
Th
e

A
ni

tr
a

Th
e

A
ni

tr
a

C
om

pu
te

r
C

om
pu

te
r

A
C

om
pl

et
e

M
in

im
al

is
t C

om
pu

te
r S

ys
te

m
 D

es
ig

ne
d,

A

C
om

pl
et

e
M

in
im

al
is

t C
om

pu
te

r S
ys

te
m

 D
es

ig
ne

d,

B
ui

lt
an

d
P

ro
gr

am
m

ed
 a

t a
 L

ow
 L

ev
el

 o
f A

bs
tra

ct
io

n
B

ui
lt

an
d

P
ro

gr
am

m
ed

 a
t a

 L
ow

 L
ev

el
 o

f A
bs

tra
ct

io
n

by
 E

iri
k

B
ak

ke
by

 E
iri

k
B

ak
ke

Abstract

Inverting buffer: Feeds
the memory with data from
R only during write cycles,
and enhances the function-
ality of the executed instruc-
tions by inverting the result
before returning it.

R
 rotalumuccA
 retsigeR tluseR

meM
 yromeM sseccA modnaR

sserdda tib-51 ot pu ,MARS ediw tib-8

CP
 retnuoC margorP

 sretnuoc tib-4 laud
aelc htiw r

A
sserddA raeN

 retsigeR
 htiw polf-pilf D latco

tuo etats-irt p stu

S
rebmuN tnemgeS

 retsigeR
 htiw polf-pilf D latco

aelc r

 tib-4 laud
 gnitrevni

reffub etats-irt

 tib-4 laud
etats-irt
reffub tib-4 x2

dedacsac
sredda lluf

 ecafretnI O/I
 dna sreffub O/I(

 gubed trop lellarap
).ecafretni

C
ontrol logic

(Logic for generating the other com
ponents’ control signals.)

Includes the control registers LP
,B

R
 and ES

suB ataD tib 8

41-8A 7-0A

octal D flip-flop with
clear

Arithmetic adder: Provides
a convenient way to com-
bine two values from mem-
ory into one, a fundamental
operation for all computers.
It is confi gured so that new
values coming from memory
will be added to the current
value of R before saved in
the same register.

Accumulator Result Regis-
ter (“R”): Stores values or
sums of values loaded from
memory, and returns them
when they are to be written
back in memory.

Segment Number Register
(“S”) and Near Address Reg-
ister (“A”): Together stores a
full two-byte address originating
from memory to be used during
write cycles and data fetching
read cycles.

Memory (“Mem”): Stores instructions and data for Ani-
tra. A fundamental component in any computer, although
passive in itself.

Program Counter (“PC”): Because Anitra must
look somewhere in memory to fetch the address of
someplace else, there must be two ways to gener-
ate addresses rather than a single one. PC gen-
erates a near address that, together with S in its
cleared state, will provide an additional full address
to be used during instruction fetching read cycles.
Buffers controls whether PC or A currently feeds
data to their common part of the
address bus.

Control logic: Generates
the control signals that make
all the other components
perform their actions in the
appropriate order, so that
Anitra can successfully fetch
and execute instructions.

I/O interface: Provides a way
for external components to
communicate with Anitra’s
software, and for uploading
software to memory. Techni-
cally speaking not a critical
part of a computer, since it can
be removed at any time dur-
ing execution without altering
the computations being per-
formed.

The Anitra ComputerAnitra’s two universal instructions
Computers work by mechanically executing a sequence of so-called instructions in memory, and
even Anitra works this way. An instruction is a signal for the computer to carry out a single low-level
computational operation. Such operations may read and alter values in memory, or affect the order
instructions are executed themselves. By combining such instructions in the appropriate way, more
advanced operations may be synthesised. The Anitra computer has a predefi ned area in memory
where instructions may reside, subdivided into blocks of 8 instructions each. These will execute over
and over again in an eternal loop. While traditional computers have hundreds of different instructions
available for the programmer to use, Anitra is a “minimalist“ computer and has only two:

“mov S,Q” Read the value in memory at address S,
and save an inverted copy at address Q.

“add S,Q” Read the values in memory at addresses S
and Q, add them together, and save the re-
sult inverted at address Q. If the result is too
large to fi t into Q, skip the rest of the instruc-
tions in the current block. (In the latter case,
discard the result’s most signifi cant bit and
save the rest. If the current instruction is the
last one in its block, skip all the instructions
in the following block instead.)

