
Efficiently Searching for Frustrated Cycles in MAP Inference

David Sontag, Do Kook Choe, Yitao Li
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

Abstract

Dual decomposition provides a tractable
framework for designing algorithms for
finding the most probable (MAP) configu-
ration in graphical models. However, for
many real-world inference problems, the
typical decomposition has a large integral-
ity gap, due to frustrated cycles. One way
to tighten the relaxation is to introduce ad-
ditional constraints that explicitly enforce
cycle consistency. Earlier work showed
that cluster-pursuit algorithms, which it-
eratively introduce cycle and other higher-
order consistency constraints, allows one
to exactly solve many hard inference prob-
lems. However, these algorithms explicitly
enumerate a candidate set of clusters, lim-
iting them to triplets or other short cycles.
We solve the search problem for cycle con-
straints, giving a nearly linear time algo-
rithm for finding the most frustrated cy-
cle of arbitrary length. We show how to
use this search algorithm together with the
dual decomposition framework and cluster-
pursuit. The new algorithm exactly solves
MAP inference problems arising from rela-
tional classification and stereo vision.

1 Introduction

Graphical models such as Markov random fields have
been successfully applied to many fields, from com-
puter vision and natural language processing, to
computational biology. Exact probabilistic inference
is generally intractable in complex models having
many dependencies between the variables. Here we
consider the problem of finding the most probable

(MAP) assignment in graphical models with discrete
states.

Dual decomposition provides a powerful frame-
work for designing tractable MAP inference al-
gorithms [19]. This approach attempts to mini-
mize an upper bound on the MAP assignment by
reparameterization of the potentials. Many opti-
mization algorithms have been proposed to mini-
mize the dual, such as those based on subgradients
[10, 13], message-passing approaches based on block
coordinate-descent [6, 11, 14, 23], and provably con-
vergent algorithms [7, 9, 16]. Every decomposition
corresponds to a particular linear programming (LP)
relaxation. The dual LP that is most frequently
solved by these algorithms corresponds to the pair-
wise LP relaxation, which enforces local consistency
constraints between factors that share variables.

However, for many real-world inference problems,
the pairwise LP relaxation has a large integrality
gap. These situations arise because there are frus-
trated cycles where a fractional solution can obtain a
higher objective value by letting the edge marginals
along the cycle be globally inconsistent. We can try
to avoid these fractional solutions by instead op-
timizing over a tighter LP relaxation. There are
well-known methods for tightening relaxations, such
as the Sherali-Adams hierarchy of relaxations which
uses cluster consistency constraints to enforce the
consistency of all edge marginals in a cluster, for all
clusters of some fixed size [15]. However, these linear
programs are typically computationally infeasible to
solve because they tighten the relaxation uniformly
across all of the problem. For graphical models of
moderate size, even the first lifting of the Sherali-
Adams hierarchy (all triplet clusters, also called the
cycle relaxation) is too slow to optimize over.

Several authors have proposed cluster-pursuit algo-
rithms that iteratively tighten the dual using cycle

consistency constraints [3, 9, 12, 21, 24]. These ap-
proaches are based on dictionary enumeration. They
consider a small set of candidate cycles (e.g., all 3-
cycles in a graph, or 4-cycles for grids), and evaluate
a score to decide which cycle clusters to add to the
decomposition. This explicit enumeration limits the
applicability of these algorithms to graphical models
where it is obvious where to look for the candidate
cycles. However, many difficult inference problems
are on sparse graphical models with few short cy-
cles, such as the factor graphs used for low-density
parity check codes, or Markov random fields whose
structure follows that of a social network or the web
graph (frequently used for relational classification).

In this paper, we address the most significant short-
coming of these cluster-pursuit algorithms: the dif-
ficulty of finding where to tighten the relaxation in
sparse graphs. We show in Section 4 that, for non-
binary graphical models, it is NP-hard to find the
best cycle according to the bound criterion score
used in earlier work [21]. Thus, we need an alter-
native approach to address the search problem of
finding where to tighten the relaxation.

We describe a new approach where, as before, we
solve the dual of the pairwise LP relaxation, but
where we now search for k-ary cycle inequalities [20]
to tighten the relaxation rather than cluster con-
sistency constraints. We consider the same greedy
bound minimization criterion used earlier for clus-
ter consistency constraints, corresponding to the
amount that the dual objective would decrease with
just one coordinate descent step on the new dual
variable(s). We show that one can, in near-linear
time (in the size of the projection graph), find a
k-ary cycle inequality whose guaranteed bound de-
crease is a constant fraction of the best possible
bound decrease according to this criterion. The re-
sulting algorithm is similar to the separation algo-
rithm given in [20] for finding the most violated cycle
inequality in the primal, but is not based on shortest
paths. We use the cycle inequalities only as a means
of obtaining an efficient search algorithm, and we
add the full cycle cluster to the dual decomposition
as in previous work.

Somewhat surprisingly, in Section 4 we show that,
for binary graphical models and when the dual has
been solved to optimality, the two bound criterions
(the one given in [21] and this one) coincide. Thus,
at least for binary graphical models, the algorithm
that we present completely solves the open problem
from [21] of how to efficiently search over cycle clus-
ters.

