
Expressive Query Construction through Direct
Manipulation of Nested Relational Results

Eirik Bakke
MIT CSAIL

ebakke@csail.mit.edu

David R. Karger
MIT CSAIL

karger@csail.mit.edu

ABSTRACT
Despite extensive research on visual query systems, the standard
way to interact with relational databases remains to be through SQL
queries and tailored form interfaces. We consider three require-
ments to be essential to a successful alternative: (1) query spec-
ification through direct manipulation of results, (2) the ability to
view and modify any part of the current query without departing
from the direct manipulation interface, and (3) SQL-like expres-
siveness. This paper presents the first visual query system to meet
all three requirements in a single design. By directly manipulating
nested relational results, and using spreadsheet idioms such as for-
mulas and filters, the user can express a relationally complete set of
query operators plus calculation, aggregation, outer joins, sorting,
and nesting, while always remaining able to track and modify the
state of the complete query. Our prototype gives the user an expe-
rience of responsive, incremental query building while pushing all
actual query processing to the database layer. We evaluate our sys-
tem with formative and controlled user studies on 28 spreadsheet
users; the controlled study shows our system significantly outper-
forming Microsoft Access on the System Usability Scale.

1. INTRODUCTION
Four decades after Query by Example [61], the broad problem

of Making Database Systems Usable [30] remains open. Tech-
nical users still interact with relational data through hand-coded
SQL, while non-technical users rely on restrictive form- and report-
based interfaces tailored, at great cost, for their specific database
schema [37, 32, 4]. Queries that involve “complex aggregates, nest-
ing, correlation, and several other features remain on a tall pedestal
approachable only by the initiated” [28]. Simple report queries
traversing one-to-many relationships in the database schema, such
as retrieving “a list of parts, and for each part a list of suppliers and
a list of open orders”, are painful to define for programmers and
largely inaccessible to end users.

Meanwhile, users from a wide range of backgrounds seem
happy, indeed eager, to interact with their data if it is served to
them in spreadsheet form. “Export to Excel”, the joke goes, “is the
third most common button in data and business intelligence apps...

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’16 (preprint), June 26-July 01, 2016, San Francisco, CA, USA
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-3531-7/16/06.

DOI: http://dx.doi.org/10.1145/2882903.2915210

Figure 1: Spreadsheet-style formula editing in a nested re-
lational result. The query structure is encoded in the ta-
ble header, which shows three joined table instances (bold la-
bels), one-to-many relationships (), sorting (), active fil-
ters (,), and a formula ().

after OK and Cancel” [18]. Spreadsheets lack basic database
functionality such as joins and views, but demonstrate the great
value of usable, general-purpose data manipulation tools [4].

Shneiderman [50] attributes the usability of the spreadsheet to
its nature as a direct manipulation interface. The properties of such
an interface include “visibility of the object of interest”, “rapid, re-
versible, incremental actions”, and “replacement of complex com-
mand language syntax by direct manipulation of the object of in-
terest”. Shneiderman paraphrases Harold Thimbleby: “The display
should indicate a complete image of what the current status is, what
errors have occurred, and what actions are appropriate.”

We agree with Liu and Jagadish [41] that a successful solution
to the visual query language problem must come in the form of
a spreadsheet-like direct manipulation interface. In particular, we
consider three requirements that have yet to be met in a single user
interface design:

R1. Query specification through direct manipulation of results.
The user should build queries incrementally through a
sequence of operations performed directly on the data in the
database, as seen through the result of each intermediate
query [41]. In Shneiderman’s terms, the object of interest
is not the query, but the data, as when working with a
spreadsheet.

R2. The ability to view and modify any part of the current query,
including operations performed many steps earlier, without

1

http://dx.doi.org/10.1145/2882903.2915210

redoing subsequent steps or departing from the direct manip-
ulation interface. This is tricky in light of R1, because the
user will be looking at and manipulating the result of a query
rather than an actual query expression. The mapping between
the two is not obvious. [41]

R3. SQL-like expressiveness from within the direct manipulation
interface. R1 and R2 can be trivially met if only simple
queries are allowed. For example, Excel’s filter feature
works by direct manipulation of results, and allows its
complete state to be viewed and modified from within the
same interface, but supports only basic selection queries.
To compete with SQL, a visual query system should allow
the user to express any query commonly supported by
SQL implementations, including arbitrary (multi-block)
combinations of operations such as joins, calculations, and
aggregations.

In this paper, we present SIEUFERD (pronounced soy-fird), the
first visual query system to meet all of the requirements above in
a single user interface design. The key insight is that given a suit-
able data model for results, the complete structure of a query can
be encoded in the schema of the query’s own result. This in turn
allows the user interface to display the query and its result in a sin-
gle visual representation, which can then be manipulated directly
to modify any part of the query. Specifically, we allow queries
to produce results from the nested relational data model [29, 38],
and display results using a nested table layout [5]. In our visual
representation, the header area of the result’s nested table layout
encodes the structure of the query, which can then be manipulated
using spreadsheet idioms such as formulas and filters. The use of
nested results affords a natural visualization of operations such as
joins and aggregation, and allows the user to see, in context, inter-
mediate tuples produced in any part of the query.

Using our system, the user can express a relationally
complete [17] set of query operators plus calculation, aggregation,
outer joins, sorting, and nesting (see Appendix A for details). This
covers the full set of query operators generally considered as the
minimum to model SQL [6, 26], and expresses, for example, all
SELECT statements valid in SQL-92. Furthermore, the ability to
produce nested results makes our system suitable for complex
report creation tasks that would otherwise require multiple SQL
queries and custom programming to merge and format results. Our
Java-based prototype gives the user an experience of responsive,
incremental query building while pushing all query processing to
the database layer.

In an initial formative user study, 14 participants were able to
solve complex query tasks with a minimal amount of training,
with many expressing strong levels of satisfaction with the tool.
In a second, controlled study, another 14 participants rated both
SIEUFERD and the query designer found in Microsoft Access on
the System Usability Scale (SUS) [8] after doing a series of tasks
on each. Users rated SIEUFERD 18 points higher on average than
Access. This corresponds to a 46 percentage point difference on a
percentile scale of other studies in the Business Software category.

2. RELATED WORK
Visual query systems have been surveyed by Catarci et al. [11]

and, recently, El-Mahgary and Soisalon-Soininen [21]. Systems
discussed in this section include, in particular, those that employ
direct manipulation, nested results, or optimizations for traversing
relationships in the database. We omit systems that rely entirely on
text-based languages for query construction. Table 1 categorizes

Direct
Manip.