An address is a value identifying a single place in memory. In Anitra, an 8-bit computer, each such
place may hold a value made up of 8 binary digits. A value is said to be inverted if each of its digits are
complemented (1s becomes 0s and vice versa)

Although Anitra’s two different instructions may seem fairly primitive, and although the area of memory
where instructions are executed can only hold 128 such instructions, there is still in fact no limitation
on what software can be written using them. Because the instructions can access any part of the
memory, and because some instructions may be used to reprogram other ones, there are plenty of
ways to extend Anitra’s functionality to a more practical level. Anitra’s two instructions are hence truly
universal.

One of the well known classic minimalist instruction sets is that of Ross Cunniff’s One Instruction
Set Computer (OISC), with only one instruction, namely, “subtract-and-branch-if-result-negative“. A
comparison with Anitra’s design suggests that the OISC can not only be further simplifi ed in terms of
hypothetical hardware requirements, but also that other very useful instructions such as “mov“ may be
added at no cost at all (simply skip fetching the second operand).

Theory of

Operation
(Summary)
Anitra is built around a 32-kilobyte
SRAM memory chip with an 8-bit
data bus. Full 15-bit addresses for
the memory are made from a 7-
bit segment number and an 8-bit
near address. The two octal D fl ip-
fl ops S and A may both retrieve
data from the memory through the
data bus. The segment number is
always prepared in fl ip-fl ops S.
The latter may contain data from
the memory, or it may be reset to
zero. The near address can come
from either fl ip-fl ops A or the coun-
ter PC, depending on which of the
two currently has its tri-state out-
puts enabled. PC’s fi rst and last 4
bits may be increased or reset in-
dividually. PC’s least signifi cant bit
is controlled directly by the control
logic. A simple accumulator sys-
tem is connected to the data bus.

T h e
flip-flops
R may be trig-
gered, which will add
the current data from mem-
ory to its existing value through
an arithmetic adder, or it may be
reset to zero. The result may be
directed back to memory during
write cycles through an inverting
tri-state buffer. To execute instruc-
tions, the control logic outputs a 7-
step sequence of control signals,
one for each clock cycle. A set of
D fl ip-fl ops, called ES, is confi g-
ured to keep track of the current
execution state. Each instruc-
tion is 4 bytes long, consisting of
two two-byte full addresses. The
most signifi cant bit of the segment
number of the last address is used
to distinguish between two differ-
ent instruction types.

The execution sequence starts by
resetting octal fl ip-fl ops R and S,
and selecting PC. PC’s least signifi -
cant bit is set to 0. This will generate
the address of the current instruc-

tion’s
fi rst byte,
which the mem-
ory will now load and
place on the data bus. In the
next step, this byte is clocked into
A while PC is still selected. PC’s
least signifi cant bit is then set to
1. The memory will load the sec-
ond instruction byte, which is next
clocked into S while A is selected.
PC is increased. The address that
is now passed to memory is no
longer the address of the instruc-
tion itself, but the pointer that was
specifi ed as its fi rst argument. The
memory will load the value at this
address, which is next clocked to
the accumulator. Since fl ip-fl ops
R has been reset and initially con-
tains zero, nothing will be added to
the value as R is clocked this time.
This sequence is then repeated to
fetch the next two bytes of the in-

struc-
t i o n

a n d load the
value point- ed to by its
second argument. At this point,
the loaded value may or may not
be added to the accumulator to be
added to the value of the previous
argument, depending on the cur-
rent instruction type. If it is added,
and if the arithmetic addition op-
eration overfl ows and returns a
carry signal, the instruction will
branch and have PC skip to the
instruction in the beginning of the
next instruction block. In any case,
the inverse of the resulting accu-
mulator value is fi nally written to
memory at the same address as
the last instruction argument.

Testing and software development
For the purpose of developing Anitra software using an ordinary desktop
computer, I have written a cross-assembler, which translates assembly
language code into a binary memory image, a debugger/emulator, which
inputs the image and interactively simulates the software’s operation on
the Anitra computer, and a parallel port uploader, which transfers the
image to the Development Board’s memory chip. These tools make the
programming process similar to that of any modern computer or micro-
controller.

