sifowsimpl

'S e

Goal

Although hypothetical minimalist computers has long been an
interesting study in Computer Science, there exists very few
actual hardware implementations of such computers, and the
goal of this investigation was to design one from scratch us-
ing the standard integrated logic circuits of digital electronics.

The Anitra Computer

Inverting buffer: Feeds
the memory with data from
R only during write cycles,
and enhances the function-
aliy of the executed instruc-
tions by inverting the result
before returning it

o

Segment Number Register Program Counter (PC”): Because Anitra must 10 interface: Provides a way
ook somewhere in memory 1o fetch the address of for_exteral components {0
ster (“A"): Together stores a icate with Anitra’s
ful i addresses rather than a single one. PC generates software, and for uploading
a near address that, together with S in its cleared software to memory. Techni-
state, will provide an additional full address to be cally speaking not an essen-
used during instruction fetching read cycles. Buff- tal part of a computer, since
ers controls whether PC or A currently feeds data to it can be removed at any time.
their common part of the address bus. during execution without ater-

ing the computations being

performed.

from memory to be used during
write cycles and data fetching
read cycles.

The Investigation

| started my investigation by defining the exact requirements
for my computer. Then, as | was aiming to keep its design as
simple as possible, | tried to logically deduce what components
would unquestionably be required parts of it. Using only com-

ponents presumed to be essential, | could put together a struc- Athmetic addee: Provis e (ot
ture that should be capable of fetching S o vahios o o \ l l \ -
and executing instructions in memory. A e S A PC
From this, | went on by designing the Ry [ot st ot
necessary control logic and defining the ot = e e
circuits in detail on paper. §
. e
Conclusions ey iz
Given the initial requirement to restrict &, g; i
its design to standard circuits, it seems é‘; o
possible to devise acomputer of ultimate - 3 L3
simplicity by proving the need for each —| R Mem "‘E <
hardware component logically. Howev- o (R Stores vt o ity oo ST B e ~ -
er, the argument used in the investigation is not watertight, e T
and it does not cover in detail the computer’s control circuits. e |_

The computer components found to be essential included data
retaining units for holding addresses and values during mem-
ory write cycles, a data retaining unit resembling a program
counter for holding additional addresses independent of the
former ones, and an arithmetic adder for combining two values
from memory into one. Itis interesting to note that familiar com-
ponents such as a program counter and an arithmetic adder
are needed even in a minimalist computer. However, efficient
simplifications may be done by limiting branching functionality
and the memory area where instructions can reside.

Memory (“Mem”): Stores instructions and data for Anitra.
Afundamental component in any computer, although pas-
sive in itself.

Control logic: Generates
the control signals that
make all the other compo-
nents perform their actions
in the appropriate order, so
that Anitra can successfully
and execute instruc-
‘ ‘ X X) tions.
A computer is a machine that, giv-
en enough time and memory, can
perform any computational operation
on a set of data. A minimalist com-
puter is a computer that satisfies this
requirement with only a minimum

level of architectural complexity.”

Anitra’s two universal
instructions

A computer works by mechanically executing a sequence of so-called instruc-
tions in memory. An instruction is a signal for the computer to carry out a single
low-level computational operation. Such operations may read and alter values
in memory, or affect the order instructions are executed. By combining such in-
structions in iate way, i i

The Anitra computer has a predefined area in memory where instructions may
reside, subdivided into 16 blocks of 8 instructions each. These will execute over
and over again in an etemal loop. While modern computers have hundreds of
different instructions available for the programmer to use, Anitra has only two:

The anitra cpu
Structural Logic

“movS.Q" Read the value in memory at address S, and save an inverted
copy at address Q.
“add Q" Read the values in memory at addresses S and Q, add them to-
gether, and save the result inverted at address Q. If the result is
100 large to fit into Q, skip the rest of the instructions in the cur-
rent block. (In the latter case, discard the result's most significant
bit and save the rest. f the curent instruction s the last one in its
block, skip all the instructions in the following block instead.)
£
e
‘5 mvam“ A sessmne /- In Anitra, an 8-bit com-
e ; oot e s Avios s
Although Anitra’s two_different instructions may seem fairly primitive, and
although the area of memory where instructions are executed can only

hold 128 such instructions, there is stil in fact no limitation on what soft-
ware can be writlen using them. Because the instructions can access any
part of the memory, and because some instructions may be used to repro-
gram other ones, there are plenty of ways to extend Anitra's functionality to a
more practical level. Together, Anitra's two instructions are truly universal.

£

Theory of
(%;em tion

(Summary)
WARNING: Geeks only!

Anitra is built around a 32-kilobyte SRAM
memory chip with an 8-bit data bus. Full 15-
bit addresses for the memory are made from
a 7-bit segment number and an 8-bit near
address. The two data latches S and A may.
both retrieve data from the memory through
the data bus. The segment number is always
prepared in latch S. The latter may contain
data from the memory, or it may be reset to

zero. The near address can come from ei-

two-byte full addresses. The most significant
bit of the

Ioad the value at this address, which is next
latched to th I

Since latch R has

ther latch A or the counter PC,
‘which of the two currently has its tr-state out-
puts enabled. PC's first and last 4 bits may be.
increased or reset indvidually. PC's least sig-
nificant bit s controled directly by the control
logic. A simple accumulator system is con-
nected to the data bus. Rm:

of
is used to distinguish between two different
instruction types.

The execution sequence starts by resetting
latches R and S, and selecting PC. PC’s least

3 2y,
be laiched, which will add the current data
from memory to its existing value through an
arithmetic adder, or it may be reset to zero.
The result may be directed back to memory.
during write cycles through an inverting tri-

address of the current instruction’s first byte,
which the memory will now load and place
on the data bus. In the next step, this byte is.
latched to A while PC is stil selected. PC's
least significant bitis then set o 1. The mem-

i instructi which

trol logic outputs a 7-step sequence of con-
trol signals, one for each clock cycle. A set of
D flip-lops, called ES, is configured to keep.
track of the current execution state. Each in-
struction is 4 bytes long, consisting of two.

is next latched to S while A s selected. PCis.
increased. The address that is now passed
to memory is no longer the address of the in-
struction itself, but the pointer that was speci-
fied as its first argument. The memory will

been reset and intially contains zero, nothing
will be added to the value before it is latched
this time. This sequence is then repeated to
fetch the next two bytes of the instruction and
load the value pointed to by its second argu-
ment. At this point, the loaded value may or
may not be latched to the accumulator (o be.
added to the value of the previous argument,
depending on the current instruction type. If
itis latched, and if the arithmetic addition op-
eration overflows and returns a carry signal,
the instruction will branch and have PC skip
0 the instruction in the beginning of the next
instruction block. In any case, the inverse of
the resulting accumlator value is finally wit-
ten to memory at the same address as the.
last instruction argument.

