Character-Aware Neural Language Models

Yoon Kim Yacine Jernite David Sontag Alexander Rush

Harvard SEAS

New York University

To appear in AAAI 2016 Code: https://github.com/yoonkim/lstm-char-cnn

Language Model (LM): probability distribution over a sequence of words.

 $p(w_1, \ldots, w_T)$ for any sequence of length T from a vocabulary \mathcal{V} (with $w_i \in \mathcal{V}$ for all i).

Important for many downstream applications:

- machine translation
- speech recognition
- text generation

By the chain rule, any distribution can be factorized as:

$$p(w_1,\ldots,w_T) = \prod_{t=1}^T p(w_t|w_1,\ldots,w_{t-1})$$

n-gram language models make a Markov assumption:

$$p(w_t|w_1,\ldots,w_{t-1}) \approx p(w_t|w_{t-n},\ldots,w_{t-1})$$

Needs smoothing to deal with rare *n*-grams.

Neural Language Models

Neural Language Models (NLM)

• Represent words as dense vectors in \mathbb{R}^n (word embeddings).

 $\mathbf{w}_t \in \mathbb{R}^{|\mathcal{V}|}$: One-hot representation of word $\in \mathcal{V}$ at time $t \Rightarrow \mathbf{x}_t = \mathbf{X}\mathbf{w}_t$: Word embedding $(\mathbf{X} \in \mathbb{R}^{n \times |\mathcal{V}|}, n < |\mathcal{V}|)$

Neural Language Models

Neural Language Models (NLM)

• Represent words as dense vectors in \mathbb{R}^n (word embeddings).

$$\mathbf{w}_t \in \mathbb{R}^{|\mathcal{V}|}$$
: One-hot representation of word $\in \mathcal{V}$ at time $t \Rightarrow \mathbf{x}_t = \mathbf{X}\mathbf{w}_t$: Word embedding $(\mathbf{X} \in \mathbb{R}^{n \times |\mathcal{V}|}, n < |\mathcal{V}|)$

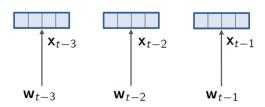
• Train a neural net that composes history to predict next word.

$$p(w_t = j | w_1, \dots, w_{t-1}) = \frac{\exp(\mathbf{p}^j \cdot g(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}) + q^j)}{\sum_{j' \in \mathcal{V}} \exp(\mathbf{p}^{j'} \cdot g(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}) + q^{j'})}$$
$$= \operatorname{softmax}(\mathbf{P}g(\mathbf{x}_1, \dots, \mathbf{x}_{t-1}) + \mathbf{q})$$

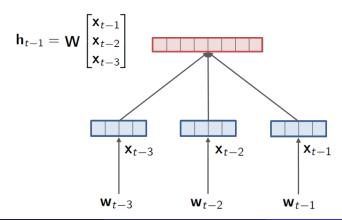
 $\mathbf{p}^j \in \mathbb{R}^m, q^j \in \mathbb{R}$: Output word embedding/bias for word $j \in \mathcal{V}$ g : Composition function

$$\mathbf{W}_{t-3}$$
 \mathbf{W}_{t-2} \mathbf{W}_{t-1}

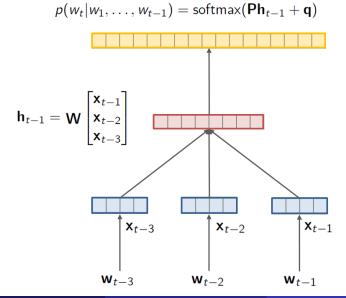
Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models



Character-Aware Neural Language Models



Feed-forward NLM (Bengio, Ducharme, and Vincent 2003)



Maintain a hidden state vector \mathbf{h}_t that is recursively calculated.

Maintain a hidden state vector \mathbf{h}_t that is recursively calculated.

$$\mathbf{h}_t = f(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

 $\mathbf{h}_t \in \mathbb{R}^m$: Hidden state at time t (summary of history) $\mathbf{W} \in \mathbb{R}^{m \times n}$: Input-to-hidden transformation $\mathbf{U} \in \mathbb{R}^{m \times m}$: Hidden-to-hidden transformation $f(\cdot)$: Non-linearity Maintain a hidden state vector \mathbf{h}_t that is recursively calculated.

