  Draws a sample x’ from Q(x’|x), where x is the previous sample 

  The new sample x’ is accepted or rejected with some probability A(x’|x) 

  This acceptance probability is 

  A(x’|x) is like a ratio of importance sampling weights 
  P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x 

  We divide the importance weight for x’ by that of x 

  Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately 

  A(x’|x) ensures that, after sufficiently many draws, our samples will come 
from the true distribution P(x) – we shall learn why later in this lecture 
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The MH Algorithm 

1.  Initialize starting state x(0), set t =0 

2.  Burn-in: while samples have “not converged” 

  x=x(t)  
  t =t +1, 

  sample x* ~ Q(x*|x)  // draw from proposal 

  sample u ~ Uniform(0,1) // draw acceptance threshold 
   

   - if 

  x(t) = x*   // transition 

  - else 

  x(t) = x    // stay in current state  

  Take samples from P(x): Reset t=0, for t =1:N 
  x(t+1)  Draw sample (x(t)) 

Function  
Draw sample (x(t)) 



The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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We reject because P(x’)/P(x2) is very small, 
hence A(x’|x2) is close to zero! 



The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)! 



Theoretical aspects of MCMC 

  The MH algorithm has a “burn-in” period 
  Why do we throw away samples from burn-in? 

  Why are the MH samples guaranteed to be from P(x)? 
  The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)? 

  Has to do with the connection between Markov chains & MCMC 

  We will return to this later 

  What are good, general-purpose, proposal distributions? 

© Eric Xing @ CMU, 2005-2012 14 



Gibbs Sampling 

  Gibbs Sampling is an MCMC algorithm that samples each 
random variable of a graphical model, one at a time 
  GS is a special case of the MH algorithm 

  GS algorithms… 
  Are fairly easy to derive for many graphical models (e.g. mixture models, 

Latent Dirichlet allocation) 

  Have reasonable computation and memory requirements, because they 
sample one r.v. at a time 

  Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the 
sampling variance – what we call collapsed Gibbs sampling 
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Gibbs Sampling 

  The GS algorithm: 
1.  Suppose the graphical model contains variables x1,…,xn 

2.  Initialize starting values for x1,…,xn 

3.  Do until convergence: 

1.  Pick an ordering of the n variables (can be fixed or random) 

2.  For each variable xi in order: 
1.  Sample x ~ P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of xi given the 

current values of all other variables 

2.  Update xi ← x 

  When we update xi, we immediately use its new value for 
sampling other variables xj 
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Markov Blankets 

  The conditional P(xi | x1, …, xi-1, xi+1, …, xn) looks intimidating, 
but recall Markov Blankets: 
  Let MB(xi) be the Markov Blanket of xi, then 

  For a BN, the Markov Blanket of xi is the set              
containing its parents, children, and co-parents 

  For an MRF, the Markov Blanket of xi is its immediate 
neighbors 
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Gibbs Sampling: An Example 

  Consider the alarm network 
  Assume we sample variables in the order B,E,A,J,M 

  Initialize all variables at t = 0 to False 
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Gibbs Sampling: An Example 

  Sampling P(B|A,E) at t = 1: Using Bayes Rule, 

  A=false, E=false, so we compute: 
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Gibbs Sampling: An Example 

  Sampling P(E|A,B): Using Bayes Rule, 

  (A,B) = (F,F), so we compute the following,  
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Gibbs Sampling: An Example 

  Sampling P(A|B,E,J,M): Using Bayes Rule, 

  (B,E,J,M) = (F,T,F,F), so we compute: 
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Gibbs Sampling: An Example 

  Sampling P(J|A): No need to apply Bayes Rule 

  A = F, so we compute the following, and sample 
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Gibbs Sampling: An Example 

  Sampling P(M|A): No need to apply Bayes Rule 

  A = F, so we compute the following, and sample 

© Eric Xing @ CMU, 2005-2012 23 

t B E A J M 

0 F F F F F 

1 F T F T 

2 

3 

4 

F 



Gibbs Sampling: An Example 

  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 
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Gibbs Sampling: An Example 

