
Theory of

Operation
(Summary)
WARNING: Geeks only!

Anitra is built around a 32-kilobyte SRAM
memory chip with an 8-bit data bus. Full 15-
bit addresses for the memory are made from
a 7-bit segment number and an 8-bit near
address. The two data latches S and A may
both retrieve data from the memory through
the data bus. The segment number is always
prepared in latch S. The latter may contain
data from the memory, or it may be reset to

zero. The near address can come from ei-
ther latch A or the counter PC, depending on
which of the two currently has its tri-state out-
puts enabled. PC’s fi rst and last 4 bits may be
increased or reset individually. PC’s least sig-
nifi cant bit is controlled directly by the control
logic. A simple accumulator system is con-
nected to the data bus. The data latch R may
be latched, which will add the current data
from memory to its existing value through an
arithmetic adder, or it may be reset to zero.
The result may be directed back to memory
during write cycles through an inverting tri-
state buffer. To execute instructions, the con-
trol logic outputs a 7-step sequence of con-
trol signals, one for each clock cycle. A set of
D fl ip-fl ops, called ES, is confi gured to keep
track of the current execution state. Each in-
struction is 4 bytes long, consisting of two

two-byte full addresses. The most signifi cant
bit of the segment number of the last address
is used to distinguish between two different
instruction types.

The execution sequence starts by resetting
latches R and S, and selecting PC. PC’s least
signifi cant bit is set to 0. This will generate the
address of the current instruction’s fi rst byte,
which the memory will now load and place
on the data bus. In the next step, this byte is
latched to A while PC is still selected. PC’s
least signifi cant bit is then set to 1. The mem-
ory will load the second instruction byte, which
is next latched to S while A is selected. PC is
increased. The address that is now passed
to memory is no longer the address of the in-
struction itself, but the pointer that was speci-
fi ed as its fi rst argument. The memory will

load the value at this address, which is next
latched to the accumulator. Since latch R has
been reset and initially contains zero, nothing
will be added to the value before it is latched
this time. This sequence is then repeated to
fetch the next two bytes of the instruction and
load the value pointed to by its second argu-
ment. At this point, the loaded value may or
may not be latched to the accumulator to be
added to the value of the previous argument,
depending on the current instruction type. If
it is latched, and if the arithmetic addition op-
eration overfl ows and returns a carry signal,
the instruction will branch and have PC skip
to the instruction in the beginning of the next
instruction block. In any case, the inverse of
the resulting accumulator value is fi nally writ-
ten to memory at the same address as the
last instruction argument.

R[0..7]

A[0..14]

