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Structured Prediction

input: image output: segmentation

Computer vision
Image segmentation » |

Stereopsis input: two images output: disparity

Natu ral |a nguage process' ng output: dependency parse
Parsing mm
* John sa movie vesterday that he liked
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Structured Prediction

input: I output: Y

bi A

 Given aninput x, the “goodness” of a prediction y is characterized
by a score function s(x,y) such that

* Input: z€ X
Output: labeling y € Y

High if y is a good labeling for x
sixy) = { Y |
Low if y is a bad labeling for x
* Pairwise models have a score that decomposes over edges of a

graph, e.g.

s(x,y) = Z sii (T, Yi, yj) + ZS@(ZB,%)

ijEE =%




Structured Prediction

input: I output: Y

 Input: z€ X ) ‘
Output: labeling y € Y ™ — % _>

 Given aninput x, the “goodness” of a prediction y is characterized
by a score function s(x,y) such that

High if y is a good labeling for x
sxy) = {

Low if y is a bad labeling for x

* Consider the following distribution over labelings:

Pr(y | x) = 1X eXp{ Z $i5 (%, Yir Yj) + Zsz(%yz)}

Z(x) ijEE eV

e Conditional random fields (Lafferty et al. ’01) use maximum
likelihood learning, and predict using marginal inference

arg max Pr(y; | X) foralli
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Structured Prediction

input: I output: Y

 Input: z€ X ) ‘
Output: labeling y € Y ™ — % _>

 Given aninput x, the “goodness” of a prediction y is characterized
by a score function s(x,y) such that

High if y is a good labeling for x
sxy) = {

Low if y is a bad labeling for x

* Consider the following distribution over labelings:

Pr(y | x) = 1X eXp{ Z $i5 (%, Yir Yj) + Zsz(%yz)}

Z(x) ijEE eV

 Max-margin learning (Collins ‘02, Taskar et al. 03, Tsochantaridis
et al. ‘05) seeks large margin, and predicts using MAP inference

arg max Pr(y | x)
y



Inference is NP-hard. So why does
approximate inference work so well?

* Both marginal and MAP inference are in general NP-hard

* Nonetheless, heuristic inference algorithms can get state-of-
the-art results for structured prediction

Stereo vision

y A

\

Input images Ground truth depth Prediction
(approximate MAP inference
with graph cuts)

(Pal et al., “On Learning Conditional Random Fields for Stereo”, JCV 2010)



Inference is NP-hard. So why does
approximate inference work so well?

* Both marginal and MAP inference are in general NP-hard

* Nonetheless, heuristic inference algorithms can get state-of-
the-art results for structured prediction Why?

Foreground-background segmentation

Input images Ground truth Prediction
(approximate MAP inference
with dual decomposition)

(Borenstein & Ullman ‘02, Domke “13)



Inference is NP-hard. So why does
approximate inference work so well?

Both marginal and MAP inference are in general NP-hard

Nonetheless, heuristic inference algorithms can get state-of-
the-art results for structured prediction Why?

These instances do not correspond to any known tractable
family (they are not tree-structured, submodular, ...)

Intuitively, however, they are close to something tractable

This paper: We demonstrate a setting in which approximate
inference algorithms provably obtain small Hamming error,

N
]—](Y7 )A/) — Z 1[171 7& Yz EA/: Ground truth
i=1 Y : Prediction by approx inf



Key questions for theoretical analysis

e What are the information theoretic limits?

 What are the computational & statistical trade-offs?

— How much worse is MAP inference compared to marginal
inference?

— What is the best prediction accuracy attainable in
polynomial time?

— Provable guarantees for linear programming relaxations?



g = node noise
Generative process p = edge noise

Goal is to predict a set of labels Y,, ..., Yy, Y; € {—1, 1}, from
observations X

Our analysis assumes observations X generated from Y by the
following process on graph G=(V,E):

o X;=-Y;with probability g, and X; = Y, otherwise
o Forij € E, X;=-Y;Y; with probability p, and X, = Y;Y; otherwise

Y (all -1’s) X Y (X)

(a) Ground truth  (b) Observed evidence  (¢) Approximate recovery



g = node noise
Generative process p = edge noise

Goal is to predict a set of labels Y,, ..., Yy, Y; € {—1, 1}, from
observations X

Our analysis assumes observations X generated from Y by the
following process on graph G=(V,E):

o X;=-Y;with probability g, and X; = Y, otherwise
o Forij € E, X;=-Y;Y; with probability p, and X, = Y;Y; otherwise

