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Figure 1. Illustration of the Algorithm

1. Proof for Anchor-Words Finding
Algorithm

Recall that the correctness of the algorithm depends
on the following Lemma:

Lemma 1.1. The point dj found by the algorithm
must be δ = O(ε/γ2) close to some vertex vi. In par-
ticular, the corresponding aj O(ε/γ2)-covers vi.

In order to prove this Lemma, we first show that even
if previously found vertices are only δ close to some
vertices, there is still another vertex that is far from
the span of previously found vertices.

Lemma 1.2. Suppose all previously found vertices are
O(ε/γ2) close to distinct vertices, there is a vertex vi
whose distance from span(S) is at least γ/2.

In order to prove Lemma 1.2, we use a volume ar-
gument. First we show that the volume of a robust
simplex cannot change by too much when the vertices
are perturbed.

Lemma 1.3. Suppose {v1, v2, ..., vK} are the vertices
of a γ-robust simplex S. Let S′ be a simplex with ver-
tices {v′1, v′2, ..., v′K}, each of the vertices v′i is a per-

turbation of vi and ‖v′i − vi‖2 ≤ δ. When 10
√
Kδ < γ

the volume of the two simplices satisfy

vol(S)(1−2δ/γ)K−1 ≤ vol(S′) ≤ vol(S)(1+4δ/γ)K−1.

Proof: As the volume of a simplex is proportional to
the determinant of a matrix whose columns are the
edges of the simplex, we first show the following per-
turbation bound for determinant.

Claim 1.4. Let A, E be K ×K matrices, the small-
est eigenvalue of A is at least γ, the Frobenius norm
‖E‖F ≤

√
Kδ, when γ > 5

√
Kδ we have

det(A+ E)/ det(A) ≥ (1− δ/γ)K .

Proof: Since det(AB) = det(A) det(B), we can mul-
tiply both A and A + E by A−1. Hence det(A +
E)/ det(A) = det(I +A−1E).

The Frobenius norm of A−1E is bounded by

∥∥A−1E∥∥
F
≤
∥∥A−1∥∥

2
‖E‖F ≤

√
Kδ/γ.

Let the eigenvalues of A−1E be λ1, λ2, ..., λK , then by

definition of Frobenius Norm
∑K
i=1 λ

2
i ≤

∥∥A−1E∥∥2
F
≤

Kδ2/γ2.
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The eigenvalues of I + A−1E are just 1 + λ1, 1 +
λ2, ..., 1 + λK , and the determinant det(I + A−1E) =∏K
i=1(1 + λi). Hence it suffices to show

min

K∏
i=1

(1 + λi) ≥ (1− δ/γ)K when

K∑
i=1

λ2i ≤ Kδ2/γ2.

To do this we apply Lagrangian method and show the
minimum is only obtained when all λi’s are equal. The
optimal value must be obtained at a local optimum of

K∏
i=1

(1 + λi) + C

K∑
i=1

λ2i .

Taking partial derivatives with respect to λi’s, we get
the equations −λi(1 + λi) = −

∏K
i=1(1 + λi)/2C (here

using
√
Kδ/γ is small so 1 + λi > 1/2 > 0). The right

hand side is a constant, so each λi must be one of the
two solutions of this equation. However, only one of
the solution is larger than 1/2, therefore all the λi’s
are equal.

�

For the lower bound, we can project the perturbed
subspace to the K − 1 dimensional space. Such a
projection cannot increase the volume and the pertur-
bation distances only get smaller. Therefore we can
apply the claim directly, the columns of A are just
vi+1 − v1 for i = 1, 2, ...,K − 1; columns of E are just
v′i+1 − vi+1 − (v′1 − v1). The smallest eigenvalue of A
is at least γ because the polytope is γ robust, which is
equivalent to saying after orthogonalization each col-
umn still has length at least γ. The Frobenius norm
of E is at most 2

√
K − 1δ. We get the lower bound

directly by applying the claim.

For the upper bound, swap the two sets S and S′ and
use the argument for the lower bound. The only thing
we need to show is that the smallest eigenvalue of the
matrix generated by points in S′ is still at least γ/2.
This follows from Wedin’s Theorem(Wedin, 1972) and
the fact that ‖E‖ ≤ ‖E‖F ≤

√
Kδ ≤ γ/2. �

Now we are ready to prove Lemma 1.2.

Proof: The first case is for the first step of the al-
gorithm, when we try to find the farthest point to
the origin. Here essentially S = {~0}. For any two
vertices v1, v2, since the simplex is γ robust, the dis-
tance between v1 and v2 is at least γ. Which means
dis(~0, v1)+dis(~0, v2) ≥ γ, one of them must be at least
γ/2.

