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1.2 Motivating Applications 5

Non-Projective Dependency Parsing

�

Figure 1.1: Example of dependency parsing for a sentence in English. Every
word has one parent, i.e. a valid dependency parse is a directed tree. The red
arc demonstrates a non-projective dependency.

x = {xi}i�V that maximizes
�

i�V
�i(xi) +

�

ij�E
�ij(xi, xj).

Without additional restrictions on the choice of potential functions, or which
edges to include, the problem is known to be NP-hard. Using the dual
decomposition approach, we will break the problem into much simpler sub-
problems involving maximizations of each single node potential �i(xi) and
each edge potential �ij(xi, xj) independently from the other terms. Although
these local maximizing assignments are easy to obtain, they are unlikely
to agree with each other without our modifying the potential functions.
These modifications are provided by the Lagrange multipliers associated
with agreement constraints.
Our second example is dependency parsing, a key problem in natural

language processing (McDonald et al., 2005). Given a sentence, we wish
to predict the dependency tree that relates the words in the sentence. A
dependency tree is a directed tree over the words in the sentence where
an arc is drawn from the head word of each phrase to words that modify
it. For example, in the sentence shown in Fig. 1.1, the head word of the
phrase “John saw a movie” is the verb “saw” and its modifiers are the
subject “John” and the object “movie”. Moreover, the second phrase “that
he liked” modifies the word “movie”. In many languages the dependency
tree is non-projective in the sense that each word and its descendants in the
tree do not necessarily form a contiguous subsequence.
Formally, given a sentence with m words, we have m(m � 1) binary arc

selection variables xij ⇤ {0, 1}. Since the selections must form a directed
tree, the binary variables are governed by an overall function �T (x) with
the idea that �T (x) = �⇥ is used to rule out any non-trees. The selections
are further biased by weights on individual arcs, through �ij(xij), which
depend on the given sentence. In a simple arc factored model, the predicted
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Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have
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in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
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Figure 1-1: Example of how graphical models can be used for computer stereo vision. On
the left we show the input, which are two images. We then construct a graphical model
where we have one node for each pixel, and edges between neighboring pixels. Finally we
perform inference in the model to find the most likely assignment of depth to the pixels,
shown on the right (see text for more detail).

1.1 Examples of Graphical Models

1.1.1 Stereo Vision

The stereopsis problem, also called stereo vision, is as follows. We are given two images
(e.g., one image coming from your left eye, and the other from your right eye), and the goal
is to determine the depth of all the objects in the image from the viewer. The depth of any
pixel is inversely proportional to its disparity, namely how much a pixel in the left image is
horizontally shifted to obtain the corresponding pixel in the right image. Calculating these
disparities is di�cult for a number of reasons. First, there is a large amount of ambiguity:
for any one pixel in the left image, there may be a large number of similar looking pixels
in the right image. Second, in cases when there is occlusion, there may not even exist a
corresponding pixel. Nonetheless, humans are able to very accurately estimate depth using
stereopsis, and a natural question is whether we can automate the process on a computer.

Humans use a large amount of prior knowledge when performing stereopsis. For example,
we may expect continuity of depth for two neighboring pixels with constant color (intensity),
with changes in depth occurring near the edges of objects. We also have prior knowledge
of what objects and shapes exist in the world. For example, if we see a person sitting on a
couch, we know that the couch does not simply disappear behind the person. Thus, we have
a prior model of the world that we use in interpreting what we see. The process of taking in
evidence, accounting for prior beliefs, and making a prediction, is called inference. Humans
do it pretty well, so why not computers? Designing algorithms for automated inference is
a fundamental problem in artificial intelligence.

Graphical models provide a mathematical means of specifying prior beliefs in such a
way that we can design algorithms for automated inference. A graphical model is specified
by an undirected graph where we have one node for every random variable, and edges
denote explicit dependencies between variables. We can model stereo vision as a graphical
model (see Figure 1-1) where we have one variable per pixel location in the left image,
whose states denote the disparity to the corresponding pixel in the right image (Tappen &
Freeman, 2003). For each random variable and for each of its possible states (corresponding
to a particular disparity), the model specifies a local cost that is based on the intensity
di↵erences between the two pixels. The model also specifies a pairwise cost that penalizes
for neighboring pixels having di↵erent disparities. The penalty is larger for pairs of pixels
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Figure 1: Left: Example of how graphical models can be used for computer stereo vision. On the left
we show the input, which are two images, one horizontally displaced from the other. The model has one
random variable for each pixel and edges between neighboring pixels. We perform MAP inference in the
model to find the most likely assignment of depth to the pixels (disparity). Right: Visualization of the
MAP assignment found by solving a LP relaxation, which had no integrality gap for this instance. Depth
is shown in shades of red: darker pixels denote greater depth. The green pixels illustrate the parts of the
image where additional constraints were included to tighten the relaxation.

MAP inference problems for graphical models often reduce to well-studied combinatorial opti-
mization problems of very di↵erent flavors. When each edge (i, j) 2 E has a edge cost ✓ij(yi, yj)
of �wij uniformly if yi 6= yj and 0 otherwise (we assume wij � 0), we have an instance of Uniform
Metric Labeling [KT02]. Graph partitioning problems like Correlation Clustering on the other
hand, have no node costs, and edge costs that depend on whether the neighboring variables get
assigned the same value or not. From a theoretical standpoint, exact MAP inference is NP-hard,
and in many cases cannot be approximated well in the worst-case [Shi94, AL95] on account of
their combinatorial nature. While polynomial time inference algorithms exist for specific graphical
models with a simple structure like low tree-width, most graphical models [WJ08] that arise from
real-world applications (e.g. stereo vision, parsing) do not have such simple structure.

Yet, practitioners in areas like machine learning and computer vision have made significant
progress in designing heuristics like belief propagation to perform real-world inference e�ciently.
A particular heuristic that has had a lot of success in the last few years are convex relaxations like
linear programs obtained by relaxing the corresponding combinatorial optimization problem. In
fact, these linear programming relaxations turn out to be almost integral (near optimal) for most
instances that arise from applications like stereo vision, protein side-chain placement, protein design,
non-projective dependency parsing, and part-of-speech tagging [KRC+10, RSCJ10, SJ08, SMG+08,
Son10]. This stands in stark contrast to our theoretical understanding of linear programming
relaxations on worst-case instances. Reconciling this large gap between theory and practice in the
context of inference problems, and designing e�cient MAP inference algorithms is an important
challenge in machine learning.

1.1 Broad Goals

To reconcile this gap, we propose to tackle the following broad questions.

Question 1.1. Why are real-world inference problems tractable? Can we identify properties of
real-world instances that make them tractable?

We propose a theoretical and empirical study of structural properties like Instance Stability, and
paradigms that go beyond traditional worst-case analysis like Average-case analysis to explain why
MAP inference is tractable in practice. These approaches that go beyond traditional worst-case
analysis may also lead to new insights about heuristics like convex relaxations:
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Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have
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Figure 1-1: Example of how graphical models can be used for computer stereo vision. On
the left we show the input, which are two images. We then construct a graphical model
where we have one node for each pixel, and edges between neighboring pixels. Finally we
perform inference in the model to find the most likely assignment of depth to the pixels,
shown on the right (see text for more detail).

1.1 Examples of Graphical Models

1.1.1 Stereo Vision

The stereopsis problem, also called stereo vision, is as follows. We are given two images
(e.g., one image coming from your left eye, and the other from your right eye), and the goal
is to determine the depth of all the objects in the image from the viewer. The depth of any
pixel is inversely proportional to its disparity, namely how much a pixel in the left image is
horizontally shifted to obtain the corresponding pixel in the right image. Calculating these
disparities is di�cult for a number of reasons. First, there is a large amount of ambiguity:
for any one pixel in the left image, there may be a large number of similar looking pixels
in the right image. Second, in cases when there is occlusion, there may not even exist a
corresponding pixel. Nonetheless, humans are able to very accurately estimate depth using
stereopsis, and a natural question is whether we can automate the process on a computer.

Humans use a large amount of prior knowledge when performing stereopsis. For example,
we may expect continuity of depth for two neighboring pixels with constant color (intensity),
with changes in depth occurring near the edges of objects. We also have prior knowledge
of what objects and shapes exist in the world. For example, if we see a person sitting on a
couch, we know that the couch does not simply disappear behind the person. Thus, we have
a prior model of the world that we use in interpreting what we see. The process of taking in
evidence, accounting for prior beliefs, and making a prediction, is called inference. Humans
do it pretty well, so why not computers? Designing algorithms for automated inference is
a fundamental problem in artificial intelligence.