2 Background

We consider MAP inference problems on factor
graphs with n variables X1, . . . , Xn, where each vari-
able takes discrete states xi ∈ Vals(Xi). The MAP
inference problem is then

MAP(θ) = max
x

∑
c∈C

θc(xc), (1)

where C denotes the set of factors, and θc(xc) is
the log of the potential function for factor c. Let
G = (V,E) be the Markov network corresponding to
this factor graph, with one edge ij ∈ E for every two
variables i and j that appear together in some factor.
The notation N(i) refers to the set of variables that
neighbor i in the Markov network.

2.1 Dual Decomposition

The dual decomposition approach [19] attempts to
address the intractability of the joint maximization
in Eq. 1 by introducing dual variables δ and mini-
mizing an upper bound on the MAP assignment:

min
δ
L(δ), L(δ) =

∑
c∈C

max
xc

θδc(xc), (2)

where the reparameterizations θδc(xc) are given by

θδi (xi) = θi(xi) +
∑

j∈N(i)

δij→i(xi) ∀i ∈ V,

θδij(xi, xj) = θij(xi, xj)− δij→i(xi)− δij→j(xj)

+
∑

c:|c|≥3, i,j∈c

δc→ij(xi, xj) ∀ij ∈ E,

θδc(xc) = θc(xc)−
∑
i,j∈c

δc→ij(xi, xj) ∀|c| ≥ 3.

The key property of the function L(δ) is that it only
involves maximization over local assignments xc, a
task which we assume to be tractable. The dual thus
decouples the original problem, resulting in a prob-
lem that can be optimized using local operations.

If we ever find a global assignment x which locally
maximizes all of the subproblems, then x is guaran-
teed to be the MAP assignment. Thus, the dual so-
lution δ has the ability to provide a certificate of op-
timality. Even in cases when the relaxation is loose,
the dual provides an upper bound, MAP(θ) ≤ L(δ),
that can be useful within branch-and-bound.

The algorithms described in this paper make use of
the reparameterized edge potentials θδij(xi, xj) when
searching for frustrated cycles. For notational clar-
ity and to be consistent with earlier work, we use

bij(xi, xj) to denote θδij(xi, xj) for the current dual
variables δ, also calling these the edge “beliefs”.

2.2 Cluster Pursuit

If there still remains an integrality gap after solv-
ing the current dual, i.e. MAP(θ) < L(δ∗), one
can tighten the relaxation by introducing new zero-
valued potentials θc(xc) for clusters c not originally
in the factor graph [21, 24]. The advantage of doing
this together with dual decomposition is that one
can warm start, initializing the new dual’s variables
using the previous dual solution. The resulting al-
gorithm alternates between minimizing the current
dual for some number of iterations (not necessarily
to optimality) and searching for new clusters to use
in tightening the relaxation. If the dual is solved
using coordinate-descent, then every step of the al-
gorithm monotonically improves the upper bound on
the MAP value.

The key problem addressed by earlier work was how
to choose which clusters to use to tighten the relax-
ation. In particular, Sontag et al. [21] proposed to
evaluate the utility of adding a cycle C to the relax-
ation by the greedy bound minimization criterion

d(C) =
∑
e∈C

max
xe

be(xe)−max
xC

[∑
e∈C

be(xe)

]
. (3)

Note that only the edges in the cycle C are used in
the maximization over xC . As a result, d(C) can be
computed in O(k3|C|) time, where k is the number
of states for each variable. The criterion corresponds
to the amount that the dual would decrease if we add
this cycle cluster and perform one block coordinate
descent step on all dual variables corresponding to
the new cluster. Once a cycle is selected for addi-
tion, [21] triangulates the cycle and adds each of the
triplet clusters; we do this too.

2.3 Linear Programming Relaxation

The dual decomposition for MAP inference given in
Eq. 2 can be shown to be equivalent, by LP duality,
to the following linear programming relaxation:

max
µ∈ML

∑
c

∑
xc

θc(xc)µc(xc) (4)

where the local marginal polytope ML enforces that
{µi(xi),∀xi} and {µc(xc),∀xc} correspond to valid
(local) probability distributions and that, for each
factor c, µc(xc) is consistent with µi(xi) for all i ∈

c, xi:

ML =

µ ≥ 0 :

∑
xi
µi(xi) = 1, ∀i∑

xc\i
µc(xc) = µi(xi)∑

xc\{i,j}
µc(xc) = µij(xi, xj)

 ,

where the second set of constraints is for all c, i ∈
c, xi, and the third set of constraints is for all factors
c such that |c| ≥ 3, i, j ∈ c, xi, xj .

The exact MAP inference problem would be ob-
tained if we instead had maximized Eq. 4 over the
marginal polytope [22], which enforces that all fea-
sible points µ correspond to marginals arising from
some exponential family distribution with the same
sufficient statistics. For most graphical models the
marginal polytope is intractable to optimize over,
which is why we use the relaxation ML.

2.4 k-ary Cycle Inequalities

The main contribution of this paper is to show how
to solve the search problem for cycle consistency con-
straints (within the framework of dual decomposi-
tion) by introducing a new bound criterion based on
the k-ary cycle inequalities [20].