For the later steps, recall that S contains vertices of
a perturbed simplex. Let S′ be the set of original
vertices corresponding to the perturbed vertices in S.
Let v be any vertex in {v1, v2, ..., vK} which is not in
S. Now we know the distance between v and S is equal
to vol(S ∪ {v})/(|S| − 1)vol(S). On the other hand,
we know vol(S′ ∪ {v})/(|S′| − 1)vol(S′) ≥ γ. Using
Lemma 1.3 to bound the ratio between the two pairs
vol(S)/vol(S′) and vol(S ∪ {v})/vol(S′ ∪ {v}), we get

dis(v, S) ≥ (1− 4ε′/γ)2|S|−2γ > γ/2

when γ > 20Kε′.

�

Lemma 1.1 is based on the following observation: in
a simplex the point with largest `2 is always a vertex.
Even if two vertices have the same norm if they are not
close to each other the vertices on the edge connecting
them will have significantly lower norm.

Proof: (Lemma 1.1)

Since dj is the point found by the algorithm, let us
consider the point aj before perturbation. The point
aj is inside the simplex, therefore we can write aj as
a convex combination of the vertices:

aj =

K∑
t=1

ctvt

Let vt be the vertex with largest coefficient ct. Let ∆
be the largest distance from some vertex to the space
spanned by points in S (∆ = maxl dis(vl, span(S)).
By Lemma 1.2 we know ∆ > γ/2. Also notice that we
are not assuming dis(vt, span(S)) = ∆.

Now we rewrite aj as ctvt + (1 − ct)w, where w is a
vector in the convex hull of vertices other than vt.

Observe that aj must be far from span(S), because dj
is the farthest point found by the algorithm. Indeed

dis(aj , span(S)) ≥ dis(dj , span(S))− ε
≥ dis(vl, span(S))− 2ε ≥ ∆− 2ε.

The second inequality is because there must be some
point dl that correspond to the farthest vertex vl and
have dis(dl, span(S)) ≥ ∆ − ε. Thus as dj is the far-
thest point dis(dj , span(S)) ≥ dis(dl, span(S)) ≥ ∆−ε.

The point aj is on the segment connecting vt and
w, the distance between aj and span(S) is not much
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Figure 2. Proof of Lemma 1.1, after projecting to the or-
thogonal subspace of span(S).

smaller than that of vt and w. Following the intuition
in `2 norm when vt and w are far we would expect aj
to be very close to either vt or w. Since ct ≥ 1/K it
cannot be really close to w, so it must be really close
to vt. We formalize this intuition by the following cal-
culation (see Figure 2):

Project everything to the orthogonal subspace of
span(S) (points in span(S) are now at the origin). Af-
ter projection distance to span(S) is just the `2 norm
of a vector. Without loss of generality we assume
‖vt‖2 = ‖w‖2 = ∆ because these two have length
at most ∆, and extending these two vectors to have
length ∆ can only increase the length of dj .

The point vt must be far from w by applying
Lemma 1.2: consider the set of vertices V ′ = {vi :
vi does not correspond to any point in S and i 6= t}.
The set V ′∪S satisfy the assumptions in Lemma 1.2 so
there must be one vertex that is far from span(V ′∪S),
and it can only be vt. Therefore even after projecting
to orthogonal subspace of span(S), vt is still far from
any convex combination of V ′. The vertices that are
not in V ′ all have very small norm after projecting
to orthogonal subspace (at most δ0) so we know the
distance of vt and w is at least γ/2− δ0 > γ/4.

Now the problem becomes a two dimensional calcu-
lation. When ct is fixed the length of aj is strictly
increasing when the distance of vt and w decrease, so
we assume the distance is γ/4. Simple calculation (us-
ing essentially just pythagorean theorem) shows

ct(1− ct) ≤
ε

∆−
√

∆2 − γ2/16
.

The right hand side is largest when ∆ = 2 (since the
vectors are in unit ball) and the maximum value is
O(ε/γ2). When this value is smaller than 1/K, we
must have 1 − ct ≤ O(ε/γ2). Thus ct ≥ 1 − O(ε/γ2)
and δ ≤ (1− ct) + ε ≤ O(ε/γ2). �

The cleanup phase tries to find the farthest point to a
subset of K − 1 vertices, and use that point as the K-
th vertex. This will improve the result because when
we have K − 1 points close to K − 1 vertices, only one
of the vertices can be far from their span. Therefore
the farthest point must be close to the only remaining
vertex. Another way of viewing this is that the al-
gorithm is trying to greedily maximize the volume of
the simplex, which makes sense because the larger the
volume is, the more words/documents the final LDA
model can explain.

The following lemma makes the intuitions rigorous
and shows how cleanup improves the guarantee of
Lemma 1.1.