Graphical models provide a mathematical means of specifying prior beliefs in such a
way that we can design algorithms for automated inference. A graphical model is specified
by an undirected graph where we have one node for every random variable, and edges
denote explicit dependencies between variables. We can model stereo vision as a graphical
model (see Figure 1-1) where we have one variable per pixel location in the left image,
whose states denote the disparity to the corresponding pixel in the right image (Tappen &
Freeman, 2003). For each random variable and for each of its possible states (corresponding
to a particular disparity), the model specifies a local cost that is based on the intensity
di↵erences between the two pixels. The model also specifies a pairwise cost that penalizes
for neighboring pixels having di↵erent disparities. The penalty is larger for pairs of pixels
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Figure 1: Left: Example of how graphical models can be used for computer stereo vision. On the left
we show the input, which are two images, one horizontally displaced from the other. The model has one
random variable for each pixel and edges between neighboring pixels. We perform MAP inference in the
model to find the most likely assignment of depth to the pixels (disparity). Right: Visualization of the
MAP assignment found by solving a LP relaxation, which had no integrality gap for this instance. Depth
is shown in shades of red: darker pixels denote greater depth. The green pixels illustrate the parts of the
image where additional constraints were included to tighten the relaxation.

MAP inference problems for graphical models often reduce to well-studied combinatorial opti-
mization problems of very di↵erent flavors. When each edge (i, j) 2 E has a edge cost ✓ij(yi, yj)
of �wij uniformly if yi 6= yj and 0 otherwise (we assume wij � 0), we have an instance of Uniform
Metric Labeling [KT02]. Graph partitioning problems like Correlation Clustering on the other
hand, have no node costs, and edge costs that depend on whether the neighboring variables get
assigned the same value or not. From a theoretical standpoint, exact MAP inference is NP-hard,
and in many cases cannot be approximated well in the worst-case [Shi94, AL95] on account of
their combinatorial nature. While polynomial time inference algorithms exist for specific graphical
models with a simple structure like low tree-width, most graphical models [WJ08] that arise from
real-world applications (e.g. stereo vision, parsing) do not have such simple structure.

Yet, practitioners in areas like machine learning and computer vision have made significant
progress in designing heuristics like belief propagation to perform real-world inference e�ciently.
A particular heuristic that has had a lot of success in the last few years are convex relaxations like
linear programs obtained by relaxing the corresponding combinatorial optimization problem. In
fact, these linear programming relaxations turn out to be almost integral (near optimal) for most
instances that arise from applications like stereo vision, protein side-chain placement, protein design,
non-projective dependency parsing, and part-of-speech tagging [KRC+10, RSCJ10, SJ08, SMG+08,
Son10]. This stands in stark contrast to our theoretical understanding of linear programming
relaxations on worst-case instances. Reconciling this large gap between theory and practice in the
context of inference problems, and designing e�cient MAP inference algorithms is an important
challenge in machine learning.

1.1 Broad Goals

To reconcile this gap, we propose to tackle the following broad questions.

Question 1.1. Why are real-world inference problems tractable? Can we identify properties of
real-world instances that make them tractable?

We propose a theoretical and empirical study of structural properties like Instance Stability, and
paradigms that go beyond traditional worst-case analysis like Average-case analysis to explain why
MAP inference is tractable in practice. These approaches that go beyond traditional worst-case
analysis may also lead to new insights about heuristics like convex relaxations:
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Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have
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Figure 1-1: Example of how graphical models can be used for computer stereo vision. On
the left we show the input, which are two images. We then construct a graphical model
where we have one node for each pixel, and edges between neighboring pixels. Finally we
perform inference in the model to find the most likely assignment of depth to the pixels,
shown on the right (see text for more detail).

1.1 Examples of Graphical Models

1.1.1 Stereo Vision

The stereopsis problem, also called stereo vision, is as follows. We are given two images
(e.g., one image coming from your left eye, and the other from your right eye), and the goal
is to determine the depth of all the objects in the image from the viewer. The depth of any
pixel is inversely proportional to its disparity, namely how much a pixel in the left image is
horizontally shifted to obtain the corresponding pixel in the right image. Calculating these
disparities is di�cult for a number of reasons. First, there is a large amount of ambiguity:
for any one pixel in the left image, there may be a large number of similar looking pixels
in the right image. Second, in cases when there is occlusion, there may not even exist a
corresponding pixel. Nonetheless, humans are able to very accurately estimate depth using
stereopsis, and a natural question is whether we can automate the process on a computer.

Humans use a large amount of prior knowledge when performing stereopsis. For example,
we may expect continuity of depth for two neighboring pixels with constant color (intensity),
with changes in depth occurring near the edges of objects. We also have prior knowledge
of what objects and shapes exist in the world. For example, if we see a person sitting on a
couch, we know that the couch does not simply disappear behind the person. Thus, we have
a prior model of the world that we use in interpreting what we see. The process of taking in
evidence, accounting for prior beliefs, and making a prediction, is called inference. Humans
do it pretty well, so why not computers? Designing algorithms for automated inference is
a fundamental problem in artificial intelligence.

Graphical models provide a mathematical means of specifying prior beliefs in such a
way that we can design algorithms for automated inference. A graphical model is specified
by an undirected graph where we have one node for every random variable, and edges
denote explicit dependencies between variables. We can model stereo vision as a graphical
model (see Figure 1-1) where we have one variable per pixel location in the left image,
whose states denote the disparity to the corresponding pixel in the right image (Tappen &
Freeman, 2003). For each random variable and for each of its possible states (corresponding
to a particular disparity), the model specifies a local cost that is based on the intensity
di↵erences between the two pixels. The model also specifies a pairwise cost that penalizes
for neighboring pixels having di↵erent disparities. The penalty is larger for pairs of pixels
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Figure 1: Left: Example of how graphical models can be used for computer stereo vision. On the left
we show the input, which are two images, one horizontally displaced from the other. The model has one
random variable for each pixel and edges between neighboring pixels. We perform MAP inference in the
model to find the most likely assignment of depth to the pixels (disparity). Right: Visualization of the
MAP assignment found by solving a LP relaxation, which had no integrality gap for this instance. Depth
is shown in shades of red: darker pixels denote greater depth. The green pixels illustrate the parts of the
image where additional constraints were included to tighten the relaxation.

MAP inference problems for graphical models often reduce to well-studied combinatorial opti-
mization problems of very di↵erent flavors. When each edge (i, j) 2 E has a edge cost ✓ij(yi, yj)
of �wij uniformly if yi 6= yj and 0 otherwise (we assume wij � 0), we have an instance of Uniform
Metric Labeling [KT02]. Graph partitioning problems like Correlation Clustering on the other
hand, have no node costs, and edge costs that depend on whether the neighboring variables get
assigned the same value or not. From a theoretical standpoint, exact MAP inference is NP-hard,
and in many cases cannot be approximated well in the worst-case [Shi94, AL95] on account of
their combinatorial nature. While polynomial time inference algorithms exist for specific graphical
models with a simple structure like low tree-width, most graphical models [WJ08] that arise from
real-world applications (e.g. stereo vision, parsing) do not have such simple structure.

Yet, practitioners in areas like machine learning and computer vision have made significant
progress in designing heuristics like belief propagation to perform real-world inference e�ciently.
A particular heuristic that has had a lot of success in the last few years are convex relaxations like
linear programs obtained by relaxing the corresponding combinatorial optimization problem. In
fact, these linear programming relaxations turn out to be almost integral (near optimal) for most
instances that arise from applications like stereo vision, protein side-chain placement, protein design,
non-projective dependency parsing, and part-of-speech tagging [KRC+10, RSCJ10, SJ08, SMG+08,
Son10]. This stands in stark contrast to our theoretical understanding of linear programming
relaxations on worst-case instances. Reconciling this large gap between theory and practice in the
context of inference problems, and designing e�cient MAP inference algorithms is an important
challenge in machine learning.

1.1 Broad Goals

To reconcile this gap, we propose to tackle the following broad questions.

Question 1.1. Why are real-world inference problems tractable? Can we identify properties of
real-world instances that make them tractable?