  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 

  And similarly for t = 3, 4, etc. 
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Gibbs Sampling is a special case 
of MH 

  The GS proposal distribution is 

(x-i denotes all variables except xi) 

  Applying Metropolis-Hastings with this proposal, we obtain: 

GS is simply MH with a proposal that is always accepted! 
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Sample Values vs Time 

  Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains) 
  If the chains are well-mixed (left), they are probably converged 

  If the chains are poorly-mixed (right), we should continue burn-in 
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Markov Chains 

  A Markov Chain is a sequence of random variables x(1),x(2),
…,x(n) with the Markov Property 

                                  is known as the transition kernel 

  The next state depends only on the preceding state – recall HMMs! 

  Note: the r.v.s x(i) can be vectors 

  We define x(t) to be the t-th sample of all variables in a graphical model 

  X(t) represents the entire state of the graphical model at time t 

  We study homogeneous Markov Chains, in which the 
transition kernel                            is fixed with time 
  To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state 
© Eric Xing @ CMU, 2005-2012 28 



Markov Chain Concepts 

  To understand MCs, we need to define a few concepts: 
  Probability distributions over states:              is a distribution over the 

state of the system x, at time t 

  When dealing with MCs, we don’t think of the system as being in one 
state, but as having a distribution over states 

  For graphical models, remember that x represents all variables 

  Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transition entire distributions: 

  At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’. 

  Stationary distributions:           is stationary if it does not change under 
the transition kernel: 
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for all x’ 



Markov Chain Concepts 

  Stationary distributions are of great importance in MCMC. To 
understand them, we need to define some notions: 
  Irreducible: an MC is irreducible if you can get from any state x to any 

other state x’ with probability > 0 in a finite number of steps 

  i.e. there are no unreachable parts of the state space 

  This is a function of the transition kernel! 

  Aperiodic: an MC is aperiodic if you can return to any state x at any time 

  Periodic MCs have states that need ≥2 time steps to return to (cycles) 

  Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic 

  Ergodicity is important: it implies you can reach the stationary 
distribution          , no matter the initial distribution 
  All good MCMC algorithms must satisfy ergodicity, so that you can’t 

initialize in a way that will never converge 
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Markov Chain Concepts 

  Reversible (detailed balance): an MC is reversible if there 
exists a distribution           such that the detailed balance 
condition is satisfied: 

  Probability of x’→x is the same as x→x’ 

        is a stationary distribution of the MC!   Proof: 

  The last line is the definition of a stationary distribution! 
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Why does Metropolis-Hastings 
work? 

  Recall that we draw a sample x’ according to Q(x’|x), and then 
accept/reject according to A(x’|x). 
  In other words, the transition kernel is 

  We can prove that MH is reversible: 
  Recall that 

  Notice this implies the following: 
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Why does Metropolis-Hastings 
work? 

  Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have 

  The last line is exactly the detailed balance condition 
  In other words, the MH algorithm leads to a stationary distribution P(x) 

  Recall we defined P(x) to be the true distribution of x 

  Thus, the MH algorithm eventually converges to the true distribution! 
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Why does Metropolis-Hastings 
work? 

  Theorem: If a Markov chain is regular and satisfies detailed 
balance with respect to p(x), then p(x) is its unique stationary 
distribution 

  Easy to verify that Gibbs sampling satisfies aperiodicity and is 
irreducible, and thus is regular 

  The mixing time, or how long it takes to reach something 
close the stationary distribution, can be very long 
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Summary 

  Markov Chain Monte Carlo methods use adaptive proposals 
Q(x’|x) to sample from the true distribution P(x) 

  Metropolis-Hastings allows you to specify any proposal Q(x’|x) 
  But choosing a good Q(x’|x) requires care 

  Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x) 
  Acceptance rate always 1! 

  But remember that high acceptance usually entails slow exploration 

  In fact, there are better MCMC algorithms for certain models 

  Knowing when to halt burn-in is an art 
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