Lemma 1.5. Suppose |S| = K−1 and each point in S
is δ = O(ε/γ2) < γ/20K close to distinct vertices vi’s,
the farthest point found by the algorithm is dj, then the
corresponding aj O(ε/γ)-covers the remaining vertex.

Proof: We still look at the original point aj and

express it as
∑K
t=1 ctvt. Without loss of general-

ity let v1 be the vertex that does not correspond to
anything in S. By Lemma 1.2 v1 is γ/2 far from
span(S). On the other hand all other vertices are at
least γ/20r close to span(S). We know the distance
dis(aj , span(S)) ≥ dis(v1, span(S)) − 2ε, this cannot
be true unless c1 ≥ 1−O(ε/γ). �

These lemmas directly lead to the following theorem:

Theorem 1.6. FastAnchorWords algorithm runs
in time Õ(V 2 + V K/ε2) and outputs a subset of
{d1, ..., dV } of size K that O(ε/γ)-covers the vertices
provided that 20Kε/γ2 < γ.

Proof: In the first phase of the algorithm, do induc-
tion using Lemma 1.1. When 20Kε/γ2 < γ Lemma 1.1
shows that we find a set of points that O(ε/γ2)-covers
the vertices. Now Lemma 1.5 shows after cleanup
phase the points are refined to O(ε/γ)-cover the ver-
tices. �

2. Proof for Nonnegative Recover
Procedure

In order to show RecoverL2 learns the parameters even
when the rows of Q̄ are perturbed, we need the follow-
ing lemma that shows when columns of Q̄ are close
to the expectation, the posteriors c computed by the
algorithm is also close to the true value.

Lemma 2.1. For a γ robust simplex S with vertices
{v1, v2, ..., vK}, let v be a point in the simplex that can

be represented as a convex combination v =
∑K
i=1 civi.

If the vertices of S are perturbed to S′ = {..., v′i, ...}
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where ‖v′i − vi‖ ≤ δ1 and v is perturbed to v′ where
‖v − v′‖ ≤ δ2. Let v∗ be the point in conv{S′} that is
closest to v′, and v∗ =

∑K
i=1 c

′
ivi, when 10

√
Kδ1 ≤ γ

for all i ∈ [K] |ci − c′i| ≤ 4(δ1 + δ2)/γ.

Proof: Consider the point u =
∑K
i=1 civ

′
i, by triangle

inequality: ‖u− v‖ ≤
∑K
i=1 ci ‖vi − v′i‖ ≤ δ1. Hence

‖u− v′‖ ≤ ‖u− v‖+‖v − v′‖ ≤ δ1 +δ2, and u is in S′.
The point v∗ is the point in conv{S′} that is closest to
v′, so ‖v∗ − v′‖ ≤ δ1 + δ2 and ‖v∗ − u‖ ≤ 2(δ1 + δ2).

Then we need to show when a point (u) moves a small
distance, its representation also changes by a small
amount. Intuitively this is true because S is γ robust.
By Lemma 1.2 when 10

√
Kδ1 < γ, the simplex S′ is

also γ/2 robust. For any i, let Proji(v
∗) and Proji(u)

be the projections of v∗ and u in the orthogonal sub-
space of span(S′\v′i), then

|ci − c′i| = ‖Proji(v∗)− Proji(u)‖ /dis(vi, span(S′\v′i))
≤ 4(δ1 + δ2)/γ

and this completes the proof. �

With this lemma it is not hard to show that RecoverL2
has polynomial sample complexity.

Theorem 2.2. When the number of documents M is
at least

max{O(aK3 log V/D(γp)6ε), O((aK)3 log V/Dε3(γp)4)}

our algorithm using the conjunction of FastAnchor-
Words and RecoverL2 learns the A matrix with entry-
wise error at most ε.

Proof: (sketch) We can assume without loss of
generality that each word occurs with probability
at least ε/4aK and furthermore that if M is at
least 50 log V/Dε2Q then the empirical matrix Q̃ is
entry-wise within an additive εQ to the true Q =
1
M

∑M
d=1AWdW

T
d A

T see (Arora et al., 2012) for the
details. Also, the K anchor rows of Q̄ form a simplex
that is γp robust.

The error in each column of Q̄ can be at most δ2 =
εQ
√

4aK/ε. By Theorem 1.6 when 20Kδ2/(γp)
2 < γp

(which is satisfied when M = O(aK3 log V/D(γp)6ε))
, the anchor words found are δ1 = O(δ2/(γp)) close
to the true anchor words. Hence by Lemma 2.1 every
entry of C has error at most O(δ2/(γp)

2).