We propose a theoretical and empirical study of structural properties like Instance Stability, and
paradigms that go beyond traditional worst-case analysis like Average-case analysis to explain why
MAP inference is tractable in practice. These approaches that go beyond traditional worst-case
analysis may also lead to new insights about heuristics like convex relaxations:
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Fig. 1 The six data sets used in this paper. Shown is the left image of each pair and the corresponding ground-truth disparities ( c�2007 IEEE).

with

Z (y) = Â
x

exp(�F(x,y)) . (3)

The normalizer Z (y) is typically referred to as the partition
function. It is useful to note that a key distinction between a
CRF and a jointly defined MRF is that the partition function
of an MRF does not depend on the observation y and nor-
malizes a joint distribution over the random variables X and
a set of random variables Y defined for y. When using our
model to create a depth map from a stereo pair, our goal is
to find an assignment to X minimize the negative log proba-
bility

� logP(x|y) = logZ(y)+Â
i

U(xi,y)+Â
i⇠ j

V (xi,x j,y). (4)

Note that our formulation, unlike other energy-based stereo
approaches, explicitly accounts for a data dependent parti-
tion function. Furthermore, following the typical formula-
tion of CRFs, we express cost terms U and pairwise smooth-
ness terms V using a linear combination of feature functions
fu, fv, which gives us

U(x,y) = Â
u

qu fu(x,y), (5)

V (xi,x j,y) = Â
v

qv fv(xi,x j,y), (6)

where qu, qv are the parameters of our model. The notation
follows the usual format for specifying the potential func-
tions of CRFs (Lafferty et al, 2001; Sutton and McCallum,
2006), and the linear form allows us to derive an intuitive
gradient-based minimization procedure for parameter esti-
mation.

3.1 A Canonical Stereo Model

The CRF of (2) is a general form. Here we present the spe-
cific CRF used for our experiments on stereo disparity esti-
mation in Section 5, following the model proposed by Scharstein

and Pal (2007). The data term U is given by

U (xi,y) = c(i,xi,y) , (7)

where c simply measures the absolute intensity difference
between the corresponding pixels of the images, as indicated
by i and xi. We use the difference measure of Birchfield and
Tomasi (1998) summed over all color bands for invariance
to image sampling.

The smoothness term V is a gradient-modulated Potts
model (Boykov et al, 2001; Scharstein and Pal, 2007) with
K parameters:

V (xi,x j,y) =
⇢

0 if xi = x j
qk if xi 6= x j and gi j 2 Bk. (8)

Here, gi j is the color gradient or root mean square color
difference between neighboring pixels i and j. The values
Bk represent discretized intervals the gradient belongs to for
the purposes of modulating the smoothness penalty. Interval
breakpoints may be chosen from different sets. For example,
in our initial experiments we explore subsets of {0,2,4,8,12,16,•}.
Let Qv denote all the smoothness parameters.

3.2 Disparity Difference Dependent Modulation

Interaction potentials that take into account the difference in
disparities between pixels have been of considerable interest
in the past. Felzenszwalb and Huttenlocher (2006) have ex-
plored parametric forms for this interaction such as V (xi,x j,y)=
c|xi � x j| or V (xi,x j,y) = c(xi � x j)2. However, our frame-
work allows us to learn the functional form of such interac-
tions. To explore other aspects of smoothness modulation,
we shall investigate models with interaction terms as a more
general function of disparity changes, e.g., V (xi,x j,y)= f (|xi�
x j|). We are able to achieve this in a manner similar to our
gradient discretization approach by discretizing the absolute
disparity differences di j =

��xi � x j
�� into bins Cl and defin-

ing feature functions that are active on the jointly discretized
disparity difference bins Cl and gradient bins Bk such that

V (xi,x j,y) = qkl if gi j 2 Bk and di j 2Cl . (9)
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5 Experiments

In this section we present the results of a number of experi-
ments. The first batch of experiments examine learning and
generalization using a simple model. In Section 5.1 we first
examine the convergence when learning simple models with
only gradient modulation terms. We train models having dif-
ferent numbers of discretized bins with graph cuts for ap-
proximate marginals and all six data sets as our training set.
Then in Section 5.2, we use a leave-one-out approach to
evaluate the performance of the learned parameters on a new
data set. In Section 5.3 we then examine how the learned pa-
rameters generalize to other data sets.

Our second batch of experiments in Section 5.4 exam-
ines the impact of extending our simple model in a variety of
ways. These experiments explore extensions of the canoni-
cal model of Section 3.1 with the disparity difference depen-
dent modulation terms of Section 3.2, the patch matching
strategy of Section 3.3, and the occlusion models developed
in Section 3.4.

Our third batch of experiments compare inference and
learning using different approximate inference techniques
for marginals. The first experiment of this batch in Section
5.5 compares sparse and traditional mean field methods for
approximate inference, showing how sparse message pass-
ing can greatly accelerate free energy minimization. The
second experiment in Section 5.6 compares the performance
of models learned using approximate marginals from both
sparse mean field and a point estimate of the posterior marginals
from graph cuts.

For all our experiments we use a straightforward gradient-
based optimization procedure: we start with a small learn-
ing rate (10�4) and increase it by a small factor unless the
norm of the gradient increases dramatically, in which case
we backtrack and decrease the learning rate.

As training and test data we use 6 stereo pair images with
ground-truth disparities from the 2005 scenes of the Middle-
bury stereo database. These images are roughly 460⇥ 370
pixels and have discretized disparities with N = 80 states.
Thus, when there are more than 600,000 messages of length
N to send in any round of mean field updates for one image,
shortening these to only a few states for most messages can
dramatically reduce computation time.

5.1 Convergence

In these experiments we focus on learning the Qv parameters
of the pairwise V potentials.

It is important to account for the fact that we do not
model occlusions in this simple CRF. It is well-known that
spurious minimal-cost matches in occluded areas can cause
artifacts in the inferred disparity maps. We therefore use

Fig. 3 Disparity maps of the entire training set for K=3 parameters af-
ter 0, 10, and 20 iterations. Occluded areas are masked ( c�2007 IEEE).

our ground-truth data to mask out the contributions of vari-
ables in occluded regions to our gradient computation during
training. There are a number of more principled ways to ad-
dress this issue. For example, in the model we developed in
section 3.4 we take a more principled approach by creating
an additional occlusion state in our model. Another strategy
might be to treat the occluded pixel as a hidden variable,
then use an expected gradient or expectation maximization
approach for learning with these pixels. Techniques for learn-
ing CRFs with hidden variables are discussed in more detail
in Sutton and McCallum (2006). Indeed, an even better ap-
proach might be to use both these strategies, introducing a
separate binary indicator variable for hidden vs. not hidden
pixels as well as a hidden value for such pixels.

We experiment with learning models using different num-
bers of parameters Qv, from K=1 (i.e., a single global smooth-
ness weight) to K=6 (i.e., a parameter for each of 6 gradient
bins). We first demonstrate the effectiveness of the learning
by training on all six datasets. It is useful to visualize the dis-
parities predicted by the model over each iteration of learn-
ing. Figures 3 and 4 show how the disparity maps change
during training. For clarity we have masked the occluded
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we shall investigate models with interaction terms as a more
general function of disparity changes, e.g., V (xi,x j,y)= f (|xi�
x j|). We are able to achieve this in a manner similar to our
gradient discretization approach by discretizing the absolute
disparity differences di j =

��xi � x j
�� into bins Cl and defin-

ing feature functions that are active on the jointly discretized
disparity difference bins Cl and gradient bins Bk such that

V (xi,x j,y) = qkl if gi j 2 Bk and di j 2Cl . (9)
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Fig. 1 The six data sets used in this paper. Shown is the left image of each pair and the corresponding ground-truth disparities ( c�2007 IEEE).
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Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have

11

(a) Input image (b) True Segmentation (c) Disagreeing Nodes (d) Disagreeing Edges (e) MAP Inference

Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have

11

(a) Input image (b) True Segmentation (c) Disagreeing Nodes (d) Disagreeing Edges (e) MAP Inference

Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have

11

Why?	
  



Inference	
  is	
  NP-­‐hard.	
  So	
  why	
  does	
  
approximate	
  inference	
  work	
  so	
  well?	
  

•  Both	
  marginal	
  and	
  MAP	
  inference	
  are	
  in	
  general	
  NP-­‐hard	
  

•  Nonetheless,	
  heuris3c	
  inference	
  algorithms	
  can	
  get	
  state-­‐of-­‐
the-­‐art	
  results	
  for	
  structured	
  predic3on	
  

•  These	
  instances	
  do	
  not	
  correspond	
  to	
  any	
  known	
  tractable	
  
family	
  (they	
  are	
  not	
  tree-­‐structured,	
  submodular,	
  …)	
  

•  Intui3vely,	
  however,	
  they	
  are	
  close	
  to	
  something	
  tractable	
  

•  This	
  paper:	
  We	
  demonstrate	
  a	
  seDng	
  in	
  which	
  approximate	
  
inference	
  algorithms	
  provably	
  obtain	
  small	
  Hamming	
  error,	
  

H(Y, Ŷ ) =
NX

i=1
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Figure 1. Statistical recovery on a grid graph. (a) Ground truth,
which we want to recover. (b) Noisy node and edge observations.
(c) Approximate recovery (prediction), in this case with average
Hamming error 2/16.

is a noisy version of the true Yi and for specific pairs i, j,
Xi,j is a noisy version of the indicator I [Yi = Yj ]. The
posterior for Y given X is then very similar to the data and
smoothness terms used for structured prediction in machine
vision (Geman & Geman, 1984).