The cycle inequalities [1, 2, 4] are a set of constraints
for the marginal polytope of graphical models with
binary variables, which arises from the observation
that a cycle must have an even (possibly zero) num-
ber of cut edges. Suppose we start at node i, where
xi = 0. As we traverse the cycle, the assignment
changes each time we cross a cut edge. Since we must
return to xi = 0, the assignment can only change an
even number of times. This concept can be gener-
alized to obtain the k-ary cycle inequalities, which
are valid constraints for graphical models with non-
binary variables [20].

For each variable i, let πqi be a partition of all of
its states into two disjoint non-empty sets. Let πi
denote the set of all partitions of variable i. The
k-ary cycle inequalities are defined using the projec-
tion graph Gπ = (Vπ, Eπ), which has one node for
each partition in each set πi and all such nodes are
fully connected across adjacent variables. That is,
we have Vπ =

⋃
i∈V πi, and

Eπ = {(πqi , π
r
j) | (i, j) ∈ E, q ≤ |πi|, r ≤ |πj |}. (5)

We obtain a different projection graph depending on
the quantity and type of partitions that we choose
for each variable. The algorithms in this paper are
applicable for any projection graph. In our exper-
imental results, we primarily use the k-projection

graph, which simply has a partition πxii = {xi} (ver-
sus all other states) for every variable i and state xi.
Thus, if every variable takes k states, the projec-
tion graph will have k|V | nodes and k2|E| edges.
In the supplementary material we describe an al-
gorithm which finds the optimal partition for each
variable with respect to each edge. If using the k-
projection graph does not succeed in finding a frus-
trated cycle, we re-run the cycle search method using
this expanded set of partitions.

There is one k-ary cycle inequality for every cycle C
in the projection graph Gπ and for every set of edges
F ⊆ C such that |F | is odd:∑
mn∈C\F

∑
xi,xj :
πqi (xi) 6=
πrj (xj)

µij(xi, xj)+
∑
mn∈F

∑
xi,xj :
πqi (xi)=
πrj (xj)

µij(xi, xj) ≥ 1

where mn = (πqi , π
r
j) ∈ Eπ. Although there are

exponentially many k-ary cycle inequalities, [20]
showed how the most violated inequality can be
found in polynomial time, using a shortest-path al-
gorithm. However, unlike [20] we use these inequal-
ities in the dual. In the next section, we will give a
new algorithm to efficiently find violated k-ary cycle
inequalities while working within the framework of
dual decomposition.

3 Cycle Inequalities in the Dual

In this section we give a column-generation approach
for adding cycle inequalities within the dual decom-
position framework. Consider the terms of the dual
objective (Eq. 2) that would be affected by adding
a single dual variable λC,F,π corresponding to one
k-ary cycle inequality specified by C ⊆ E, F ⊆ C
(recall that |F | must be odd), and π.1 After adding
λC,F,π, the new dual has the following terms (see
supplementary material for derivation):∑

ij∈F
max
xi,xj

(
bij(xi, xj) + λC,F,π1[πi(xi) = πj(xj)]

)
+

∑
ij∈C\F

max
xi,xj

(
bij(xi, xj) + λC,F,π1[πi(xi) 6= πj(xj)]

)
− λC,F,π.

For each edge ij ∈ C, define the weight

sπij = maxxi,xj :πi(xi)=πj(xj) bij(xi, xj)−
maxxi,xj :πi(xi)6=πj(xj) bij(xi, xj).

1When used in the context of a cycle in the graphical
model, C ⊆ E, as opposed to a cycle in the projection
graph, the notation π specifies a particular partition for
each variable along the cycle.

We show in the supplementary material that the co-
ordinate descent step for λC,F,π is given by λC,F,π =

minij∈C w
π,F
ij , where wπ,Fij = sπij for ij 6∈ F and

wπ,Fij = −sπij for ij ∈ F .

The amount that the dual objective decreases with
one coordinate descent step on λC,F,π, assuming that
λC,F,π was previously zero, is

d(C,F, π) = max(0, min
ij∈C

wπ,Fij). (6)

Example 1. Consider a triangle on three edges
(C = {12, 23, 31}), with xi ∈ {0, 1}, where θi(xi) =
0 ∀i, xi and θij(xi, xj) = 1 if xi 6= xj , and 0 oth-
erwise. Since this example is binary, we simply use
πi(xi) = xi. Let all of the dual variables δ be 0, and
assume that initially there are no cycle inequalities.
The best integer solution has value 2, while the pair-
wise LP relaxation gives only a loose upper bound
of 3 (note: δ as defined can be shown to be optimal
for the dual, i.e. Eq. 2).

Consider the problem of finding the best cycle in-
equality according to arg maxC,F d(C,F). First,
note that bij(xi, xj) = θij(xi, xj), so wFij = 1 for

ij ∈ F and wFij = −1 for ij 6∈ F . If F = ∅, then

wFij = −1 for all edges, and so d(C,F) = 0. On the

other hand, if F = C, then wFij = 1 for all edges,
which gives a bound decrease of d(C,F) = 1, corre-
sponding to λC,F = 1.