With such number of documents, all the word proba-
bilities p(w = i) are estimated more accurately than
the entries of Ci,j , so we omit their perturbations
here for simplicity. When we apply the Bayes rule,
we know Ai,k = Ci,kp(w = i)/p(z = k), where

p(z = k) is αk which is lower bounded by 1/aK.
The numerator and denominator are all related to
entries of C with positive coefficients sum up to at
most 1. Therefore the errors δnum and δdenom are
at most the error of a single entry of C, which is
bounded by O(δ2/(γp)

2). Applying Taylor’s Expan-
sion to (p(z = k,w = i) + δnum)/(αk + δdenom), the
error on entries of A is at most O(aKδ2/(γp)

2). When
εQ ≤ O((γp)2ε1.5/(aK)1.5), we have O(aKδ2/(γp)

2) ≤
ε, and get the desired accuracy of A. The number of
document required is M = O((aK)3 log V/Dε3(γp)4).

The sample complexity for R can then be bounded
using matrix perturbation theory. �

For RecoverKL, we observe that the dimension and
minimum values of vi’s are all bounded by polynomials
of ε, a, r (see Section 3.5 Reducing Dictionary Size of
(Arora et al., 2012)). In this case, when distance δ
is small enough, we know the KL-divergence is both
upper and lowerbounded by some polynomial factor
times `2 norm squared.

Lemma 2.3. When all values in the vectors {v′i} are
at least l = ε2/20a2r2, if u is one of v′i, and v is in the
convex hull of perturbed vertices {v′1, v′2, ..., v′K}, ‖u −
v‖ ≤ ε2/100a2r2, then DKL(u‖v) ≤ 2‖u− v‖2/l.

Proof: Let si = ui − vi, apply Taylor’s expansion on
log(vi + si)/vi, we know in the range of parameters
si + s2i /2vi ≤ log(vi + si)/vi ≤ si + 2s2i /vi.

Adding this up, using the fact
∑
si =

∑
ui−

∑
vi = 0,

we know the KL-divergence is bounded by

DKL(u‖v) ≤ 2
∑

s2i /vi ≤ 2‖u− v‖2/l.

�

On the other hand, by Pinsker’s inequality, we know
DKL(u‖v) ≥ 2|u− v|21 ≥ 2‖u− v‖2.

Using these two bounds we can easily prove a replace-
ment for Lemma 2.1.

Lemma 2.4. For a γ robust simplex S with vertices
{v1, v2, ..., vK}, let v be a point in the simplex that can

be represented as a convex combination v =
∑K
i=1 civi.

If the vertices of S are perturbed to S′ = {..., v′i, ...}
where ‖v′i − vi‖ ≤ δ1 and v is perturbed to v′ where
‖v − v′‖ ≤ δ2. Further assume all entries of v′ and
v′i are at least l = ε2/20a2r2. Let vKL be the point in
conv{S′} that has smallest DKL(v′‖vKL), and vKL =∑K
i=1 c

′
ivi, when 10

√
Kδ1 ≤ γ, (δ1 + δ2) < l/5, for all

i ∈ [K] |ci − c′i| ≤ 4(δ1 + δ2)/γ
√
l.
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Proof: Let v∗ be the closest point (in `2 distance) of
v′ in conv{S′}. By proof of Lemma 2.1 we know ‖v∗−
v′‖ ≤ δ1 + δ2. Hence by Lemma 2.3 DKL(v′‖v∗) ≤
2(δ1 + δ2)2/l.

Since vKL is the point with smallest divergence,
we know in particular DKL(v′‖vKL) ≤ 2(δ1 +
δ2)2/l. On the other hand, by Pinkser’s inequality
DKL(v′‖vKL) ≥ 2‖v′ − vKL‖2, therefore we know
‖v′ − vKL‖ ≤ (δ1 + δ2)/

√
l.

Now we follow the proof of Lemma 2.1 and define u =∑K
i=1 civ

′
i, then we know ‖u−vKL‖ ≤ ‖u−v′‖+‖v′−

vKL‖ ≤ 2(δ1 + δ2)/
√
l, and similar to Lemma 2.1 we

know |ci − c′i| ≤ 4(δ1 + δ2)/γ
√
l. �

We can simply replace Lemma 2.1 with this Lemma
and get provable guarantee of RecoverKL. However,
the argument here is not tight (in particular it gives
worse bound than `2).

3. Empirical Results

This section contains plots for `1, held-out probability,
coherence, and uniqueness for all semi-synthetic data
sets. Up is better for all metrics except `1 error. The
advantage of the non-negative recovery methods over
the original Recover method on the real data is con-
sistent with the results observed on the semi-synthetic
data. For example, one can compare the mean log
likelihood on real NY Times data from Figure 5 of
the main paper (100 topics; 236k docs) with the semi-
synthetic NY Times data shown in Figure 3 of the
supplementary materials (100 topics; 250k docs). The
values for the real data are [Recover: -8.42, Recov-
erL2: -8.16, RecoverKL: -8.09, Gibbs -7.93] and for
semi-synthetic are [Recover: -8.23, RecoverL2: -8.08,
RecoverKL: -8.08, Gibbs: -8.076].