Query
Representation Year System R1 R2 R3

Unrestricted
Nested Results

Yes Overlaid
on Result

2014 GBXT [2] X X X
2012 DataPlay [1] X X X
2006 Tabulator [7] X X X
2002 Polaris/Tableau [54] X X

Spreadsheet
Formulas

2016 Object Spreads. [43] X X X
2010 Spreads. as DB [57] X X
2005 A1 [35] X X X
1997 OOF Spreads. [16] X X X
1994 Forms/3 [9] X X

Exposed
Algebraic

2013 Mashroom [25] X X X
2011 Wrangler [34] X X
1991 TableTalk [22] X X X

Hidden
Algebraic

2016 Gneiss [13] X X
2013 GestureDB [45] X X
2010 CRIUS [48] X X
2009 SheetMusiq [41] X
2008 AppForge [60] X X
1989 R2 [27] X X X

No Diagram-
based

2014 VisualTPL [15] X
2009 App2You [36] X
2005 QBB [47]
2002 QURSED [46] X
1990 QBD [3]

Form-
based

2008 Form Cust. [33]
1998 QBEN [42] X
1997 ESCHER [59] X
1989 PERPLEX [52]
1977 QBE [61]

Table 1: Summary of related systems, evaluated as visual query
interfaces. R1 is indicated where some class of queries can be
initially specified by direct manipulation of results. R2 is indi-
cated where all parts of such queries can subsequently be mod-
ified through similar means. R3 is indicated where the same
class of queries is relationally complete and supports aggrega-
tion in arbitrary multi-block queries.

systems by query representation style, and provides an assessment
of each system against the requirements set forth in the introduc-
tion.

Besides our core requirements, Table 1 also indicates which sys-
tems support nested results, i.e. a graphical equivalent of a hierar-
chical data model such as XML, JSON, or nested relations. This
handles report-style queries that encode multiple parallel one-to-
many relationships in a single result, as when retrieving “a list of
parts, and for each part a list of suppliers and a list of open or-
ders” [5]. Systems that base their result representation on a single
flat table of primitive values, such as Tableau [54], are unable to
express such queries. The same tends to hold for any system that
takes its input from a single joined SQL query, since multivalued
dependencies [23] in the flattened result (PARTS�SUPPLIERS and
PARTS�ORDERS in the preceding example) would interact to pro-
duce a pathological number of tuples for even small inputs. Some
systems, like Tableau and Gneiss [13], support a restricted form
of nesting, where an otherwise flat result table can be grouped
into a single-branch hierarchy, or a finite set of such (a dashboard
in Tableau, or a set of hierarchical tables in Gneiss). This still
does not handle PARTS�SUPPLIERS/ORDERS-type queries from
the example above. Tableau, as well as other systems based on
the pivot table concept, produce cross-tabulated rather than nested
results; these concepts are orthogonal. Besides their use in visual
query systems, nested data models have been used both in opti-
mization [53, 10] and expressiveness analysis [40] of query lan-
guages with aggregate functions.

We first discuss visual query systems that do not fall in the direct
manipulation category. Form-based systems originated with Query
by Example (QBE) [61], where the user populates a set of empty
skeleton tables with conditions, variables (examples), and output

2

Field selector: Pop-
up displaying a tree
representation of
the query structure,
including exact join
conditions, centered
around the selected
fi eld. The selector
includes previously
hidden fi elds as well
as fi elds that can be
reached through joins
over known foreign
key relationships.

Formula bar: Shows the label, value, or formula under the selected cell.
Result header: Visu-
ally encodes both the
structure of the query
and the schema of its
result. Icons indicate
query-related state
associated with each
fi eld in the schema.

Context menu: Ex-
poses a complete set
of query manipulation
actions, and serves
as a legend for all
icons that can appear
in the result header.

Result area: Displays
the currently open que-
ry and its nested re-
lational result. Labels
and formulas can be
edited using a spread-
sheet-like cursor.

Filter popup: Allows
the user to associ-
ate a fi lter with the
currently selected
fi eld. The list of val-
ues available to fi lter
on is generated au-
tomatically using a
separate database
query. Filters may be
associated with either
primitive fi elds or re-
lation fi elds.

Figure 2: The SIEUFERD query interface. To create queries, users start from a simple tabular view of a table in the database and
add filters, formulas, and nested relations. The integrated result and query representation is displayed continuously as the user
interacts with the data. The particular query above instantiates six database tables (one per nested relation), contains five joins (each
child relation against its parent), and is evaluated using five generated SQL queries (one for each one-to-many relationship). This
query was constructed purely by checking off the appropriate fields and foreign key relationships in the field selector.

indications. ESCHER [59] and QBEN [42] extend QBE to support
nested results, while PERPLEX [52] supports general-purpose
logic programming. The ubiquitous search forms of commercial
database applications can be seen as restricted versions of
QBE tailored for a specific schema; Form Customization [33]
generalizes such forms by considering the form designer as part of
the query system. In diagram-based systems, the user manipulates
queries for example through a schema tree or schema diagram, as
in Query by Diagram (QBD) [3], Query by Browsing (QBB) [47],
QURSED [46], and App2You [36], or through a diagrammatic
query plan, as in VisualTPL [15]. The diagram-based query
building style is common in commercial tools–Microsoft Access,
Navicat, pgAdmin, dbForge, Alteryx etc. The general problem
with both form-based and diagram-based interfaces is that users
must manipulate queries through an abstract query representation
that is divorced from the actual data that is being retrieved. To
construct and understand queries, the user must look back and
forth between the query representation on one side of the screen
and a separate result representation on the other. Thus we do
not consider these systems to be direct manipulation interfaces
(requirement R1).

In the direct manipulation category, we now consider algebraic
user interfaces. In such systems, the user builds queries by select-
ing, one step at a time, a series of operations to be applied to the
currently displayed result. Each operation is applied to the result of
all previous operations. Formal expressiveness is easy to achieve in
algebraic interfaces, since the relevant relational operators can sim-
ply be exposed to the user directly. The main problem with alge-
braic interfaces is that the user has no direct way to, in the words of
Liu and Jagadish, “modify an operation specified many steps ear-
lier without redoing the steps afterwards” [41] (requirement R2).