3.1 Separation Algorithm

The bound criterion d(C,F, π) given in Eq. 6 is anal-
ogous to the bound criterion d(C) used by [21] (see
Eq. 3) to evaluate the utility of adding a cycle C
to the relaxation. We now consider the algorithmic
problem of finding the best dual variable λC,F,π to
add, according to d(C,F, π):

max
C,F⊆C s.t. |F | odd,π

d(C,F, π). (7)

We show that this can be computed efficiently using
a variation on the shortest-path based separation al-
gorithm for k-ary cycle inequalities [20]. We first
note that Eq. 7 is equal to

max
(

0, max
C,F⊆C s.t. |F | odd,π

min
ij∈C

wπ,Fij

)
. (8)

We can simplify this further by noticing that for
d(C,F, π) to be positive, we need ij ∈ F when
sπij < 0, and ij 6∈ F when sπij > 0. Thus, ignor-
ing the maximization over the partitioning π, Eq. 8

Algorithm FindOddCycle (Graph Gπ, edge weights {smn : (m,n) ∈ Eπ})
1 Construct a spanning tree T of Gπ. Set r to be the root of T .
2 sign[r]← +1
3 for each vertex t ∈ T (in order of increasing distance from r in T):
4 sign[t]← sign[pa(t)] · st,pa(t)
5 for each (m,n) ∈ Eπ \ T :
6 if sign[m] 6= sign[n] · smn
7 return cycle given by the edge (m,n) and the path m r n in T
8

9 return no odd signed cycle found

Figure 1: Assuming that the edge weights smn are in {−1, 1}, this algorithm will find a cycle with an odd
number of −1 edges, if one exists. pa(t) refers to the parent of node t in the spanning tree T .

is equivalent to

max
(

0, max
C⊆E s.t.∏

ij∈C sign(sπij)=−1

min
ij∈C
|sπij |

)
. (9)

We conclude that the maximum bound decrease is
achieved by the cycle in G with an odd number of
negative weight edges that maximizes the minimum
of the absolute value of the weights along the cycle.

For Markov networks with non-binary variables, we
also wish to maximize over the partition for each
variable. Let Gπ denote the projection graph, where
the variables and edges are as defined in Eq. 5. All
subsequent quantities will use the partitions for the
variables specified by the edges mn = (πqi , π

r
j) ∈ Eπ

in the projection graph. Assign weights to the edges2

smn = maxxi,xj :πqi (xi)=πrj (xj) bij(xi, xj)− (10)

maxxi,xj :πqi (xi)6=πrj (xj) bij(xi, xj),

and remove all edges with smn = 0. The algorithm
that we describe next will find the maximum of

max
(

0, max
C⊆Eπ s.t.∏

mn∈C sign(smn)=−1

min
mn∈C

|smn|
)
. (11)

Suppose that smn ∈ {+1,−1}. Then,
minmn∈C |smn| = 1 and the optimization problem
simplifies to finding a cycle with an odd number
of −1 edges. This can be solved in linear time by
the algorithm given in Figure 1 (if the graph is not
connected, do this for each component).3

2For the k-projection graph, this step can be imple-
mented efficiently, taking time O(k2|E|) to compute all
edge weights instead of O(k2|Eπ|).

3In the case when there is more than one cycle with an
odd number of−1 edges, the particular cycle that we find
depends on the choice of spanning tree. However, the
algorithm is always guaranteed to find some cycle with
an odd number of −1 edges, when one exists, regardless
of the choice of spanning tree.

Now consider the case of general smn. We can solve
the optimization in Eq. 11 by doing a binary search
on |smn|. There are only |Eπ| possible edge weights,
so to do this search we first sort the values {|smn| :
mn ∈ Eπ}. At each step, we consider the subgraph
G′ consisting of all mn ∈ Eπ such that |smn| > R,
where R is the threshold used in the binary search.
We then let sm′n′ = sign(smn) for m′n′ ∈ G′, and
search for a cycle with an odd number of negative
edges using the algorithm described in Figure 1. The
binary search will find the largest R such that there
is a negative-signed cycle C ∈ G′, if one exists. The
best choice of λC,F,π is then given by this cycle C,
the edges F corresponding to the negative-weight
edges in C, and π given by the partitions used in C.
The total running time is only O(|Eπ| log |Eπ|).

If the cycle that is returned uses each variable only
once (i.e., does not consider more than one partition
for a single variable), the corresponding cycle and
choice of partitions will be optimal for Eq. 8. Oth-
erwise, one can show that the guaranteed bound de-
crease after one coordinate descent step on the new
cycle inequality’s dual variable is a constant fraction
of that guaranteed by Eq. 8.

When we use this algorithm in the experiments of
Section 6, we ignore F and π, instead fully enforc-
ing cycle consistency for the cycle C that is best
according to this bound criterion.

4 Theoretical Results

Consider the restricted set of clusters Ccycles(G) cor-
responding to cycles of arbitrary length,

Ccycles(G) =

{
C ⊆ E | C forms a cycle in G

}
. (12)

A natural question is whether it is possible to find
the best cycle cluster to add to the relaxation accord-
ing to the greedy bound minimization criteria d(C)

[21]. It is easily shown that maxF,π d(C,F, π) ≤
d(C) for all cycles C. Thus, if it were not for com-
putational concerns, searching using d(C) would be
optimal. Unfortunately, we show a number of nega-
tive results proving that searching for the best cycle
according to d(C) is computationally intractable.

We show the following, where k refers to the number
of states per node.