A
0
A
1
A
2
A
3

A
5
A
6
A
7

A
0
A
1

A
3
A
4
A
5
A
6
A
7

A
1
4

A
8
A
9
A
1
0

A
1
1

A
1
2

A
1
3

D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0

D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0

R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0

R
7

D
0

R
6
R
5
R
4

R
3
R
2
R
1
R
0

D
1
D
2
D
3

D
4
D
5
D
6
D
7

A
2

R
0

R
7
R
6
R
5
R
4

R
3
R
2
R
1

A
4

D
7

D
0
D
1
D
2
D
3

D
4
D
5
D
6

D0
D1
D2
D3
D4
D5
D6
D7

A8

A11
A10
A9
A14
A13
A12

A7
A6
A5
A4
A3
A2
A1
A0

A
0

1
1

A
1

1
3

A
2

1
5

A
3

1
7

O
E

1
9

Y
0

9
Y
1

7
Y
2

5
Y
3

3

U8:B

7
4
H
C
2
4
4

A
0

2
A
1

4
A
2

6
A
3

8

O
E

1

Y
0

1
8

Y
1

1
6

Y
2

1
4

Y
3

1
2

U8:A

7
4
H
C
2
4
4

C
L
K

1
Q
0

3
Q
1

4
Q
2

5
Q
3

6
M
R

2

U7:A

7
4
H
C
3
9
3

C
L
K

1
3

Q
0

1
1

Q
1

1
0

Q
2

9
Q
3

8
M
R

1
2

U7:B

7
4
H
C
3
9
3

D
0

3
Q
0

2
D
1

4
Q
1

5
D
2

7
Q
2

6
D
3

8
Q
3

9
D
4

1
3

Q
4

1
2

D
5

1
4

Q
5

1
5

D
6

1
7

Q
6

1
6

D
7

1
8

Q
7

1
9

O
E

1
C
L
K

1
1

U6

7
4
H
C
T
3
7
4

D
0

3
D
1

4
D
2

7
D
3

8
D
4

1
3

D
5

1
4

D
6

1
7

D
7

1
8

C
L
K

1
1

M
R

1

Q
0

2
Q
1

5
Q
2

6
Q
3

9
Q
4

1
2

Q
5

1
5

Q
6

1
6

Q
7

1
9

U5

7
4
H
C
T
2
7
3

C
P
B

_
I
P
B

C
P
A

_
I
P
A

SLIUPI

SLO
LOP

_OEP PCL

ARQ
BLK

_
O
E
A

L
A
A

L
A
S

_
C
L
S

D
0

3
D
1

4
D
2

7
D
3

8
D
4

1
3

D
5

1
4

D
6

1
7

D
7

1
8

C
L
K

1
1

M
R

1

Q
0

2
Q
1

5
Q
2

6
Q
3

9
Q
4

1
2

Q
5

1
5

Q
6

1
6

Q
7

1
9

U4
74HC273

CAR

LAR
_CLR

A
0

5
A
1

3
A
2

1
4

A
3

1
2

B
0

6
B
1

2
B
2

1
5

B
3

1
1

C
0

7
C
4

9

S
0

4
S
1

1
S
2

1
3

S
3

1
0

U2

7
4
H
C
T
2
8
3

A
0

5
A
1

3
A
2

1
4

A
3

1
2

B
0

6
B
1

2
B
2

1
5

B
3

1
1

C
0

7
C
4

9

S
0

4
S
1

1
S
2

1
3

S
3

1
0

U3

7
4
H
C
T
2
8
3

A
0

1
1

A
1

1
3

A
2

1
5

A
3

1
7

O
E

1
9

Y
0

9

Y
1

7

Y
2

5

Y
3

3

U1:B
74HC240

A
0

2

A
1

4

A
2

6

A
3

8

O
E

1

Y
0

1
8

Y
1

1
6

Y
2

1
4

Y
3

1
2

U1:A
74HC240

_OER

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18

J1

CONN-H34

IOX
CK
_R
_DAD
DSG

Accumulator

R

S A

PC

RET
DOK
WRM

TITLE:

BY: PAGE

The Anitra CPU
Structural Logic

Eirik Bakke 2/2

D12 Q 9

CLK11

Q 8

S
1
0

R
1
3

U11:B

74HC74

D2 Q 5

CLK3

Q 6

S
4

R
1

U11:A

74HC74

LPK

CAR

BRK

_LPR_BRR

LPQBRQ

1

2
3

U15:A

74HC08

DSG
LAS

10

9
8

U13:C

74HC00

_DAD
LAA

_IPA

_E1

13 12

U12:D

74HC04

LPKLOP

12

13
11

U17:D

74HC32

E0

E1
_OEA

_OEP

9

10
8

U15:C

74HC08

9

10
8

U16:C

74HC32SLI

SLO

_CLS

_E0

1

2
3

U16:A

74HC32

ARQ
_CLR

_LPR
_BRR

_R

CPB

BRQ 1

2
3

U14:A

74HC08

1

2
3

U17:A

74HC32

CPA

4

5
6

U17:B

74HC32

BLK
_IPB

12

13
11

U14:D

74HC08

IOX

WRM

4

5
6

U14:B

74HC08

LAR

_LPQ
_OER

9

10
8

U14:C

74HC08

UPI
BRK

9

10
8

U17:C

74HC32

E0

12

13
11

U16:D

74HC32

E2

E2

E3

E3

E3

E3

_E2

1 2

U12:A

74HC04

_ESR

E3

_E0

D
2

Q
5

C
L
K

3

Q
6

S4 R 1

U9:A

74HC74

D
2

Q
5

C
L
K

3

Q
6

S4 R 1

U10:A

74HC74

D
1
2

Q
9

C
L
K

1
1

Q
8

S10 R 13

U10:B

74HC74

D
1
2

Q
9

C
L
K

1
1

Q
8

S10 R 13

U9:B

74HC74

45
6

U16:B
74HC32

1
3

1
2

1
1

U13:D
74HC00

ARQ

1

2
3

U13:A

74HC00

CK

CK

CK

CK

_ESR

_ESR

_ESR

E0

E1

E2

_
E
3

E
3

_E2

_E1

_E0

5 6

U12:C

74HC04
Note: Above gate for
timing purposes only

Note: Inverter for
timing purposes only

ES

BR LP

_ESR

3 4

U12:B

74HC04

_LPQ

_E1

4

5
6

U15:B

74HC08

RET
E0

LPQ E2 DOK

E0 11 10

U12:E

74HC04

PCL_E1 9 8

U12:F

74HC04

Note: Inverters for
timing purposes only

12

13
11

U15:D

74HC08

4

5
6

U13:B

74HC00

S
P
A
R
E
S

T
I
T
L
E
:

B
Y
:

P
A
G
E

T
h
e

A
n
i
t
r
a

C
P
U

C
o
n
t
r
o
l

L
o
g
i
c

E
i
r
i
k

B
a
k
k
e

1
/
2

D[0..7]

A[0..14]

A
0

D
7

D
1
D
2
D
3
D
4
D
5
D
6

D7

D6

D5

D4

D3

D2

D1

D0

XO0
XO1
XO2
XO3
XO4
XO5
XO6
XO7

XI0
XI1
XI2
XI3
XI4
XI5
XI6
XI7

D0
D1
D2
D3
D4
D5
D6

D7

D0
D1
D2
D3

D4
D5
D6

D
0

D7

A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

DD0

DD1

DD2

DD3

DD4

DD5

DD6

DD7

DOK

DWR
_DAD

_DRQ

DSG

A
0

1
0

A
1

9
A
2

8
A
3

7
A
4

6
A
5

5
A
6

4
A
7

3
A
8

2
5

A
9

2
4

A
1
0

2
1

A
1
1

2
3

A
1
2

2

C
E

2
0

W
E

2
7

O
E

2
2

D
0

1
1

D
1

1
2

D
2

1
3

D
3

1
5

D
4

1
6

D
5

1
7

D
6

1
8

D
7

1
9

A
1
3

2
6

A
1
4

1

U1
M48Z35

_PUP

R1
10K

R2
10K

R3
10K

R4
10K

R5
10K

R6
10K

R7
10K

R8
10K

CK

_DAD
DSG

D
O
K

_
D
A
D

R
9

1
0
K

R
1
0

1
0
K

R
1
1

1
0
K

R
1
2

1
0
K

D
S
G

WRM
_WE

_WE

CK

PDN

DOK

OSC

1
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

J2

CONN-H18

D03 Q0 2

D14 Q1 5

D27 Q2 6

D38 Q3 9

D413 Q4 12

D514 Q5 15

D617 Q6 16

D718 Q7 19

OE1

CLK11

U3

74HC374

A02

A14

A26

A38

OE1

Y0 18

Y1 16

Y2 14

Y3 12

U4:A

74HC244

A011

A113

A215

A317

OE19

Y0 9

Y1 7

Y2 5

Y3 3

U4:B

74HC244

_OE

4

5
6

U5:B

74HC00

_
D
R
Q

D
W
R

_DRQ

RET
DOK

RET

13

12
11

U5:D

74HC00

_CE

DWR _CE

WRM
_OE

8

9
10

U6:C

74HC02

10

9
8

U5:C

74HC00

11

12
13

U6:D

74HC02

1

2
3

U5:A

74HC00

5

6
4

U6:B

74HC02

2

3
1

U6:A

74HC02

CK30

_R29

_DAD28

DSG27

A[0..14]

D[0..7]

IOX 31

RET 32

DOK 33

WRM 34

J1

ATR-CPU
CONN-H34

C1
220uF

VI1 VO 3

G
N
D

2

U2
L78M05CV

C2
0.1uF

V
C
C

D2
1N5817

D3
GRN

R13
2.2K

R15
10K

D1
1N4001

Q1
BC548

R14
100K PDN

R16
5.1K

C3
1uF

VCC

R17
30K

R18
10K

Q3
BC548

Q2
BC548

_PUP

R19
750R

J4

C
O
N
N
-
H
2

Note: oscillator circuit not drawn

TITLE:

BY: PAGE

Anitra Development Board

Eirik Bakke 1/1

P1 1

P14 11

P2 2

P3 3

P16 12

P4
4

P17 13

P5
5

P6 6

P7 7

P8 8

P9 9

P11 10

P25 14

J3

D25-MALE

“A computer is a machine that, giv-
en enough time and memory, can
perform any computational operation
on a set of data. A minimalist com-
puter is a computer that satisfi es this
requirement with only a minimum
level of architectural complexity.”

Goal
Although hypothetical minimalist computers has long been an
interesting study in Computer Science, there exists very few
actual hardware implementations of such computers, and the
goal of this investigation was to design one from scratch us-
ing the standard integrated logic circuits of digital electronics.

The Investigation
I started my investigation by defi ning the exact requirements
for my computer. Then, as I was aiming to keep its design as
simple as possible, I tried to logically deduce what components
would unquestionably be required parts of it. Using only com-
ponents presumed to be essential, I could put together a struc-

ture that should be capable of fetching
and executing instructions in memory.
From this, I went on by designing the
necessary control logic and defi ning the
circuits in detail on paper.

Conclusions
Given the initial requirement to restrict
its design to standard circuits, it seems
possible to devise a computer of ultimate
simplicity by proving the need for each
hardware component logically. Howev-

er, the argument used in the investigation is not watertight,
and it does not cover in detail the computer’s control circuits.

