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Limitations of Monte Carlo

e Direct (unconditional) sampling
e Hard to get rare events in high-dimensional spaces
e Infeasible for MRFs, unless we know the normalizer Z

e Rejection sampling, Importance sampling
e Do not work well if the proposal Q(x) is very different from P(x)

e Yet constructing a Q(x) similar to P(x) can be difficult

Making a good proposal usually requires knowledge of the analytic form
of P(x) — but if we had that, we wouldn’t even need to sample!

e Intuition: instead of a fixed proposal Q(x), what if we could use
an adaptive proposal?
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Markov Chain Monte Carlo

A

e MCMC algorithms feature adaptive proposals

e Instead of Q(X’), they use Q(X’|x) where X’ is the new state being
sampled, and x is the previous sample

e As x changes, Q(x’|x) can also change (as a function of x’)

Importance sampling with MCMC with adaptive
a (bad) proposal Q(x) proposal Q(x’|x)
P(x)
Q(x)
I )
x3 x1 x2
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Metropolis-Hastings

e Let's see how MCMC works in practice
e Later, we'll look at the theoretical aspects

e Metropolis-Hastings algorithm
e Draws a sample x’ from Q(x’|x), where x is the previous sample
e The new sample X’ is accepted or rejected with some probability A(x’|x)

This acceptance probability is A(x'| x) = min(l P(x")O(x| x'))
" P(x)O(x'] x)

A(X'|x) is like a ratio of importance sampling weights
P(x’)/Q(X’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x
We divide the importance weight for x’ by that of x
Notice that we only need to compute P(x)/P(x) rather than P(x’) or P(x) separately

A(X’|x) ensures that, after sufficiently many draws, our samples will come
from the true distribution P(x) — we shall learn why later in this lecture
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The MH Algorithm

B

1. Initialize starting state x{9, set + =0

2. Burn-in: while samples have “not converged”
o x=x{ \
o T=1+1,
e sample xX* ~ Q(x*|x) // draw from proposal
e sample v~ Uniform(0,1) // draw acceptance threshold

* * Function
-if < AGT[x) = min(L f;)((?;))QQ((;C*Il);))) Draw sample (x(t))
X0 = x* // transition
- else
X0 = x /I stay in current state )

e Take samples from P(x): Reset t=0, for +=1:N
e Xx(t+1) < Draw sample (x(t))
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The MH Algorithm

e Example:
Let Q(x'|x) be a Gaussian centered on x

Initialize x(©)

A(x'| x) = min(

; PGHOGx [ x')

- P(0)Q(x'| x)

|

-

We're trying to sample from a bimodal distribution P(x)

Q(x"[x°)
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The MH Algorithm

e Example:

A(x'| x) = min(

; PGHOGx [ x')
- P(0)Q(x'| x)

|

-

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)
Draw, accept x'

Q(x"[x°)
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The MH Algorithm

e Example:

A(x'| x) = min(

; PGHOGx [ x')
- P(0)Q(x'| x)

|

-

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x©)
Draw, accept x'
Draw, accept x?
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A(x'] x) =min(1 P(x')Q(”x'))

- P(0)Q(x'| x)

The MH Algorith

A

e Example:
e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'

Draw, accept x? P(X)
Draw but reject; set x3=x?

o o o

x x0 x2 x (rejected)
X3
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The MH Algorithm

e Example:

A(x'] x) =min(1 P(x')Q(”x'))

- P(0)Q(x'| x)

e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'

Draw, accept x?

Draw but reject; set x3=x?

We reject because P(x’)/P(x?) is very small,
hence A(x’|x2) is close to zero!

P(x)

e o o

x x0 x2 x (rejected)
X3
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The MH Algorithm

e Example:

A(x'| x) = min(

; PGHOGx [ x')
- P(0)Q(x'| x)

|

e Let Q(X'|x) be a Gaussian centered on x
e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'
Draw, accept x?
Draw but reject; set x3=x?
Draw, accept x*
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The MH Algorithm

e Example:

A(x'| x) = min(

; PGHOGx [ x')

- P(0)Q(x'| x)

|

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'
Draw, accept x?
Draw but reject; set x3=x?
Draw, accept x*
Draw, accept x°

© Eric Xing @ CMU, 2005-2012

P(x)

12



The MH Algorithm

e Example:

A(x'| x) = min(

; PGHOGx [ x')

- P(0)Q(x'| x)

|

e Let Q(X'|x) be a Gaussian centered on x

e We're trying to sample from a bimodal distribution P(x)

Initialize x(©)

Draw, accept x'
Draw, accept x?
Draw but reject; set x3=x?
Draw, accept x*
Draw, accept x°

The adaptive proposal Q(x’|x) allows
us to sample both modes of P(x)!
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Theoretical aspects of MCMC

e The MH algorithm has a “burn-in” period
e Why do we throw away samples from burn-in?