1. For k = 2, when the beliefs be(xe) are dual op-
timal, maximizing Eq. 3 is equivalent to finding
the best cycle inequality in the dual.4

2. For k = 2, maximizing Eq. 3 is NP-hard when
the beliefs be(xe) are not dual optimal.

3. For k > 2, maximizing Eq. 3 is always NP-hard.

By dual optimal, we mean that the beliefs corre-
spond to a dual optimal solution of the current LP
relaxation. Note that, before solving the dual LP
to optimality, be(xe) can be almost anything. For
example, we can set θe(xe) arbitrarily and consider
the separation problem at the first iteration.

Theorem 4.1. When k = 2 and the beliefs
bij(xi, xj) correspond to a dual optimal solution,
maxC∈Ccycles(G) d(C) = maxC,F :|F | odd d(C,F).

The proof of Theorem 4.1 makes use of the assump-
tion that bij(xi, xj) corresponds to a dual optimal
solution in only one step, when applying the comple-
mentary slackness conditions for the edge variables.
Thus, Theorem 4.1 holds for any dual decomposition
for MAP which is at least as tight as the pairwise LP
relaxation. In particular, adding cycle constraints
does not change the premise of the theorem.

One conclusion that is immediate given Theorem 4.1
is that (for binary MRFs) the cycle inequalities give
at least as tight of a relaxation as the cycle relax-
ation. In fact, for a single cycle, just one cycle in-
equality suffices to make the LP relaxation tight for
a given instance. This is precisely what we observed
in Example 1.

4.1 NP-Hardness Results

It is often possible to obtain much better results
by tightening the relaxation even before the dual
is solved to optimality [21]. Unfortunately, although
we showed in Section 3 that for k-ary cycle inequali-
ties maxC,F,π d(C,F, π) can be computed efficiently,
the corresponding problem for cycle consistency con-
straints is significantly more difficult:

4This result is for binary variables only, so we let the
projection be πi(xi) = xi and omit the π notation.

Theorem 4.2. The optimization problem
maxC∈Ccycles(G) d(C) is NP-hard for k = 2 and
beliefs bij(xi, xj) arising from a non-optimal dual
feasible point.

We next show that, for k > 2, not even dual opti-
mality helps:

Theorem 4.3. The optimization problem
maxC∈Ccycles(G) d(C) is NP-hard for k ≥ 3 even
for beliefs bij(xi, xj) corresponding to a dual
optimal solution of the pairwise relaxation.

Both proofs use a reduction from the Hamiltonian
cycle problem. Full proofs can be found in the sup-
plementary material.

5 Related Work

Our new algorithm is closely related to two earlier
approaches for tightening the dual using cycle con-
straints. First, Komodakis et al. proposed to tighten
the pairwise LP relaxation by a sequence of cycle
repairing operations [12]. Their algorithm is appli-
cable to graphical models with non-binary variables.
For binary graphical models, when the dual is at op-
timality, two cycle repairs – corresponding to the two
anchors of any variable (using their terminology) –
can be seen to be equivalent to one coordinate de-
scent step on a new cycle inequality for this cycle.
We solve the open problem of how to find the cycles
where cycle repairs are necessary. In their experi-
ments, [12] explicitly enumerated over short cycles.

Second, Johnson proposed an algorithm to find in-
consistent cycles in the dual [9]. His approach ap-
plies only to binary-valued graphical models, and
only when the dual is close to optimality. In these
cases, his algorithm can be shown to find a cycle C
such that d(C,F) > 0 for some F ⊆ C, |F | odd. His
algorithm, which inspired our approach, constructs
sij ∈ {+1,−1} and looks for inconsistent cycles us-
ing the linear time method described in Section 3.1.
Because of numerical difficulties, Johnson needed to
use an edge-wise correlation measure, computed us-
ing the primal solution obtained from the smoothed
dual [9, p.134]. By drawing the connection to cycle
inequalities, we obtain a weighted approach whereas
his was unweighted. As a result, there are no numer-
ical difficulties, and our algorithm can be applied
long before solving the dual to optimality.

It may seem surprising that the dual separation al-
gorithm is so much faster than the primal separation
algorithm for k-ary cycle inequalities [20]. However,
this is because the dual searches over a smaller class

of cycle inequalities. Consider the case where we
have solved the dual to optimality for the current
relaxation. Then, using the complementary slack-
ness conditions one can show that, for any cycle in-
equality C,F, π such that d(C,F, π) > 0, and for any
primal solution µ,∑

mn∈C\F

(
µπmn(0, 1) + µπmn(1, 0)

)
(13)

+
∑
mn∈F

(
µπmn(0, 0) + µπmn(1, 1)

)
= 0.

The right hand side could be anything less than 1
for us to obtain a violated cycle inequality, and it is
always non-negative because µij(xi, xj) ≥ 0. But,
since the right hand side of Eq. 13 is 0, we con-
clude that the dual separation algorithm is only able
to find cycle inequalities to add to the relaxation
that are very violated. By Theorem 4.1, the same
conclusion holds for binary graphical models for the
cluster-pursuit algorithm given in [21], when applied
to a dual optimal solution – if a triplet cluster C is
found such that d(C) > 0, then there exists a cycle
inequality C,F that is very violated by all primal
solutions. It is also possible to give a O(|Eπ|) time
separation algorithm in the primal that would sepa-
rate this smaller class of k-ary cycle inequalities.