The project’s most important piece of Anitra software is the Debug Rou-
tine. It tests all distinct aspects of Anitra’s operation by running a se-
quence of tests that all result in different numerical answers, and then
outputs the sum of all results to the user. Since the tests are designed
to give a different result if Anitra does not behave according to speci-
fi cation, the precence of the expected sum on the output is very likely
to indicate a working model. The routine was used in all development
stages: fi rst to test the operation of the emulator, then to test circuit sim-
ulations on CAD software, and fi nally to to test the physical prototype.

Another piece of interesting Anitra software is the Virtual Machine Emu-
lator. The routine executes virtual instruction of another, hypothetical,
computer. The virtual machine is far more advanced than Anitra itself,
with 14 instructions, in-built function calls, separate data and return
stacks, relative local variable addressing, unconstrained branches and
so on. Although at a cost of speed, this allows Anitra to be programmed
without any of the initial limitation on code size, branching etc. Anoth-
er interesting observation is that the two simple instructions provided
by Anitra seem to be perfectly suffi ent for solving common program-
ming tasks. The code is fairly compact, and there is plenty of space for

emulating more virtual instructions, or
possibly, to emulate a 16-bit machine
instead.

Resulting Specifications from the Software Programmer's Point of View
The software programming premises that results from Anitra's method of operation are
summarized below.

The Anitra computer has up to 32Kb of memory, divided into 128 256-byte segments.
Full memory addresses consists of a near address and a segment number, denoted as
from [0:0] to [127:255]. Executable instructions must be placed in the first two segments.
Each instruction takes 4 bytes, making 128 instructions available for machine coding.
The instructions will be executed sequentially in an eternal loop, returning to start after
the last one. The first two segments are organized in 16 blocks of 8 consecutive
instructions each. Branching from an instruction is done by skipping the remaining
instructions in the current block, or when branching from the last instruction in a block, by
skipping the complete following block. The instruction format is shown in Table 3.

Instruction format and argument bit patterns.

argument S argument Q
Byte 1
AAAAAAAA

Byte 2
xBBBBBBB

Byte 3
CCCCCCCC

Byte 4
iDDDDDDD

near address segment number near address segment number
x = don't care

The arguments are two full addresses. All instructions work by processing the values at
memory locations [BBBBBBB:AAAAAAAA] (called S) and [DDDDDDD:CCCCCCCC] (called
Q). There are two instruction types, distinguished by i, the instruction qualifier bit. In
addition, the last instruction in the loop is altered to serve as a special IO instruction. The
resulting instructions are given in the Table 4.

Anitra's machine code instructions.

Qualifier Instruction Operation

Bit i=0 mov
S,Q (move with complement) Q:=255-S

Bit i=1 add
S,Q (add with complement)

Q:=255-(S+Q mod
256)
branch if S+Q>255

Bit i=0
+ instruction is last in
loop

iox
S,Q

(exchange input/output, don't care
S)

output register:=Q
Q:=input register

Website: http://www.princeton.edu/~ebakke/anitra

R[0..7]

D[0..7]

A[0..14]