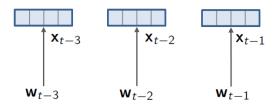
$$\mathbf{h}_t = f(\mathbf{W}\mathbf{x}_t + \mathbf{U}\mathbf{h}_{t-1} + \mathbf{b})$$

 $\mathbf{h}_t \in \mathbb{R}^m$: Hidden state at time t (summary of history) $\mathbf{W} \in \mathbb{R}^{m \times n}$: Input-to-hidden transformation $\mathbf{U} \in \mathbb{R}^{m \times m}$: Hidden-to-hidden transformation $f(\cdot)$: Non-linearity

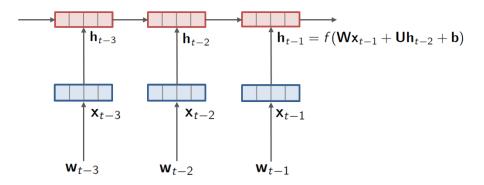
Apply softmax to \mathbf{h}_t .

W_{t-3} W_{t-2} W_{t-1}

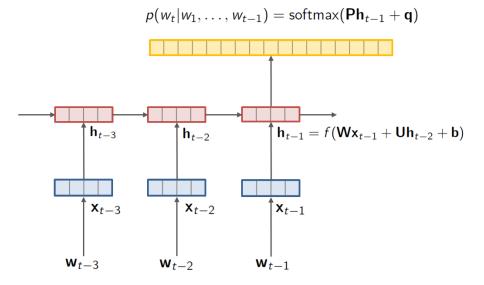
Recurrent Neural Network LM (Mikolov et al. 2011)



Recurrent Neural Network LM (Mikolov et al. 2011)

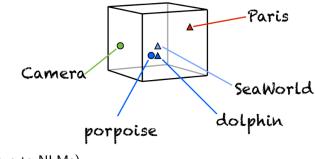


Recurrent Neural Network LM (Mikolov et al. 2011)



Key ingredient in Neural Language Models.

After training, similar words are close in the vector space.



(Not unique to NLMs)

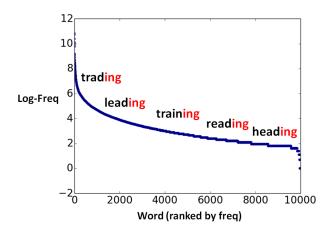
Difficult/expensive to train, but performs well.

Language Model	Perplexity
5-gram count-based (Mikolov and Zweig 2012)	141.2
RNN (Mikolov and Zweig 2012)	124.7
Deep RNN (Pascanu et al. 2013)	107.5
LSTM (Zaremba, Sutskever, and Vinyals 2014)	78.4

Renewed interest in language modeling.

NLM Issue

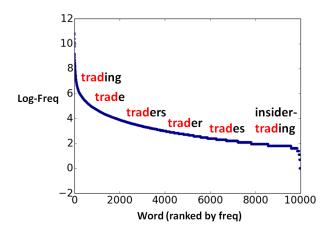
Issue: The fundamental unit of information is still the word



Separate embeddings for "trading", "leading", "training", etc.

NLM Issue

Issue: The fundamental unit of information is still the word



Separate embeddings for "trading", "trade", "trades", etc.

- No parameter sharing across orthographically similar words (e.g., spelled similarly).
- Orthography contains much semantic/syntactic information.
- How can we leverage subword information for language modeling?
- Can we exploit this to perform better language modeling with rare words?

Previous (NLM-based) Work

Use morphological segmenter as a preprocessing step

 $\mathsf{unfortunately} \Rightarrow \mathsf{un}_{\mathsf{PRE}} \, \cdot \, \mathsf{fortunate}_{\mathsf{STM}} \, \cdot \, \mathsf{ly}_{\mathsf{SUF}}$

 Luong, Socher, and Manning 2013: Recursive Neural Network over morpheme embeddings



• Botha and Blunsom 2014: Sum over word/morpheme embeddings

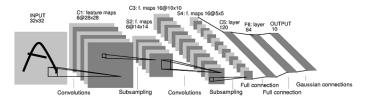
This Work

Main Idea: No explicit morphology, use characters directly.

This Work

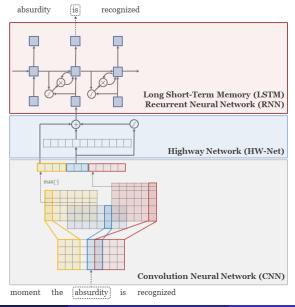
Main Idea: No explicit morphology, use characters directly.

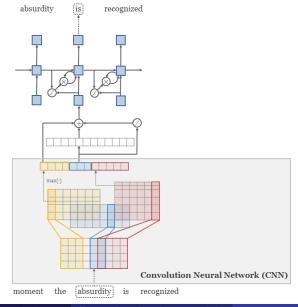
Convolutional Neural Networks (CNN) (LeCun et al. 1989)



- Central to deep learning systems in vision.
- Shown to be effective for NLP tasks (Collobert et al. 2011).
- CNNs in NLP typically involve temporal (rather than spatial) convolutions over words.

