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Fig. 1. Interactive adaptation of the layout of the data to be displayed, based on the available horizontal width of an on-screen window.

Abstract—Domain-specific database applications tend to contain a sizable number of table-, form-, and report-style views that must
each be designed and maintained by a software developer. A significant part of this job is the necessary tweaking of low-level
presentation details such as label placements, text field dimensions, list or table styles, and so on. In this paper, we present a
horizontally constrained layout management algorithm that automates the display of structured hierarchical data using the traditional
visual idioms of hand-designed database Uls: tables, multi-column forms, and outline-style indented lists. We compare our system
with pure outline and nested table layouts with respect to space efficiency and readability, the latter with an online user study on
27 subjects. Our layouts are 3.9 and 1.6 times more compact on average than outline layouts and horizontally unconstrained table
layouts, respectively, and are as readable as table layouts even for large datasets.

Index Terms—Hierarchy data, tabular data, nested relations, layout management
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1 INTRODUCTION

An important class of visualizations in everyday business use consists
of the table-, form-, and report-style views found in most graphical
relational database applications [2]. The data being displayed is typ-
ically structured, meaning that each value has an associated type and
label in a schema. Furthermore, the data frequently needs to be pre-
sented in a hierarchical manner, because of the need to visualize one-
to-many relationships between entities in the database. For instance,
when users request “a list of employees, grouped by department” or
“all information about a customer, including associated support tick-
ets and a list of open orders,” what is being displayed is a structured
hierarchical view of the underlying relational data.

Unlike other kinds of office productivity software, database appli-
cations tend to be tailored for specific target domains such as payroll,
customer relationship management (CRM), or inventory tracking, or
even more specific subdomains such as hotel reservation systems, in-
ventory management for the offshore industry, or bug tracking sys-
tems for software developers [1]. The domain-specific nature of these
systems makes them costly to develop and maintain, and there is sel-
dom an opportunity to hire a graphic designer every time a new form
needs to be created or an existing one updated. Yet, the software de-
veloper must invariably define the details of the view’s visual layout:
the location of labels, the dimensions of text fields, the width of table
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columns, the organization of form fields into columns on a page, and
so on. Since each database application can contain a sizable number of
views—say, one table view and one form view per major (non-weak)
entity type in the database schema, plus any special-purpose report
views—maintaining the detailed visual layouts of each view is a sig-
nificant development burden, and can lead to poor user interfaces.

The problem we approach in this paper is as follows: How can the
visualizations required of typical domain-specific database applica-
tions be generalized in such a way as to eliminate the need for manual
tweaking of low-level visual details? A general-purpose visualization
system for nested relations data would be of direct utility to any one of
many [15, 29, 27, 28, 16, 2] previously proposed database user inter-
faces based on structured hierarchical views. To scope our problem,
we limit ourselves to the task of displaying simple textual data that has
been pre-organized to conform to some hierarchical but non-recursive
schema. This includes the documents of most data interchange formats
based on XML and JSON, as well as the output of any object-relational
or relational-to-XML mapping system that uses a finite number of
standard SQL queries to produce its output, e.g. SilkRoute [8]. An
equivalent data model is the nested relational model; see Levene [18]
for an extensive bibliography.

We present a layout management algorithm that automates the dis-
play of structured hierarchical data using visual idioms seen in tradi-
tional hand-designed database Uls: tables, multi-column forms, and
outline-style indented lists. The system gathers simple statistics about
fields in the input schema, and uses these to make layout decisions
which are then applied uniformly across tuples in each input subre-
lation. We compare our hybrid layout system with pure outline and
nested table layouts with respect to space efficiency and readability,
the latter with an online user study on 27 subjects. Our layouts are 3.9
and 1.6 times more compact on average than outline layouts and hori-
zontally unconstrained table layouts, respectively, and are as readable
as table layouts even for large datasets.
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2 RELATED WORK

Tree Visualization. While our layout algorithm assumes the presence
of a schema along with its hierarchical input data, it is always possible
to derive a valid schema from the input data itself, and our system
supports the visualization of any tree-structured input data in XML or
JSON form, without further annotation. Our visual layouts make the
most sense in cases where the schema can correctly be assumed to be
non-recursive, which was the case for 9 out of 10 example datasets in
the XML corpus we used for our user study. Thus, our system falls into
the tree visualization category of information visualization research.
Most differences arise from our assumption of a different variation of
the tree-structured input data model than is typically seen in other tree
visualization systems. Analogous data model specialization is seen for
instance in Robertson’s polyarchies [23]. While our system does not
perform any kind of aggregation on input data, but merely displays
every piece of data in full, the same is true of many standard kinds of
tree visualizations.

Academic research on visualizations for tree-structured data has
been surveyed by Shneiderman [24] and, recently, Graham and
Kennedy [11]. In our case, we are dealing with the subproblem of
single tree visualization, with the additional constraint that we are
working with structured data only, i.e. data that conforms naturally
to some schema. In Graham’s taxonomy, the visualizations produced
by our system form a hybrid between the nested and indented list rep-
resentations. While nested tables, an important base case in our layout
system, organize data in a grid of rows and columns, they do not fall
into the matrix representation category, but rather among the nested
representations, since data leaf nodes are always contained within the
visual boundaries of their parent nodes.

The study by Chimera and Shneiderman [6] compared three varia-
tions of the outline-style indented list view; two of these were interac-
tive. Their results suggest that future versions of our system should
include collapsible nodes in indented lists. Ziemkiewicz et al.[31]
compare four different classes of tree visualizations, including three
nested variants. None of the layouts tested include tables or hybrids
between tables and indented list representations. Ghoniem et al. [10]
provide a taxonomy of readability tasks on graphs and present a study
comparing node-link and matrix representations.

