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Limitations of Monte Carlo 

  Direct (unconditional) sampling 
  Hard to get rare events in high-dimensional spaces 

  Infeasible for MRFs, unless we know the normalizer Z 

  Rejection sampling, Importance sampling 
  Do not work well if the proposal Q(x) is very different from P(x) 

  Yet constructing a Q(x) similar to P(x) can be difficult 

  Making a good proposal usually requires knowledge of the analytic form 
of P(x) – but if we had that, we wouldn’t even need to sample! 

  Intuition: instead of a fixed proposal Q(x), what if we could use 
an adaptive proposal? 
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Markov Chain Monte Carlo 

  MCMC algorithms feature adaptive proposals 
  Instead of Q(x’), they use Q(x’|x) where x’ is the new state being 

sampled, and x is the previous sample 

  As x changes, Q(x’|x) can also change (as a function of x’) 
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Metropolis-Hastings 

  Let’s see how MCMC works in practice 
  Later, we’ll look at the theoretical aspects 

  Metropolis-Hastings algorithm 
  Draws a sample x’ from Q(x’|x), where x is the previous sample 

  The new sample x’ is accepted or rejected with some probability A(x’|x) 

  This acceptance probability is 

  A(x’|x) is like a ratio of importance sampling weights 
  P(x’)/Q(x’|x) is the importance weight for x’, P(x)/Q(x|x’) is the importance weight for x 

  We divide the importance weight for x’ by that of x 

  Notice that we only need to compute P(x’)/P(x) rather than P(x’) or P(x) separately 

  A(x’|x) ensures that, after sufficiently many draws, our samples will come 
from the true distribution P(x) – we shall learn why later in this lecture 

© Eric Xing @ CMU, 2005-2012 4 



© Eric Xing @ CMU, 2005-2012 5 

The MH Algorithm 

1.  Initialize starting state x(0), set t =0 

2.  Burn-in: while samples have “not converged” 

  x=x(t)  
  t =t +1, 

  sample x* ~ Q(x*|x)  // draw from proposal 

  sample u ~ Uniform(0,1) // draw acceptance threshold 
   

   - if 

  x(t) = x*   // transition 

  - else 

  x(t) = x    // stay in current state  

  Take samples from P(x): Reset t=0, for t =1:N 
  x(t+1)  Draw sample (x(t)) 

Function  
Draw sample (x(t)) 



The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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We reject because P(x’)/P(x2) is very small, 
hence A(x’|x2) is close to zero! 



The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 
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The MH Algorithm 

  Example: 
  Let Q(x’|x) be a Gaussian centered on x 

  We’re trying to sample from a bimodal distribution P(x) 

© Eric Xing @ CMU, 2005-2012 13 

P(x) 
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The adaptive proposal Q(x’|x) allows 
us to sample both modes of P(x)! 



Theoretical aspects of MCMC 

  The MH algorithm has a “burn-in” period 
  Why do we throw away samples from burn-in? 

  Why are the MH samples guaranteed to be from P(x)? 
  The proposal Q(x’|x) keeps changing with the value of x; how do we 

know the samples will eventually come from P(x)? 

  Has to do with the connection between Markov chains & MCMC 

  We will return to this later 

  What are good, general-purpose, proposal distributions? 

© Eric Xing @ CMU, 2005-2012 14 



Gibbs Sampling 

  Gibbs Sampling is an MCMC algorithm that samples each 
random variable of a graphical model, one at a time 
  GS is a special case of the MH algorithm 

  GS algorithms… 
  Are fairly easy to derive for many graphical models (e.g. mixture models, 

Latent Dirichlet allocation) 

  Have reasonable computation and memory requirements, because they 
sample one r.v. at a time 

  Can be Rao-Blackwellized (integrate out some r.v.s) to decrease the 
sampling variance – what we call collapsed Gibbs sampling 
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Gibbs Sampling 

  The GS algorithm: 
1.  Suppose the graphical model contains variables x1,…,xn 

2.  Initialize starting values for x1,…,xn 

3.  Do until convergence: 

1.  Pick an ordering of the n variables (can be fixed or random) 

2.  For each variable xi in order: 
1.  Sample x ~ P(xi | x1, …, xi-1, xi+1, …, xn), i.e. the conditional distribution of xi given the 

current values of all other variables 

2.  Update xi ← x 

  When we update xi, we immediately use its new value for 
sampling other variables xj 
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Markov Blankets 

  The conditional P(xi | x1, …, xi-1, xi+1, …, xn) looks intimidating, 
but recall Markov Blankets: 
  Let MB(xi) be the Markov Blanket of xi, then 

  For a BN, the Markov Blanket of xi is the set              
containing its parents, children, and co-parents 

  For an MRF, the Markov Blanket of xi is its immediate 
neighbors 
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Gibbs Sampling: An Example 

  Consider the alarm network 
  Assume we sample variables in the order B,E,A,J,M 

  Initialize all variables at t = 0 to False 
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t B E A J M 

0 F F F F F 

1 

2 

3 

4 



Gibbs Sampling: An Example 

  Sampling P(B|A,E) at t = 1: Using Bayes Rule, 

  A=false, E=false, so we compute: 
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Gibbs Sampling: An Example 

  Sampling P(E|A,B): Using Bayes Rule, 

  (A,B) = (F,F), so we compute the following,  
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t B E A J M 