Network Architecture: Overview





 $\mathbf{C} \in \mathbb{R}^{d \times l}$: Matrix representation of word (of length *l*)

 $\mathbf{H} \in \mathbb{R}^{d imes w}$: Convolutional filter matrix

- d : Dimensionality of character embeddings (e.g., 15)
- w: Width of convolution filter (e.g., 1,2,3,4,5)

 $\mathbf{C} \in \mathbb{R}^{d imes l}$: Matrix representation of word (of length *l*)

 $\mathbf{H} \in \mathbb{R}^{d imes w}$: Convolutional filter matrix

- d : Dimensionality of character embeddings (e.g., 15)
- w: Width of convolution filter (e.g., 1,2,3,4,5)

1. Apply a convolution between $\boldsymbol{\mathsf{C}}$ and $\boldsymbol{\mathsf{H}}$ to obtain a vector $\boldsymbol{\mathsf{f}} \in \mathbb{R}^{\prime - w + 1}$

$$\mathbf{f}[i] = \langle \mathbf{C}[*, i: i + w - 1], \mathbf{H} \rangle$$

where $\langle \mathbf{A}, \mathbf{B} \rangle = \mathsf{Tr}(\mathbf{A}\mathbf{B}^{\mathsf{T}})$ is the Frobenius inner product.

 $\mathbf{C} \in \mathbb{R}^{d imes l}$: Matrix representation of word (of length l)

 $\mathbf{H} \in \mathbb{R}^{d imes w}$: Convolutional filter matrix

- d : Dimensionality of character embeddings (e.g., 15)
- w : Width of convolution filter (e.g., 1,2,3,4,5)

1. Apply a convolution between $\boldsymbol{\mathsf{C}}$ and $\boldsymbol{\mathsf{H}}$ to obtain a vector $\boldsymbol{\mathsf{f}} \in \mathbb{R}^{\prime - w + 1}$

$$\mathbf{f}[i] = \langle \mathbf{C}[*,i:i+w-1], \mathbf{H} \rangle$$

where $\langle \mathbf{A}, \mathbf{B} \rangle = \text{Tr}(\mathbf{AB}^T)$ is the Frobenius inner product. 2. Take the *max-over-time* (with bias and nonlinearity)

$$y = tanh(\max_{i} \{\mathbf{f}[i]\} + b)$$

as the feature corresponding to the filter H (for a particular word).

a b s u r d i t y

Kim, Jernite, Sontag, Rush Character-Aware Neural Language Models

$\mathbf{C} \in \mathbb{R}^{d \times l}$: Representation of *absurdity*

0.4	-0.8	2.2	0.1	0.5	-0.4	0.4	-0.4	0.1
0.1	1.2	1.5	-0.8	-1.5	0.2	0.1	1.2	0.7
0.2	0.1	-1.2	0.2	-0.2	0.3	0.2	-1.3	-0.1
-0.2	-0.5	0.1	0.2	-0.3	0.3	-0.1	1.0	-0.3
				•••	•••			
а	b	s	u	r	d	i	t	У

 $\mathbf{H} \in \mathbb{R}^{d imes w}$: Convolutional filter matrix of width w = 3

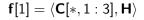
			1	1							1	
			-0.2	-0.5	0.1	0.2	-0.3	0.3	-0.1	1.0	-0.3	
3	-0.1	-1.1	0.2	0.1	-1.2	0.2	-0.2	0.3	0.2	-1.3	-0.1	
+	-0.2	0.7	0.1	1.2	1.5	-0.8	-1.5	0.2	0.1	1.2	0.7	
+	0.9	0.3	0.4	-0.8	2.2	0.1	0.5	-0.4	0.4	-0.4	0.1	
.1	0.5	2.2	 								••••	

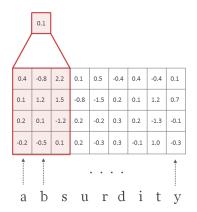
-0.

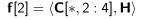
1.3

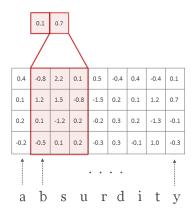
 $\mathbf{f}[1] = \langle \mathbf{C}[*, 1:3], \mathbf{H} \rangle$

0.4	-0.8	2.2	0.1	0.5	-0.4	0.4	-0.4	0.1
0.1	1.2	1.5	-0.8	-1.5	0.2	0.1	1.2	0.7
0.2	0.1	-1.2	0.2	-0.2	0.3	0.2	-1.3	-0.1
-0.2	-0.5	0.1	0.2	-0.3	0.3	-0.1	1.0	-0.3
	*			• •	• •			
а	b	s	u	r	d	i	t	У