Treemap [14] is maybe the most well-known nested or Venn
Diagram-style tree representation. Treemaps fit an arbitrarily sized
tree into a viewport of pre-defined dimensions, by making subsequent
levels smaller and smaller. The relative size of siblings is determined
by some semantically significant weight associated with each node in
the tree, such as disk space consumed in a map of a file system hier-
archy. In contrast, our own system allocates to leaf nodes whatever
visual space is necessary to display the contained primitive text values
at a constant font size. This is a requirement from the perspective of
our target applications. Our system does, however, constrain layout
dimensions in the horizontal direction, so that only vertical scrolling
is needed if the layout can not fit in the desired viewport. In treemaps,
siblings are arbitrarily stacked vertically or horizontally at every other
step in the recursion. In our own system, tuples are always stacked
vertically. Fields are stacked either horizontally, when contained in
a nested table, or vertically, when part of an outline view. This en-
sures one kind of visual consistency while still allowing the widths of
layouts to be constrained.

FISH [20] is a variation of the Treemap concept. In this system,
styling attributes can be used to configure various node presentation
details, including the choice to stack siblings either vertically or hor-
izontally. Such styling must be applied to each individual data node,
unlike in our own system, where styling is applied to schema nodes
only. Strip Treemap [3] optimizes the presentation of a treemap by
sizing rectangles such that they can be stacked in contiguous “strips”
without broken horizontal lines. Like Treemap, and unlike our own
system, both FISH and Strip Treemap assume that all data must fit
into a viewport of predetermined size both in the horizontal and verti-
cal direction.

Elastic Hierarchies [30] and EncCon [21] both combine node-link
representations with some other representation in order to visual-

ize tree-structured data. Node-link representations are typically less
space-efficient than nested or indented representations, and seldom ap-
pear in traditional database GUISs, our target application. Thus, we did
not use them ourselves. EncCon uses node-link representations in ev-
ery level of the tree, but maintains an invisible Treemap-like layout
to determine a favorable positioning for each node. In Elastic Hier-
archies, subsequent levels may use either Treemaps or node-link rep-
resentations, determined interactively. The Elastic Hierarchies paper
also has a relevant discussion of the design space of hybrid tree lay-
outs, but does not consider nested tabular layouts. Neither does Gra-
ham and Kennedy’s survey. This is likely because tabular layouts ap-
ply only to structured data, where series of children in a tree all can be
expected to have the same substructure. Systems that solve the more
general problem of dealing with semi-structured (schema-free) data
will not naturally be able to take advantage of tabular layouts.

XML Visualization. VisualXML and XMLAD [7], like Elastic
Hierarchies and EncCon, use node-link representations as part of their
interface, but are geared towards XML visualization. The XMLAD
system does indeed use tabular representations as part of the output
layout, but does not support nested tables. Thus, only the bottom log-
ical relations in the data may be displayed as tables. Similarly, the
Visual XML system uses outline or list-style representations for the
bottom relation level of each subtree. Again, both XMLAD and Vi-
sualXML use a node-link representation for all higher levels. This is
in contrast with our own system, which uses a column-enabled, in-
dented list for a variable number of top levels in the tree, followed by
nested tables for a variable number of bottom levels. Furthermore, our
algorithm makes these layout decisions automatically, except where
manually overridden.

Tree Rewriting provides a visual language “very similar to the
lambda calculus in simplicity and expressive power” [13]. While such
systems are general enough to produce just about any layout from a set
of input data, a user must manually specify how these layouts are to
be constructed. Unlike our system, neither is able to produce a default
layout subject to a constraint such as available page width. Further-
more, no mechanism is available to help ensure the careful alignment
of column fields that is required in order to produce tabular or nested
tabular sublayouts.

A relevant class of commercial systems consists of report genera-
for tools such as Crystal Reports' and Altova XML-Spy/StyleVision?.
An extensive survey is provided by Krdl [17]. These systems let the
user build output layouts analogous to those produced by our own sys-
tem, using a variety of input data sources. The layout building process
is manual. Altova’s “Grid View” is similar to a nested table view,
but with single-level column headings repeated for every subrelation.
Navigation requires heavy use of both vertical and horizontal scroll-
bars as well as manual collapsing and expanding of data nodes. Altova
does combine vertical arrangements of tuple fields in an outline-style
sub-view with the use of nested tables, but is unable to render subrela-
tions as indented lists.

UI Generation. Supple [9] generates widget-based user interfaces
for devices of various sizes and contexts using a cost optimization
algorithm, but does not deal with table layouts or other layouts that
take advantage of repeated structure in data that adheres to a schema.
The Right/Bottom strategy [4] defines heuristics for widget place-
ment in dialog boxes, but similarly does not deal with structured re-
lational data. Database application builder tools such as FileMaker
and Microsoft Access* include wizards to help with the creation of
new forms, but are only able to layout out a single level of fields au-
tomatically, and can not use statistics about the data in each field to
make structural layout decisions.

Tabular Systems. Show Me [19] is an autostyling system for
Tableau, an interactive visualization system. Since Tableau operates
on tabular input data and produces Pivot-table or cross-tab-based out-

'http://crystalreports.com
2http://www.altova.com/xml-editor
3http://www.filemaker.com
4http://office.microsoft.com/access
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Fig. 2. The nested table layout is the most common way to visualize a nested relation, and is supported as a special case in our algorithm. Here,
we show nested relational data generated from an academic course catalog in nested table style, with one of the nested columns enlarged to show
terminology. Nested table layouts stack tuples in the vertical direction and the fields of each tuple in the horizontal direction, with all field labels

collected in a header on top.

puts, it does not fall into the tree-structured data visualization category.