Motivated by these machine vision applications, we high-
light the case where the i, j pairs correspond to the edges
of a two-dimensional grid graph. The corresponding in-
ference task corresponds to a grid-structured Ising model
whose parameters are drawn randomly from this genera-
tive model. In addition to its relevance to real-world ap-
plications, the grid graph is particularly interesting because
it is one of the simplest settings where the statistical and
computational questions are non-trivial. In particular, both
MAP and marginal inference in planar Ising models with an
external field are well-known to be NP-hard and #P-hard in
the worst case (Barahona, 1982).

After presenting our generative model, we proceed to study
how well Y can be recovered from X . Optimal predic-
tion requires calculating marginals of an Ising model and
is hence intractable. We thus introduce a polynomial time
algorithm, and analyze its expected Hamming error. The
algorithm is a two step procedure which ignores the node
evidence in the first step, solving a MaxCut problem on a
grid (which can be done in polynomial time), and at a sec-
ond step uses node observations to break symmetry. De-
spite the simplicity of the algorithm, we show that it is in
fact optimal (up to constants) for a natural regime of the
problem parameters. Finally, our analysis is validated via
experimental results on 2D grid graphs.

Taken together, our results provide the first theoretical anal-
ysis for structured prediction using approximate inference.
In particular, we show that approximate inference can pro-
vide optimal results under natural modeling assumptions.

2. Preliminaries
We consider the setting of predicting a set of labels Y =

Y1, . . . , Yn from a set of observations X . The observa-
tions X are assumed to be generated from Y by the follow-
ing process. The generative process is defined via a graph

G = (V, E) and two parameters, an edge noise p 2 [0, .5]

and a node noise q 2 [0, .5]. For each edge (u, v) 2 E, the
edge observation Xuv is independently sampled to be YuYv

with probability 1�p (called a good edge), and �YuYv with
probability p (called a bad edge). Similarly, for each node
v 2 V , the node observation Xv is independently sampled
to be Yv with probability 1 � q (good nodes), and �Yv

with probability q (bad nodes). The process is illustrated in
Figure 1 (a,b). Thus, the observed X provide noisy infor-
mation about the labels Y and their pairwise relations.

A labeling algorithm is a function A : {�1, +1}E ⇥
{�1, +1}V ! {�1, +1}V from graphs with labeled edges
and nodes (i.e., the observation X) to a labeling of the nodes
V (i.e., the unobserved label Y ). We measure the perfor-
mance of A by the expectation of the Hamming error (i.e.,
the number of mispredicted labels) over the observation
distribution induced by Y . By the error of an algorithm,
we mean its worst-case (over Y ) expected error (over in-
puts generated by Y ). Formally, we denote the error of the
algorithm given a value Y = y by ey(A) and define it as:

ey(A) = EX|Y=y

⇥
1
2 kA(X) � yk1

⇤
(1)

The overall error is then:

e(A) = max

y
ey(A). (2)

Note that the definition above does not involve a generative
model for Y . However, it will be useful to consider a model
where Y is generated according to the uniform distribution
pU (Y ), and we have a joint distribution:

p(X, Y ) = pU (Y )p(X|Y ) (3)

2.1. MAP and Marginal Estimators

Given the above definitions, our goal is to find an al-
gorithm A with low error e(A). It is easy to show
that the optimal strategy in this case is to label node Yi

with arg maxYi p(Yi|X) where the conditional is calcu-
lated from the joint p(X, Y ).1

Unfortunately, the above strategy is not tractable since it
requires the calculation of marginals of an Ising model on
a grid with an external field (Barahona, 1982). We shall
thus turn to alternative procedures.

Our labeling algorithm will be based on the maxi-
mum likelihood (ML) estimator, which returns the label
arg maxY p(X, Y ) This is equivalent to solving:

max

Y

X

uv2E

1

2

XuvYuYv log

1 � p

p
+

X

v2V

1

2

XuYu log

1 � q

q
,

(4)
1The optimality follows from the fact that this strategy is

Bayes optimal for the uniform distribution, and furthermore has
the same expected Hamming error for all Y . It is therefore mini-
max optimal (Berger, 1985).
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How Good Is Structured Prediction?

(a) Ground truth (b) Observed evidence

= -1
= +1

= same
= different

(c) Approximate recovery

(all -1’s) ˆY (X)XY

Figure 1. Statistical recovery on a grid graph. (a) Ground truth,
which we want to recover. (b) Noisy node and edge observations.
(c) Approximate recovery (prediction), in this case with average
Hamming error 2/16.

is a noisy version of the true Yi and for specific pairs i, j,
Xi,j is a noisy version of the indicator I [Yi = Yj ]. The
posterior for Y given X is then very similar to the data and
smoothness terms used for structured prediction in machine
vision (Geman & Geman, 1984).

Motivated by these machine vision applications, we high-
light the case where the i, j pairs correspond to the edges
of a two-dimensional grid graph. The corresponding in-
ference task corresponds to a grid-structured Ising model
whose parameters are drawn randomly from this genera-
tive model. In addition to its relevance to real-world ap-
plications, the grid graph is particularly interesting because
it is one of the simplest settings where the statistical and
computational questions are non-trivial. In particular, both
MAP and marginal inference in planar Ising models with an
external field are well-known to be NP-hard and #P-hard in
the worst case (Barahona, 1982).

After presenting our generative model, we proceed to study
how well Y can be recovered from X . Optimal predic-
tion requires calculating marginals of an Ising model and
is hence intractable. We thus introduce a polynomial time
algorithm, and analyze its expected Hamming error. The
algorithm is a two step procedure which ignores the node
evidence in the first step, solving a MaxCut problem on a
grid (which can be done in polynomial time), and at a sec-
ond step uses node observations to break symmetry. De-
spite the simplicity of the algorithm, we show that it is in
fact optimal (up to constants) for a natural regime of the
problem parameters. Finally, our analysis is validated via
experimental results on 2D grid graphs.

Taken together, our results provide the first theoretical anal-
ysis for structured prediction using approximate inference.
In particular, we show that approximate inference can pro-
vide optimal results under natural modeling assumptions.

2. Preliminaries
We consider the setting of predicting a set of labels Y =

Y1, . . . , Yn from a set of observations X . The observa-
tions X are assumed to be generated from Y by the follow-
ing process. The generative process is defined via a graph

G = (V, E) and two parameters, an edge noise p 2 [0, .5]

and a node noise q 2 [0, .5]. For each edge (u, v) 2 E, the
edge observation Xuv is independently sampled to be YuYv

with probability 1�p (called a good edge), and �YuYv with
probability p (called a bad edge). Similarly, for each node
v 2 V , the node observation Xv is independently sampled
to be Yv with probability 1 � q (good nodes), and �Yv

with probability q (bad nodes). The process is illustrated in
Figure 1 (a,b). Thus, the observed X provide noisy infor-
mation about the labels Y and their pairwise relations.

A labeling algorithm is a function A : {�1, +1}E ⇥
{�1, +1}V ! {�1, +1}V from graphs with labeled edges
and nodes (i.e., the observation X) to a labeling of the nodes
V (i.e., the unobserved label Y ). We measure the perfor-
mance of A by the expectation of the Hamming error (i.e.,
the number of mispredicted labels) over the observation
distribution induced by Y . By the error of an algorithm,
we mean its worst-case (over Y ) expected error (over in-
puts generated by Y ). Formally, we denote the error of the
algorithm given a value Y = y by ey(A) and define it as:

ey(A) = EX|Y=y

⇥
1
2 kA(X) � yk1

⇤
(1)

The overall error is then:

e(A) = max

y
ey(A). (2)

Note that the definition above does not involve a generative
model for Y . However, it will be useful to consider a model
where Y is generated according to the uniform distribution
pU (Y ), and we have a joint distribution:

p(X, Y ) = pU (Y )p(X|Y ) (3)

2.1. MAP and Marginal Estimators

Given the above definitions, our goal is to find an al-
gorithm A with low error e(A). It is easy to show
that the optimal strategy in this case is to label node Yi

with arg maxYi p(Yi|X) where the conditional is calcu-
lated from the joint p(X, Y ).1

Unfortunately, the above strategy is not tractable since it
requires the calculation of marginals of an Ising model on
a grid with an external field (Barahona, 1982). We shall
thus turn to alternative procedures.