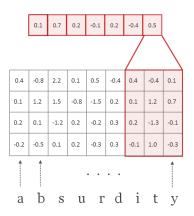






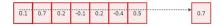


 $\mathbf{f}[T-2] = \langle \mathbf{C}[*, T-2:T], \mathbf{H} \rangle$



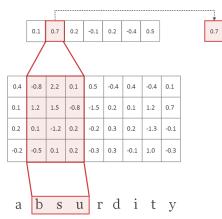
Character-level CNN (CharCNN)

$$y[1] = \max_{i} \{\mathbf{f}[i]\}$$



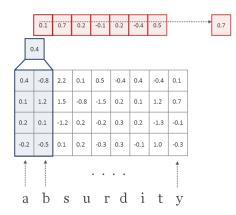
0.4	-0.8	2.2	0.1	0.5	-0.4	0.4	-0.4	0.1
0.1	1.2	1.5	-0.8	-1.5	0.2	0.1	1.2	0.7
0.2	0.1	-1.2	0.2	-0.2	0.3	0.2	-1.3	-0.1
-0.2	-0.5	0.1	0.2	-0.3	0.3	-0.1	1.0	-0.3
				•••	•••			
а	b	s	u	r	d	i	t	У

Each filter picks out a character *n*-gram



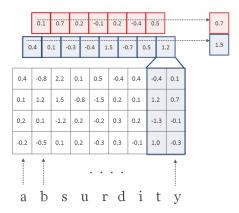
Character-level CNN (CharCNN)

 $\mathbf{f}'[1] = \langle \mathbf{C}[*, 1:2], \mathbf{H}' \rangle$

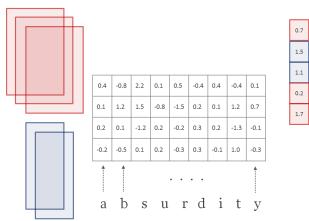


Character-level CNN (CharCNN)

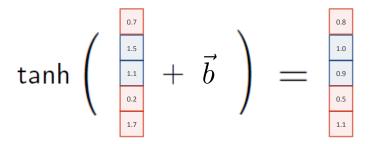
$$y[2] = \max_{i} \{\mathbf{f}'[i]\}$$



Many filter matrices (25–200) per width (1–7)



Add bias, apply nonlinearity



For roughly the same number of parameters (20 million),

Before	Now		
Word embedding	Output from CharCNN		
PTB Perplexity: 85.4	PTB Perplexity: 84.6		

CharCNN is slower, but convolution operations on GPU have been very optimized.

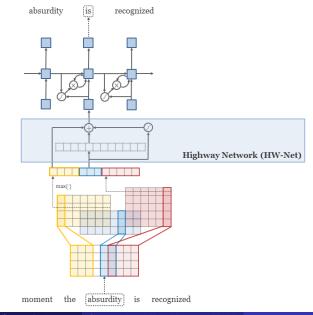
For roughly the same number of parameters (20 million),

Before	Now		
Word embedding	Output from CharCNN		
PTB Perplexity: 85.4	PTB Perplexity: 84.6		

CharCNN is slower, but convolution operations on GPU have been very optimized.

Can we model more complex interactions between character *n*-grams picked up by the filters?

Highway Network



Highway Network

y : output from CharCNN

Multilayer Perceptron

$$\mathbf{z} = g(\mathbf{W}\mathbf{y} + \mathbf{b})$$

y : output from CharCNN

Multilayer Perceptron

$$\mathbf{z} = g(\mathbf{W}\mathbf{y} + \mathbf{b})$$

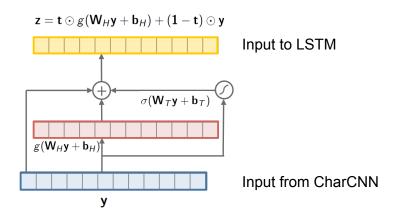
Highway Network

(Srivastava, Greff, and Schmidhuber 2015)

$$\mathsf{z} = \mathsf{t} \odot g(\mathsf{W}_H\mathsf{y} + \mathsf{b}_H) + (1 - \mathsf{t}) \odot \mathsf{y}$$

 $\mathbf{W}_{H}, \mathbf{b}_{H}$: Affine transformation $\mathbf{t} = \sigma(\mathbf{W}_{T}\mathbf{y} + \mathbf{b}_{T})$: transform gate $\mathbf{1} - \mathbf{t}$: carry gate

Hierarchical, adaptive composition of character n-grams.



Model	Perplexity
Word Model	85.4
No Highway Layers	84.6
One MLP Layer	92.6
One Highway Layer	79.7
Two Highway Layers	78.9

No more gains with 3+ layers.