Nested table layouts are used in Related Worksheets [2] and in ap-
plications produced with AppForge [28] or App2You [16]. These sys-
tems do not allow the nested table layouts to be re-styled as indented
lists or deferred to lower layers of the tree-structure. They can not
automatically constrain the width of the layout to the available page
width.

FOCUS [25], TableLens [22], and the system by Tajima and
Ohnishi [26] deal with the problem of displaying large, mostly flat
tables. The latter system includes a “Record” viewing mode that re-
sembles a single-level form view. While all of these systems support
certain cases involving values spanning multiple cells, they do not op-
erate on structured hierarchical data in general. Chi’s visualization
spreadsheets [5] combine a table layout at the outer level with cells
containing plotted 3D graphics, but require the user to define each vi-
sualization using commands, and are primarily focused on numerical
data.

Text Layout Systems. Text document layout systems, like the one
described by Jacobs et al. [12], deal with the problem of rendering a
given amount of text with a given font size on a set of dimensionally
constrained pages. They are otherwise different from our own system,
since they operate on a very different class of input data.

3 LAYOUT ALGORITHM

We now describe our layout algorithm. For the purposes of exhibition,
we start by discussing basic nested table and outline layouts, then dis-
cuss hybrid table/outline layouts, and finally show the complete steps
to produce the layouts automatically.

The purpose of the algorithm is to produce a compact but read-
able view of tree-structured input data that conforms to a non-recursive
schema, or, more precisely, nested relational data. Whenever possible,
the regularity of the input data’s schema should be used to maximize
the readability of the data. For instance, tabular data should be ren-
dered as a table, with proper column headings describing the name of
fields in the schema. We may not require user input informing layout
decisions beyond what can be derived from the data itself.

3.1 Nested Relations and Nested Table Layouts

Our algorithm operates on tree-structured data conforming to a non-
recursive schema. We have chosen the nested relational model as the
concrete data model for our implementation, since it tends to lead to

simple tree traversal code. It is equally feasible to use a different tree-
structured data model such as that of XML, and in connection with
the user study, we did write a routine for importing arbitrary XML
documents.

The terminology of the nested relational model is as follows: A
value is either a primitive or a relation, where a relation is defined as
a set of tuples, each containing a set of fields identified by labels, each
containing a value, recursively. The schema of a value either defines
the value to be a primitive, or defines the value to be a relation, with
schemas further specified for each of the latter’s fields, recursively.

Nested relational data is most commonly illustrated in a nested ta-
ble layout. An annotated example of such a layout is shown in Fig-
ure 2; it renders data about the first few courses in an academic course
catalog. A nested table layout consists of a header area (shown in
blue) and a content area (shown in beige). The header area reflects
the schema structure of the displayed nested relation, with simple la-
bels for columns containing primitive fields and recursive labels for
columns containing relation fields. Columns containing relation fields
may recursively contain columns for either primitive or relation sub-
fields. In the content area, tuples in the rendered relation are stacked
vertically with row separators between them. Each tuple renders its
primitive values as simple strings and its relation values recursively as
the content area of another nested table.

3.2 Outline Layouts

Nested table layouts, like the one previously seen, can quickly become
extremely wide if many fields are to be displayed. For on-screen inter-
faces, the need for horizontal scrolling is undesirable, and for printing
on paper, pagination in the horizontal direction is awkward. As an-
other basic alternative to the nested table layout, we consider the out-
line layout, which is common among XML editing tools. Figure 3(a)
shows the same data as before rendered using such a layout.

In an outline layout, tuples are stacked vertically in an indented
bullet list fashion; we show one bullet per tuple. Unlike the nested
table layout, which puts the fields of each tuple next to each other on a
row, the outline layout stacks the tuple fields vertically as well. Thus,
having more fields in a schema makes the layout taller, not wider. In a
tuple in an outline layout, primitive fields are rendered as strings with
their respective schema labels to the left, whereas relation fields are
rendered recursively with their schema labels above, extended to the
full width of the layout area. The color scheme is the same (blue and
beige) for labels and values in an outline layout as for the header and
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(f) Schema-only hybrid layout used to partition columns in (e)
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Fig. 3. We illustrate our algorithm by enabling its features one by one and producing successive layouts of the data from Figure 2. All layouts are at
the same scale. (a) is a basic outline layout; this layout renders tuples in relation values as indented bullets, stacks the fields of each tuple vertically,
and puts labels to the left of primitive values and above relation values. (b) and (c) show basic hybrid layouts, at two different widths, that use the
outline layout at the first level but switch to nested table sublayouts wherever a table can fit within the available horizontal space. (d) justifies the
columns of the table sublayouts to fill the remaining available horizontal space. (e) adds columns to the outline sublayout to use horizontal space
more efficiently. (f) is a special schema-only layout generated by the algorithm to calculate ideal break points for the columns in (e).



content area of nested tables, respectively.

The outline layout, unlike the nested table layout, supports the con-
cept of a horizontally constrained width. Like the layouts produced by
our final algorithm, an outline layout can be produced for any avail-
able width (with some minimum constraints), breaking text in primi-
tive value areas as necessary. Our system distinguishes between fixed-
and variable-length primitive fields; value areas for fixed-length prim-
itive field are always rendered at their predicted width, whereas ar-
eas for variable-length primitive fields are rendered to the full avail-
able width. This ensures that the visual width of a particular primitive
field remains the same between successive tuples, even when the ac-
tual value differs. The rationale is two-fold. First, if layouts are to be
used for data entry or data editing in a database application, the width
of an input field should be commensurate with the expected size of
its values. Second, keeping the perceived overall shape (gestalt) of
successive tuples of the same relation schema similar should make it
easier for a user to visually scan for specific fields in those tuples.