3.1. Sample Topics

Tables 1, 2, and 3 show 100 topics trained on real NY
Times articles using the RecoverL2 algorithm. Each
topic is followed by the most similar topic (measured
by `1 distance) from a model trained on the same
documents with Gibbs sampling. When the anchor
word is among the top six words by probability it is
highlighted in bold. Note that the anchor word is fre-
quently not the most prominent word.

4. Algorithmic Details

4.1. Generating Q matrix

For each document, let Hd be the vector in RV such
that the i-th entry is the number of times word i ap-

Table 1. Example topic pairs from NY Times sorted by `1

distance, anchor words in bold.

RecoverL2 run inning game hit season zzz anaheim angel
Gibbs run inning hit game ball pitch

RecoverL2 king goal game team games season
Gibbs point game team play season games

RecoverL2 yard game play season team touchdown
Gibbs yard game season team play quarterback

RecoverL2 point game team season games play
Gibbs point game team play season games

RecoverL2 zzz laker point zzz kobe bryant zzz o neal game
team

Gibbs point game team play season games
RecoverL2 point game team season player zzz clipper

Gibbs point game team season play zzz usc
RecoverL2 ballot election court votes vote zzz al gore

Gibbs election ballot zzz florida zzz al gore votes vote
RecoverL2 game zzz usc team play point season

Gibbs point game team season play zzz usc
RecoverL2 company billion companies percent million stock

Gibbs company million percent billion analyst deal
RecoverL2 car race team season driver point

Gibbs race car driver racing zzz nascar team
RecoverL2 zzz dodger season run inning right game

Gibbs season team baseball game player yankees
RecoverL2 palestinian zzz israeli zzz israel official attack

zzz palestinian
Gibbs palestinian zzz israeli zzz israel attack zzz palestinian

zzz yasser arafat
RecoverL2 zzz tiger wood shot round player par play

Gibbs zzz tiger wood shot golf tour round player
RecoverL2 percent stock market companies fund quarter

Gibbs percent economy market stock economic growth
RecoverL2 zzz al gore zzz bill bradley campaign president

zzz george bush vice
Gibbs zzz al gore zzz george bush campaign presidential re-

publican zzz john mccain
RecoverL2 zzz george bush zzz john mccain campaign republi-

can zzz republican voter
Gibbs zzz al gore zzz george bush campaign presidential re-

publican zzz john mccain
RecoverL2 net team season point player zzz jason kidd

Gibbs point game team play season games
RecoverL2 yankees run team season inning hit

Gibbs season team baseball game player yankees
RecoverL2 zzz al gore zzz george bush percent president cam-

paign zzz bush
Gibbs zzz al gore zzz george bush campaign presidential re-

publican zzz john mccain
RecoverL2 zzz enron company firm zzz arthur andersen com-

panies lawyer
Gibbs zzz enron company firm accounting

zzz arthur andersen financial
RecoverL2 team play game yard season player

Gibbs yard game season team play quarterback
RecoverL2 film movie show director play character

Gibbs film movie character play minutes hour
RecoverL2 zzz taliban zzz afghanistan official zzz u s govern-

ment military
Gibbs zzz taliban zzz afghanistan zzz pakistan afghan

zzz india government
RecoverL2 palestinian zzz israel israeli peace zzz yasser arafat

leader
Gibbs palestinian zzz israel peace israeli zzz yasser arafat

leader
RecoverL2 point team game shot play zzz celtic

Gibbs point game team play season games
RecoverL2 zzz bush zzz mccain campaign republican tax

zzz republican
Gibbs zzz al gore zzz george bush campaign presidential re-

publican zzz john mccain
RecoverL2 zzz met run team game hit season

Gibbs season team baseball game player yankees
RecoverL2 team game season play games win

Gibbs team coach game player season football
RecoverL2 government war zzz slobodan milosevic official

court president
Gibbs government war country rebel leader military

RecoverL2 game set player zzz pete sampras play won
Gibbs player game match team soccer play

RecoverL2 zzz al gore campaign zzz bradley president demo-
cratic zzz clinton

Gibbs zzz al gore zzz george bush campaign presidential re-
publican zzz john mccain

RecoverL2 team zzz knick player season point play
Gibbs point game team play season games

RecoverL2 com web www information sport question
Gibbs palm beach com statesman daily american
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Table 2. Example topic pairs from NY Times sorted by `1

distance, anchor words in bold.