	PPL	Size
KN-5 (Mikolov et al. 2012)	141.2	2 m
RNN (Mikolov et al. 2012)	124.7	6 m
Deep RNN (Pascanu et al. 2013)	107.5	6 m
Sum-Prod Net (Cheng et al. 2014)	100.0	5 m
LSTM-Medium (Zaremba, Sutskever, and Vinyals 2014)	82.7	20 m
LSTM-Huge (Zaremba, Sutskever, and Vinyals 2014)	78.4	52 m
LSTM-Word-Small	97.6	5 m
LSTM-Char-Small	92.3	5 m
LSTM-Word-Large	85.4	20 m
LSTM-Char-Large	78.9	19 m

What about morphologically rich languages?

	Ι	DATA-S	3	DATA-L			
	$ \mathcal{V} $	$ \mathcal{C} $	Т	$ \mathcal{V} $	$ \mathcal{C} $	Т	
English (EN)	10 k	51	1 m	60 k	197	20 m	
$Czech\ (\mathrm{Cs})$	46 k	101	1 m	206 k	195	17 m	
German (DE)	37 k	74	1 m	339 k	260	51 m	
Spanish (Es)	27 k	72	1 m	152 k	222	56 m	
French (FR)	25 k	76	1 m	137 k	225	57 m	
Russian (Ru)	62 k	62	1 m	497 k	111	25 m	

- $|\mathcal{V}| = \mathsf{Word} \mathsf{ vocab} \mathsf{ Size}$
- $|\mathcal{C}| = \text{Character vocab size}$
- T = number of tokens in training set.

What about morphologically rich languages?

	Ι	DATA-S	3	DATA-L			
	$ \mathcal{V} $	$ \mathcal{C} $	Т	$ \mathcal{V} $	$ \mathcal{C} $	Т	
English (EN)	10 k	51	1 m	60 k	197	20 m	
$Czech\ (\mathrm{Cs})$	46 k	101	1 m	206 k	195	17 m	
German (DE)	37 k	74	1 m	339 k	260	51 m	
$Spanish\ (\mathrm{Es})$	27 k	72	1 m	152 k	222	56 m	
French (FR)	25 k	76	1 m	137 k	225	57 m	
Russian (RU)	62 k	62	1 m	497 k	111	25 m	

 $|\mathcal{V}|$ varies quite a bit by language.

(effectively use the full vocabulary)

Baselines

Kneser-Ney LM: Count-based baseline

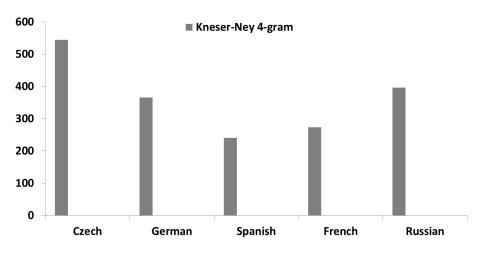
Word LSTM: Word embeddings as input

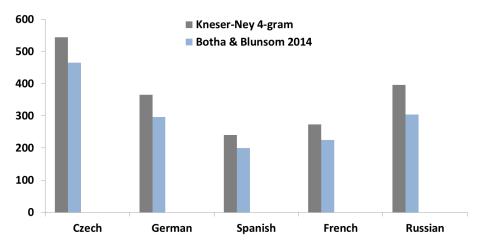
Morpheme LBL (Botha and Blunsom 2014)

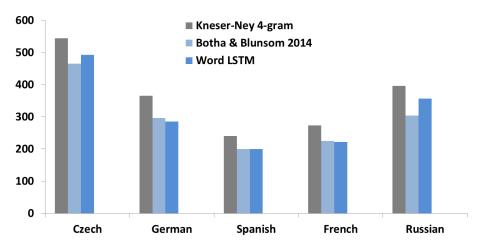
Input for word k is

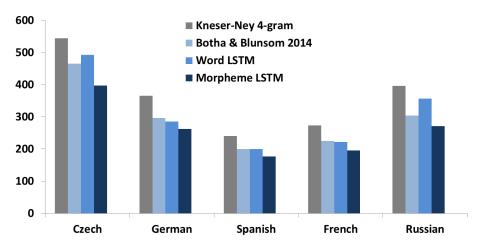
Morpheme LSTM: Same input as above, but with LSTM architecture

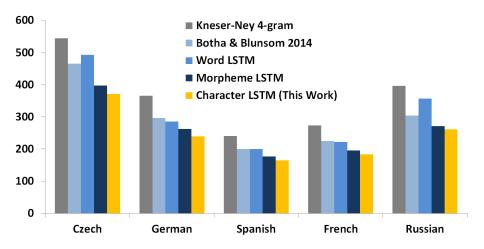
Morphemes obtained from running an unsupervised morphological tagger Morfessor Cat-MAP (Creutz and Lagus 2007).