3.3 Hybrid Layout

Whereas nested table layouts quickly grow wide, outline layouts tend
to be tall and narrow. Outline layouts use space inefficiently by only
starting values on the left-hand side of the page, and by repeating
schema labels once for every value. They are also harder to read than
table layouts, since they tend to put values from the same schema field
but from different tuples far apart.

In Figure 3(b), we introduce a hybrid layout that embeds nested
tables inside an outline layout. This saves vertical space compared
to the pure outline layout in Figure 3(a). Like for the outline layout,
we assume that we are given a constrained horizontal width to work
with, such as screen size or page width for printing. We then create a
layout that is guaranteed to fit within this horizontal width. This avoids
horizontal scrolling or pagination, and ensures that the layout will only
grow in the vertical direction as more tuples or fields are added.

When building a hybrid outline/table layout, the algorithm must
start at the root level of the relation schema and decide, for each rela-
tion field, whether to render that relation field using a nested table or
another level of an outline layout. If the decision is made to render a
relation field using an outline layout, the decision process is repeated
recursively for each of its fields. If the decision is made to render a
relation field using a nested table layout, all child fields are rendered
as a nested table layout as well. While our recursive layout genera-
tion algorithm technically supports embedding outline sublayouts into
nested table layouts, this makes little typographical sense, and we do
not make use of this case.

The decision to use an outline layout vs. a nested table layout for
a given relation schema could reasonably be made using a cost opti-
mization strategy, for instance based on the total area consumed by
the layout in each case. However, because nested table layouts al-
most invariably consume less space than corresponding outline lay-
outs, a simpler heuristic is possible: always use a nested table layout if
there is enough horizontal space available for it. This is the rule used
in our algorithm; it is illustrated by contrasting the narrow layout in
Figure 3(b) with the wider layout of Figure 3(c). In Figure 3(b), the
layout is constrained to a small width, and small nested tables have
been chosen by the heuristic for relation fields Course Listings, Grading,
Sections/Meetings, and Sections/Instructors. All higher-level relations are
rendered using outline sublayouts. In Figure 3(c), the same data is ren-
dered at a larger constrained width, allowing both the Sample Reading
List relation field and the entire Sections relation field to be rendered as
a nested table. Note that a hybrid layout that is given enough horizon-
tal space to work with will always degenerate to a pure nested table
layout.

Since the outline vs. nested table decision heuristic depends on
whether or not there is enough horizontal space for a table, the deter-
mination of table column widths is important at this stage. For rela-
tion fields, table columns are as wide as the sum of their child fields’
columns, plus separator lines and side margins, as well as any extra
space needed to accommodate the relation column’s own header la-
bel. For fixed-width primitive fields, the width of the table column

is simply the width of the field. For variable-width primitive fields,
we experimented with various heuristics, and found the average width
of values in the field to be a sensible minimum, limited upwards to a
constant value (on the order of 50 characters, a standard book column
size). Primitive columns also need to be wide enough to accommodate
their schema labels, which may often be wider than the actual values
in the fields. For the latter case, we automatically use vertical column
labels in tables if this makes the column narrower for the purposes
of the outline vs. nested table decision. Examples are the Format and
Number column header labels in Figure 3(c).

After the minimum widths of table columns have been determined
and the decisions to use outline vs. nested table sublayouts at each re-
lation level have been made, additional horizontal space may be avail-
able to the right of nested table sublayouts. A separate table justifica-
tion step uses the remaining space to first, for readability, make any
previously vertical column headers’ labels horizontal. This is done
in a greedy order to minimize the number of remaining vertical col-
umn labels. Then, any remaining horizontal space is distributed among
columns holding variable-length primitive fields, in proportion to their
fields’ average lengths. The table justification step is illustrated in the
transition from Figure 3(c) to Figure 3(d).

Note again that layout styling decisions, such as table column
widths or whether to use an outline or a table sublayout for a given
subrelation, are made once for each field in the schema of the input
data rather than once for each value in the input data. This means,
for instance, that in a given layout like Figure 3(c), every instance of
the Sections relation will be rendered in the same way (either as a table
or an outline), regardless of its actual content in each instance. The
rationale is similar to that for making primitive fields in outline mode
always the same width.

3.4 Columns in Outline Layouts

While the hybrid layouts layout shown in Figures 3(b), (c), and (d)
save a substantial amount of space compared to corresponding out-
line layouts, they still use horizontal space inefficiently in cases where
small primitive fields can not be made part of a table and where only
tables with narrow content can be used. In form-style database user in-
terfaces, the traditional solution is to make use of multiple columns of
fields. Note that these are a different kind of columns than the columns
in nested tables; they allow different fields in an outline layout to be
organized in multiple adjacent stacks. We now show how our system
can automatically incorporate columns in outline sublayouts with no
manual styling required.

We considered various approaches to the problem of introducing
columns into outline layouts. Design questions include how to pick
the right number of columns to use, how to pick the width of each
column, whether to allow certain fields to span multiple columns, and
after what fields a new column should be started. We decided to make
two simplifying assumptions which seem to work reasonably in prac-
tice: (1) the number of columns to use is based solely on the available
horizontal width, and (2) every adjacent column has the same width.
So for a layout of a width corresponding to a typical letter-size page,
for instance, the algorithm would use a two-column layout in the root
level outline. However, one complicating issue must still be dealt with:
relation fields that could be rendered in a table layout need to be al-
lowed to span multiple columns if necessary. We settled on the follow-
ing rule: any relation field in an outline is excluded from participating
in a set of multiple columns if that would cause it to be rendered as
an outline. There is no requirement that the field would actually have
to be rendered as a nested table if excluded, but if the excluded field
is still rendered as an outline, that outline layout is still subject to the
usual heuristics about whether to use columns or not at that next level.