6 Experiments

In this section we report experimental results for the
new cycle search algorithm (we call this the “cy-
cle” method) applied to MAP inference problems
arising from predicting protein-protein interactions
[5, 8], protein side-chain placement [25], and stereo
vision [25]. We compare the cycle method to cluster-
pursuit using dictionary enumeration with triplet
clusters [21], which we call the “triplet” method.
Both algorithms were implemented using C++, and
differ only in the mechanism used for cycle search.
All experiments were performed on a 2.4 GHz AMD
Opteron(tm) machine with 128 GB of memory.

We use the Max-Product Linear Programming
(MPLP) algorithm to minimize the dual [6]. On all
problems, we start by running MPLP for 1000 iter-
ations. If the integrality gap is less than 10−4, the
algorithm terminates. Otherwise, we alternate be-
tween further tightening the relaxation (using either
the cycle or triplet method) and running another 20
MPLP iterations, until the problem is solved opti-
mally or a time limit is reached. For the triplet al-
gorithm, we add between 5 and 20 triplets per outer
iteration, and for the cycle algorithm, we add from

1 to 5 cycles per outer iteration (we required at least
5 new triplet clusters).

In our experiments we also consider a combina-
tion of the two approaches, which we call the
“triplet+cycle” method, where we add the clusters
found by both cycle search algorithms.

Biasing toward short cycles. Whereas previ-
ous cluster-pursuit approaches considered clusters
of only three or four variables, our algorithm could
potentially choose to add a cycle involving a large
number of variables. Consequently, the length of the
cycle added can significantly affect the per-iteration
running time. Our algorithm must balance between
(a) choosing cycles which most improve the dual
objective and (b) keeping the per-iteration running
time reasonable.

The length of the cycles found depends both on the
initial choice of the spanning tree (line 1 of algorithm
FindOddCycle, given in Figure 1) and on which edge
is chosen to create the cycle (lines 5–7). Notice that
the length of any cycle returned by FindOddCycle is
at most twice the depth of the spanning tree T . We
found that using breadth-first search to create the
spanning tree results in much more shallow trees,
and as a result significantly shorter cycles compared
to depth-first search.

After creating the spanning tree and propagating the
signs, any edge that has opposite signs on its end-
points could be chosen to create the cycle (lines 5–7).
The cycle corresponds to the union of the edge and
the paths from each endpoint to their least common
ancestor (LCA) in T . We find the lengths of each of
these cycles by running a LCA algorithm (we note
that this can be done in amortized constant time us-
ing the algorithm of [17]). Then, we sort the edges
in increasing order according to the length of the
corresponding cycles, and return the shortest few.

We also experimented with an algorithm which is
guaranteed to find the shortest cycles, but found
that its running time was too long to be practical.

6.1 Protein-Protein Interaction

We consider 8 inference problems arising from the
relational classification task of protein-protein in-
teraction prediction [5, 8]. This inference prob-
lem aims at predicting protein-protein interactions
(PPIs) given high-throughput protein-protein inter-
action and other cellular experimental data. The
PPI problems are Markov networks with over 14,000
binary variables denoting the cellular localization of
the proteins and whether any particular pair of pro-

-28952.1

-28952.1

-28952.1

-28952.1

-28952.1

-28952.1

-28952.1

-28952

-28952

-28952

-28952

 0 10 20 30 40 50 60

du
al

 o
bj

ec
tiv

e

time (sec)

MAP
triplet

triplet+cycle
cycle

-29336.6

-29336.5

-29336.5

-29336.4

-29336.4

-29336.3

-29336.3

-29336.2

-29336.2

-29336.1

-29336.1

-29336

 0 10 20 30 40 50 60

du
al

 o
bj

ec
tiv

e

time (sec)

MAP
triplet

triplet+cycle
cycle

Figure 2: Comparison of the cycle search algorithms on a MAP inference problem from protein-protein
interaction prediction. The time shown is for the tightening stage, after the initial 1000 iterations of ADLP.

teins interact. The Markov network has over 30,000
node and triad potentials. These inference problems
are difficult to solve because the triad potentials in-
duce many frustrated cycles. Each of the 8 infer-
ence problems corresponds to the parameters found
at some iteration during learning, and the difficulty
of inference varies substantially among them.

For 2 of the PPI problems, the cycle method finds
the MAP assignment in less than a minute after solv-
ing the initial dual to optimality (see Figure 2).5 For
the other 6 problems, the cycle method obtains a
slightly better dual objective value than the triplet
method when we terminated at half an hour.

In contrast, the triplet method is unable to exactly
solve any of the PPI problems. We noticed that the
bound criterion [21] for most triplets found in these
problems is close to 0, which explains the consid-
erable difficulty for the triplet algorithm to quickly
choose the best clusters to add to the relaxation.

These results indicate that the cycle algorithm has
a significant advantage over the triplet algorithm on
inference problems on sparse graphs.

6.2 Side-Chain Prediction

We next considered 30 protein side-chain placement
inference problems, corresponding to the 30 proteins
from [25] for which the pairwise LP relaxation is
not tight. Previous work has shown that the triplet
method exactly solves these [21]. The triplet algo-
rithm’s running time ranges from 1.12 to 182.18 sec-
onds with a median of 20.42 seconds.