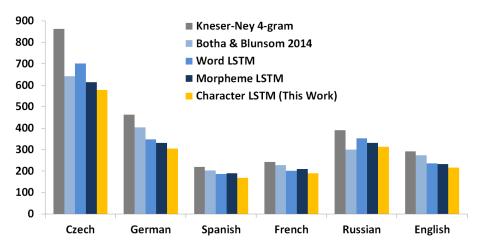












Experiment on German large dataset:

- Take the most frequent K words as the vocabulary and replace rest with <unk>
- Compare % perplexity reduction going from word to character LSTM.

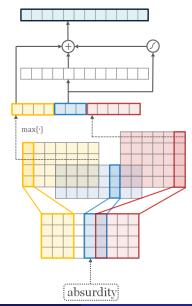
Experiment on German large dataset:

- Take the most frequent K words as the vocabulary and replace rest with <unk>
- Compare % perplexity reduction going from word to character LSTM.

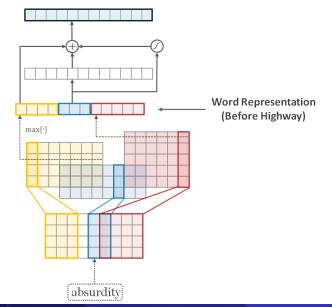
		`	Vocabulary Size					
		10 k	10 k 25 k 50 k 100 k					
	1 m	17	16	21	-			
Training	5 m	8	14	16	21			
Size	10 m	9	9	12	15			
	25 m	9	8	9	10			

Character model outperforms word model in all scenarios.

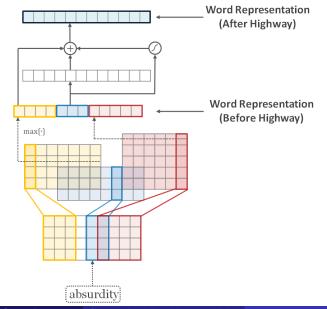
Learned Word Representations



Learned Word Representations



Learned Word Representations



		In Vocabulary					
	while	his	you	richard	trading		
Word	although letting	your her	conservatives we	jonathan robert	advertised advertising		
Embedding	though	тy	guys	neil	turnover		
	minute	their	i	nancy	turnover		

	In Vocabulary						
	while	his	you	richard	trading		
Word Embedding	although letting though minute	your her my their	conservatives we guys i	jonathan robert neil nancy	advertised advertising turnover turnover		
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading		

	In Vocabulary						
	while	his	you	richard	trading		
	although	your	conservatives	jonathan	advertised		
Word	letting	her	we	robert	advertising		
Embedding	though	тy	guys	neil	turnover		
	minute	their	i	nancy	turnover		
	chile	this	your	hard	heading		
Characters	whole	hhs	young	rich	training		
(before highway)	meanwhile	is	four	richer	reading		
	white	has	youth	richter	leading		
	meanwhile	hhs	we	eduard	trade		
Characters	whole	this	your	gerard	training		
(after highway)	though	their	doug	edward	traded		
,	nevertheless	your	i	carl	trader		

	In Vocabulary						
	while	his	you	richard	trading		
Word	although letting	your her	conservatives we	jonathan robert	advertised advertising		
Embedding	though	my	guys	neil	turnover		
-	minute	their	i	nancy	turnover		
Characters (before highway)	chile whole meanwhile white	this hhs is has	your young four youth	hard rich richer richter	heading training reading leading		
Characters (after highway)	meanwhile whole though nevertheless	hhs this their your	we your doug i	eduard gerard edward carl	trade training traded trader		

	In Vocabulary				
	while	his	you	richard	trading
	although	your	conservatives	jonathan	advertised
Word	letting	her	we	robert	advertising
Embedding	though	тy	guys	neil	turnover
	minute	their	i	nancy	turnover
	chile	this	your	hard	heading
Characters	whole	hhs	young	rich	training
(before highway)	meanwhile	is	four	richer	reading
(white	has	youth	richter	leading
	meanwhile	hhs	we	eduard	trade
Characters	whole	this	your	gerard	training
(after highway)	though	their	doug	edward	traded
	nevertheless	your	i	carl	trader

	In Vocabulary				
	while	his	you	richard	trading
	although	your	conservatives	jonathan	advertised
Word	letting	her	we	robert	advertising
Embedding	though	тy	guys	neil	turnover
	minute	their	i	nancy	turnover
	chile	this	your	hard	heading
Characters	whole	hhs	young	rich	training
(before highway)	meanwhile	is	four	richer	reading
	white	has	youth	richter	leading
	meanwhile	hhs	we	eduard	trade
Characters	whole	this	your	gerard	training
(after highway)	though	their	doug	edward	traded
(8	nevertheless	your	i	carl	trader