For implementation purposes, the algorithm divides the fields of a
relation displayed in an outline layout into multiple column sets, each
which contains again a list of columns, each which contains the fields
in the column. To populate column sets, the algorithm iterates over
outline fields in the order they appear in the schema, assigning each
to the current column set. If an excluded field is encountered, it is
assigned to a new column set of its own, and a new current column
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Fig. 4. A comparison between our hybrid outline/table layout and a pure nested table layout and a pure outline layout, for the case of displaying a
single tuple with many fields, including relational fields containing other nested tuples. Each layout is showing the same data in its entirety, at the
same scale and font size. Outline layouts waste space by concentrating data to the left of the screen and by repeating labels for each value. Table
layouts waste space when different fields in the same subrelation require different amounts of vertical space. Table layouts also tend to become

very wide, requiring horizontal scrolling if viewed on a screen.

set started. No reordering of fields is done at any point, as the order
of fields in the schema is considered significant for presentation pur-
poses. After all fields have been assigned to column sets, each column
set partitions its assigned fields into columns. Figure 3(e) shows the
final hybrid layout with column support. The example layout has a
single outline sublayout with 3 column sets; the first column set has
two columns and contains the fields Course Listings through Description
in the first column and the fields Max. Enroliment through Grading in the
second column. The second and third column sets each have only one
column with a single field in each, containing the fields Sample Reading
List and Sections, respectively.

The partitioning of columns in a column set, that is, after what fields
to start each column, requires a heuristic. Simply giving each column
the same number of fields does not work well, since some fields fre-
quently take up more vertical space than others. A better approach is
to split the columns in such a way as to minimize the total vertical
space consumed; this can be done easily with a dynamic program-
ming routine. However, if this is done independently for each tuple
being rendered, two tuples might end up having differently partitioned
columns, with different fields starting the columns in each case. This
is not ideal for readability. Instead, as before, we make the decision of
where to begin new columns only once for the entire layout.

To allow calculation of optimal column partitioning positions on the
basis of only aggregate information about the input, we allow our lay-
out generation algorithm to generate schema-only versions of sublay-
outs. For instance, the schema-only layout for the layout in Figure 3(e)
is shown in Figure 3(f). In a schema-only layout, variable-length prim-
itive fields are sized according to the average width of the field in the
entire dataset. Relation fields are rendered, in outline or table form,
with a single placeholder tuple only, but subsequently padded such
that the size of the subrelation layout is proportional to the average
cardinality of that relation throughout the entire dataset. Thus in Fig-
ure 3(f), the Description field is taller than the Title field, and there are
about two rows’ worth of space allocated in the Sample Reading List ta-
ble. Optimal column partitioning decisions are then made using these
estimated schema-only layouts.

The final class of hybrid layouts produced is considerably more
compact than both the outline and the nested table layouts, and can
be produced automatically with no manual input. Figure 4 shows a
scale comparison between the three layout styles, each showing a sin-
gle nested tuple from the course catalog example. In this case, the

hybrid layout would permit significantly more data to be fit on a single
screen without scrolling in either the vertical or the horizontal direc-
tion. We can also see that large nested table layouts often waste space
whenever two values in the same tuple take up different amounts of
vertical space.
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To produce the hybrid layouts described, our system makes two passes
over the input data while maintaining a stylesheet as the only other
common data structure. The stylesheet maps schema paths and prop-
erty types to property values, that is, each node in the schema has one
value for each property. See Table 1 for the list of stylesheet proper-
ties. Before the algorithm starts, a subset of properties will already
have been set as constants, such as the choice of fonts and separator
styles. Our algorithm’s first pass over the input data is during the Mea-
sure phase, which finds the average rendered width of each primitive
value and the average cardinality of each relation value. The applica-
tion of heuristics to set remaining stylesheet properties is then done in
a subsequent pass over the schema only, the Auto-Style phase. Finally,
the output layout is constructed in the Layout phase, which is the second
pass over the input value. The Auto-Style and the Layout phases execute
the same code, but with the Auto-Style phase traversing a schema-only
version of the data structure used to maintain context, and using the
aforementioned heuristics to set undefined stylesheet properties when-
ever they are encountered. The heuristics for setting stylesheet prop-
erties during the Layout phase are described in Table 1.

Implementation

4 INTERACTIVE FEATURES

While our evaluation focuses on the static aspects of our layout man-
agement algorithm, our implemented system includes multiple fea-
tures oriented towards interactive use.

A requirement for many kinds of interactions is to be able to make
selections among displayed elements in the layout. Our system sup-
ports a spreadsheet-like cursor which can be used to select any cell
in the layout, where a cell is defined as either a label for a primitive
field, a label for a relation field, or a primitive value. Selections can be
made either by clicking the mouse or by moving the cursor with key-
board navigation keys (arrow keys, Home/End, and Page Up/Page Down).

5To see the interactive features described in this section in action, we rec-
ommend watching the demo video accompanying this article.



Table 1. Properties defined, for each schema node, by a stylesheet.
P, R, and P R indicate properties applicable to primitive nodes, relation
nodes, or both, respectively. We have omitted color- and border-related
properties.

Basic Styling Constants
R | OutlineBulletStyle. Bullet type for bulleted tuples in outline sublayouts.
R |OutlineIndentWidth. Indentation amount for bulleted tuples in outline sublayouts.
R | OutlineTupleSpaceHeight. Vertical space between tuples in outline sublayouts.
R | TableNestSpaceSideWidth. Horizontal margin amount for nested tables.
P R | LabelTextStyle. Text style for outline labels or table headers.
P | ValueTextStyle. Text style for values in outline or table sublayouts.