Our labeling algorithm will be based on the maxi-
mum likelihood (ML) estimator, which returns the label
arg maxY p(X, Y ) This is equivalent to solving:

max

Y

X

uv2E

1

2

XuvYuYv log

1 � p

p
+

X

v2V

1

2

XuYu log

1 � q

q
,

(4)
1The optimality follows from the fact that this strategy is

Bayes optimal for the uniform distribution, and furthermore has
the same expected Hamming error for all Y . It is therefore mini-
max optimal (Berger, 1985).
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(Tappen and Freeman ‘03)!

Figure 1-1: Example of how graphical models can be used for computer stereo vision. On
the left we show the input, which are two images. We then construct a graphical model
where we have one node for each pixel, and edges between neighboring pixels. Finally we
perform inference in the model to find the most likely assignment of depth to the pixels,
shown on the right (see text for more detail).

1.1 Examples of Graphical Models

1.1.1 Stereo Vision

The stereopsis problem, also called stereo vision, is as follows. We are given two images
(e.g., one image coming from your left eye, and the other from your right eye), and the goal
is to determine the depth of all the objects in the image from the viewer. The depth of any
pixel is inversely proportional to its disparity, namely how much a pixel in the left image is
horizontally shifted to obtain the corresponding pixel in the right image. Calculating these
disparities is di�cult for a number of reasons. First, there is a large amount of ambiguity:
for any one pixel in the left image, there may be a large number of similar looking pixels
in the right image. Second, in cases when there is occlusion, there may not even exist a
corresponding pixel. Nonetheless, humans are able to very accurately estimate depth using
stereopsis, and a natural question is whether we can automate the process on a computer.

Humans use a large amount of prior knowledge when performing stereopsis. For example,
we may expect continuity of depth for two neighboring pixels with constant color (intensity),
with changes in depth occurring near the edges of objects. We also have prior knowledge
of what objects and shapes exist in the world. For example, if we see a person sitting on a
couch, we know that the couch does not simply disappear behind the person. Thus, we have
a prior model of the world that we use in interpreting what we see. The process of taking in
evidence, accounting for prior beliefs, and making a prediction, is called inference. Humans
do it pretty well, so why not computers? Designing algorithms for automated inference is
a fundamental problem in artificial intelligence.

Graphical models provide a mathematical means of specifying prior beliefs in such a
way that we can design algorithms for automated inference. A graphical model is specified
by an undirected graph where we have one node for every random variable, and edges
denote explicit dependencies between variables. We can model stereo vision as a graphical
model (see Figure 1-1) where we have one variable per pixel location in the left image,
whose states denote the disparity to the corresponding pixel in the right image (Tappen &
Freeman, 2003). For each random variable and for each of its possible states (corresponding
to a particular disparity), the model specifies a local cost that is based on the intensity
di↵erences between the two pixels. The model also specifies a pairwise cost that penalizes
for neighboring pixels having di↵erent disparities. The penalty is larger for pairs of pixels
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(a) Stereo Vision as MAP Inference (b) MAP assignment

Figure 1: Left: Example of how graphical models can be used for computer stereo vision. On the left
we show the input, which are two images, one horizontally displaced from the other. The model has one
random variable for each pixel and edges between neighboring pixels. We perform MAP inference in the
model to find the most likely assignment of depth to the pixels (disparity). Right: Visualization of the
MAP assignment found by solving a LP relaxation, which had no integrality gap for this instance. Depth
is shown in shades of red: darker pixels denote greater depth. The green pixels illustrate the parts of the
image where additional constraints were included to tighten the relaxation.

MAP inference problems for graphical models often reduce to well-studied combinatorial opti-
mization problems of very di↵erent flavors. When each edge (i, j) 2 E has a edge cost ✓ij(yi, yj)
of �wij uniformly if yi 6= yj and 0 otherwise (we assume wij � 0), we have an instance of Uniform
Metric Labeling [KT02]. Graph partitioning problems like Correlation Clustering on the other
hand, have no node costs, and edge costs that depend on whether the neighboring variables get
assigned the same value or not. From a theoretical standpoint, exact MAP inference is NP-hard,
and in many cases cannot be approximated well in the worst-case [Shi94, AL95] on account of
their combinatorial nature. While polynomial time inference algorithms exist for specific graphical
models with a simple structure like low tree-width, most graphical models [WJ08] that arise from
real-world applications (e.g. stereo vision, parsing) do not have such simple structure.

Yet, practitioners in areas like machine learning and computer vision have made significant
progress in designing heuristics like belief propagation to perform real-world inference e�ciently.
A particular heuristic that has had a lot of success in the last few years are convex relaxations like
linear programs obtained by relaxing the corresponding combinatorial optimization problem. In
fact, these linear programming relaxations turn out to be almost integral (near optimal) for most
instances that arise from applications like stereo vision, protein side-chain placement, protein design,
non-projective dependency parsing, and part-of-speech tagging [KRC+10, RSCJ10, SJ08, SMG+08,
Son10]. This stands in stark contrast to our theoretical understanding of linear programming
relaxations on worst-case instances. Reconciling this large gap between theory and practice in the
context of inference problems, and designing e�cient MAP inference algorithms is an important
challenge in machine learning.

1.1 Broad Goals

To reconcile this gap, we propose to tackle the following broad questions.

Question 1.1. Why are real-world inference problems tractable? Can we identify properties of
real-world instances that make them tractable?

We propose a theoretical and empirical study of structural properties like Instance Stability, and
paradigms that go beyond traditional worst-case analysis like Average-case analysis to explain why
MAP inference is tractable in practice. These approaches that go beyond traditional worst-case
analysis may also lead to new insights about heuristics like convex relaxations:

2
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(a) Input image (b) True Segmentation (c) Disagreeing Nodes (d) Disagreeing Edges (e) MAP Inference

Figure 4: Example image (shown in (a)) and ground truth segmentation, (shown in (b)) from Weizmann
horses dataset [BU02]. Figures (c) and (d) illustrate a structural property of the instance, discussed further
in the text. Figure (e) shows the result of MAP inference in a grid-structured model, found by solving a LP
relaxation using MPLP, which on this instance obtains a certificate of optimality [SCL12].

the node evidence in the first step, solving a MaxCut problem on a grid (which can be done in
polynomial time), and in the second step uses node observations to break symmetry [GRSY14].

Empirical Study: An integral part of the proposed research will be an empirical study on
real-world structured prediction models. For example, in Figure 4 we show an example image and
ground truth labeling for a foreground-background segmentation problem. We obtained a model
for this prediction task from the authors of [Dom13]; it has binary variables for each pixel (for
foreground versus background), and is grid structured like in Figure 3. Figure (c) shows pixels
for which the node potential disagrees with the ground truth, separating into cases where the
ground truth is background (red) and foreground (blue). Figure (d) shows edges that the model
thinks should be cut, but which in the ground truth are not cut (red), and vice-versa (blue).
This example illustrates the challenge of designing average-case models for real-world problems –
whereas the model we proposed posits that the disagreeing nodes and edges should be uniformly
distributed around the image, they are clearly not. Nonetheless, the two-step algorithm and its
analysis only use the fact that the probability that a cycle consists of at least half disagreeing edges
decays exponentially in the cycle size, and thus — similar to the model-independent algorithms
described in the previous section – may apply to a much broader class of models.

Recovery in Graph Partitioning models: While the algorithms discussed in section 3 give
good approximation guarantees for graph partitioning, our model assumptions are so mild that
statistical recovery may not be possible in some of these models (e.g. an Erdös-Renyi random graph
with edge probability p everywhere). However, when there is su�cient connectivity or expansion
inside the clusters, these algorithms can be used to design iterative polynomial time algorithms
that recover the ground-truth clustering up to arbitrary accuracy [MMV12]. We plan to build on
this work, and study what additional properties we need from average-case models that satisfy
permutation-invariance to recover the ground-truth from near-optimal solutions.

Another concrete question about ground-truth recovery that we plan to study, pertains to
average-case Correlation Clustering [MMV14a]. Our structural theorem shows that a natural SDP
identifies all but a negligible fraction of the disagreements; further, the SDP assigns most pairs of
vertices that share ‘+’ edges inside a ground-truth cluster with very close-by vectors, and most
pairs of vertices in di↵erent clusters that share a ‘-’ edge with far away vectors. We believe this
implies that, under mild expansion conditions, the SDP vectors will be clearly clumped or grouped
together according to the ground-truth clustering. Such a statement will lead to a simple algorithm
based on SDPs that partially recovers the ground-truth solution.