For example, in GestureDB [45], the user has no way to modify
a filter on a column that was subsequently used in an aggregation
or removed with a projection. Similar problems exist in R2 [27],
AppForge [60], CRIUS [48], and Gneiss [13]. SheetMusiq [41]
provides a partial solution by using an algebra where certain op-
erators can commute out of a complex expression for subsequent
modification; however, the technique breaks down for expressions
enclosed in binary operators such as joins, set union, or set dif-
ference. In other systems, the underlying algebraic expression is
exposed directly, as in the procedural data manipulation scripts of
Wrangler [34], the XQuery-like mashup scripts of Mashroom [25],
or the diagram-based representation in TableTalk [22]. Thus, only
the initial query specification can be done through direct manipu-
lation; tweaking and examination of existing queries must be done
with a separate, indirect interface.

With clever use of formulas, Tyszkiewicz [57] shows that
existing spreadsheet products can be considered expressive enough
to formulate arbitrary SQL queries. If we consider Excel as a
query system, however, only a subset of such queries could be
said to be constructible by direct manipulation. Heavy reliance
on set-based formula functions such as INDEX, MATCH, and
SUMPRODUCT means that spreadsheet formulas soon take the role
of a text-based query language, with a vocabulary far removed
from that of typical query tasks. This would also be the case for
spreadsheet programming systems such as Forms/3 [9], Object
Oriented Functional Spreadsheets [16], A1 [35], and Object
Spreadsheets [43].

Last, we consider direct manipulation systems that overlay their
query representation on the result of the same query, with the struc-
ture of the query reflecting the visual structure of the result. This
solves the mapping problem of requirement R2. The problem is

3

Tuple

Primitive Values

Relation Value Label for Relation Field (bold)

Label for
Primitive
Field

Figure 3: Terminology of the nested relational data model, il-
lustrated on a nested table layout.

that current such representations are not expressive enough to sup-
port arbitrary queries (requirement R3). For example, the direct
manipulation interfaces of Tabulator [7] and GBXT [2] support fil-
ters and joins over schema relationships, but are unable to express
calculation, aggregation, general-purpose joins, or other binary op-
erators. In DataPlay [1], direct manipulation is used only to choose
between universal and existential qualifiers. Tableau [54] allows
a large class of two-dimensional visualizations to be created and
manipulated through direct manipulation of table headers and cor-
responding axis shelves; however, queries involving calculations
or binary operators must be configured using a separate interface
rather than through direct manipulation. Our own system is the first
to achieve SQL-like expressiveness from within a direct manipula-
tion interface based on an overlaid query/result representation.

3. SYSTEM DESCRIPTION

3.1 Overview
Our core query building interface is shown in Figure 2. All user

interactions are initiated from the result area, which shows the cur-
rent query’s nested relational result, formatted using a nested table
layout. In a nested table layout, the table’s header area visually
encodes the schema of the nested result, including which fields are
nested under others in the hierarchical schema. Because our system
maps all query-related state to specific fields in the result schema,
the result’s table header simultaneously becomes a visual represen-
tation of the query that generated it. A set of icons, carefully de-
signed to allow every aspect of the query state to be represented in
the header, is used to augment the information that can be derived
from the names and positions of fields.

Starting from any selection of fields (columns) in the result area,
the user may open a context menu of query-related actions, which
also serves as a legend for icons that may appear in the result
header. Query actions modify the query state, not the data in the
database. Whenever a visual query is modified, the system gener-
ates and executes one or more corresponding SQL queries to eval-
uate it, merges the returned flat results into a single nested result,
and displays the latter to the user. At the same time, the fields and
iconography in the new result’s header reflect the updated state of
the modified query.

To keep the result layout compact, several aspects of the query
state are indicated with icons in the header but are not displayed
in full until the user requests it. In these cases we leverage well-
established spreadsheet idioms to expose the underlying state. A
filter icon () next to a field label indicates the presence of a filter
on that field, which can be manipulated by opening the filter popup
from the context menu. A formula icon () indicates that the

P R Visible. Whether this field should be visible in the result layout.
P R Label. Presentation label for the field; default is technical column/table name.
P R Filter. A filter condition. Filters are stored in a format that can be generated

from and restored to a spreadsheet-style filter selection UI.
P R Sort. An optional ordinal indicating the position of this field among the

parent relation’s sort terms, plus an ascending/descending flag.
P JoinedOn. An optional reference to a primitive child field of the parent

relation’s parent relation. This denotes an equijoin condition between
this field and the referenced field.

P ColumnDefinition. Either the technical name of a column in the database
table specified by InstantiatedTable, or a formula expression over fields
in the query model.

 R InstantiatedTable. The technical name of a database table to instantiate at
this level. Allowed to be absent, in which case semantics are equivalent
to instantiating a single-tuple, zero-column table.

 R CollapseDuplicateRows. False by default, in which case the primary key
fields of InstantiatedTable are projected in intermediate and retrieved
results even if not Visible.

 R HideParentIfEmpty. If true, an inner join is used between this relation and
its parent. Set automatically by the filter UI, but can be overridden.

Lorgm

Table 2: Properties in the SIEUFERD query model, associated
with each field in the nested relational schema that defines a
visual query. P, R, and P R indicate properties applicable to
primitive fields, relation fields, or both, respectively. Properties
with icons correspond directly to icons shown in the result area
and actions in the user-accessible context menu from Figure 2.

primitive field in question is a calculated field with an associated
spreadsheet-style formula. The actual formula can be edited using
the formula bar above the result area, or directly in any non-header
cell belonging to the field’s column, as illustrated in Figure 1. Fi-
nally, as in a spreadsheet, our system allows fields (columns) to be
hidden from view and later recalled for inspection. If the hidden
field was used for filtering or sorting, or is referenced from a for-
mula, a dashed cell icon () is shown for the relevant dependent
field to indicate that the visible result depends on a hidden portion
of the query. Hidden fields can be recalled using the field selector
popup, which shows an expandable list of available fields, centered
around the field it was opened for. The field selector also serves to
suggest new joins over known foreign key relationships, modeled
as pre-existing hidden fields, and to display exact join conditions.

For the remainder of this paper, we will use the following ter-
minology when referring to concepts in the nested relational data
model: A value is either a primitive or a relation, where a relation
is defined as a set of tuples, each containing a set of fields iden-
tified by labels, each containing a value, recursively. The schema
of a value either defines the value to be a primitive, or defines the
value to be a relation, with schemas further specified for each of
the latter’s fields, recursively. See Figure 3.