Constant Heuristic Parameters
R [ OutlineMaxLabelWidth. Maximum width of labels in outline sublayouts.
R | OutlineColumnMinWidth. Minimum width of each outline column.
P |[OutlineMinValueWidth. Minimum width of a primitive value in an outline.
P |[OutlineSnapValueWidth. Multiple to round up to when setting the width of a non-
variable primitive value in an outline sublayout.
P |TableMaxPrimitiveWidth. Maximum width that can be allocated to a table
sublayout column with variable-length primitive values, before table
justification.

Properties Set During Measure Phase
R [ OutlineLabelWidth. Width of labels in outline sublayouts. Sibling fields all use the
same width, which is defined at the parent relation level.

R | AverageCardinality. The average number of tuples in each subrelation.
P |IsVariableLength. Whether a primitive field holds long strings of variable length.
P |ValueDefaultWidth. Average width of primitive values in this field when rendered
with ValueTextStyle, or maximum width for non-variable length fields.

Properties Set During Auto-Style Phase

PR |StartNewOutlineColumn. True for the first field in each column of an outline
column set. The heuristic partitions columns based on schema-only layouts that
use ValueDefaultWidth and AverageCardinality to estimate field sizes.

PR [StartNewOutlineColumnSet. True for the first field in each outline column set.
Column sets allow some sibling fields to be organized in multiple columns and
others not. The heuristic puts a field in its own single-column column set if it
would otherwise contain an outline sublayout.

PR |UseVerticalTableHeader. Whether to display a label in a table header vertically.
The heuristic initially assumes vertical labels for primitive fields if this makes
the column narrower, but restores as many horizontal labels as possible when
the table is justified.

PR |[TableColumnWidth. The width of each table column. Primitive columns are
ValueDefaultWidth wide before justification; relation columns are the sum of
their children plus twice TableNestSpaceSideWidth. Columns are also extended
to accomodate their labels, as necessary.

R | UseTable. Whether to use an outline or a table sublayout for this relation. A table
sublayout is used iff it its width before justification is less than or equal to the
available horizontal space.

Because the aforementioned definition of a cell serves to ensure that
no two cells can ever overlap, determining the cell to be selected in
the case of a mouse click is a simple matter of determining what cell
occupies, or is closest to, the point at which the mouse was clicked.
For keyboard-based cursor movement, we found the cursor behavior
to feel the most natural when the relative motion of the cursor fol-
lowed the physical location of the cells in the visual layout rather than
the logical location of the cells in the schema. To make keyboard cur-
sor movement work well when traversing cells stacked in various non-
trivial configurations, we store the cursor state as an actual point on the
layout rather than simply as a pointer to the selected cell. This gen-
eralizes the behavior seen in existing spreadsheets for instance when
moving the cursor across merged cells.

An additional feature is the ability to interactively override the
stylesheet settings made by the automatic layout manager. This has the
potential to significantly improve readability of output layouts, since
the user can use their domain knowledge to decide where labels are
superfluous and can be omitted, what fields should serve as titles and
thus be emphasized with larger fonts, and such.

Finally, our system supports “frozen” table headers which stay put
at the top of the screen for as long as a table is partially visible in the
scrolling viewport. This works both for pure table layouts and where
table layouts are contained within outline layouts.

Potential future features include multiple selection, collapsible rela-
tion fields, editing of data values, spreadsheet-style filtering, and more
general-purpose query-building.

5 [EVALUATION

We evaluated three aspects of our system: runtime performance, the
amount of space consumed by generated layouts, and the readability

Table 2. Quantitative statistics related to the size and complexity of
datasets referred to in this paper. The depth of a primitive value is the
number of enclosing relation values that must be traversed to reach the
primitive value from the root. The plural depth only counts non-singleton
enclosing relations.
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RelationalPrincetonHuge | 828 463 | 59 887 | 18 751 | 2.25 41 225 4
RelationalPrinceton 21811 1359 419 | 220 | 4| 220 4
Auction321Gone 13679 250 61 | 296 | 4 | 1.00 1
SigmodRecord 12 360 953 560 | 5.01 | 6| 251 3
SwissProt 13559 1566 809 | 3.15 | 5| 194 3
DBLP 22012 1493 310 | 2.10 | 3| 1.09 2
Mondial 15 046 3032 1020 | 3.63 | 5 | 248 4
NASA 18218 854 731 | 6.16 | 8 | 343 5
TPCHPart 10 607 901 101 | 2.00 | 2| 1.00 1
ProteinSequence 11236 953 494 | 385 | 6| 194 3
CoursesReed 4858 800 200 | 2.33 | 3| 1.00 1

Table 3. Runtime measurements for each phase of the layout algorithm.
Standard error is within 3% in each case.

Dataset

Pages Algorlthm&Phase Runtime (s)

Measure
Auto-Sty
Paginate

I
|| Layout

RelationalPrinceton 12
RelationalPrincetonHuge 455

1.03
40.16

0.29
0.31

0.0014

42.43 | 0.0451

of large layouts as measured by the time taken for human subjects to
solve question tasks about the rendered data. As sample datasets, we
picked one XML file from each of the 10 categories in the XML Data
Repository at the University of Washington®, except for the Treebank
dataset, which is the only one with a recursive schema. We used the
“preview” version of each dataset to make sure visualizations would
be of a realistic size for human perusal. We also included one dataset
from a relational database containing the complete course catalog for
a semester at Princeton University. See Table 2.

5.1 Runtime Performance

For runtime measurements, we ran all phases of the layout algorithm
in sequence, and repeated the entire sequence multiple times. The run-
times for individual phases were averaged, less initial dry runs. Result-
ing runtime statistics for two datasets are shown in Table 3, for 30 runs
plus 3 dry runs. The machine used had an Intel Core 2 Duo CPU and
4GB of RAM.