A0
A1
A2
A3
A4
A5
A6
A7
A8

A12
A13
A14
A9
A10
A11

D0
D1
D2
D3
D4
D5
D6
D7

A
0
A
1
A
2
A
3
A
4
A
5
A
6
A
7

A
8
A
9
A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

A
0
A
1
A
2
A
3

A
4
A
5
A
6
A
7

R
7
R
6
R
5
R
4
R
3
R
2
R
1
R
0

D
0
D
1
D
2
D
3

D
4
D
5
D
6
D
7

D
0
D
1
D
2
D
3

D
4
D
5
D
6
D
7

R
3
R
2
R
1
R
0

R
7
R
6
R
5
R
4

D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

R
0
R
1
R
2
R
3

R
4
R
5
R
6
R
7

A
0

1
1

A
1

1
3

A
2

1
5

A
3

1
7

O
E

1
9

Y
0

9
Y
1

7
Y
2

5
Y
3

3

U8:B

7
4
H
C
2
4
4

A
0

2
A
1

4
A
2

6
A
3

8

O
E

1

Y
0

1
8

Y
1

1
6

Y
2

1
4

Y
3

1
2

U8:A

7
4
H
C
2
4
4

C
L
K

1
Q
0

3
Q
1

4
Q
2

5
Q
3

6
M
R

2

U7:A

7
4
H
C
3
9
3

C
L
K

1
3

Q
0

1
1

Q
1

1
0

Q
2

9
Q
3

8
M
R

1
2

U7:B

7
4
H
C
3
9
3

D
0

3
Q
0

2
D
1

4
Q
1

5
D
2

7
Q
2

6
D
3

8
Q
3

9
D
4

1
3

Q
4

1
2

D
5

1
4

Q
5

1
5

D
6

1
7

Q
6

1
6

D
7

1
8

Q
7

1
9

O
E

1
C
L
K

1
1

U6

7
4
H
C
T
3
7
4

D
0

3
D
1

4
D
2

7
D
3

8
D
4

1
3

D
5

1
4

D
6

1
7

D
7

1
8

C
L
K

1
1

M
R

1

Q
0

2
Q
1

5
Q
2

6
Q
3

9
Q
4

1
2

Q
5

1
5

Q
6

1
6

Q
7

1
9

U5

7
4
H
C
T
2
7
3

C
P
B

_
I
P
B

C
P
A

_
I
P
A

SLIINQ

SLO
LOP

_OEP PCL

ARQ
BLK

_
O
E
A

F
E
A

F
E
S

_
C
L
S

D
0

3
D
1

4
D
2

7
D
3

8
D
4

1
3

D
5

1
4

D
6

1
7

D
7

1
8

C
L
K

1
1

M
R

1

Q
0

2
Q
1

5
Q
2

6
Q
3

9
Q
4

1
2

Q
5

1
5

Q
6

1
6

Q
7

1
9

U4
74HC273

CAR

FER
_CLR

A
0

5
A
1

3
A
2

1
4

A
3

1
2

B
0

6
B
1

2
B
2

1
5

B
3

1
1

C
0

7
C
4

9

S
0

4
S
1

1
S
2

1
3

S
3

1
0

U2

7
4
H
C
T
2
8
3

A
0

5
A
1

3
A
2

1
4

A
3

1
2

B
0

6
B
1

2
B
2

1
5

B
3

1
1

C
0

7
C
4

9

S
0

4
S
1

1
S
2

1
3

S
3

1
0

U3

7
4
H
C
T
2
8
3

A
0

1
1

A
1

1
3

A
2

1
5

A
3

1
7

O
E

1
9

Y
0

9

Y
1

7

Y
2

5

Y
3

3

U1:B
74HC240

A
0

2

A
1

4

A
2

6

A
3

8

O
E

1

Y
0

1
8

Y
1

1
6

Y
2

1
4

Y
3

1
2

U1:A
74HC240

_OER

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18

J1

CONN-H34

IOX
CK
_R
_DAD
DSG

Accumulator

R

S A

PC

RET
DOK
WRM

TITLE:

BY: PAGE

The Anitra CPU
Structural Logic

Eirik Bakke 1/2

D12 Q 9

CLK
11

Q
8

S
1
0

R
1
3

U11:B

74HC74

D2 Q 5

CLK
3

Q
6

S
4

R
1

U11:A

74HC74

LPK

CAR

BRK

_LPR_BRR

LPQBRQ

1

2
3

U15:A

74HC08

DSG
FES

10

9
8

U13:C

74HC00

_DAD
FEA

_IPA

_E1

13 12

U12:D

74HC04

LPKLOP

12

13
11

U17:D

74HC32

E0

E1
_OEA

_OEP

9

10
8

U15:C

74HC08

9

10
8

U16:C

74HC32SLI

SLO

_CLS

_E0

1

2
3

U16:A

74HC32

ARQ
_CLR

_LPR
_BRR

_R

CPB

BRQ 1

2
3

U14:A

74HC08

1

2
3

U17:A

74HC32

CPA

4

5
6

U17:B

74HC32

BLK
_IPB

12

13
11

U14:D

74HC08

IOX

WRM

4

5
6

U14:B

74HC08

FER

_LPQ
_OER

9

10
8

U14:C

74HC08

INQ
BRK

9

10
8

U17:C

74HC32

E0

12

13
11

U16:D

74HC32

E2

E2

E3

E3

E3

E3

_E2

1 2

U12:A

74HC04

_ESR

E3

_E0

D
2

Q
5

C
L
K

3

Q
6

S
4

R
1

U9:A

74HC74

D
2

Q
5

C
L
K

3

Q
6

S4 R 1

U10:A

74HC74

D
1
2

Q
9

C
L
K

1
1

Q
8

S10 R 13

U10:B

74HC74

D
1
2

Q
9

C
L
K

1
1

Q
8

S
10

R
13

U9:B

74HC74

45
6

U16:B
74HC32

1
3

1
2

1
1

U13:D
74HC00

ARQ

1

2
3

U13:A

74HC00

CK

CK

CK

CK

_ESR

_ESR

_ESR

E0

E1

E2

_
E
3

E
3

_E2

_E1

_E0

5 6

U12:C

74HC04
Note: Above gate for
timing purposes only

Note: Inverter for
timing purposes only

ES

BR LP

_ESR

3 4

U12:B

74HC04

_LPQ

_E1

4

5
6

U15:B

74HC08

RET
E0

LPQ E2 DOK

E0 11 10

U12:E

74HC04

PCL_E1 9 8

U12:F

74HC04

Note: Inverters for
timing purposes only

12

13
11

U15:D

74HC08

4

5
6

U13:B

74HC00

S
P
A
R
E
S

T
I
T
L
E
:

B
Y
:

P
A
G
E

T
h
e

A
n
i
t
r
a

C
P
U

C
o
n
t
r
o
l

L
o
g
i
c

E
i
r
i
k

B
a
k
k
e

2
/
2

D[0..7]

A[0..14]

XO0
XO1
XO2
XO3
XO4
XO5
XO6
XO7

XI0
XI1
XI2
XI3
XI4
XI5
XI6
XI7

DD0

DD1

DD2

DD3

DD4

DD5

DD6

DD7

DWR
_DAD

_DRQ

DSG

D
0
D
1
D
2
D
3
D
4
D
5
D
6
D
7

A
0
A
1
A
2
A
3
A
4
A
5
A
6
A
7
A
8
A
9
A
1
0

A
1
1

A
1
2

A
1
3

A
1
4

D7
D6
D5
D4
D3
D2
D1
D0

D0

D1

D2

D3

D4

D5

D6

D7

_DOK

D0
D1
D2
D3

D4
D5
D6
D7

A
0

1
0

A
1

9
A
2

8
A
3

7
A
4

6
A
5

5
A
6

4
A
7

3
A
8

2
5

A
9

2
4

A
1
0

2
1

A
1
1

2
3

A
1
2

2

C
E

2
0

W
E

2
7

O
E

2
2

D
0

1
1

D
1

1
2

D
2

1
3

D
3

1
5

D
4

1
6

D
5

1
7

D
6

1
8

D
7

1
9

A
1
3

2
6

A
1
4

1

U1
M48Z35

_PUP

R1
10K

R2
10K

R3
10K

R4
10K

R5
10K

R6
10K

R7
10K

R8
10K

CK

_DAD
DSG

_
D
A
D

R
9

1
0
K

R
1
0

1
0
K

R
1
1

1
0
K

R
1
2

1
0
K

D
S
G

WRM
_WE

_WE

CK

PDN

DOK

OSC

1
2
3
4
5
6
7
8
9

18
17
16
15
14
13
12
11
10

J2

CONN-H18

D03 Q0 2

D14 Q1 5

D27 Q2 6

D38 Q3 9

D413 Q4 12

D514 Q5 15

D617 Q6 16

D718 Q7 19

OE1

CLK11

U3

74HC374

A02

A14

A26

A38

OE1

Y0 18

Y1 16

Y2 14

Y3 12

U4:A

74HC244

A011

A113

A215

A317

OE19

Y0 9

Y1 7

Y2 5

Y3 3

U4:B

74HC244

_OE

4

5
6

U5:B

74HC00

_
D
R
Q

D
W
R

_DRQ

RET
DOK

RET

13

12
11

U5:D

74HC00

_CE

DWR _CE

WRM
_OE

8

9
10

U6:C

74HC02

10

9
8

U5:C

74HC00

11

12
13

U6:D

74HC02

1

2
3

U5:A

74HC00

5

6
4

U6:B

74HC02

2

3
1

U6:A

74HC02

CK30

_R29

_DAD28

DSG27

A[0..14]

D[0..7]

IOX 31

RET 32

DOK 33

WRM 34

J1

ATR-CPU
CONN-H34

C1
220uF

VI1 VO 3

G
N
D

2

U2
L78M05CV

C2
0.1uF

D2
1N5817

R15
10K

D1
1N4001

Q1
BC548

R14
100K PDN

R16
5.1K

C3
1uF

R17
30K

R18
10K

Q3
BC548

Q2
BC548

_PUP

R19
750R

J4

C
O
N
N
-
H
2

T
I
T
L
E
:

B
Y
:

P
A
G
E

A
n
i
t
r
a

D
e
v
e
l
o
p
m
e
n
t

B
o
a
r
d

E
i
r
i
k

B
a
k
k
e

1
/
1

P1 1

P14 11

P2 2

P3 3

P16 12

P4 4

P17 13

P5 5

P6 6

P7 7

P8 8

P9 9

P11 10

P25 14

J3

D25-MALE

2

3
1

U7:A

74HC02

5

6
4

U7:B

74HC02

8

9
10

U7:C

74HC02

11

12
13

U7:D

74HC02

R20 1K

OSC

X1
8.0000Mhz

Note:
Decoupling capacitors are
not drawn. Oscillator and
supervisory circuits may
be improved in future
revisions.

Q5
BC548

R23
100K

D
O
K

Figure 3: Schematics of the Anitra Development Board

The Anitra CPU Hardware Registers and Signals List
Symbol Full Name Description

Internal Registers
A Address register Fetches near addresses from data bus
S Segment register Fetches or clears current segment number
PC Program counter Counts 8 most significant bits of the instruction pointer
R Accumulator result Stores a value for arithmetic addition
LP End of loop detector Used to detect whether current instruction is last in loop
BR Branch if carry detector Used to fetch any carry signal during accumulator addition
ES Execution stepper Determines and holds the current execution step

External Input Signals
CK System clock Makes Anitra proceed to next execution step on positive edge
_R System reset Makes Anitra reset all of its internal registers when low
_DAD Debug fetch A Clocks A on negative edge during debug , should otherwise be high
DSG Debug fetch S Clocks S on positive edge during debug , should otherwise be high

External Output Signals
A[0..14] (Memory address bus Holds current address to be selected by memory
WRM Write enable memory Requests memory write when high
DOK Debug possibility notification Debug possible when high
RET Loop return notification Shutdown possible when high
IOX IO exchange request Requests IO exchange on positive edge/when high†

External Bidirectional Signals
D[0..7] Data bus Conveys data between CPU , Mem and external interface (I/O)

External Other Signals
VCC Power Power (+5V)
GND Ground Ground

Internal Signals to Registers
_CLS Clear S Clears S when low
_CLR Clear R Clears R when low
CPA Clear lower PC Clears PC's 4 least significant bits when high
CPB Clear upper PC Clears PC's 4 most significant bits when high
_IPA Increase lower PC Increases PC's lower 4 bit counter on negative edge
_IPB Increase upper PC Increases PC's upper 4 bit counter on negative edge
_OEA Output enable A Tri-state activates A when low
_OEP Output enable PC Tri-state activates PC when low
_OER Output enable R Tri-state activates R when low
FEA Fetch A Clocks A on positive edge
FES Fetch S Clocks S on positive edge
FER Fetch R Clocks R on positive edge
PCL Instruction pointer lower bit Defines instruction pointer 's least significant bit
SLO Segment lower bit out Overrides current segment number 's least significant bit
_ESR Reset ES Resets ES to first execution step when low
_LPR Reset LP Resets LP when low
_BRR Reset BR Resets BR when low
LPK Clock LP Clocks LP on positive edge
BRK Clock BR Clocks BR on positive edge

Internal Signals from Registers
CAR Accumulator carry Holds accumulator 's carry signal
ARQ PC argument Q denoting bit High when current argument is the last in instruction
BLK PC block change denoting bit Negative edge means next instruction is first in block
LOP PC loop start denoting bit Negative edge means next instruction is first in loop
INQ Instruction qualifier bit May hold current instruction's instruction qualifier bit
SLI Segment lower bit in Holds least significant bit fetched in S
E[0..3] Execution step Set high in turn according to the current execution step
_E[0..3] Execution step complement Set low in turn according to the current execution step
LPQ LP status May be high when current instruction is last in loop
_LPQ LP status complement May be low when current instruction is last in loop
BRQ BR status May hold carry of last accumulator operation

Internal Bus
R[0..7] Accumulator result bus Holds current accumulator value

† T
he

 d
at

a
bu

s
w

ill
 b

e
in

 th
e

in
pu

t s
ta

te
 w

he
n
I
O
X

 is
 h

ig
h.