Partial Recovery using Convex Relaxations: All of the recovery results that we have
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How Good Is Structured Prediction?

approximate inference (Finley & Joachims, 2008; Kulesza
& Pereira, 2007), but provide no theoretical insights into
whether real-world structured prediction tasks might result
in low error when using these.

Percolation: Some of the technical ideas in our study of
grid graphs (Section 5) are inspired by arguments in per-
colation, the study of connected clusters in random (often
infinite) graphs. For example, our use of “filled-in regions”
in Section 5 is reminiscent of arguments in percolation the-
ory (e.g., see p. 286 in Grimmett, 1999). We directly adapt
results from statistical physics that bound the connectivity
constant of square lattices (Clisby & Jensen, 2012; Madras
& Slade, 1993) and the number of self-avoiding polygons
of a particular length and area (Jensen, 2000), to give pre-
cise constants for our theoretical results.

4. Foreground-Background Segmentation
We begin by performing an empirical study of the structure
of real-world probabilistic inference problems. Whereas
there has been a wealth of empirical evidence that real-
world inference tasks are easy to solve, there have been few
investigations into why the corresponding inference tasks
are easy.

We use the Weizmann horse dataset (Borenstein & Ullman,
2002) and look at the inference problems arising from using
a conditional random field (CRF) to perform foreground-
background segmentation. Each image is accompanied
with its ground truth segmentation. The parameters of the
model were previously learned by Domke (2013) (Sec. 8.3)
using 200 training images. The CRF is a pairwise Markov
random field with binary variables for each pixel (for fore-
ground versus background), and is grid structured as in Fig-
ure 1. The features used for the pairwise potentials con-
sist of edge filters and various functions of the difference
in colors between the corresponding pixels. The model is
not submodular, yet dual decomposition algorithms such
as Sontag et al. (2012) succeed in finding the MAP assign-
ment for all images in the dataset.

Next, we focus on the inference problems that arise in this
setting. Denote by Z an input image. Then the learned
model results in a set of image dependent weights �uv =

fuv(Z; ✓), �u = fu(Z; ✓) where ✓ are the learned parame-
ters and f is a linear function of features of Z and ✓. The
posterior of the CRF is then:

Pr(

ˆY |Z) / exp(

X

uv2E

�uv
ˆYu

ˆYv +

X

u2V

�u
ˆYu) (5)

The above is similar to (4), with �uv, �u replacing
0.5Xuv log

1�p
p , 0.5Xu log

1�q
q . Of course in the CRF we

are not observing a Xuv, Xu directly, but the weights �
play the same role of providing information on the value of

Y (singleton and pairwise).3

The above equivalence can be used to infer the p, q noise
levels that correspond to a given CRF and image ensemble.
To estimate q simply find the fraction of times where Yu =

sgn�u, and similarly for p. This is illustrated in Figure 2.
In (a,f) we consider two of the images from the test set.
The MPLP algorithm (Sontag et al., 2008) was used for
inference, and provably finds the MAP assignment for the
cases shown (via an optimality certificate). Furthermore,
the Hamming error between the recovered segmentations
in (e),(j) and the true ones in (b),(g) is low (only 1.1%,1.6%

wrong pixels).

Figure (c,h) shows pixels for which sgn (�uYu) = �1,
separating into cases where Yi = �1 (red) and Yi =

1 (blue). Similarly Figure (d,i) shows pixels for which
sgn (�uvYuYv) = �1, shown in red for YuYv = 1 and
blue otherwise. These can be used to calculate the corre-
sponding p, q which turn out to be p = 0.03 and q = 0.2.

The example above demonstrates several principles which
motivate our analysis: first, inference problems on grid
graphs that arise from practical statistical recovery seem to
be solvable in practice and with low Hamming error. Sec-
ond, the node noise turns out to be considerably larger than
the edge noise. Indeed, we will show that recovery for low
edge noise is indeed possible using an even simpler algo-
rithm than MPLP.

5. Inference in Grid Graphs
This section studies grid graphs. We devote a lengthy treat-
ment to them for several reasons. First, grid graphs are
central in applications such as machine vision (see Section
4). Second, the grid is a relatively poor expander and for
this reason poses a number of interesting technical chal-
lenges. Third, our algorithm for the grid and other planar
graphs is computationally efficient. Finally, our grid analy-
sis yields matching upper and lower bounds of ⇥(p2N) on
the information-theoretically optimal error.

5.1. Upper Bound

We study the algorithm ¯A given in Figure 1, which has two
stages. The first stage ignores the node observations and
computes a labeling bY that maximizes the agreement with
respect to edge observations only, i.e.

bY  arg max

Y

X

uv2E

XuvYuYv, (6)

Note that bY and �bY agree with precisely the same set of
3In the CRF, �uv,�u are edge and node dependent. In our

model (4) the p and q are constants. This is just to simplify the
analysis, and can be changed.
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(a) Ground truth (b) Observed evidence
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= same
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(c) Approximate recovery

(all -1’s) ˆY (X)XY

Figure 1. Statistical recovery on a grid graph. (a) Ground truth,
which we want to recover. (b) Noisy node and edge observations.
(c) Approximate recovery (prediction), in this case with average
Hamming error 2/16.

is a noisy version of the true Yi and for specific pairs i, j,
Xi,j is a noisy version of the indicator I [Yi = Yj ]. The
posterior for Y given X is then very similar to the data and
smoothness terms used for structured prediction in machine
vision (Geman & Geman, 1984).

Motivated by these machine vision applications, we high-
light the case where the i, j pairs correspond to the edges
of a two-dimensional grid graph. The corresponding in-
ference task corresponds to a grid-structured Ising model
whose parameters are drawn randomly from this genera-
tive model. In addition to its relevance to real-world ap-
plications, the grid graph is particularly interesting because
it is one of the simplest settings where the statistical and
computational questions are non-trivial. In particular, both
MAP and marginal inference in planar Ising models with an
external field are well-known to be NP-hard and #P-hard in
the worst case (Barahona, 1982).

After presenting our generative model, we proceed to study
how well Y can be recovered from X . Optimal predic-
tion requires calculating marginals of an Ising model and
is hence intractable. We thus introduce a polynomial time
algorithm, and analyze its expected Hamming error. The
algorithm is a two step procedure which ignores the node
evidence in the first step, solving a MaxCut problem on a
grid (which can be done in polynomial time), and at a sec-
ond step uses node observations to break symmetry. De-
spite the simplicity of the algorithm, we show that it is in
fact optimal (up to constants) for a natural regime of the
problem parameters. Finally, our analysis is validated via
experimental results on 2D grid graphs.

Taken together, our results provide the first theoretical anal-
ysis for structured prediction using approximate inference.
In particular, we show that approximate inference can pro-
vide optimal results under natural modeling assumptions.

2. Preliminaries
We consider the setting of predicting a set of labels Y =

Y1, . . . , Yn from a set of observations X . The observa-
tions X are assumed to be generated from Y by the follow-
ing process. The generative process is defined via a graph

G = (V, E) and two parameters, an edge noise p 2 [0, .5]

and a node noise q 2 [0, .5]. For each edge (u, v) 2 E, the
edge observation Xuv is independently sampled to be YuYv

with probability 1�p (called a good edge), and �YuYv with
probability p (called a bad edge). Similarly, for each node
v 2 V , the node observation Xv is independently sampled
to be Yv with probability 1 � q (good nodes), and �Yv

with probability q (bad nodes). The process is illustrated in
Figure 1 (a,b). Thus, the observed X provide noisy infor-
mation about the labels Y and their pairwise relations.

A labeling algorithm is a function A : {�1, +1}E ⇥
{�1, +1}V ! {�1, +1}V from graphs with labeled edges
and nodes (i.e., the observation X) to a labeling of the nodes
V (i.e., the unobserved label Y ). We measure the perfor-
mance of A by the expectation of the Hamming error (i.e.,
the number of mispredicted labels) over the observation
distribution induced by Y . By the error of an algorithm,
we mean its worst-case (over Y ) expected error (over in-
puts generated by Y ). Formally, we denote the error of the
algorithm given a value Y = y by ey(A) and define it as:

ey(A) = EX|Y=y

⇥
1
2 kA(X) � yk1

⇤
(1)

The overall error is then:

e(A) = max

y
ey(A). (2)

Note that the definition above does not involve a generative
model for Y . However, it will be useful to consider a model
where Y is generated according to the uniform distribution
pU (Y ), and we have a joint distribution:

p(X, Y ) = pU (Y )p(X|Y ) (3)

2.1. MAP and Marginal Estimators

Given the above definitions, our goal is to find an al-
gorithm A with low error e(A). It is easy to show
that the optimal strategy in this case is to label node Yi

with arg maxYi p(Yi|X) where the conditional is calcu-
lated from the joint p(X, Y ).1

Unfortunately, the above strategy is not tractable since it
requires the calculation of marginals of an Ising model on
a grid with an external field (Barahona, 1982). We shall
thus turn to alternative procedures.