The computer components found to be essential included data
retaining units for holding addresses and values during mem-
ory write cycles, a data retaining unit resembling a program
counter for holding additional addresses independent of the
former ones, and an arithmetic adder for combining two values
from memory into one. It is interesting to note that familiar com-
ponents such as a program counter and an arithmetic adder
are needed even in a minimalist computer. However, effi cient
simplifi cations may be done by limiting branching functionality
and the memory area where instructions can reside.

Anitra’s two universal
instructions
A computer works by mechanically executing a sequence of so-called instruc-
tions in memory. An instruction is a signal for the computer to carry out a single
low-level computational operation. Such operations may read and alter values
in memory, or affect the order instructions are executed. By combining such in-
structions in the appropriate way, more advanced operations may be synthesised.
The Anitra computer has a predefi ned area in memory where instructions may
reside, subdivided into 16 blocks of 8 instructions each. These will execute over
and over again in an eternal loop. While modern computers have hundreds of
different instructions available for the programmer to use, Anitra has only two:

“mov S,Q” Read the value in memory at address S, and save an inverted
copy at address Q.

“add S,Q” Read the values in memory at addresses S and Q, add them to-
gether, and save the result inverted at address Q. If the result is
too large to fi t into Q, skip the rest of the instructions in the cur-
rent block. (In the latter case, discard the result’s most signifi cant
bit and save the rest. If the current instruction is the last one in its
block, skip all the instructions in the following block instead.)

An address is a value identifying a single place in memory. In Anitra, an 8-bit com-
puter, each such place may hold a value made up of 8 binary digits. A value is said
to be inverted if each of its digits are complemented (1s becomes 0s and vice versa)

Although Anitra’s two different instructions may seem fairly primitive, and
although the area of memory where instructions are executed can only
hold 128 such instructions, there is still in fact no limitation on what soft-
ware can be written using them. Because the instructions can access any
part of the memory, and because some instructions may be used to repro-
gram other ones, there are plenty of ways to extend Anitra’s functionality to a
more practical level. Together, Anitra’s two instructions are truly universal.

The Anitra ProjectThe Anitra Project
How simple can a basic computer be designeHow simple can a basic computer be designedd??

by Eirik Bakkeby Eirik Bakke

Inverting buffer: Feeds
the memory with data from
R only during write cycles,
and enhances the function-
ality of the executed instruc-
tions by inverting the result
before returning it.

R
 rotalumuccA
 retsigeR tluseR

meM
 yromeM sseccA modnaR

sserdda tib-51 ot pu ,MARS ediw tib-8

CP
 retnuoC margorP

 sretnuoc tib-4 laud
aelc htiw r

A
sserddA raeN

 retsigeR
 htiw polf-pilf D latco

tuo etats-irt p stu

S
rebmuN tnemgeS

 retsigeR
 htiw polf-pilf D latco

aelc r

 tib-4 laud
 gnitrevni

reffub etats-irt

 tib-4 laud
etats-irt
reffub tib-4 x2

dedacsac
sredda lluf

 ecafretnI O/I
 dna sreffub O/I(

 gubed trop lellarap
).ecafretni

C
ontrol logic

(Logic for generating the other com
ponents’ control signals.)

Includes the control registers LP
,B

R
 and ES

suB ataD tib 8

41-8A 7-0A

octal D flip-flop with
clear

Arithmetic adder: Provides
a convenient way to com-
bine two values from mem-
ory into one, a fundamental
operation for all computers.
It is confi gured so that new
values coming from memory
will be added to the current
value of R before saved in
the same register.

Accumulator Result Regis-
ter (“R”): Stores values or
sums of values loaded from
memory, and returns them
when they are to be written
back in memory.

Segment Number Register
(“S”) and Near Address Reg-
ister (“A”): Together stores a
full two-byte address originating
from memory to be used during
write cycles and data fetching
read cycles.

Memory (“Mem”): Stores instructions and data for Anitra.
A fundamental component in any computer, although pas-
sive in itself.

Program Counter (“PC”): Because Anitra must
look somewhere in memory to fetch the address of
someplace else, there must be two ways to generate
addresses rather than a single one. PC generates
a near address that, together with S in its cleared
state, will provide an additional full address to be
used during instruction fetching read cycles. Buff-
ers controls whether PC or A currently feeds data to
their common part of the address bus.

Control logic: Generates
the control signals that
make all the other compo-
nents perform their actions
in the appropriate order, so
that Anitra can successfully
fetch and execute instruc-
tions.

I/O interface: Provides a way
for external components to
communicate with Anitra’s
software, and for uploading
software to memory. Techni-
cally speaking not an essen-
tial part of a computer, since
it can be removed at any time
during execution without alter-
ing the computations being
performed.

The Anitra Computer