5For the PPI problems MPLP converges very slowly,
so we instead use the ADLP algorithm [16] to solve the
initial dual, before tightening.

The cycle method also finds the MAP assignment for
all 30 proteins. The cycle algorithm’s running time
is between 2.92 and 3788 seconds, with a median of
24.83 seconds. The outlier which took 3788 seconds
to solve was ‘1kmo’. The cycle method performs
significantly worse on this example than the triplet
method because the former needs 94 tightening it-
erations to find the single cluster that solves MAP
exactly, whereas the latter finds it immediately.

The cycle algorithm using only the k-projection
graph does not exactly solve ‘1qb7’ and ‘1rl6’.6 We
show in Figure 3 the dual objective for ‘1qb7’. At
around 50 seconds the cycle method, not finding
any useful cycle with the k-projection graph, runs
the partition finding algorithm explained in the sup-
plementary section, finds the necessary cluster, and
solves the protein to optimality.

The “triplet+cycle” method solves all of the side-
chain placement problems quickly. As seen in Fig-
ure 3, it is slightly slower than the triplet method
because of the additional time for running the cycle
search method. From these results, we conclude that
it is best to use both search methods, when feasible.

6.3 Importance of bound criterion

As we mentioned in the related work, for graphi-
cal models with binary variables, our cycle search
method is similar to the algorithm earlier proposed
by Johnson [9]. The key difference is that our ap-
proach has a bound criterion which is used to select
which frustrated cycle to include, whereas Johnson’s
approach was unweighted (finding any odd-signed
cycle). In this section we illustrate the importance
of having the weighted bound criterion. In addition

6[20] also needed the full projection graph for ‘1rl6’.

-84.5

-84

-83.5

-83

-82.5

-82

-81.5

-81

-80.5

 25 30 35 40 45 50 55 60

du
al

 o
bj

ec
tiv

e

time (sec)

MAP
triplet

triplet+cycle
cycle

Figure 3: Comparison of all 3 methods on the
protein-side chain placement problem ‘1qb7’.

to the 30 protein side-chain placement problems that
we solved exactly, we also consider 4 inference prob-
lems arising from stereo vision (all variants of the
“Tsukuba” image sequence), which were previously
studied by [21, 25].

After finding the optimal value of the bound cri-
terion, R (the threshold used in the binary search,
described in Section 3.1), we prune the projection
graph to consider only those edges with |smn| ≥ R/c
for c = 1, 4, and 128. c = 1 corresponds to the usual
cycle method, whereas c = 128 is more similar to an
unweighted bound criterion (analogous to [9]).

We considered a protein failed if we could not obtain
a certificate within 15 minutes. On the protein side-
chain problems, we found that c = 4 worked best,
solving all proteins but ‘1kmo’ within 3.2 minutes.
With c = 1, the cycle method additionally failed
to solve ‘1ug6’. With c = 128, the cycle method
additionally failed to solve ‘1a8i’, ‘1et9’ and ‘1gsk’
(5 failures in total). One reason why c = 4 may
be preferable over c = 1 for non-binary problems
is because – since more edges are considered – the
cycle method is more likely to find a shorter length
cycle which uses each variable only once, rather than
multiple times with different partitions.

When testing on stereo vision data, we found that
the cycle algorithm was able to solve all 4 problems
exactly within 1 hour with c = 1, but could not solve
any of them within 3 hours for c = 128. We conclude
that the bound criterion is essential for the cycle
method to quickly solve MAP inference problems.

After observing that varying the number of MPLP
iterations in each of the outer loops (i.e., after adding
cycles) had a very minor effect on the overall running

times, we also conclude that the cycle method is
robust to the dual not being solved to optimality.

6.4 Summary of results

Using the “triplet+cycle” method, we exactly and
quickly solved all 30 protein side-chain problems and
2 protein-protein interaction problems.

The cycle algorithm solved all 4 stereo problems ex-
actly within 24–48 minutes using only 9–33 tighten-
ing iterations. The number of clusters added by the
algorithm were between 227 and 1217.

7 Discussion

We believe that our algorithm for finding frustrated
cycles may also be useful in graphical models that
are not sparse. In these settings, dictionary enu-
meration methods which tighten the relaxation one
triplet cluster at a time can eventually succeed at
making all cycles consistent. However, the cycle
method has several theoretical advantages. First,
the dual bound criterion can be zero for some triplet
clusters, but non-zero for a larger cycle involving the
same variables; we give a concrete example of this
in the supplementary material. In these cases, the
cycle method would succeed at improving the dual
objective, whereas the triplet method would obtain
no guidance from the bound criterion and as a result
would randomly choose a triplet to use in tightening
the relaxation. Second, if a frustrated cycle is long,
the triplet method – which adds clusters one at a
time – would take several iterations before eventu-
ally adding all triplet clusters which triangulate the
cycle, thus enforcing cycle consistency. In contrast,
the cycle method would take a single iteration.

In this paper, we used the dual variables correspond-
ing to the cycle inequalities only as a means for find-
ing a frustrated cycle, after which we fully enforce
cycle consistency. When the variables have a large
number of states, enforcing even one cycle consis-
tency constraint can significantly increase the com-
putation time [18]. In these situations, it may be
preferable to instead directly do coordinate descent
with respect to the cycle inequality dual variables.