Our labeling algorithm will be based on the maxi-
mum likelihood (ML) estimator, which returns the label
arg maxY p(X, Y ) This is equivalent to solving:

max

Y

X

uv2E

1

2

XuvYuYv log

1 � p

p
+

X

v2V

1

2

XuYu log

1 � q

q
,

(4)
1The optimality follows from the fact that this strategy is

Bayes optimal for the uniform distribution, and furthermore has
the same expected Hamming error for all Y . It is therefore mini-
max optimal (Berger, 1985).

Compare	
  to:	
  

�uv ⇡ Xuv
1

2

log

1� p

p
�u ⇡ Xu

1

2

log

1� q

q



Empirical	
  study	
  of	
  inference	
  

20	
  x	
  20	
  
grid	
  graph	
  

(a) Ground truth (b) Observed evidence

= -1
= +1

= same
= different

(c) Approximate recovery

(all -1’s) Ŷ (X)XY • 	
  Ground	
  truth	
  =	
  all	
  -­‐1’s	
  	
  
• 	
  Node	
  noise	
  q=0.4	
  
• 	
  Results	
  averaged	
  over	
  100	
  trials	
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Marginal	
  inference	
  
• 	
  Informa3on	
  theore3cally	
  
op3mal	
  
• 	
  NP-­‐hard,	
  but	
  for	
  20x20	
  
grid	
  can	
  compute	
  exactly	
  

Pairwise	
  LP	
  relaxa<on	
  of	
  
MAP	
  inference	
  	
  
• 	
  Does	
  poorly	
  for	
  large	
  edge	
  
noise!	
  
• 	
  LP	
  solu3on	
  is	
  (½,	
  ½)	
  	
  frac3onal	
  

(p)	
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Empirical	
  study	
  of	
  inference	
  

20	
  x	
  20	
  
grid	
  graph	
  

(a) Ground truth (b) Observed evidence

= -1
= +1

= same
= different

(c) Approximate recovery

(all -1’s) Ŷ (X)XY

Cycle	
  LP	
  relaxa<on	
  of	
  
MAP	
  inference	
  	
  
• 	
  Sontag	
  et	
  al.,	
  UAI	
  2012	
  

Pairwise	
  LP	
  relaxa<on	
  of	
  
MAP	
  inference	
  	
  
• 	
  Does	
  poorly	
  for	
  large	
  edge	
  
noise!	
  
• 	
  LP	
  solu3on	
  is	
  (½,	
  ½)	
  	
  frac3onal	
  

Marginal	
  inference	
  
• 	
  Informa3on	
  theore3cally	
  
op3mal	
  
• 	
  NP-­‐hard,	
  but	
  for	
  20x20	
  
grid	
  can	
  compute	
  exactly	
  

• 	
  Ground	
  truth	
  =	
  all	
  -­‐1’s	
  	
  
• 	
  Node	
  noise	
  q=0.4	
  
• 	
  Results	
  averaged	
  over	
  100	
  trials	
  

(p)	
  



What	
  are	
  the	
  informa3on	
  theore3c	
  limits?	
  

•  Theorem	
  (lower	
  bound):	
  Every	
  algorithm	
  must	
  have	
  
error	
  Ω(p2N),	
  where	
  N	
  is	
  the	
  number	
  of	
  nodes	
  

•  Proof	
  sketch:	
  

q	
  =	
  node	
  noise	
  
p	
  =	
  edge	
  noise	
  

-­‐1	
   -­‐1	
  

-­‐1	
  

-­‐1	
  

-­‐1	
  

-­‐1	
  

-­‐1	
   -­‐1	
  

Consider	
  the	
  following	
  distribu<on	
  
over	
  Y	
  (ground	
  truth)	
  

Shaded	
  nodes	
  
fixed	
  to	
  -­‐1.	
  

White	
  nodes	
  
sampled	
  uniformly,	
  
+1	
  with	
  prob.	
  ½	
  
-­‐1,	
  otherwise.	
  

How	
  many?	
   N
2

✓
4

2

◆
p2(1� p)2 ⇡ 5N

2
p2

(a)	
  

Call	
  a	
  node	
  ambiguous	
  if	
  exactly	
  
two	
  of	
  its	
  edge	
  observa<ons	
  are	
  
≠	
  (i.e.,	
  -­‐1)	
  and	
  two	
  are	
  =	
  (i.e.	
  +1)	
  	
  	
  

=	
  
=	
  

≠	
  
≠	
  

(b)	
  

Best	
  is	
  to	
  predict	
  according	
  to	
  
node	
  observa<on.	
  Will	
  be	
  
wrong	
  with	
  probability	
  q	
  

(c)	
  

E[H] � 5N

2
p2q, i.e. ⌦(p2N)(d)	
  



•  We	
  analyze	
  the	
  following	
  approximate	
  inference	
  algorithm:	
  

•  MAP	
  inference	
  for	
  Stage	
  1	
  is	
  polynomial	
  3me	
  using	
  matching	
  
(Fisher	
  ’66)	
  or	
  solving	
  cycle	
  LP	
  (Barahona	
  ’82)	
  

•  Intui<on:	
  ater	
  stage	
  1,	
  either	
  Ŷ	
  or	
  its	
  flip	
  –Ŷ	
  is	
  close	
  in	
  Hamming	
  
distance	
  to	
  the	
  ground	
  truth:	
  

Two-­‐stage	
  approximate	
  inference	
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How Good Is Structured Prediction?

Image True Segmentation Bad Nodes Bad Edges MAP Inference

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Weizmann horse dataset, discussed in Section 4.

Algorithm 1 ¯A(X) for near-optimal inference in grids.
Require: Edge and node observations X

1: bY  arg maxY
P

uv2E XuvYuYv

2: if
P

v2V Xv
bYv < 0 then

3: bY  �bY
4: end if

output bY

edge observations, and thus both maximize Eq. 6. The sec-
ond stage of algorithm ¯A outputs bY or �bY , according to a
“majority vote” by the node observations. Namely, it out-
puts �bY if

P
v2V Xv

bYv < 0, and bY otherwise.

When the graph G is a 2D grid, or more generally a pla-
nar graph, this algorithm can be implemented in polyno-
mial time by a reduction to the maximum-weight match-
ing problem (see Fisher, 1966; Hadlock, 1975; Barahona,
1982). We shall prove the following theorem, which shows
that approximate recovery on grids is possible.4

Theorem 5.1 The algorithm ¯A achieves an overall error
e( ¯A) = O(p2N).

Analysis of First Stage: We first show that after the first
stage, the expected error of the better of bY ,�bY is O(p2N).
We then extend this error bound to the output of the second
stage of the algorithm.

We begin by highlighting a simple but key lemma charac-
terizing a structural property of the maximizing assignment
of Eq. 6, i.e. the MAP assignment without node observa-
tions. The intuition is that if the maximizing assignment is
wrong on some region of the grid, there must be many bad
edge observations on the boundary of this region. Since
the probability of a bad edge observation p is assumed to

4Big-O notation describes the behavior as p goes to zero.

be small, this tells us that it is highly unlikely that there can
be a large region of the graph for which the maximizing
assignment disagrees with the ground truth.

We use �(S) to denote the boundary of S ✓ V , i.e. the set
of edges with exactly one endpoint in S.

Lemma 5.2 (Flipping Lemma) Let S denote a maximal
connected subgraph of G with every node of S incorrectly
labelled by bY . Then at least half the edges of �(S) are
bad.56

Proof: The computed labeling bY agrees with the edge ob-
servations on at least half the edges of �(S). Otherwise,
flipping the labels of all nodes in S would yield a new la-
beling with agreement strictly higher than bY . On the other
hand, since S is maximal, for every edge e 2 �(S), exactly
one endpoint of e is correctly labeled. Thus every edge of
�(S) is inconsistent with the ground truth. These two state-
ments are only compatible if at least half the edges of �(S)

are bad. ⌅

Call a set S bad if at least half its boundary �(S) is bad. The
Flipping Lemma motivates bounding the probability that a
given set is bad, and then bounding the Hamming error by
enumerating over sets S. This approach can be made to
work only if the collection of sets S is chosen carefully —
otherwise, there are far too many sets and this approach
fails to yield a non-trivial error bound.