 F
or

IO

 e
xc

ha
ng

e
, a

n
ou

tp
ut

 v
al

ue
 s

ho
ul

d
be

 fe
tc

he
d

fro
m

 th
e

da
ta

bu

s
on

 th
e

po
si

tiv
e

ed
ge

 o
f I
O
X

, a
nd

 a
n

in
pu

t v
al

ue
 s

ho
ul

d
be

he

ld
 o

n
th

e
da

ta
 b

us
 th

ro
ug

ho
ut

 th
e

hi
gh

 ti
m

e
of

 I
O
X

.

N
ot

e:
 A

n
un

de
rs

co
re

 (_
) i

n
a

si
gn

al
 n

am
e

de
no

te
s

an
 a

ct
iv

e-
lo

w
 o

r
ne

ga
tiv

e
ed

ge
-tr

ig
ge

re
d

si
gn

al
. B
[
0
.
.
n
]

 d
en

ot
es

 a
 b

us
 B

 o
f w

id
th

 n
bi

ts
.

Conclusions
Given my requirements, I have shown it possible to construct a computer that comes
close to a provable lower component limit, and my investigations suggests that a simpler
datapath portion of the CPU is unlikely to exist. In order to write a value to an address
in memory, at least four 8-bit wide data retaining units are needed simultaneously: one
to hold the value to be written to memory, one to hold the fi rst half of the destination ad-
dress while the second half is retrieved, and two for providing both parts of the address
of this second half of the destination address. Interestingly, one of these registers take

on the familiar role of a program counter. The computer hardware is, how-
ever, simplifi ed by placing limits on this register’s operation. The fi nished
computer, called Anitra, is capable of executing two primitive yet universal
instructions which are both based on an inverted addition operation.

The study of minimalist computers is interesting because it casts light upon
issues in computer architecture design that may otherwise go unnoticed,
and because it stimulates a better understanding of how software and
hardware specifi cations interact with each other. Software and hardware
engineers may not necessarily have the same perception of what is simple
and not.

Execution
step
number

Tri-state
activation: R or
Mem selected?

Tri-state activation:
A or PC (instruction
pointer) selected?

Value of
instruction
pointer's least
significant bit

Other control signals
generated

0 Mem PC 0 Clear S
Clear R

1 Mem PC 1 Fetch A

2 Mem A x Fetch S
Increase PC

0 Mem PC 0 Clear S
Fetch R

1 Mem PC 1 Fetch A

2 Mem A x Fetch S
Increase PC

3
None if current
instruction is last in
loop, otherwise R

A x

Write to memory
Fetch R if instruction
qualifier bit is 1
Have PC skip to next
block if accumulator
overflowed and
instruction qualifier bit is
1
Request IO exchange
request if current
instruction is last in loop

x = without significance (because PC is not selected)

A Lower Limit

I have tried to fi nd a fi nd, by logic, a set of components that
cannot be omitted from the computer architecture. This is fea-
sible due to the specifi cness of this investigation. While the
argument below is not meant to be of a mathematically satis-
factory standard, it did provide is a very good starting point for
the actual design. The premises of the argument are the basic
requirements given in “Goal and Requirements“.

1. The computer must have access to memory
Following the requirement of including between 2 and 64 kilobytes of main memory, we must include an SRAM chip;
the data-retaining components found in the 74-series cannot hold more than single bytes at a time. We will have to
choose among standard data and address bus widths. Of practical reasons, the data bus width is already more or less
given to be 8 bits, since 4- and 16-bit standard memories fall outside of our desired size range. This leaves us with an
address bus that should be between 11 and 16 bits wide, inclusive. A full address will in any case not fi t in a single data
bus width. For the moment, we can decide to use an address bus of 16 bits, which is exactly twice the size of the data
bus. This will simplify later parts of the discussion.

2. The computer must be able to combine data
A working computer must in some way or another be able to logically combine two values from memory into a single
value that can be written back into memory. Without such a capability, there would be no remotely practical way of im-
plementing arithmetic functions in software. All bits on the bus must be included in this operation; if some of the bits are
not, they will be logically inaccessible for all arithmetic functions and hence wasted memory. Hence, we must include
in our design the appropriate logic for combining two values of data bus width.