RecoverL2 season team game coach play school
Gibbs team coach game player season football

RecoverL2 air shower rain wind storm front
Gibbs water fish weather storm wind air

RecoverL2 book film beginitalic enditalic look movie
Gibbs film movie character play minutes hour

RecoverL2 zzz al gore campaign election zzz george bush
zzz florida president

Gibbs zzz al gore zzz george bush campaign presidential re-
publican zzz john mccain

RecoverL2 race won horse zzz kentucky derby win winner
Gibbs horse race horses winner won zzz kentucky derby

RecoverL2 company companies zzz at percent business stock
Gibbs company companies business industry firm market

RecoverL2 company million companies percent business cus-
tomer

Gibbs company companies business industry firm market
RecoverL2 team coach season player jet job

Gibbs team player million season contract agent
RecoverL2 season team game play player zzz cowboy

Gibbs yard game season team play quarterback
RecoverL2 zzz pakistan zzz india official group attack

zzz united states
Gibbs zzz taliban zzz afghanistan zzz pakistan afghan

zzz india government
RecoverL2 show network night television zzz nbc program

Gibbs film movie character play minutes hour
RecoverL2 com information question zzz eastern commentary

daily
Gibbs com question information zzz eastern daily commen-

tary
RecoverL2 power plant company percent million energy

Gibbs oil power energy gas prices plant
RecoverL2 cell stem research zzz bush human patient

Gibbs cell research human scientist stem genes
RecoverL2 zzz governor bush zzz al gore campaign tax presi-

dent plan
Gibbs zzz al gore zzz george bush campaign presidential re-

publican zzz john mccain
RecoverL2 cup minutes add tablespoon water oil

Gibbs cup minutes add tablespoon teaspoon oil
RecoverL2 family home book right com children

Gibbs film movie character play minutes hour
RecoverL2 zzz china chinese zzz united states zzz taiwan offi-

cial government
Gibbs zzz china chinese zzz beijing zzz taiwan government

official
RecoverL2 death court law case lawyer zzz texas

Gibbs trial death prison case lawyer prosecutor
RecoverL2 company percent million sales business companies

Gibbs company companies business industry firm market
RecoverL2 dog jump show quick brown fox

Gibbs film movie character play minutes hour
RecoverL2 shark play team attack water game

Gibbs film movie character play minutes hour
RecoverL2 anthrax official mail letter worker attack

Gibbs anthrax official letter mail nuclear chemical
RecoverL2 president zzz clinton zzz white house zzz bush official

zzz bill clinton
Gibbs zzz bush zzz george bush president administration

zzz white house zzz dick cheney
RecoverL2 father family zzz elian boy court zzz miami

Gibbs zzz cuba zzz miami cuban zzz elian boy protest
RecoverL2 oil prices percent million market zzz united states

Gibbs oil power energy gas prices plant
RecoverL2 zzz microsoft company computer system window

software
Gibbs zzz microsoft company companies cable zzz at

zzz internet
RecoverL2 government election zzz mexico political

zzz vicente fox president
Gibbs election political campaign zzz party democratic

voter
RecoverL2 fight zzz mike tyson round right million champion

Gibbs fight zzz mike tyson ring fighter champion round
RecoverL2 right law president zzz george bush zzz senate

zzz john ashcroft
Gibbs election political campaign zzz party democratic

voter
RecoverL2 com home look found show www

Gibbs film movie character play minutes hour
RecoverL2 car driver race zzz dale earnhardt racing

zzz nascar
Gibbs night hour room hand told morning

RecoverL2 book women family called author woman
Gibbs film movie character play minutes hour

Table 3. Example topic pairs from NY Times sorted by `1

distance, anchor words in bold.

RecoverL2 tax bill zzz senate billion plan zzz bush
Gibbs bill zzz senate zzz congress zzz house legislation

zzz white house
RecoverL2 company francisco san com food home

Gibbs palm beach com statesman daily american
RecoverL2 team player season game zzz john rocker right

Gibbs season team baseball game player yankees
RecoverL2 zzz bush official zzz united states zzz u s president

zzz north korea
Gibbs zzz united states weapon zzz iraq nuclear zzz russia

zzz bush
RecoverL2 zzz russian zzz russia official military war attack

Gibbs government war country rebel leader military
RecoverL2 wine wines percent zzz new york com show

Gibbs film movie character play minutes hour
RecoverL2 police zzz ray lewis player team case told

Gibbs police officer gun crime shooting shot
RecoverL2 government group political tax leader money

Gibbs government war country rebel leader military
RecoverL2 percent company million airline flight deal

Gibbs flight airport passenger airline security airlines
RecoverL2 book ages children school boy web

Gibbs book author writer word writing read
RecoverL2 corp group president energy company member

Gibbs palm beach com statesman daily american
RecoverL2 team tour zzz lance armstrong won race win