e \Why are the MH samples guaranteed to be from P(x)?

e The proposal Q(x’|x) keeps changing with the value of x; how do we
know the samples will eventually come from P(x)?

e Has to do with the connection between Markov chains & MCMC
e We will return to this later

e \What are good, general-purpose, proposal distributions?
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Gibbs Sampling

e Gibbs Sampling is an MCMC algorithm that samples each
random variable of a graphical model, one at a time

e GS is a special case of the MH algorithm

e (S algorithms...

e Are fairly easy to derive for many graphical models (e.g. mixture models,
Latent Dirichlet allocation)

e Have reasonable computation and memory requirements, because they
sample one r.v. at a time

e Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the
sampling variance — what we call collapsed Gibbs sampling
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Gibbs Sampling

e The GS algorithm:

1. Suppose the graphical model contains variables x4,...,X,
2. Initialize starting values for x.,...,X,
3. Do until convergence:

Pick an ordering of the n variables (can be fixed or random)

For each variable x; in order:

1. Sample x~ P(X; | X4, ..., Xi.1» Xis1> ---» X,), I-€. the conditional distribution of x; given the
current values of all other variables

2. Update x; < x

e \When we update x;, we immediately use its new value for
sampling other variables x;
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Markov Blankets

The conditional P(x; | X4, ..., X1, Xisq, ---, X;,) l0OOKS intimidating,
but recall Markov Blankets:

e Let MB(x;) be the Markov Blanket of x;, then
P(xi | xla“'axi—laxm:---axn) = P(xi | MB(xi))

For a BN, the Markov Blanket of x is the set (i
containing its parents, children, and co-parents

, & Dt ) Dy
For an MRF, the Markov Blanket of x; is its immediate
neighbors
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Gibbs Sampling: An Example

P(E)
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e Consider the alarm network

e Assume we sample variables in the order B,E,A,J,M

-

e Initialize all variables att = 0 to False
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Gibbs Sampling: An Example

P(E)
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e Sampling P(B|A,E) att = 1: Using Bayes Rule,
P(B|A,E)x P(A|B,E)P(B)
e A=false, E=false, so we compute:
P(B=T|A=F,E=F)x(0.06)(0.01) =0.0006
P(B=F|A=F,E=F)x(0.999)(0.999) = 0.9980
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Gibbs Sampling: An Example

P(E)
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e Sampling P(E|A,B): Using Bayes Rule,
P(E|A,B)x P(A|B,E)P(E)
e (AB)=(F,F), so we compute the following,
P(E=T|A=F,B=F)x(0.71)(0.02) =0.0142
P(E=F|A=F,B=F)x(0.999)(0.998)=0.9970
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Gibbs Sampling: An Example

P(E)
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e Sampling P(A|B,E,J,M): Using Bayes Rule,
P(A|B,E,J,M)x P(J|A)P(M|A)P(A|B,E)

e (B,E,JM)=(F,T,F,F), sowe compute:
P(A=T|B=F,E=T,J=F,M =F) x(0.1)(0.3)(0.29) = 0.0087
P(A=F|B=F,E=T,J=F,M =F) «(0.95)(0.99)(0.71) = 0.6678
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Gibbs Sampling: An Example

P(E)
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e Sampling P(J|A): No need to apply Bayes Rule

-

e A =F, sowe compute the following, and sample
P(J=T|A=F)x0.05

P(J=F|A=F)x0.95
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Gibbs Sampling: An Example

P(E)
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e Sampling P(M|A): No need to apply Bayes Rule

-

e A =F, sowe compute the following, and sample
PM=T|A=F)x0.01

P(M=F|A=F)x099
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Gibbs Sampling: An Example
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e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

-
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Gibbs Sampling: An Example

P(E)
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e Nowt =2, and we repeat the procedure to sample new values of
B,E,A,J,M ...

e And similarly for t = 3, 4, etc.
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Gibbs Sampling is a special case
of MH

e The GS proposal distribution is
Q(xzfﬂx—i | xi9X—i) = P(xz{ | X—i)
(x; denotes all variables except x;)

e Applying Metropolis-Hastings with this proposal, we obtain:

A(X;,X_i | 'xiax—i) = min

P(xl,x )O(x,X_. | x,X_,)
" P(x,x_)O(x,X_, | x,,X_ ))

P(x;,x_l->P<x,-|x_,-))=min | PG IX )P )P X))

= min| 1

CP(x,x_)P(x]|x_;) CP(x; | x_)P(x_)P(x] [ x_;)
= min(L,1)=1

GS is simply MH with a proposal that is always accepted!
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Sample Values vs Time

Well-mixed chains Poorly-mixed chains
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e Monitor convergence by plotting samples (of r.v.s) from
multiple MH runs (chains)

If the chains are well-mixed (left), they are probably converged
If the chains are poorly-mixed (right), we should continue burn-in
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Markov Chains

e A Markov Chain is a sequence of random variables x() x(2),
...,X") with the Markov Property