Finally, although in this paper we used the dual al-
gorithm as a stand-alone MAP solver, for some prob-
lems it may be more effective to use within branch-
and-bound, giving a branch-and-cut approach. The
efficient cycle search algorithm can also be used to-
gether with any method for solving the dual decom-
position, such as ADLP [16].

References

[1] F. Barahona. On cuts and matchings in planar
graphs. Mathematical Programming, 60:53–68,
1993.

[2] F. Barahona and A. R. Mahjoub. On the cut
polytope. Mathematical Programming, 36:157–
173, 1986.

[3] D. Batra, S. Nowozin, and P. Kohli. Tighter
relaxations for MAP-MRF inference: A local
primal-dual gap based separation algorithm.
Journal of Machine Learning Research - Pro-
ceedings Track, 15:146–154, 2011.

[4] M. M. Deza and M. Laurent. Geometry of Cuts
and Metrics, volume 15 of Algorithms and Com-
binatorics. Springer, 1997.

[5] G. Elidan, I. Mcgraw, and D. Koller. Resid-
ual belief propagation: informed scheduling for
asynchronous message passing. In UAI, 2006.

[6] A. Globerson and T. Jaakkola. Fixing max-
product: Convergent message passing algo-
rithms for MAP LP-relaxations. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors,
NIPS. MIT Press, Cambridge, MA, 2007.

[7] T. Hazan and A. Shashua. Norm-product be-
lief propagation: primal-dual message-passing
for approximate inference. IEEE Trans. Inf.
Theor., 56(12):6294–6316, Dec. 2010.

[8] A. Jaimovich, G. Elidan, H. Margalit, and
N. Friedman. Towards an integrated protein-
protein interaction network: A relational
Markov network approach. Journal of Compu-
tational Biology, 13(2):145–164, 2006.

[9] J. Johnson. Convex Relaxation Methods for
Graphical Models: Lagrangian and Maximum
Entropy Approaches. PhD thesis, EECS, MIT,
2008.

[10] V. Jojic, S. Gould, and D. Koller. Fast
and smooth: Accelerated dual decomposition
for MAP inference. In Proceedings of In-
ternational Conference on Machine Learning
(ICML), 2010.

[11] V. Kolmogorov. Convergent tree-reweighted
message passing for energy minimization.
IEEE Trans. Pattern Anal. Mach. Intell.,
28(10):1568–1583, 2006.

[12] N. Komodakis and N. Paragios. Beyond loose
LP-relaxations: Optimizing MRFs by repairing
cycles. In ECCV, pages 806–820, 2008.

[13] N. Komodakis, N. Paragios, and G. Tziritas.
MRF energy minimization and beyond via dual

decomposition. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 33(3):531
–552, March 2011.

[14] V. A. Kovalevsky and V. K. Koval. A diffusion
algorithm for decreasing energy of max-sum la-
beling problem. Glushkov Institute of Cyber-
netics, Kiev, USSR. Unpublished, approx. 1975.

[15] M. Laurent. A comparison of the Sherali-
Adams, Lovász-Schrijver, and Lasserre relax-
ations for 0–1 programming. Math. Oper. Res.,
28(3):470–496, 2003.

[16] O. Meshi and A. Globerson. An alternating di-
rection method for dual MAP LP relaxation. In
Proceedings of ECML PKDD, pages 470–483,
Berlin, Heidelberg, 2011. Springer-Verlag.

[17] B. Schieber and U. Vishkin. On finding low-
est common ancestors: simplification and paral-
lelization. SIAM J. Comput., 17(6):1253–1262,
Dec. 1988.

[18] D. Sontag, A. Globerson, and T. Jaakkola.
Clusters and coarse partitions in LP relax-
ations. In NIPS 21, pages 1537–1544. MIT
Press, 2009.

[19] D. Sontag, A. Globerson, and T. Jaakkola. In-
troduction to dual decomposition for inference.
In S. Sra, S. Nowozin, and S. J. Wright, edi-
tors, Optimization for Machine Learning. MIT
Press, 2011.

[20] D. Sontag and T. Jaakkola. New outer bounds
on the marginal polytope. In NIPS 20, pages
1393–1400, Cambridge, MA, 2008. MIT Press.

[21] D. Sontag, T. Meltzer, A. Globerson, Y. Weiss,
and T. Jaakkola. Tightening LP relaxations
for MAP using message-passing. In UAI, pages
503–510. AUAI Press, 2008.

[22] M. Wainwright and M. I. Jordan. Graphical
Models, Exponential Families, and Variational
Inference. Now Publishers Inc., Hanover, MA,
USA, 2008.

[23] T. Werner. A linear programming approach
to max-sum problem: A review. IEEE Trans.
Pattern Anal. Mach. Intell., 29(7):1165–1179,
2007.

[24] T. Werner. High-arity interactions, polyhe-
dral relaxations, and cutting plane algorithm
for soft constraint optimisation (MAP-MRF).
In CVPR, 2008.

[25] C. Yanover, T. Meltzer, and Y. Weiss. Lin-
ear programming relaxations and belief prop-
agation – an empirical study. JMLR, 7:1887–
1907, 2006.