Combining two values can either be done with simple two-input gates or with arithmetic full adders. The number of ICs
will be the same for both techniques, but an adder confi guration is far more logically complex. In a minimalist computer
design, it is not altogether obvious why the relatively complex addition operation should be worthy of inclusion. How-
ever, the addition operation has one essential property that justifi es its use: it has the ability to logically combine not
only two values of several parallel bits each, but also to combine the individual bits within these values through a carry
mechanism. Without this ability, the software would in the best case have to mask out and process each data bit indi-
vidually in order to perform arithmetic operations, which would be highly ineffi cient. This fact is important, and explains
why addition is often taken as the most basic of all computing operations. Hence, our design may include an arithmetic
adder of data bus width. However, the addition operation itself is not strictly universal enough for software synthesis
of, for instance, subtraction. Because the SRAM uses a bidirectional data bus, a tri-state buffer must in any case exist
between source data to be written to memory and the data bus. By using an inverting rather than a non-inverting tri-
state buffer at this point, the functionality of the data combining logic may be enhanched without extra cost in terms of
design complexity.

3. The computer’s software must have access to the memory
A computer must be able to store any value at an address in memory that originates completely from memory itself. Put
simpler, a computer must be able resolve an address reference. Memory locations not reachable in this way would in
the best case be extremely hard to utilize, because there would be no practical way for the software to specify where
to perform operations in memory.

To load a complete address from memory, two read cycles must be completed, since a single 16-bit address must be
be split into two parts to fi t in 8-bit memory locations. In order to write a value to an address loaded this way, at least
four 8-bit wide data retaining units are needed simultaneously: one to hold the value to be written to memory, one to
hold the fi rst half of the destination address while the second half is retrieved, and two for providing both parts of the
address of this second half of the destination address. This is a very important point. Data retaining units available in
the 74-series include, in order of decreasing internal logic complexity, programmable counters, fl ip-fl ops, shift registers
and non-programmable counters. However, only the fi rst two of these can be programmed directly from a bus of paral-
lel bits. The simplest fl ip-fl op is the D-fl ip-fl op. In the situation above, the unit that holds data to be written to memory
cannot be anything simpler than a set of D-fl ip-fl ops; its value must be able to originate from the data bus as well. Two
of the other three units must also be sets of D-fl ip-fl ops in order to be able to hold addresses originating from memory.
Hence, at least three of the four required data retaining units must at least be D-fl ip-fl ops. The last data retaining unit
may be a non-programmable counter if nothing further is shown to be needed. Given that no further data retaining units
are introduced at this point, the outputs of two of the required four data retaining units will need to access the same
memory address inputs, as they will necessarily contain the same part of two different addresses during the retrieval
of an address from memory. The selection between these two units’ outputs can be done either with multiplexers or tri-
state buffers. As at least one of the two data retaining units will be a set of D-fl ip-fl ops that can include a tri-state buffer
on its IC, and as this will save one IC circuit, the tri-state approach is chosen. The other data retaining unit sharing this
half of the memory address must necessarily be the possible non-programmable counter; the other half of the memory
address must come from a set of D-fl ip-fl ops if it shall be possible to fetch it from the memory itself.

4. The computer’s various components must work together
To function as a computer, the various required components must interact in the correct order, and a certain amount of
logic is needed to generate the appropriate control signals for these. The number of simple gates logically involved in
this control logic is likely to be small compared to that of, for instance, a single data retaining unit of data bus width, due
to the serial nature of control signals. In addition, it will be left to the control logic to get as much functionality from the
computer as possible. For these reasons, I have assume considerably more freedom during the design of the control

Goal and Requirements
The question of this investigation is as follows: How simple can
a basic computer be designed to be, given the requirements be-
low?
• A computer is a machine that, given enough time and

data retaining units (memory), can perform any rigid-
ly defi ned computational operation on a set of input
data.

• The hardware of the computer should be designed in
detail using only standard 74-series TTL-compatible
digital logic circuits (ICs). A single standard SRAM chip
may may be used for main memory, since this requires
less supporting circuitry than DRAM. Some analog
support circuits may be included as appropriate.

• The design’s order of simplicity is given primarily from
the total number of simple logic gates logically in-
volved in the standard circuits used, but also from the
number of physical ICs and connection points involved.
It should be practically possible to build a prototype of
the hardware.

• The amount of accessible and addressable memory
should not be the main functional limitation of the com-
puter (see the fi rst point). Specifi cally, the computer
can be designed for an address space of anywhere
between 2 and 64 kilobytes, inclusive.
Given the necessary level of complexity decided on
after considering the requirements above, it is also a
goal to get as much functionality as possible out of the
available components through effi cient design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