P(x'" =x|xV,..,x" )= P(x" = x| x"™)

o P =x|x"") is known as the transition kernel
e The next state depends only on the preceding state — recall HMMs!

e Note: the r.v.s x() can be vectors
We define x® to be the t-th sample of all variables in a graphical model
X represents the entire state of the graphical model at time t

e We study homogeneous Markov Chains, in which the
transition kernel P(x" =x|x"") is fixed with time

e To emphasize this, we will call the kernel T(x' | X) , where x is the

previous state and x’ is the next state
© Eric Xing @ CMU, 2005-2012
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Markov Chain Concepts

e To understand MCs, we need to define a few concepts:

Probability distributions over states: &' (x) is a distribution over the
state of the system x, at time t

When dealing with MCs, we don’t think of the system as being in one
state, but as having a distribution over states

For graphical models, remember that x represents all variables

Transitions: recall that states transition from x® to x*") according to the
transition kernel T(x'| x) . We can also transition entire distributions:

"V (x") = Exﬂ(’)(x)T (x"| x)

At time t, state x has probability mass 7 )(x). The transition probability
redistributes this mass to other states x'.

Stationary distributions: 7(x) is stationary if it does not change under
the transition kernel:

w(x') = Exﬂ(x)T(x' |x)  forall X

© Eric Xing @ CMU, 2005-2012
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Markov Chain Concepts

e Stationary distributions are of great importance in MCMC. To
understand them, we need to define some notions:

e Irreducible: an MC is irreducible if you can get from any state x to any
other state x’ with probability > 0 in a finite number of steps

i.e. there are no unreachable parts of the state space
This is a function of the transition kernel!

e Aperiodic: an MC is aperiodic if you can return to any state x at any time
Periodic MCs have states that need =2 time steps to return to (cycles)

e Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic

e Ergodicity is important: it implies you can reach the stationary
distribution = (x), no matter the initial distribution 7' (x)

e All good MCMC algorithms must satisfy ergodicity, so that you can't
initialize in a way that will never converge
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Markov Chain Concepts

-

e Reversible (detailed balance): an MC is reversible if there
exists a distribution z7(x) such that the detailed balance
condition is satisfied:

a(xNT(x|x)=m(x)T(x'| x)

e Probability of X’—x is the same as x—X’

e 7(x) is a stationary distribution of the MC! Proof:
a(xT(x|x")=m(x)T (x| x)

Exn(x')T(x x') = Exjr(x)T(x' | x)
Jr(x')ExT(x x') = Exn(x)T(x' | x)
w(x") = Exﬂ(x)T(x' | x)

e The last line is the definition of a stationary distribution!
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Why does Metropolis-Hastings
work?

e Recall that we draw a sample x’ according to Q(x’|x), and then
accept/reject according to A(x’|x).

e In other words, the transition kernel is
T(x'|x)=0(x'| x)A(x"] x)

e \We can prove that MH is reversible:

e Recall that , ,
o A(x'|x)=min(1 P(x)Q(x|x))

" P(0)O(x'| x)

e Notice this implies the following:
P(x)Q(x'| x)
P(x)Q(x|x')

if A(x'|x)<1 then >1 andthus A(x|x')=1
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Why does Metropolis-Hastings
work?

1 (x)O(x"| x)
m(x)O(x | x)

e Now suppose A(X'|x) <1 and A(x|x") = 1. We have

it A(x'|x)<1 then >1 andthus A(x|x')=1

A x) = PEOOG )
Px)O(¥'| %)
PO | ¥)A(X| x) = P()Q(x | ¥)
P)O(X'| ¥)A(¥ | x) = P()O(x | ¥) A(x | x)
P)T(' | x) = PG)T(x| )

e The last line is exactly the detailed balance condition
e In other words, the MH algorithm leads to a stationary distribution P(x)
e Recall we defined P(x) to be the true distribution of x
e Thus, the MH algorithm eventually converges to the true distribution!
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Why does Metropolis-Hastings
work?

e Theorem: If a Markov chain is regular and satisfies detailed
balance with respect to p(x), then p(x) is its unique stationary
distribution

e Easy to verify that Gibbs sampling satisfies aperiodicity and is
irreducible, and thus is regular

e The mixing time, or how long it takes to reach something
close the stationary distribution, can be very long
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Summary

e

e Markov Chain Monte Carlo methods use adaptive proposals
Q(x’|x) to sample from the true distribution P(x)

e Metropolis-Hastings allows you to specify any proposal Q(x’|x)
e But choosing a good Q(x’|x) requires care

e Gibbs sampling sets the proposal Q(x’|x) to the conditional
distribution P(x’|x)
e Acceptance rate always 1!
e But remember that high acceptance usually entails slow exploration
e In fact, there are better MCMC algorithms for certain models

e Knowing when to halt burn-in is an art
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