	In Vocabulary				
	while	his	you	richard	trading
	although	your	conservatives	jonathan	advertised
Word	letting	her	we	robert	advertising
Embedding	though	тy	guys	neil	turnover
	minute	their	i	nancy	turnover
	chile	this	your	hard	heading
Characters	whole	hhs	young	rich	training
(before highway)	meanwhile	is	four	richer	reading
、 , ,	white	has	youth	richter	leading
	meanwhile	hhs	we	eduard	trade
Characters	whole	this	your	gerard	training
(after highway)	though	their	doug	edward	traded
	nevertheless	your	i	carl	trader

Learned Word Representations (OOV)

	Out-of-Vocabulary			
	computer-aided	misinformed	loooook	
	computer-guided	informed	look	
Characters	computerized	performed	cook	
(before highway)	disk-drive	transformed	looks	
	computer	inform	shook	
	computer-guided	informed	look	
Characters	computer-driven	performed	looks	
(after highway)	computerized	outperformed	looked	
	computer	transformed	looking	

Learned Word Representations (OOV)

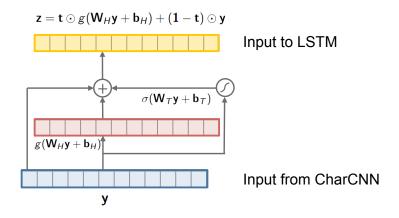
	Out-of-Vocabulary computer-aided misinformed looo				
Characters (before highway)	computer-guided computerized disk-drive computer	informed performed transformed inform	look cook looks shook		
Characters (after highway)	computer-guided computer-driven computerized computer	informed performed outperformed transformed	look looks looked looking		

Learned Word Representations (OOV)

	Out-of-Vocabulary computer-aided misinformed looooook					
Characters	computer-aided computer-guided computerized	informed performed	look cook			
(before highway)	disk-drive	transformed	looks			
	computer	inform	shook			
Characters (after highway)	computer-guided	informed	look			
	computer-driven	performed	looks			
	computerized	outperformed	looked			
	computer	transformed	looking			

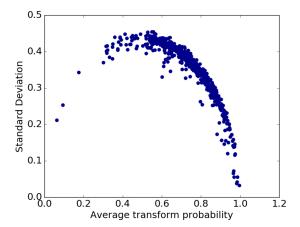
What is the highway network doing?

Q: Might we simply be learning to carry some dimensions and to combine others? Is the transform gate truly a function of the input word?

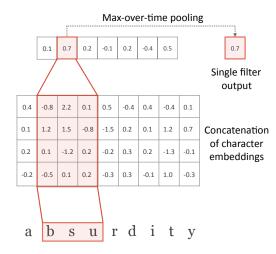


What is the highway network doing?

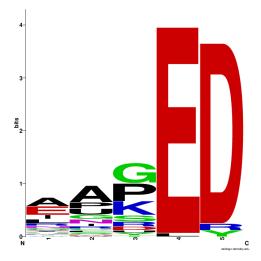
A: No. For all dimensions, on some words $\sigma(\cdot) \approx 0$, and for others ≈ 1 .



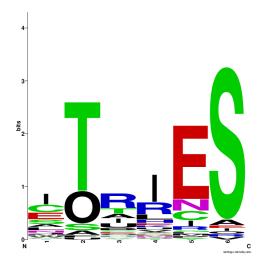
Q: Does each filter truly pick out a character *n*-gram?



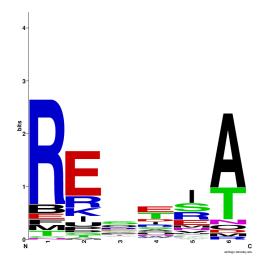
For each length-6 filter, the 100 substrings with highest filter response.



For each length-6 filter, the 100 substrings with highest filter response.



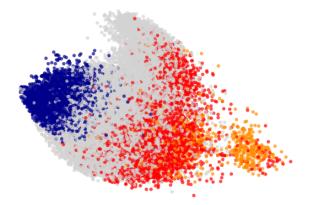
For each length-6 filter, the 100 substrings with highest filter response.



Conclusion

- A character-aware language model that relies only on character-level inputs: CharCNN + Highway network + LSTM.
- Outperforms strong word/morpheme LSTM baselines.
- Much recent work on character inputs:
 - Santos and Zadrozny 2014: CNN over characters concatenated with word embeddings into CRF.
 - Zhang and LeCun 2015: Deep CNN over characters for document classification.
 - Ballesteros, Dyer, and Smith 2015: LSTM over characters for parsing.
 - Ling et al. 2015: LSTM over characters into another LSTM for language modeling/POS-tagging.
- More broadly, suggests new ways to think about representation learning.