Gibbs zzz olympic games medal gold team sport
RecoverL2 priest church official abuse bishop sexual

Gibbs church religious priest zzz god religion bishop
RecoverL2 human drug company companies million scientist

Gibbs scientist light science planet called space
RecoverL2 music zzz napster company song com web

Gibbs palm beach com statesman daily american
RecoverL2 death government case federal official

zzz timothy mcveigh
Gibbs trial death prison case lawyer prosecutor

RecoverL2 million shares offering public company initial
Gibbs company million percent billion analyst deal

RecoverL2 buy panelist thought flavor product ounces
Gibbs food restaurant chef dinner eat meal

RecoverL2 school student program teacher public children
Gibbs school student teacher children test education

RecoverL2 security official government airport federal bill
Gibbs flight airport passenger airline security airlines

RecoverL2 company member credit card money mean
Gibbs zzz enron company firm accounting

zzz arthur andersen financial
RecoverL2 million percent bond tax debt bill

Gibbs million program billion money government federal
RecoverL2 million company zzz new york business art percent

Gibbs art artist painting museum show collection
RecoverL2 percent million number official group black

Gibbs palm beach com statesman daily american
RecoverL2 company tires million car zzz ford percent

Gibbs company companies business industry firm market
RecoverL2 article zzz new york misstated company percent com

Gibbs palm beach com statesman daily american
RecoverL2 company million percent companies government offi-

cial
Gibbs company companies business industry firm market

RecoverL2 official million train car system plan
Gibbs million program billion money government federal

RecoverL2 test student school look percent system
Gibbs patient doctor cancer medical hospital surgery

RecoverL2 con una mas dice las anos
Gibbs fax syndicate article com information con

RecoverL2 por con una mas millones como
Gibbs fax syndicate article com information con

RecoverL2 las como zzz latin trade articulo telefono fax
Gibbs fax syndicate article com information con

RecoverL2 los con articulos telefono representantes
zzz america latina

Gibbs fax syndicate article com information con
RecoverL2 file sport read internet email zzz los angeles

Gibbs web site com www mail zzz internet
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Figure 3. Results for a semi-synthetic model generated
from a model trained on NY Times articles with K = 100.

pears in document d, nd be the length of the docu-
ment and Wd be the topic vector chosen according to
Dirichlet distribution when the documents are gener-
ated. Conditioned on Wd’s, our algorithms require the
expectation of Q to be 1

M

∑M
d=1AWdW

T
d A

T .

In order to achieve this, similar to (Anandkumar et al.,
2012), let the normalized vector H̃d = Hd√

nd(nd−1)
and

diagonal matrix Ĥd =
Diag(Hd)
nd(nd−1) . Compute the matrix

H̃dH̃
T
d − Ĥd =

1

nd(nd − 1)

∑
i 6=j,i,j∈[nd]

ezd,ie
T
zd,j

.

Here zd,i is the i-th word of document d, and ei ∈
RV is the basis vector. From the generative model,
the expectation of all terms ezd,ie

T
zd,j

are equal to

AWdW
T
d A

T , hence by linearity of expectation we

know E[H̃dH̃
T
d − Ĥd] = AWdW

T
d A

T .

If we collect all the column vectors H̃d to form a large
sparse matrix H̃, and compute the sum of all Ĥd to
get the diagonal matrix Ĥ, we know Q = H̃H̃T − Ĥ
has the desired expectation. The running time of this
step is O(MD2) where D2 is the expectation of the
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Figure 4. Results for a semi-synthetic model generated
from a model trained on NY Times articles with K = 100,
with a synthetic anchor word added to each topic.

length of the document squared.

4.2. Applying Recover to Small Datasets

The original Recover algorithm from Arora et al.
(2012) can fail on small datasets if the QS,S matrix
which holds the anchor-anchor co-occurrence counts
is rank deficient due to sparsity. When Recover fails,
we use a modified version of the algorithm, solving for
~z by finding a least squares solution to QS,S~z = ~pS
and solving for AT with a pseudoinverse: AT =
(QS,SDiag(~z))

†
QTS ). This procedure can return an A

matrix in which some columns contain all 0s. In that
case we replace columns of 0s with a uniform distribu-
tion over the vocabulary words, 1

V 1.

Negative values also often occur in the A matrix re-
turned by the original Recover method. To project
back onto the simplex, we clip all negative values to
0 and normalize the columns before evaluating the
learned model.
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Figure 5. Results for a semi-synthetic model generated
from a model trained on NY Times articles with K = 100,
with moderate correlation between topics.