0 F F F F F 

1 F 

2 

3 

4 

T 



Gibbs Sampling: An Example 

  Sampling P(A|B,E,J,M): Using Bayes Rule, 

  (B,E,J,M) = (F,T,F,F), so we compute: 
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t B E A J M 

0 F F F F F 
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Gibbs Sampling: An Example 

  Sampling P(J|A): No need to apply Bayes Rule 

  A = F, so we compute the following, and sample 
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t B E A J M 

0 F F F F F 

1 F T F 
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Gibbs Sampling: An Example 

  Sampling P(M|A): No need to apply Bayes Rule 

  A = F, so we compute the following, and sample 
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t B E A J M 

0 F F F F F 

1 F T F T 
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Gibbs Sampling: An Example 

  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 
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t B E A J M 
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Gibbs Sampling: An Example 

  Now t = 2, and we repeat the procedure to sample new values of 
B,E,A,J,M … 

  And similarly for t = 3, 4, etc. 
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t B E A J M 

0 F F F F F 

1 F T F T F 

2 F T T T T 

3 T F T F T 

4 T F T F F 



Gibbs Sampling is a special case 
of MH 

  The GS proposal distribution is 

(x-i denotes all variables except xi) 

  Applying Metropolis-Hastings with this proposal, we obtain: 

GS is simply MH with a proposal that is always accepted! 
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Sample Values vs Time 

  Monitor convergence by plotting samples (of r.v.s) from 
multiple MH runs (chains) 
  If the chains are well-mixed (left), they are probably converged 

  If the chains are poorly-mixed (right), we should continue burn-in 
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Markov Chains 

  A Markov Chain is a sequence of random variables x(1),x(2),
…,x(n) with the Markov Property 

                                  is known as the transition kernel 

  The next state depends only on the preceding state – recall HMMs! 

  Note: the r.v.s x(i) can be vectors 

  We define x(t) to be the t-th sample of all variables in a graphical model 

  X(t) represents the entire state of the graphical model at time t 

  We study homogeneous Markov Chains, in which the 
transition kernel                            is fixed with time 
  To emphasize this, we will call the kernel               , where x is the 

previous state and x’ is the next state 
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Markov Chain Concepts 

  To understand MCs, we need to define a few concepts: 
  Probability distributions over states:              is a distribution over the 

state of the system x, at time t 

  When dealing with MCs, we don’t think of the system as being in one 
state, but as having a distribution over states 

  For graphical models, remember that x represents all variables 

  Transitions: recall that states transition from x(t) to x(t+1) according to the 
transition kernel             . We can also transition entire distributions: 

  At time t, state x has probability mass π(t)(x). The transition probability 
redistributes this mass to other states x’. 

  Stationary distributions:           is stationary if it does not change under 
the transition kernel: 
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for all x’ 



Markov Chain Concepts 

  Stationary distributions are of great importance in MCMC. To 
understand them, we need to define some notions: 
  Irreducible: an MC is irreducible if you can get from any state x to any 

other state x’ with probability > 0 in a finite number of steps 

  i.e. there are no unreachable parts of the state space 

  This is a function of the transition kernel! 

  Aperiodic: an MC is aperiodic if you can return to any state x at any time 

  Periodic MCs have states that need ≥2 time steps to return to (cycles) 

  Ergodic (or regular): an MC is ergodic if it is irreducible and aperiodic 

  Ergodicity is important: it implies you can reach the stationary 
distribution          , no matter the initial distribution 
  All good MCMC algorithms must satisfy ergodicity, so that you can’t 

initialize in a way that will never converge 
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Markov Chain Concepts 

  Reversible (detailed balance): an MC is reversible if there 
exists a distribution           such that the detailed balance 
condition is satisfied: 

  Probability of x’→x is the same as x→x’ 

        is a stationary distribution of the MC!   Proof: 

  The last line is the definition of a stationary distribution! 

© Eric Xing @ CMU, 2005-2012 31 



Why does Metropolis-Hastings 
work? 

  Recall that we draw a sample x’ according to Q(x’|x), and then 
accept/reject according to A(x’|x). 
  In other words, the transition kernel is 

  We can prove that MH is reversible: 
  Recall that 

  Notice this implies the following: 
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Why does Metropolis-Hastings 
work? 

  Now suppose A(x’|x) < 1 and A(x|x’) = 1. We have 

  The last line is exactly the detailed balance condition 
  In other words, the MH algorithm leads to a stationary distribution P(x) 

  Recall we defined P(x) to be the true distribution of x 

  Thus, the MH algorithm eventually converges to the true distribution! 
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Why does Metropolis-Hastings 
work? 

  Theorem: If a Markov chain is regular and satisfies detailed 
balance with respect to p(x), then p(x) is its unique stationary 
distribution 

  Easy to verify that Gibbs sampling satisfies aperiodicity and is 
irreducible, and thus is regular 

  The mixing time, or how long it takes to reach something 
close the stationary distribution, can be very long 
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Summary 

  Markov Chain Monte Carlo methods use adaptive proposals 
Q(x’|x) to sample from the true distribution P(x) 

  Metropolis-Hastings allows you to specify any proposal Q(x’|x) 
  But choosing a good Q(x’|x) requires care 

  Gibbs sampling sets the proposal Q(x’|x) to the conditional 
distribution P(x’|x) 
  Acceptance rate always 1! 

  But remember that high acceptance usually entails slow exploration 

  In fact, there are better MCMC algorithms for certain models 

  Knowing when to halt burn-in is an art 
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