Appendix: Character *N*-gram Representations



Prefixes, Suffixes, Hyphenated, Others

Prefixes: character *n*-grams that start with 'start-of-word' character, such as $\{un, \{mis. Suffixes defined similarly. \}$

		Small	Large
	d	15	15
CNN	W	$\left[1,2,3,4,5,6\right]$	$\left[1,2,3,4,5,6,7\right]$
	h	[25 · w]	$[\min\{200, 50 \cdot w\}]$
	f	tanh	tanh
HW-Net	Ι	1	2
	g	ReLU	ReLU
LSTM	Ι	2	2
	т	300	650

		\mathbf{Cs}	De	Es	$\mathbf{F}\mathbf{R}$	Ru
B&B	KN-4	545	366	241	274	396
	MLBL	465	296	200	225	304
Small	Word	503	305	212	229	352
	Morph	414	278	197	216	290
	Char	401	260	182	189	278
Large	Word	493	286	200	222	357
	Morph	398	263	177	196	271
	Char	371	239	165	184	261

		\mathbf{Cs}	De	\mathbf{Es}	$\mathbf{F}\mathbf{R}$	Ru	En
B&B	KN-4 MLBL						
Small	Word Morph						
	Char	578	305	169	190	313	216

Appendix: Effect of Highway Layers (PTB)

	Small	Large	_
No Highway Layers	100.3	84.6	
One Highway Layer	92.3	79.7	
Two Highway Layers	90.1	78.9	
Multilayer Perceptron	111.2	92.6	

No more gains with 2+ layers (may be language dependent).

References I

- Bengio, Yoshua, Rejean Ducharme, and Pascal Vincent (2003). "A Neural Probabilistic Language Model". In: Journal of Machine Learning Research 3, pp. 1137–1155.
- Mikolov, Tomas et al. (2011). "Empirical Evaluation and Combination of Advanced Language Modeling Techniques". In: *Proceedings of INTERSPEECH.*
- Collobert, Ronan et al. (2011). "Natural Language Processing (almost) from Scratch". In: *Journal of Machine Learning Research* 12, pp. 2493–2537.
- Mikolov, Tomas et al. (2012). "Subword Language Modeling with Neural Networks". In: preprint: www.fit.vutbr.cz/imikolov/rnnlm/char.pdf.
 Mikolov, Tomas and Geoffrey Zweig (2012). "Context Dependent

Recurrent Neural Network Language Model". In: *Proceedings of SLT*. Pascanu, Razvan et al. (2013). "How to Construct Deep Neural Networks". In: *arXiv:1312.6026*.

References II

- Zaremba, Wojciech, Ilya Sutskever, and Oriol Vinyals (2014). "Recurrent Neural Network Regularization". In: *arXiv:1409.2329*.
- Luong, Minh-Thang, Richard Socher, and Chris Manning (2013). "Better Word Representations with Recursive Neural Networks for Morphology". In: *Proceedings of CoNLL*.
- Botha, Jan and Phil Blunsom (2014). "Compositional Morphology for Word Representations and Language Modelling". In: *Proceedings of ICML*.
- LeCun, Yann et al. (1989). "Handwritten Digit Recognition with a Backpropagation Network". In: *Proceedings of NIPS*.
- Srivastava, Rupesh Kumar, Klaus Greff, and Jurgen Schmidhuber (2015). "Training Very Deep Networks". In: *arXiv:1507.06228*.
- Cheng, Wei Chen et al. (2014). "Language Modeling with Sum-Product Networks". In: *Proceedings of INTERSPEECH*.

References III

- Creutz, Mathias and Krista Lagus (2007). "Unsupervised Models for Morpheme Segmentation and Morphology Learning". In: Proceedings of the ACM Transations on Speech and Language Processing.
 Santos, Cicero Nogueira dos and Bianca Zadrozny (2014). "Learning Character-level Representations for Part-of-Speech Tagging". In: Proceedings of ICML.
- Zhang, Xiang and Yann LeCun (2015). "Text Understanding From Scratch". In: *arXiv:1502.01710*.
- Ballesteros, Miguel, Chris Dyer, and Noah A. Smith (2015). "Improved Transition-Based Parsing by Modeling Characters instead of Words with LSTMs". In: *Proceedings of EMNLP 2015.*
- Ling, Wang et al. (2015). "Finding Function in Form: Compositional Character Models for Open Vocabulary Word Representation". In: *Proceedings of EMNLP*.

References IV

Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long Short-Term Memory". In: *Neural Computation* 9, pp. 1735–1780.