3.2 Query Model
We now discuss the specific structure of queries in our system.

A visual query is modeled as a nested relational schema that has
been annotated with query- and presentation-related properties on
each field. See Table 2. We refer to the annotated schema as
the SIEUFERD query model. When SQL queries are generated
from a visual query and flat result sets have been assembled into
a nested relational result, the schema of the nested result is identi-
cal to the schema in the query model. This correspondence makes
it straightforward to translate high-level user interactions on the
visualized query result to concrete modifications on the underly-
ing query model, and conversely, to indicate the state of the query
model in the table header of the visualized result.

Table instantiation. As a basic rule, each relation in the query
model gets to retrieve data from one concrete table in the underly-
ing database; that relation is said to instantiate the database table.

4

The following is a simple query that instantiates the table called
COURSES and displays a selection of its fields:

In the SIEUFERD query model, the query above is represented
as a nested relational schema whose root relation references the
COURSES table from its INSTANTIATEDTABLE property, with
primitive child fields storing the technical name of each table
column in their respective COLUMNDEFINITION properties.
Similar encodings are used for all query states that will be
discussed in this section; see Table 2 for details.

Nesting and joins. Queries need to be able to incorporate data
from multiple tables. Commonly, tables need to be equijoined to-
gether, for example when the user wishes to examine data spread
across foreign key relationships in a normalized database schema.
In the SIEUFERD query model, the introduction of a new table
instance can be done by defining a nested relation, optionally con-
strained by an equijoin condition against its parent relation:

In the query above, the nested relation READINGS instantiates
the database table with the same name, and equijoins itself against
its parent relation COURSES on the COURSE_ID field, as indicated
by the join icon (Lorgm) on the latter. The other side of the equijoin
condition is the ID field in the COURSES relation. The latter infor-
mation is omitted from the result layout to save space, but is dis-
played in the field selector (Figure 2). The one-to-many icon ()
on the READINGS relation indicates that our system decided the lat-
ter may contain more than one tuple for each corresponding tuple
in COURSES, the parent relation.

The joins described here have different semantics than the tra-
ditional flat joins encountered in SQL and most other visual query
tools. Rather than duplicating tuples on one side of the operator for
each occurrence of a matching tuple on the other, each tuple from
the parent side of the join has a nested relation added to it holding
zero or more matching tuples from the child side. This operator
is known formally as a nest equijoin [53], though we will simply
use the term join when unambiguous. One convenient property of
nest equijoins is that tuples on the left-hand side of the operator
do not disappear when the join fails to find matching tuples on the
right; this can be seen in the query above for the course AMERICAN
POLITICS, which has no books in its reading list.

It is often desirable to hide technical primary key fields, fields
made redundant by equijoin conditions (e.g. COURSE_ID), or oth-
erwise uninteresting fields, for presentation purposes. Continuing
the example above, our query model allows us to hide several fields
without altering the query semantics:

The hidden fields could be recalled at any time using the field
selector. As before, the field selector can also be used to see the
exact join conditions between READINGS and COURSES.

Nested relations can be used very effectively to display data
spread over many tables in a database schema. In the following
example, we pull data from five database tables to see more
information about each university course:

Notice that tuples in the READINGS relation occur independently
of tuples in the SECTIONS relation; this kind of visualization can
not be constructed in tools based on flat tabular results (see Related
Work). Also notice the absence of the one-to-many icon () on
the AREA relation: because the latter relation was joined on its in-
stantiated table’s primary key, our system deduced that at most one
tuple can exist in AREA for each parent tuple in COURSES.

Sorting. Each nested relation can be sorted on a sequence of its
direct child fields, indicated by subscripted sort icons (123) on the
latter. In the following example, the root-level COURSES relation is
sorted ascending on the MAX_ENROLL field, while individual sets
of READINGS are sorted by AUTHOR_NAME, then by TITLE:

It is possible to sort on both primitive and relation fields, though
we omit the exact semantics of the latter case here. Following any
explicit sort terms, our system automatically sorts every relation on
a tuple-identifying subset of its retrieved fields. This ensures that all
query results are retrieved in a deterministic order. The automatic
sort is usually on an indexed primary key; see set projection below.

Filter. Using the filter popup (Figure 2), a filter can be defined
on any field, indicated by the filter icon (). Filters on relation
fields restrict the set of tuples retrieved in that relation, while filters

5

on primitive fields restrict the tuples of the parent relation. In the
following example, the MEETINGS relation is filtered to show only
tuples for which the DAY is W:

By default, the effect of a filter in a nested relation is propa-
gated all the way to the root of the query by means of a HIDE PAR-
ENT IF EMPTY setting on each intermediate relation, indicated by
the arrow-towards-root icon () on the SECTIONS and MEETINGS
relations above. In the example, the courses ROMAN ART and
RUSSIAN DRAMA have disappeared because they do not have any
Wednesday sections. If, rather than retrieving “a list of courses
with at least one Wednesday section”, we wanted to retrieve “a list
of all courses, showing sections on Wednesday only”, we could
deactivate HIDE PARENT IF EMPTY on the SECTIONS relation:

Formulas. An important part of the expressiveness offered by
SQL is the ability to include scalar and aggregate computations
over primitive values in any part of the query. In the SIEUFERD
query model, both kinds of calculations are supported by means of
calculated fields. A calculated field is a primitive field, added to
any relation by the user, that takes its value from a formula rather
than from a particular column in an instantiated database table.
Like other fields, calculated fields can be sorted or filtered on.

SIEUFERD formulas are syntactically similar to spreadsheet for-
mulas, but belong to and reference entire columns of field values
rather than hard-coded ranges of cells. This allows SIEUFERD
queries, like SQL queries, to be defined independently of the exact
data that might reside in a database at any given time. Without this
design, the user might have to rewrite formulas if the data in the
underlying data source changes, or if other parts of the query are
changed in such a way as to add or remove tuples in the result. For-
getting to update formulas when input data is changed is a common
kind of error in spreadsheets [31, 12], which we avoid.

The restriction that calculated fields always be primitive fields
is an important one; we do not wish formulas to take the role of a
textual query language embedded within the visual one. Formulas
do not provide a relational algebra, but rather allow simple compu-
tations over primitive values.

