
The Anitra The Anitra ComputerComputer
How simple can a basic computer be designeHow simple can a basic computer be designed d to be using TTL/74-series standard circuitsto be using TTL/74-series standard circuits??

http://www.princeton.edu/~ebakke/anitrahttp://www.princeton.edu/~ebakke/anitra
by Eirik Bakkeby Eirik Bakke

Theory of
Operation
(Summary)
WARNING: Geeks only!

Anitra is built around a 32-kilobyte SRAM memory
chip with an 8-bit data bus. Full 15-bit addresses for
the memory are made from a 7-bit segment number
and an 8-bit near address. The two octal D fl ip-fl ops
S and A may both retrieve data from the memory
through the data bus. The segment number is al-
ways prepared in fl ip-fl ops S. The latter may contain
data from the memory, or it may be reset to zero. The
near address can come from either fl ip-fl ops A or the

counter PC, depending on which of the two currently
has its tri-state outputs enabled. PC’s fi rst and last
4 bits may be increased or reset individually. PC’s
least signifi cant bit is controlled directly by the con-
trol logic. A simple accumulator system is connected
to the data bus. The fl ip-fl ops R may be triggered,
which will add the current data from memory to its
existing value through an arithmetic adder, or it may
be reset to zero. The result may be directed back to
memory during write cycles through an inverting tri-
state buffer. To execute instructions, the control log-
ic outputs a 7-step sequence of control signals, one
for each clock cycle. A set of D fl ip-fl ops, called ES,
is confi gured to keep track of the current execution
state. Each instruction is 4 bytes long, consisting of
two two-byte full addresses. The most signifi cant bit
of the segment number of the last address is used to
distinguish between two different instruction types.

The execution sequence starts by resetting octal fl ip-
fl ops R and S, and selecting PC. PC’s least signifi cant
bit is set to 0. This will generate the address of the
current instruction’s fi rst byte, which the memory will
now load and place on the data bus. In the next step,
this byte is clocked into A while PC is still selected.
PC’s least signifi cant bit is then set to 1. The memo-
ry will load the second instruction byte, which is next
clocked into S while A is selected. PC is increased.
The address that is now passed to memory is no
longer the address of the instruction itself, but the
pointer that was specifi ed as its fi rst argument. The
memory will load the value at this address, which is
next clocked to the accumulator. Since fl ip-fl ops R has
been reset and initially contains zero, nothing will be
added to the value as R is clocked this time. This se-
quence is then repeated to fetch the next two bytes of

the
i n -
s t ruc t ion
and load the val-
ue pointed to by its sec-
ond argument. At this point,
the loaded value may or may not be
added to the accumulator to be added to
the value of the previous argument, depending
on the current instruction type. If it is added, and if
the arithmetic addition operation overfl ows and re-
turns a carry signal, the instruction will branch and
have PC skip to the instruction in the beginning of
the next instruction block. In any case, the inverse
of the resulting accumulator value is fi nally written to
memory at the same address as the last instruction
argument.

Goal
A computer is a machine that, given enough time and memory, can perform any rigidly defi ned com-
putational operation. A minimalist computer is a computer that satisfi es this requirement with only a
minimum level of architectural complexity. Although hypothetical minimalist computers has long been
an interesting study in Computer Science, there exists very few actual hardware implementations

of such, and the goal of this investigation was to design one from scratch
using the standard 74-series TTL-compatible digital logic circuits (ICs).

The Investigation
I started my investigation by defi ning the exact requirements for my com-
puter. Then, as I was aiming to keep its design as simple as possible, I
tried to discuss which components would unquestionably have to be in-
cluded. The resulting set of components included D-fl ip fl ops for holding
target addresses and values during memory write cycles, and a unit resem-
bling a program counter for simultaneously keeping track of an additional
address. An arithmetic adder was needed for the computer to be able to
combine two values into one. Using only components presumed to be es-
sential, I could put together a structure that should be capable of fetching

and executing instructions in memory. From this, I went on by designing the necessary control logic
and defi ning all circuits in detail on paper. The resulting computer, called Anitra, has two universal
instructions: “move with complement” and “add with complement and branch if carry”. Branching is
done in a special way which does not require program counter to be programmable. In addition, the
program counter is limited in size, which restricts the memory area where instructions may reside.

Conclusions
The CPU part of the fi nished Anitra computer has an
8-bit data bus and consists of three octal D-fl ip-fl ops,
two octal tri-state buffers, one 8-bit non-programmable
counter, two 4-bit arithmetic adders and some control
logic (single gates and D-fl ip-fl ops only). Given the ini-
tial premises, it is diffi cult to imagine how the structural
parts of the computer could have been made with sig-
nifi cantly fewer or simpler components than those used;
each of its components has been shown to fi ll a specifi c
need during the execution of operations presumed to be
essential.