Let C denote the subsets S of V such that the induced sub-
graph G[S] is connected. We classify subsets S of C into 6
categories depending on whether S contains (see Figure 3):

1. No vertices on the perimeter of G
5Recall from Section 2 that an edge is good if Xuv = YuYv

and bad otherwise
6Note that the result holds for �Ŷ , since it only relies on Ŷ

maximizing (6).

Stage	
  1	
  

Stage	
  2	
  

(uses	
  only	
  edge	
  
observa3ons)	
  

-­‐Ŷ:	
   Ŷ:	
  
We	
  choose	
  one	
  of	
  these	
  by	
  
looking	
  at	
  the	
  node	
  
observa3ons	
  (stage	
  2)	
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Two-­‐stage	
  
approximate	
  inference	
  

• 	
  Ground	
  truth	
  =	
  all	
  -­‐1’s	
  	
  
• 	
  Node	
  noise	
  q=0.4	
  
• 	
  Results	
  averaged	
  over	
  100	
  trials	
  

Cycle	
  LP	
  relaxa<on	
  of	
  
MAP	
  inference	
  	
  
• 	
  Sontag	
  et	
  al.,	
  UAI	
  2012	
  

Marginal	
  inference	
  
• 	
  Informa3on	
  theore3cally	
  
op3mal	
  
• 	
  NP-­‐hard,	
  but	
  for	
  20x20	
  
grid	
  can	
  compute	
  exactly	
  

Pairwise	
  LP	
  relaxa<on	
  of	
  
MAP	
  inference	
  	
  

Two-­‐stage	
  approximate	
  inference	
  

Two-Stage 

(p)	
  



Two-­‐stage	
  algorithm	
  is	
  op3mal	
  for	
  grids	
  

•  Theorem	
  (upper	
  bound):	
  The	
  two-­‐stage	
  algorithm	
  
obtains	
  error	
  O(p2N)	
  when	
  p	
  <	
  0.017	
  



Key	
  structural	
  lemma	
  

•  Let	
  δ(S)	
  denote	
  the	
  outer	
  boundary	
  of	
  a	
  set	
  of	
  ver3ces	
  S	
  
•  An	
  edge	
  is	
  bad	
  if	
  Xuv	
  =	
  -­‐YuYv	
  
•  Lemma	
  1	
  (Flipping	
  Lemma):	
  Let	
  S	
  denote	
  a	
  maximal	
  connected	
  

subgraph	
  of	
  G	
  with	
  every	
  node	
  of	
  S	
  mispredicted	
  by	
  Ŷ.	
  Then,	
  at	
  
least	
  half	
  the	
  edges	
  of	
  δ(S)	
  are	
  bad	
  

ˆY  argmax

Y

X

uv2E

XuvYuYv

Ŷ1=	
  +1	
  

Ŷ5=	
  -­‐1	
  

Ŷ2=	
  -­‐1	
  

Ŷ3=	
  -­‐1	
  

Ŷ4=	
  -­‐1	
  

=	
   =	
  
=	
  

=	
  

“=“	
  denotes	
  Xuv=1	
  

Example:	
  
o 	
  	
  Suppose	
  ground	
  truth	
  Y	
  is	
  all	
  -­‐1,	
  and	
  we	
  
mispredicted	
  the	
  middle	
  node	
  Ŷ1	
  

o 	
  	
  Suppose	
  for	
  contradic3on	
  that	
  all	
  four	
  
edges	
  of	
  δ(S)	
  are	
  “=“	
  (i.e.,	
  not	
  bad)	
  

o 	
  	
  Flipping	
  Ŷ1	
  to	
  -­‐1	
  strictly	
  improves	
  the	
  
objec3ve,	
  contradic3ng	
  op3mality	
  of	
  Ŷ	
  



Bounding	
  number	
  and	
  size	
  of	
  maximally	
  
connected	
  mispredicted	
  sets	
  

•  Let	
  δ(S)	
  denote	
  the	
  outer	
  boundary	
  of	
  a	
  set	
  of	
  ver3ces	
  S	
  

•  A	
  set	
  S	
  is	
  bad	
  if	
  at	
  least	
  half	
  its	
  outer	
  boundary	
  δ(S)	
  is	
  bad	
  
•  Lemma	
  2:	
  For	
  every	
  set	
  S	
  with	
  |δ(S)|=	
  k,	
  Pr[S	
  is	
  bad]	
  ≤	
  (9p)k/2	
  
•  Lemma	
  3:	
  For	
  every	
  set	
  S,	
  |S|	
  ≤	
  c|δ(S)|2	
  

•  Lemma	
  4:	
  There	
  are	
  at	
  most	
  4N3k-­‐2/(2k)	
  sets	
  with	
  |δ(S)|=	
  k	
  for	
  
even	
  length	
  k	
  (and	
  zero	
  for	
  odd	
  k)	
  

•  Many	
  large	
  sets	
  (Lemma	
  3+4),	
  but	
  unlikely	
  to	
  be	
  bad	
  (Lemma	
  2)	
  
Result	
  is	
  then	
  shown	
  using	
  a	
  Union	
  Bound.	
  

S	
   δ(S)	
   |δ(S)|	
  =	
  8	
  



Discussion	
  &	
  Conclusions	
  

•  Results	
  extend	
  to	
  other	
  genera3ve	
  processes,	
  planar	
  
graphs	
  and	
  d-­‐regular	
  expander	
  graphs	
  

•  Take	
  away	
  1:	
  Think	
  about	
  approximate	
  inference	
  for	
  
structured	
  predic3on	
  in	
  terms	
  of	
  recovering	
  ground	
  truth	
  

•  Take	
  away	
  2:	
  When	
  using	
  dual	
  decomposi3on	
  or	
  LP	
  
relaxa3ons,	
  look	
  for	
  tractable	
  and	
  accurate	
  components	
  

•  Many	
  open	
  problems	
  

–  Non-­‐binary	
  models	
  (e.g.,	
  for	
  stereo	
  vision),	
  and	
  other	
  predic3on	
  
tasks	
  such	
  as	
  dependency	
  parsing	
  

–  Analysis	
  of	
  cycle	
  LP	
  relaxa3on:	
  might	
  need	
  new	
  proof	
  
techniques	
  



Extra	
  slides	
  



Error	
  of	
  an	
  algorithm	
  

•  The	
  error	
  of	
  an	
  algorithm	
  A	
  is	
  defined	
  to	
  be	
  the	
  
worst-­‐case	
  (over	
  Y)	
  expected	
  Hamming	
  error:	
  

•  Marginal	
  inference	
  using	
  a	
  uniform	
  prior	
  for	
  Y	
  can	
  be	
  
shown	
  to	
  be	
  minimax	
  op3mal	
  

•  Sta*s*cally	
  efficient,	
  but	
  not	
  computa*onally	
  
efficient	
  

err(A) = max

y
EX|Y=y

⇥
H(y,A(X))

⇤



Theorem	
  (upper	
  bound):	
  The	
  two-­‐stage	
  algorithm	
  
obtains	
  error	
  O(p2N)	
  

H =

X

cycles C

X

S:�(S)=C

|S|1
h
S is maximally connected mispredicted set

i


X

k=4,6,8,...

⇣
max

S:|�(S)|=k
|S|

⌘ X

cycles C:|C|=k

1

h
at least half of edges in C are bad

iLemma	
  1	
  


X

k=4,6,8,...

k2
X

cycles C:|C|=k

1

h
at least half of edges in C are bad

iLemma	
  3	
  

E[H] 
X

k=4,6,8,...

k2 · (9p)k/2 · 4N3k�2/(2k)

Lemma	
  2	
   Lemma	
  4	
  

⇡ N
1X

l=2

l(81p)l⇡ N
1X

k=4,6,8,...

k · (9p)k/23k = N
1X

l=2

2l · (9p)l9l = O(p2N)

(Using	
  results	
  from	
  
percola3on,	
  can	
  substan3ally	
  

improve	
  constants)	
  



Generaliza3ons	
  

•  Planar	
  graphs	
  
– Use	
  two-­‐step	
  algorithm:	
  s3ll	
  polynomial	
  3me	
  
– Need	
  two	
  proper3es	
  

• Weak	
  expansion:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  for	
  every	
  set	
  F	
  
•  Bounded	
  dual	
  degree	
  
(used	
  in	
  bounding	
  the	
  number	
  of	
  sets)	
  

•  d-­‐regular	
  expander	
  graphs	
  
– Use	
  two-­‐step	
  algorithm:	
  not	
  computa3onally	
  
efficient	
  

– Expected	
  Hamming	
  error	
  O(Np):	
  different	
  analysis	
  

|F |  c1|�(F )|c2
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