Continuing the course catalog example, we can calculate the du-
ration of each meeting of a course section:

The calculated field DURATION, marked with the formula
icon (), is evaluated once for each tuple in MEETINGS, its
containing relation. Using another calculated field, we can add up
the durations as well, at the level of each course:

When using aggregate functions such as SUM or COUNT, the re-
lation in which the calculated field is defined determines the level at
which aggregate values are grouped. In the example above, because
the TOTAL DURATION field is a child of the COURSES relation, a
total is calculated for each course rather than, say, for each section.
Each course includes in its total only tuples from the MEETINGS
relation that are descendants of that course’s tuple in the COURSES
relation.

It is permitted for a formula to reference fields outside its own
containing relation, as in the following example:

Here, the formula in the PERCENT field references the TOTAL
DURATION field of the outer COURSES relation. This is analo-
gous to a correlated subquery in SQL. Such outward references
are not crucial to our query model’s expressiveness; we eliminate
them using a decorrelation technique like that described by Van den
Bussche and Vansummeren [58, p. 8].

Filters and aggregate functions. When an aggregate function
references a relation with a filter applied to it, the filter is evaluated

6

before the aggregate. In the following example, the SECTIONS re-
lation is filtered to only include lecture-type sections. The TOTAL
DURATION for each course changes accordingly:

It is equally valid to define a filter on the output side of an aggre-
gate, e.g. on TITLE or TOTAL DURATION in the example above.

Flat joins. Traditional flat joins can be expressed by referencing
a descendant relation from a formula without enclosing the
reference in an aggregate function. In the following example,
each course title is repeated once for each distinct author name
in the reading list, because the AUTHOR REFERENCE field in the
COURSES relation references the READINGS relation without the
use of an aggregate function:

The actual behavior is that of a left join, with a null value being
returned for the course AMERICAN POLITICS, which has no read-
ings in its reading list. To express an inner join instead, the HIDE
PARENT IF EMPTY setting could be enabled on the READINGS re-
lation. The left join semantics of these inward formula references
help our visual query language maintain some desirable properties.
In particular, the mere introduction of a new calculated field (e.g.
AUTHOR REFERENCE) will never cause tuples to disappear from
said field’s containing relation (COURSES).

Set projection. By default, tuples retrieved for a relation always
include the primary key fields of the relation’s instantiated table,
even if the user has hidden those fields from view. This allows our
system to keep result tuples in a stable order as the user hides or
shows fields, and to keep a one-to-one relationship between tuples
on the screen and tuples in instantiated database tables. It also al-
lows us to generate more efficient SQL queries, for example by
avoiding expensive SELECT DISTINCT statements. The automatic
inclusion of primary key fields in the projection of a particular re-
lation can be avoided by means of the HIDE DUPLICATE ROWS
option, indicated by the bracket icon ():

3.3 Query Building
Having explained the query model, we now show how the user

would actually build queries using our direct manipulation inter-
face. We do this by means of an example query building ses-
sion. The user is an investigative journalist who is writing a story
about ethanol biofuel lobbying [20]. She has compiled, in the
table PLANTS_OS, a list of major ethanol producers1, and would
like to find the total lobbying expenditures of each. Another table,
LOBBYING, contains quarterly lobbying reports from US corpora-
tions in the years 1998 through 2012 (727,927 tuples)2.

Base table. The user starts by opening the table of ethanol pro-
ducers as a template for the new query:

Join. To add another table to the query, the user selects the col-
umn or columns to join on and invokes the JOIN action from the
context menu. This opens a dialog box for selecting the table to join
with, in this case LOBBYING, and for selecting the corresponding
columns from the latter to be matched in an equijoin constraint. The
user joins the PLANTS_OS and LOBBYING tables on the COMPANY
and ULTORG fields, respectively:

In cases where the database defines explicit foreign key relation-
ships between tables, use of the above JOIN dialog is unnecessary;
instead, all available joins will be available as hidden relations in
the field selector. The effect is a schema navigation capability anal-
ogous to that of QBB [47], AppForge [60], and App2You [36].

Hide fields. After the join, a lot of columns are shown, so the
user selects a few of them and invokes the HIDE action:

It is now easier to get a sense of the data. We have a new child
relation field, called LOBBYING, containing the lobbying reports
for each company:

1Renewable Fuels Association/Maple Etanol SRL (2012)
2The Center for Responsive Politics (2012)
https://www.opensecrets.org

7

https://www.opensecrets.org

Sort. The user decides to sort the lobbying reports for each com-
pany most-recent-first, invoking the SORT DESCENDING action on
the LYEAR field and then invoking the SORT DESCENDING AF-
TER PREVIOUS action on the LTYPE field. This sorts individual
LOBBYING relations by year () and then by quarter (2):

Aggregate formula. The user would now like to calculate a total
lobbying amount for each company. She invokes the INSERT CAL-
CULATED FIELD AFTER action to insert a calculated field () next
to the COMPANY field, and enters the name SUM OF AMOUNTS in
the new column’s label cell. She then moves the cursor to one of
the column’s value cells, and enters a sum formula, clicking the
AMOUNT column to insert the column reference:

Unlike in a spreadsheet, there is no need to “drag down” the sum
formula; it is always evaluated once for each tuple in PLANTS_OS,
its parent relation.

Scalar formula. Reported lobbying amounts come from differ-
ent years, some going back to 1998. The user would like to calcu-
late inflation-corrected totals. A separate table CPI contains yearly
Consumer Price Index values normalized for 2012. The user per-
forms another JOIN, this time between LOBBYING and CPI, on the
LYEAR and CYEAR fields, respectively. This brings the CPIV value
for each lobbying report’s year into the nested result. The user then
adds another calculated field, this time under the same relation as
the existing AMOUNT field, and enters a formula that calculates the
inflation-adjusted amount for each report. We here have a useful
example of an inward formula reference (to CPIV) that is not en-
closed in an aggregate function:

A new inflation-adjusted total can now be added as a calculated
field at the PLANTS_OS level, shown adjacent to the existing non-
adjusted sum:

Filter. Lobbying reports may sometimes be amended, in which
case the superseded reports should be excluded from totals to
avoid double counting. The user can look for superseded reports
by invoking the FILTER action on the LUSE field and selecting the
value N:

The user sees that there are superseded reports in the database
with non-zero dollar amounts, and inverts the filter to exclude them.