Our two sets of runtime measurements suggest, as expected, that
both the Measure and Layout phases run in time roughly proportional to
the size of the input data, as measured by the size of the output layouts.
Also as expected, the time consumed by the Auto-Style phase does not
depend on the size of the input data, as it depends only on the schema
and input stylesheet. For the larger RelationalPrincetonHuge dataset, the
fact that the Layout phase does not take significantly more time to run
than than the Measure phase suggests that the main bottleneck of the
Layout phrase is the line breaking code that determines the size of rect-
angles assigned to display primitive values. Profiling has confirmed
this to be the case. For the smaller RelationalPrinceton dataset, the time
to perform Auto-Style and Layout for a new width is interactive.

6G. Miklau, http://www.cs.washington.edu/research/
xmldatasets/www/repository.html
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5.2 Layout Space Efficiency

To evaluate the space efficiency of our layouts, we compared, for each
dataset, the area consumed by our own hybrid layout vs. the area con-
sumed by a pure outline layout and a pure nested tabular layout. Each
layout was produced by our layout manager, with the latter two using
hard-coded values for the stylesheet property that selects whether a
table or an outline style is used at any given level in the schema.

Figure 5 compares the total area of each kind of layout for every
dataset. The unpaginated area of a layout is that of the smallest rect-
angle enclosing it. The paginated area, for hybrid and outline layouts,
is the number of pages consumed by the layout times the imageable
(non-margin) area available on each page. Thus, the latter includes
space wasted at the end of each page whenever the pagination algo-
rithm has opted to break the page at an earlier but less awkward place.
Since pure tabular views of an entire dataset are generally too wide
to fit on a regular letter-size page, the tabular layout is rendered as a
single, very large page. In cases where the tabular layout is actually
narrow enough to fit on a page, notably the the SigmodRecord, TPCH-
Part, and CoursesReed datasets, the hybrid layout is nearly identical to
the tabular layout, except that the pagination algorithm may be used to
break up the hybrid layouts in the vertical direction. The ratio of the
area consumed by an unpaginated outline layout to that consumed by
an unpaginated hybrid layout is 3.9:1 on average. Similarly for tabular
to hybrid layouts, it is 1.6:1 on average.

Looking at the data from Figure 5, we see that the hybrid layout
consumes less space than the corresponding outline layout for every
dataset, with or without pagination enabled. The difference is great-
est, between 4 and 13 times, in the cases where the hybrid layout corre-
sponds to a pure nested tabular layout, namely SigmodRecord, TPCHPart,
and CoursesReed. In these cases the schema of the data was flat or al-
most flat, and so a standard table layout would make very efficient use
of the space. In the other cases, the hybrid layouts are about half the
size of outline layouts on average. The smallest difference was for the
Auction321Gone dataset, where the outline layout was 1.3 times the size
of the hybrid layout. In this case the schema was nested in several lev-
els, but contained only singular relations (relations only ever holding
a single tuple) beyond the top level, so there were no opportunities for
the hybrid layout algorithm to introduce tables into the lower levels
of the layout. The modest saving over the outline layout came from
the hybrid layout’s ability to display data in an outline tuple over two
columns. A more significant difference was for the Mondial dataset,
where the outline layout was 3.3 times the size of the hybrid layout.
Here the hybrid layout made good use of both tuple columns and the
ability to render subrelations as tables, and only used one level of out-
line bullets.

While pure nested tabular layouts cannot be constrained to a page
width like the outline and hybrid layouts, they tend to consume less
total area than the outline layouts. See again Figure 5. For Auc-
tion321Gone, NASA, ProteinSequence, SwissProt, the hybrid layout still

consumes between 30% and 80% less space than the tabular layout.
This is because nested tables waste large amounts of space whenever
a row contains cells of variable heights, such as when one empty and
one well-populated subtable are placed horizontally adjacent to each
other on the same row of a parent table.

5.3 Readability

To evaluate the readability of our layouts, we conducted a between-
subjects online user study using Amazon Mechanical Turk’ and
StudyCaster, a Java-based tool we developed to allow test subjects to
stream timestamped recordings of their computer screens to our server
with a minimum of effort. In an initial public recruiting stage of the
study, workers were offered $0.25 to launch the StudyCaster and solve
a chart-making task that required the workers to have Microsoft Excel
installed on their machines. In the second and main stage of our exper-
iment, we gradually invited qualified Mechanical Turk workers from
the first stage directly to do a second task, worth $3.00. This task con-
tained, for each subject, 9 different two-part questions, each two-part
question being based on a separate PDF file with a layout generated
from one of our 9 XML sources from the UW XML repository. The
questions were a mix requiring the subjects to do both scanning across
multiple similar entities (e.g. “What is the Brand number of the prod-
uct sold in a Jumbo Bag container at a Retail price of less than $9507?”
or “How many articles were published in Volume 12, Number 3?7”)
and lookup between the attributes and related entities of a single entity
(e.g. “What is the name of the person who was responsible for digitiz-
ing the earlier work by authors X?”). To reduce potential noise from
subjects’ varying familiarity with their PDF readers’ search feature,
the PDF files were rasterized, effectively disabling the feature for ev-
eryone. All subjects were given the same questions and datasets in the
same order. However, the type of layout provided for each dataset was
randomized, with the constraint that each subject would see 3 datasets
rendered with each of the 3 kinds of layout types. The order of the
layout types was round-robined such that datasets number 1, 4, and 7
would use the same layout types, as would 2, 5, and 8, and as would
3, 6, and 9. Each of the 18 total questions (from 9 two-part questions)
would be shown in the StudyCaster pop-up window, which allowed us
to measure the exact amount of time the subjects spent viewing, and
hence presumably spent working on, each question. The StudyCaster
software also allowed us to further limit timings to when workers had
the correct PDF file in focus in their PDF reader to answer the cur-
rently shown question (sampled from the Win32 API at 5Hz), and to
exclude time idle more than 5 seconds from keyboard or mouse activ-
ity (same). The idle time rule was used to decrease noise from workers
taking a break from the computer while having a question open on the
screen.