I have now completed the next great step in this project, which is the construction of a working physi-
cal prototype of the Anitra computer. Finally, I am now in the process of writing an operating system
for the computer.

Anitra’s two universal
instructions
Computer work by mechanically executing a sequence of so-called in-
structions in memory, and even Anitra works this way. An instruction is a
signal for the computer to carry out a single low-level computational op-
eration. Such operations may read and alter values in memory, or affect
the order instructions are executed themselves. By combining such in-
structions in the appropriate way, more advanced operations may be syn-
thesised. The Anitra computer has a predefi ned area in memory where
instructions may reside, subdivided into blocks of 8 instructions each.
These will execute over and over again in an eternal loop. While tradi-
tional computers have hundreds of different instructions available for the
programmer to use, Anitra is a “minimalist“ computer and has only two:

“mov S,Q” Read the value in memory at address S, and
save an inverted copy at address Q.

“add S,Q” Read the values in memory at addresses S
and Q, add them together, and save the re-
sult inverted at address Q. If the result is too
large to fi t into Q, skip the rest of the instruc-
tions in the current block. (In the latter case,
discard the result’s most signifi cant bit and
save the rest. If the current instruction is the
last one in its block, skip all the instructions
in the following block instead.)

An address is a value identifying a single place in memory. In
Anitra, an 8-bit computer, each such place may hold a value
made up of 8 binary digits. A value is said to be inverted if each
of its digits are complemented (1s becomes 0s and vice versa)

Although Anitra’s two different instructions may seem fairly primitive, and
although the area of memory where instructions are executed can only
hold 128 such instructions, there is still in fact no limitation on what soft-
ware can be written using them. Because the instructions can access any
part of the memory, and because some instructions may be used to repro-
gram other ones, there are plenty of ways to extend Anitra’s functionality to
a more practical level. Anitra’s two instructions are hence truly universal.

“A computer is a machine
that, given enough time and
memory, can perform any
computational operation on
a set of data. A minimalist
computer is a computer that
satisfi es this requirement
with only a minimum level
of architectural complexity.”

Inverting buffer: Feeds the memory
with data from R only during write cy-
cles, and enhances the functionality
of the executed instructions by invert-
ing the result before returning it.

R
 rotalumuccA
 retsigeR tluseR

meM
 yromeM sseccA modnaR

sserdda tib-51 ot pu ,MARS ediw tib-8

CP
 retnuoC margorP

 sretnuoc tib-4 laud
aelc htiw r

A
sserddA raeN

 retsigeR
 htiw polf-pilf D latco

tuo etats-irt p stu

S
rebmuN tnemgeS

 retsigeR
 htiw polf-pilf D latco

aelc r

 tib-4 laud
 gnitrevni

reffub etats-irt

 tib-4 laud
etats-irt
reffub tib-4 x2

dedacsac
sredda lluf

 ecafretnI O/I
 dna sreffub O/I(

 gubed trop lellarap
).ecafretni

C
ontrol logic

(Logic for generating the other com
ponents’ control signals.)

Includes the control registers LP
,B

R
 and ES

suB ataD tib 8

41-8A 7-0A

octal D flip-flop with
clear

Arithmetic adder: Provides a con-
venient way to combine two values
from memory into one, a fundamen-
tal operation for all computers. It is
confi gured so that new values com-
ing from memory will be added to the
current value of R before saved in the
same register.

Accumulator Result Register (“R”):
Stores values or sums of values load-
ed from memory, and returns them
when they are to be written back in
memory.

Segment Number Register (“S”) and
Near Address Register (“A”): Together
stores a full two-byte address originating
from memory to be used during write cy-
cles and data fetching read cycles.

Memory (“Mem”): Stores instructions and data for Anitra. A fundamental
component in any computer, although passive in itself.

Program Counter (“PC”): Because Anitra must look somewhere in
memory to fetch the address of someplace else, there must be two
ways to generate addresses rather than a single one. PC generates
a near address that, together with S in its cleared state, will provide
an additional full address to be used during instruction fetching read
cycles. Buffers controls whether PC or A currently feeds data to
their common part of the address bus.

Control logic: Generates the control
signals that make all the other com-
ponents perform their actions in the
appropriate order, so that Anitra can
successfully fetch and execute in-
structions.

I/O interface: Provides a way for exter-
nal components to communicate with
Anitra’s software, and for uploading soft-
ware to memory. Technically speaking
not a critical part of a computer, since it
can be removed at any time during exe-
cution without altering the computations
being performed.

The Anitra Computer