Select fields. The user now decides to hide the individual reports
altogether and instead reintroduce some of the fields that were hid-
den from the PLANTS_OS relation before, using the field selector:

Final touches. The user edits the field labels to make them a
bit more readable, and sorts the companies by their lobbying to-
tals. The underlying SQL column names can still be seen in the
field selector. The user also enables a formatting option on the last
column to produce a bar chart visualization. The result now looks
presentable:

While the LOBBYING relation that feeds into the aggregate for-
mula is now hidden, the user could easily make it visible again from

8

the field selector, like she did for the previously hidden PLANTS
and FEEDSTOCK fields. There are also shortcuts for unhiding hid-
den fields referenced from the formula, or the hidden filter, indi-
cated by the dashed cell icons ().

3.4 Architecture
Our visual query system allows a large class of queries to be ex-

pressed by end users. As a necessary consequence, we can make
few assumptions about how fast results can be computed. In many
cases, even though the final query desired by the user may be cheap
to compute, intermediate or explorative queries generated during
interactive query building may be expensive. Intermediate queries
may even contain user errors, such as circular dependencies in for-
mulas. A key requirement of our system is to avoid getting the user
stuck in such states, and to keep the query building interface re-
sponsive and up to date even when expensive or incorrect queries
are encountered.

Our system’s basic architectural decision is to defer all query
processing to a relational database backend, generating SQL
queries over JDBC and retrieving a complete new result every time
the user modifies the query model. This produces transactionally
consistent results while avoiding complicated incremental
evaluation logic. We then provide the necessary smoke and mirrors
to give the user an experience of responsive, incremental query
building. The key features to this effect are as follows:

Visual stability. Our query semantics ensure that nested result
tuples from successive steps of a visual query building process re-
main in the same order by default, and that the set of logical tuples
in a relation does not usually change as fields are hidden or shown.
The presentation properties of result layouts, such as table column
widths, are based on average and confidence interval values that do
not change once a target number of unique sample values have been
collected from observed query results. Text breaking and font siz-
ing is done to ensure that even exceptionally long string values can
be displayed at a given visual width. Thus, even though an entirely
new result set is generated every time the user modifies the query,
the visual transition from the old to the new result appears seam-
less. The generation of compact nested table layouts is done using
our previously described system for visualization of structured hi-
erarchical reports [5].

Decoupled query and result updates. The display of a nested
table header, which our system uses to communicate query state,
need not be postponed until a query returns with actual results. Bet-
ter yet, upon a change to the query model, we can immediately ren-
der a new table layout whose structure and indications are based on
the updated query model, but whose data is taken from whichever
query completed most recently. For fields not present in the old
result, we show a placeholder icon () where data values would
normally appear. Meanwhile, updated SQL queries run while a
non-modal progress indication is shown in the toolbar area. Once
the query completes, the result layout is rendered again with actual
results. The user does not need to wait for the query to complete
before making new changes.

For example: When unhiding a previously hidden field, the user
sees the result layout immediately update to accommodate the new
table column, already at the correct width, with placeholder icons
seamlessly being replaced by data values as soon as the updated
query completes.

Interruptable queries. If the user modifies the query before the
previous query has finished executing, the previous query is auto-
matically interrupted using the database backend’s preferred mech-
anism. This is crucial for letting the user escape from long-running
queries, and also allows the user to perform multiple modifications

Figure 4: High-level error handling. A referenced field was
deleted, so the formula can no longer be evaluated. The system
shows a warning while evaluating the rest of the query nor-
mally.

to the query without waiting for the exact result of each step to ap-
pear. The on-screen layout remains undisturbed by the automatic
interruption and restarting of queries in the background. Note that
even long-running queries can be constructed with responsive re-
sult feedback if the user can manage to temporarily filter the dataset
down to a smaller size during query construction.

Automatic query limiting. All generated SQL queries include
an automatic LIMIT clause, retrieving initially 100 tuples total for
each relation field. This populates the visible part of a typical result
window. If the user scrolls far enough down to see the end of the
result layout, and there are more tuples left, the query is re-executed
using a limit twice as large as before. This allows the user to reach
tuple N in O(N) time. Infinite scrolling appears seamless.

High-level error handling. User-defined formulas introduce a
variety of possible error conditions, including circular references,
broken references, type errors, and arithmetic runtime errors. Our
system detects and handles many such errors at a high level. In the
result layout, formulas with errors are highlighted in yellow, with
a tooltip showing specific error messages if the cursor is moved
to the highlighted area. For query evaluation purposes, erroneous
formulas are replaced by null values, ensuring that the rest of the
query can still be evaluated normally. See Figure 4.

Complete high-level error handling requires the set of functions
and data types available in formulas to be known to the system. It
may also require functions such as arithmetic division to be rewrit-
ten to return null instead of triggering runtime errors on, say, di-
vision by zero. SIEUFERD includes a standardized set of formula
functions that can be compiled to the dialects of various database
backends, currently PostgreSQL, MySQL, and Oracle. Standard-
izing functions and data types allows a single unit test suite and
online documentation set to be used for all backend dialects.

Undo/redo. Undo/redo can be easily supported by storing suc-
cessive states of the modified query model; a similar technique is
used in Tableau [55, p. 90]. Like other kinds of query modifica-
tions, undo/redo benefits from several of the previously mentioned
features, e.g. interruptable queries.

4. FORMATIVE USER STUDY
We conducted a formative user study with 14 participants (5

male, median age 42) from a variety of technical and professional
backgrounds; see Table 5 (appendix) for a demographic summary.

In the first part of the study, done by users A-I, users were given
standardized tasks aimed at assessing the initial learnability of our
tool. No prior training was given; instead, initial tasks were de-
signed to act as training tasks for subsequent ones. In the sec-

9

Table 3: Tasks and timings for standardized tasks used as part of the formative user study. Error bars show the standard error of
the mean.

Task
Training
for task N Mean time to complete task (s)

1a Lobbying Totals
{ Manual join 2a 7 274

60 120 180 240 300 360 420 480 540 600 660 720 780

1b Formula 2b 7 672
2a Inflation Correction

{ Manual join 7 123
2b Formula 7 109
3 Single-level auto join 4-6 7 96
4 Multi-level auto join 5-6 7 101
5 Filter via auto join 7 107
6 Multi-level auto join, again 6 94

Tasks done: Tasks 1-2 were done by users A-G. Tasks 3-6 were given to users B-I, with some exceptions. Task order: User F did tasks 1-2 last. Order is
otherwise as indicated. Hints: Training tasks included hints as necessary. In task 2a, users D and G were told that they would need to use the JOIN feature.

ond part of the study, and as time permitted during earlier sessions,
users were given a chance to do more open-ended tasks on datasets
we provided, including some datasets from the users’ own orga-
nization. Here, we gave participants demos and instructions for
operating our tool, in order to gather higher-level observations than
would be possible during pure learning tasks.