Our user study yielded data from 27 subjects. An additional 6 sub-
jects completed the study, but were not included in the dataset due to

"http://www.mturk.com
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Fig. 6. The mean time to solve each task in the user study, grouped by the kind of layouts that were used to generate the PDFs subjects used to
solve the task. The error bars show the Standard Error of the Mean. Subtasks B were given to subjects directly after Subtasks A, and were in each
case identical to Subtask A except for a small emphasized change in the question text.

technical problems uploading their screen recordings and timing data.
The 18 task questions were answered correctly by 88% of subjects on
average, with too limited variation to draw conclusions about possible
impact of layout type on correctness. Figure 6 shows the average time
taken to complete each subtask for each layout type. Each subject’s
timing is included in the average for each subtask only if the subject
answered that question correctly.

To test our user study for statistical significance, we considered the
timing data from each of the 18 subtasks separately. In each case, we
thus had 3 sets of measurements of the time taken to solve the task
correctly, one for each kind of layout presented to the user. We first
ran Levene’s test to confirm that our experiment design conformed to
ANOVA’s assumption of homogeneous variances between the 3 mea-
surement populations in each case. In only 1 of the 18 cases (Task 5SB)
was Levene’s test significant (indicating non-homogeneous variances)
with p < 0.05, suggesting that this is a reasonable assumption. We
thus proceeded to use ANOVA to analyze the results, with a Tukey
Honest Significance Test (HSD) as a follow-up test in cases where
the ANOVA was significant. Since we are doing 18 tests, we should
require p < 0.05/18 for strictly significant ANOVAsS, as per the Bon-
ferroni correction. There are two significant results to this confidence
level, for tasks 2A and 8B. For the purposes of discussing results, how-
ever, we have done the Tukey HSD follow-up test for all tasks with
ANOVAs up to p < 0.05. This allows us to list all the most signif-
icantly different pairs of timings between different layout types, as
shown together with the relevant p-values in Table 4. Note that we can
expect about one (18 x0.05) of the borderline-significant ANOVAs in
this table to be due to chance.

Looking at the follow-up tests from Table 4, we can see no signif-
icant differences in the task completion times between the tabular vs.
the hybrid layouts. We do however see consistent differences both be-
tween the outline and the hybrid layouts as well as between the outline
and the tabular layouts. These differences are present in both subtasks
of several questions, suggesting that they are relevant both when users
are first learning to do a task and when they immediately after do a
second similarly structured task. In terms of relative task completion
times, it is clear that both the hybrid and the tabular layouts outper-
form the outline layout, in both cases being completed 2.9 times faster
on average for the tasks listed in Table 4. This is consistent with the
hypothesis that larger layouts are harder to use because more scrolling
is needed to look through the same data.

The relatively high performance of the nested tabular layouts sug-
gests that for the kinds of large datasets we had our users work with,
the very regular structure of the tabular layout can outweigh its dis-
advantages of taking up more space and requiring both horizontal and
vertical scrolling. However, the tabular layout would be a poor choice
for smaller datasets, such as the common database application require-
ment of showing the details of a single entity with all its attributes and

Table 4. Summary of statistical tests run on the dataset from Figure 6.
Only tasks for which the ANOVA yielded p<0.05 are shown. For Tukey
HSD pairs with p<0.05, we also show the relative differences in average
task completion times.

Task| Levene | ANOVA | Tukey HSD (follow-up to find differences | Mean-Time-to-
(hetero- between pairs) Solve Ratio
Sczizs)"' Outline v. | Outline v. | Tabular v. [Outline:} Outline:

Hybrid Tabular Hybrid | Hybrid ;| Tabular
#H_p p P P p
2A( 0.5312 | 0.0012 0.0019 0.0169 0.8006 2.05 2.80
2B| 0.0627 | 0.0034 0.0036 0.0448 0.9279 3.40 2.62
3B| 0.2889 | 0.0032 0.3047 0.0023 0.0962 2.81
SA[ 0.7976 | 0.0072 0.0200 0.0142 0.8521 2.11 2.74
5B| 0.0389 | 0.0174 0.0251 0.0532 0.9999 4.97
8A[ 0.1099 [ 0.0101 0.0092 0.0996 0.8201 1.88
8B| 0.3409 | 0.0004 0.0048 0.0008 0.3129 2.00 4.16
9A( 0.4104 | 0.0034 0.0050 0.0119 0.9553 2.46 2.20
9B| 0.1812 | 0.0107 0.0108 0.0530 0.7919 4.69

related subentities. Future evaluation could focus on layout perfor-
mance on smaller, form-size datasets.

6 CONCLUSION

‘We have presented a layout management algorithm that automates the
display of structured hierarchical data using the traditional visual id-
ioms of hand-designed database Uls: tables, multi-column forms, and
outline-style indented lists. By default, the widths of generated lay-
outs are constrained so that only vertical scrolling may be necessary to
view the data in its entirety. Our stylesheet system is further designed
such that two input values mapping to the same schema node will al-
ways be styled in a similar way. Our hybrid layouts are 3.9 and 1.6
times more compact on average than outline layouts and horizontally
unconstrained table layouts, respectively, and are as readable as table
layouts even for large datasets. We believe that our system can func-
tion as a single output system for most of the data views commonly re-
quired in domain-specific database applications, whether they be large
tables required to display information about many entities at once or
form views that must display many details of a single entity compactly
without scrolling.
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