We focus on setting where the node noise q is close to %, i.e.
there is no correlation decay and global inference is essential

Q@ =+1
- = same
== — different

— —

(a) Ground truth  (b) Observed evidence  (¢) Approximate recovery




g = node noise
Generative process p = edge noise

Goal is to predict a set of labels Y,, ..., Yy, Y; € {—1, 1}, from
observations X

Our analysis assumes observations X generated from Y by the
following process on graph G=(V,E):

o X;=-Y;with probability g, and X; = Y, otherwise
o Forij € E, X;=-Y;Y; with probability p, and X, = Y;Y; otherwise
The maximum likelihood (ML) estimator is:

1—0p 1
. —I—Z §XUYU log
veV

1 —gq
q

1
~XuYaY, !
m;}X zE:E 2 >

Even when G is a planar graph, this maximization problem is NP-
hard (reduction from max-cut)



g = node noise
Generative process p = edge noise

* Goalisto predict asetoflabelsY, .., Y,, Y; € {—1,1}, from
observations X

* QOur analysis assumes observations X generated from Y by the
following process on graph G=(V,E):

o X;=-Y;with probability g, and X; = Y, otherwise
o Forij € E, X;=-Y;Y; with probability p, and X, = Y;Y; otherwise

 The maximum likelihood (ML) estimator is:

2D grid
tractable
without a

field
 Even when G is a planar graph, this maximization problem is NP-
hard (reduction from max-cut)




Relating the generative process to CRFs

Conditional random field for foreground-
background segmentation

Pr(Y|Z) o exp( Z BuwYu Yy + Z BuYu)
uverl ueV
with image-dependent weights

Buv = fuu(Z;0) | fisalinear function
- of features of Z and

Bu = fu(Z;0) ters 6
Sl parameters

Z
1—gq
q

1
w~ X, =1
B 5 108

1 1—0p 1 1—gq
Compare to: max Z iXuquYv log 5 —I—Z §XUYU log



Hamming Error

Empirical study of inference

Y (all -1's) X * Ground truth = all -1’s

Y (X)
20x 20 - . * Node noise q=0.4
grid graph * Results averaged over 100 trials
(a) Ground truth  (b) Observed evidence  (c) Approximate recovery

Pairwise LP relaxation of
MAP inference

0.2 _ * Does poorly for large edge
—Marginals noise!
0.15f |—Local LP * LP solution is (%, %) fractional
0.1
0.05 &~—— Marginal inference
* Information theoretically
0 e optimal

0) 0.02 0.04 0.06 0.08 0.1 < NP-hard, but for 20x20
Edge Noise (p) grid can compute exactly



Hamming Error

Empirical study of inference

Y (all -1's) X * Ground truth = all -1’s

Y (X)
20x 20 - . * Node noise q=0.4
grid graph * Results averaged over 100 trials

(a) Ground truth  (b) Observed evidence  (c) Approximate recovery

Pairwise LP relaxation of
MAP inference
* Does poorly for large edge

noise!
* LP solution is (¥4, %2) fractional

0.2

— Marginals
0.15¢ |—Cycle LP

—Local LP
Cycle LP relaxation of
0.1 1 &~ MAP inference
» Sontag et al., UAI 2012
0.05 —— Marginal inference
* Information theoretically
0 optimal

0) 0.02 0.04 0.06 0.08 0.1 < NP-hard, but for 20x20
Edge Noise (p) grid can compute exactly



What are the information theoretic limits?

e Theorem (lower bound): Every algorithm must have
error Q(p2N), where N is the number of nodes

* Proof sketch: (b) Call a node ambiguous if exactly
two of its edge observations are

(a) Consider the following distribution £ (i.e., -1) and two are = (i.e. +1)

over Y (ground truth)
Shaded nodes

N (4 5N
fixed to -1. How many? —— 201 _ p)2 as 22002
ﬁ) xed to y 2<2)p( )~ —p

-1
Q <|> Q O White nodes
—— sampled uniformly, (c) Best is to predict according to
-1 >?Q_<>1 (O +1with prob. % node observation. Will be
% -1, otherwise. i il
O /I\ O otherwise wrong with probability g
) jil N Y
5N .
-1 O—) {}_1 ) (d) E[H] > 7p2q, ie. Q(p?’N) q=node noise

p = edge noise



Two-stage approximate inference

 We analyze the following approximate inference algorithm:

Require: Edge and node observations X

11 Y « argmaxy ), cp XuoYuYs Stage 1 (uses only edge
2: 0f) oy X,Y, < 0 then observations)
3: Y + -Y Stage 2
4: end if

output Y

* MAP inference for Stage 1 is polynomial time using matching
(Fisher '66) or solving cycle LP (Barahona ’82)

* Intuition: after stage 1, either Y or its flip =Y is close in Hamming
distance to the ground truth:
R R We choose one of these by

-Y: Y: looking at the node
observations (stage 2)



Hamming Error

Two- stage apprommate inference

e Ground truth = all -1’s
* Node noise q=0.4

Y (all -1’s)

20 x 20
grid graph

(a) Ground truth  (b) Observed evidence  (c) Approximate recovery

0.2

0.15}

* Results averaged over 100 trials

— Marginals
—Cycle LP

— Two-Stage
— Local LP |

0 002 004 008 008

Edge Noise (p)

0.1

Pairwise LP relaxation of

/ MAP inference

Two-stage
approximate inference

Cycle LP relaxation of

1 &7 MAP inference

* Sontag et al., UAI 2012

—— Marginal inference

* Information theoretically
optimal

* NP-hard, but for 20x20
grid can compute exactly



Two-stage algorithm is optimal for grids

 Theorem (upper bound): The two-stage algorithm
obtains error O(p%N) when p < 0.017




Key structural lemma

Let 6(S) denote the outer boundary of a set of vertices S
An edge is bad if X, =-Y,Y,
Lemma 1 (Flipping Lemma): Let S denote a maximal connected

subgraph of G with every node of S mispredicted by Y. Then, at
least half the edges of 6(S) are bad

Example: .

o Suppose ground truth Yis all -1, and we
mispredicted the middle node Y,

o Suppose for contradiction that all four
edges of 6(S) are “=“ (i.e., not bad)

o Flipping \71 to -1 strictly improves the
objective, contradicting optimality of Y

Y «— arg m}gx Z XuoYu Yo
uvel

Y,=-1

“=" denotes X =1



Bounding number and size of maximally
connected mispredicted sets

Let 6(S) denote the outer boundary of a set of vertices S

( e

'

S if 5(S) |16(S)[ =8

N
NN

A set S is bad if at least half its outer boundary 6(S) is bad
Lemma 2: For every set S with |8(S)|= k, Pr[S is bad] < (9p)¥2
Lemma 3: For every set S, |S| <c|6(S)]?

Lemma 4: There are at most 4N3%2/(2k) sets with |8(S)|= k for
even length k (and zero for odd k)

Many large sets (Lemma 3+4), but unlikely to be bad (Lemma 2)
Result is then shown using a Union Bound.



Discussion & Conclusions

Results extend to other generative processes, planar
graphs and d-regular expander graphs

Take away 1: Think about approximate inference for
structured prediction in terms of recovering ground truth

Take away 2: When using dual decomposition or LP
relaxations, look for tractable and accurate components

Many open problems

— Non-binary models (e.g., for stereo vision), and other prediction
tasks such as dependency parsing

— Analysis of cycle LP relaxation: might need new proof
techniques



Extra slides



Error of an algorithm

* The error of an algorithm A is defined to be the
worst-case (over Y) expected Hamming error:

err(A) = maxExjy—y [H(y, AX))

* Marginal inference using a uniform prior for Y can be
shown to be minimax optimal

e Statistically efficient, but not computationally
efficient



Theorem (upper bound): The two-stage algorithm
obtains error O(p2N)

H = Z Z 1S|1 {S is maximally connected mispredicted set}

cycles €' S:5(S)=C
Z Z Lemmal _
< ( max |S] 1 [at least half of edges in C are bad
k=4,6,8,... S:l0(S)|=k cycles C:|C|=k )
Lemma 3
< Z k? Z 1 [at least half of edges in C' are bad}
k=4,6,8 cycles C:|C|=k
Lemma 2 Lemma 4 (Using results from
E[H] < Z k* - (9]9))f/2 : 4N3k_2/(2)f) percolation, can substantially
improve constants)

k=4,6,8,...

~N Y ke (9p)F23h = N Y 21 (9p)'9' & N i(81p)' = O(p*N)
k=4.6,8,... [=2 [=2



Generalizations

* Planar graphs
— Use two-step algorithm: still polynomial time

— Need two properties
 Weak expansion: |F| < ci1|6(F)|?, for every set F

* Bounded dual degree
(used in bounding the number of sets)

e d-regular expander graphs
— Use two-step algorithm: not computationally
efficient
— Expected Hamming error O(Np): different analysis