From screen and voice recordings of each user study session, we
collected detailed observations that were later coded and catego-
rized, as well as timing data for standardized tasks.

4.1 Standardized Tasks
This section describes tasks and timings for the standardized por-

tion of our study. We designed the standardized tasks to assess
the initial learnability of our system’s basic query operators, likely
to cover a range of common queries. Tasks designated as train-
ing tasks reflect the user’s first encounter with a particular feature,
with few upfront instructions given on how to proceed. If a user
got stuck during a training task, hints were given and any relevant
observations noted, ensuring that the user progressed to the corre-
sponding follow-up task. See Table 3.

Formulas and manual joins. Tasks 1 and 2 correspond to the
lobbying example from Section 3.3, in two parts. In task 1, which
functions as a training task, the user is started off with a fresh query
showing only the PLANTS_OS table, and is asked to find the total
amount spent on lobbying by each organization. A minimal schema
diagram is provided on paper, showing the two tables involved and
the fields to be matched in the join condition. The user will have to
discover that the operation called JOIN is needed, and then figure
out how to use a formula to calculate totals. In task 2, the user is
asked to modify the existing query to calculate inflation-corrected
totals, using consumer price index values from the CPI table and
features that have already been used. The user now has to realize
that another join is needed, followed by one or two additional for-
mulas. This task tests whether the user, after only a single training
task, has developed enough of a mental model of how joins and for-
mulas work to combine the two features to arrive at a single result.

Task 1, the training task, took users about 16 minutes on aver-
age, with 70% of the time spent after users figured out the initial
manual join. Task 2, a strictly harder task using the same features
as task 1, took only about 4 minutes, 4.1 times faster. The differ-
ence is statistically significant (p = 0.009 with two-tailed Welch’s
t-test). Comparing only times spent on the join portion of the tasks
vs. times spent on the formula portion of the tasks, the difference is
only statistically significant for the latter (p = 0.004). In this case,
users solved the second formula task 6.2 times faster than the first.

Auto joins and filters. Tasks 3-6 involve automatic joins over
known foreign key relationships (auto joins), starting again from a

fresh query showing a single base table. Users are given a schema
diagram on paper, with the relevant joins marked, and told that be-
cause the system already knows about the relationships between
the tables, it will not be necessary to use the manual JOIN ac-
tion. Tasks 3 and 4 ask the user to produce a report-style query
similar to the course catalog shown in Figure 2, first adding a ta-
ble related to the base table via a single join (e.g. READINGS),
and then adding a table related to the base table via multiple joins
(SECTIONS, INSTRUCTORS_SECTIONS, INSTRUCTORS). In task 5,
the user is asked to filter the result on a field in a table that has not
yet been joined into the current query, specifically to “show only
courses offered in Spring 06-07”, where semester names are stored
in a separate table. This allows us to assess the user’s expectations
wrt. interactions between nested joins and filters. In task 6, the
user is started off with a fresh new query, starting from a different
base table (INSTRUCTORS). Having previously produced a course
catalog showing a list of instructors for each course, the user is
now asked to show a list of courses taught by each instructor. This
repeats task 4, but from the opposite end of the schema.

4.2 Observations
We now discuss a specific observations gathered from both the

standardized and the open-ended portions of the study.
Manual joins. The manual join dialog, quoting user C, was “ac-

tually very easy to use”; most users moved through it quickly and
correctly on their first attempt. Still, users preferred auto joins once
introduced to them, see below. Users CEJ wanted to visually verify
that the equijoin condition was satisfied, and were briefly confused
because our system automatically hid the redundant constrained
field on the nested side of the join. Users performing task 2 had
no problems with the join portion of the task; only users DG re-
quired a hint that they would need to use the JOIN feature again,
while the rest realized this on their own.

Formulas. When first attempting to perform a sum aggregation,
users BCDE started by looking for an explicit sum action, as would
be found in Excel’s toolbar. Users CGK looked for an Excel-style
formula builder. Having eventually realized that they needed to in-
sert a calculated field and enter a formula themselves, users DEFK
had initial trouble learning how to physically enter the formula, try-
ing for example to enter the formula in an already-existing column,
or in the column header.

In Excel, sums can be produced either using formulas or pivot
tables. The two interfaces are largely separate, with users often pre-
ferring one or the other. Our system follows the formula approach.
Users CH commented that they thought of pivot tables when first
trying to compute a sum, while users BEI thought of pivot tables
during other tasks.

10

A significant difference between spreadsheet formulas and
SIEUFERD formulas is that the latter, like SQL queries, reference
entire columns of values rather than an explicit range of cells.
Users ABCFH expected this on their first attempts to insert a
reference in a sum formula. Users DEGN expected the spreadsheet
model, initially attempting to select a range of cells. A related
challenge was to understand the level at which a calculated field
should be inserted in order for sums to be grouped in the right way.
The fact that the position of a formula in the relation hierarchy
determines the grouping of aggregate functions is a further
deviation from the spreadsheet model, while the lack of an explicit
GROUP BY clause may be confusing to SQL users. User H tried to
specify the set of columns to group by in the aggregate function
itself, as in the formula =SUM([NAME],[AMOUNT]), while user F
tried to hide every field other than the one to be summed. User G
attempted to invoke the HIDE DUPLICATE ROWS action. Users
CFGH also tried placing the calculated field next to the value to be
summed rather than at the parent level. The latter has the trivial
effect of producing sums each over only a single input value.
User G, who spent 20 minutes on Task 2b, thought aloud:

“Wouldn’t it be fantastic if there was a way simply to operate at
that group level rather than these individual entries? [After creat-
ing a new formula at the correct level:] Is it doing it that way? Oh,
that’s perfect. ... That is meeting my heart’s desire. But I wouldn’t
have the cue for that.”

Despite initial difficulty with formulas in training task 1b, users
applied them quickly and accurately in follow-up task 2b. This is
despite the follow-up task requiring more steps (a join, a scalar
function, and an aggregate function). This suggests users are able
to apply formulas effectively after first learning them, but that
there is significant potential for improved learnability. We agree
with users AM, who suggested adding an explicit sum action like
that of Excel. This feature would automatically generate a sum
formula above the nearest one-to-many relationship, which would
then serve as an example to the user to learn from.