4.3. Exponentiated gradient algorithm

The optimization problem that arises in RecoverKL
and RecoverL2 has the following form:

min
~x
d(Q̄Ti , Q̄S~x)

subject to: ~x ≥ 0 and

K∑
i=1

xi = 1,

where d(·, ·) is a Bregman divergence (in particular it
is squared Euclidean distance for RecoverL2 and KL
divergence for RecoverKL), ~x is a column vector of
size K, S is the set of K anchor indices, Q̄i is a row
vector of size V , and Q̄S is the K × V matrix formed
by stacking the rows of Q̄ corresponding to the indices
in S.

This is a convex optimization problem with simplex
constraints, which can be solved with the Exponenti-
ated Gradient algorithm (Kivinen & Warmuth, 1995),
described in Algorithm 1. The Exponentiated Gradi-
ent algorithm iteratively generates values of ~x which
are feasible and converge to the optimal value ~x∗. In
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Figure 6. Results for a semi-synthetic model generated
from a model trained on NY Times articles with K = 100,
with stronger correlation between topics.

our experiments we show results using both squared
Euclidean distance and KL divergence for the diver-
gence measure.

To determine whether the algorithm has converged, we
test whether the KKT conditions (which are sufficient
for optimality in this problem) hold to within some
tolerance, ε. In our experiments ε varies between 10−6

and 10−9 depending on the data set.

The KKT conditions for our constrained minimization
problem are:

1. Stationarity: ∇~xd(Q̄Ti , Q̄S~x)− ~λ+ µ1 = 0.

2. Primal Feasibility: ~x ≥ 0,
∑K
i=1 xi = 1.

3. Dual Feasibility: λi ≥ 0 for i ∈ {1, 2, ...,K}.

4. Complementary Slackness: λixi = 0 for i ∈
{1, 2, ...,K}.

We define the following approximation to Condition 4:

4′. ε-Complementary Slackness: 0 ≤ ~λT~x < ε.
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Figure 7. Results for a semi-synthetic model generated
from a model trained on NIPS papers with K = 100. For
D ∈ {2000, 6000, 8000}, Recover produces log probabilities
of −∞ for some held-out documents.

Let ~xt be the tth value generated by Exponentiated
Gradient. ~xt is ε-optimal if there exist ~λ and µ such
that Conditions 1-3 and 4′ are satisfied.

We initialize ~x0 = 1
K1 and Exponentiated Gradient

preserves primal feasibility, so ~xt satisfies Condition 2.
The following ~λt and µt minimize ~λTt ~xt while satisfying
conditions 1 and 3:

µt = −min
(
∇~xd(Q̄Ti , Q̄S~x)

∣∣
~xt

)
~λt = ∇~xd(Q̄Ti , Q̄S~x)

∣∣
~xt

+ µt1.

The algorithm converges when Condition 4′ is satisfied
(i.e. ~λTt ~xt < ε).

~λTt ~xt can also be understood as the gap between an
upper and lower bound on the objective. To see this,
note that the Lagrangian function is:

L(~x,~λ, µ) = d(Q̄Ti , Q̄S~x)− ~λT~x+ µ(~xT1− 1),

The first term in the Lagrangian is exactly the primal
objective, and (~xt

T1 − 1) is zero at every iteration.

Algorithm 1. Exponentiated Gradient

Input: Matrix Q̄S, vector Q̄i
T

, divergence measure
d(·, ·), tolerance parameter ε

Output: non-negative normalized vector ~x close to
~x∗, the minimizer of d(Q̄Ti , Q̄S~x))
~x0 ← 1

K1
t← 0
Converged ← False
while not Converged do

t← t+ 1
~gt = ∇~xd(Q̄Ti , Q̄S~x)

∣∣
~xt−1

Choose a step size ηt
~xt ← ~xt−1e

−ηt~gt (Gradient step)
~xt ← ~x

|~xt|1 (Projection onto the simplex)

µt ← −min
(
∇~xd(Q̄Ti , Q̄S~x)

∣∣
~xt

)
~λt ← ∇~xd(Q̄Ti , Q̄S~x)

∣∣
~xt

+ µt1

Converged ← ~λTt ~xt < ε
end while
return xt

Since the Lagrangian lower bounds the objective, ~λTt ~xt
is the value of the gap. Strong duality holds for this
problem, so at optimality, this gap is 0. Testing that
the gap is less than ε is an approximate optimality test.

Stepsizes at each iteration are chosen with a line search
to find an ηt that satisfies the Wolfe and Armijo con-
ditions (For details, see Nocedal & Wright (2006)).

The running time of RecoverL2 is the time of solving
V small (K × K) quadratic programs. When using
Exponentiated Gradient to solve the quadratic pro-
gram, each word requires O(KV ) time for preprocess-
ing and O(K2) per iteration. The total running time
is O(KV 2 +K2V T ) where T is the average number of
iterations. The value of T is about 100−1000 depend-
ing on data sets.
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