After initial learning, users appreciated the behavior of formulas.
Users CEGK noted explicitly that the behavior of aggregate func-
tions, including grouping and subtotaling behavior, made sense.
Users ILK also commented that the all-column nature of formula
references made sense and was an advantage over Excel’s range-
style references. User K noted:

“I just feel like I have a truer sense of what I’m adding up, or
what’s being considered in this format vs. the traditional Excel.
Because [in Excel] you could be pulling from the wrong places,
you can be getting weird numbers, you could accidentally hit a
field that now ends up in your calculation.”

Field selection; auto joins. Users performing tasks 3-6, or sim-
ilar tasks on other datasets, were generally able to use the auto join
feature without trouble. The exception was user N, who had a hard
time because of the lack of visible indications in the result area
that more fields could be shown. User G also noted this issue.
Users IKN specifically looked for an action named “Unhide”, like
in Excel. This suggests that our user interface needs a more visible
affordance for accessing hidden fields. We expect hidden fields to
be far more common in SIEUFERD than in Excel, since a typical
database query projects only a small subset of columns available
from instantiated database tables. The design of an improved un-
hide affordance should take this into account.

Users EGHJKL reacted particularly enthusiastically to the auto
join feature, using words such as “fantastic”, “wow”, “damn”, and
“amazing”. User E noted:

“Yes, the manual join made sense, but that was a very simple
situation. I wouldn’t want to have done the joins on this [more

complicated database]. The fact that I was just able to double-
click and expand it out, that meant, it dumbed the task down to the
level that I was happy performing it.”

Field selection; efficiency. One important problem was that
of poor defaults for which fields should be visible immediately
after a new relation is introduced into the current query. For
manual joins, all (non-redundant) fields in the foreign table would
be visible in the nested relation; this made it hard to grasp the
overall structure of the query without first going through the step
of hiding a number of irrelevant columns, usually necessitating
horizontal scrolling. For auto joins, in contrast, only primary
key fields were displayed by default. This also turned out to
be a poor choice, because primary key fields often consist of
purely technical identifiers that neither help the user identify an
entity in the database nor its type. An example would be the
relation EMPLOYEES(ID, FIRST_NAME, LAST_NAME), where
the database identifies each tuple by the technical primary key
ID (maybe a number, like “16”) but where the user would rather
like to see the first and last names of each employee—despite the
theoretical possibility that two employees might have the same
name. Showing only primary key fields by default made auto joins
harder to work with than necessary, requiring users to click four or
five times in the field selector in order to introduce a new relation
and show a reasonable set of fields from that relation.

Post-study, in response to the problem of poor field visibility de-
faults, we modified our system to allow a subset of columns from
each database table to be marked as human-readable heading fields.
These are the fields that will initially be visible whenever the table
in question is introduced into a query. As suggested by users MN,
various heuristics can be used to configure this setting automati-
cally. Several proposed attribute ranking algorithms [19, 44] could
be suitable. For now, we simply look for column names containing
the words “title” or “name”. Summarization may even be useful in
the vertical direction, with several techniques available [14, 51].

For databases containing a large number of fields per table, nav-
igating the field selector became cumbersome. This was noted by
users EJM, who got a chance to try our tool on a real data ware-
house schema containing 22 interconnected tables with up to 40-73
fields each (19 on average). User L also pointed this out for the
smaller course catalog schema. User E explains:

“You’ve got massive lists, and they’re not ordered alphabetically.
You’ve got table names, and field names, and sometimes they are
not very English.”

One part of the problem is that users spent a significant amount
of time scanning up and down looking for specific field names. A
search box in the field selector, like that of the filter popup, would
help mitigate this, as suggested by users JM. A separate problem is
the fact that the multitude of primitive fields in the field selector ob-
scures the overall structure of relation fields in the query, including
those accessible via auto joins. Users JM also commented that they
would have liked to see a schema diagram of some sort on-screen.
In the future, we may consider adding a second kind of field se-
lector that shows relation fields only in a tree representation that is
fully expanded by default; this would provide a compact way to see
the entire foreign key structure of the database schema as reachable
from the current query.

4.3 General Sentiment
At the end of the session, users CDHIJK expressed that they had

a high degree of understanding of the tool. User K, who had 2-300
hours of experience with SQL from their previous job, noted:

“It’s probably fair to say that I am as comfortable with this as I
am with SQL right now, just because I haven’t used SQL that often

11

in the recent past. Given 2 hours, I think I could make an accurate
report in this, allowing for mistakes, and fixing my mistakes. Take
that same period in SQL, and I think I would still be at sea.”

Users EJKL rated SIEUFERD favorably compared to existing
commercial tools they are familiar with.

User J: “It took me a lot longer to get anything useful out of
Access after I first started using that. So that’s huge. This is more
intuitive than either Excel or Access. I think, for the novice that
doesn’t know what they’re doing, this can be very powerful.”

5. CONTROLLED USER STUDY
In a second user study, we aimed to get a more precise idea

of how users might rate our system compared to an existing in-
dustry tool. We chose the “Query Design” facility of Microsoft
Access 2016 as a control. Being part of the Office Professional
suite, it is one of the most common visual query tools available.
It is also a good example of a query builder that uses a diagram-
based approach rather than direct manipulation of results (see Re-
lated Work).

The controlled study was a within-subjects counterbalanced
design, measuring usability using the System Usability Scale
(SUS) [8]. Tullis and Stetson [56] recommend sample sizes
of 12-14 users to get reasonably representative results from
within-subjects studies based on the SUS survey; we collected data
from 14 users (5 male, median age 36). See Table 5 (appendix) for
a demographic summary. Only users OTÆ had prior experience
with the Access query designer. We met with each user for a single
study session, structured as follows:

1. Complete demographic/background survey.
2. Briefly discuss the sample database that will be used for tasks,

consulting a schema diagram on paper. The paper diagram re-
mains available to the user during the tasks that follow.

3. Work through some standardized tasks to evaluate Tool 1. Stop
after about 20 minutes. The first tool is SIEUFERD for half of
the users and Microsoft Access for the other half, randomized.

4. Complete SUS survey for Tool 1.
5. Work through the same tasks in Tool 2, under otherwise identi-

cal conditions. Stop after about 20 minutes.
6. Complete SUS survey for Tool 2.
7. Discussion and feedback.

The standardized tasks, all done on the 7-table “Northwind” ex-
ample database that shipped with older versions of Microsoft Ac-
cess, are intended to be realistic examples of queries that a user
might want to run on such a database. They incorporate joins, fil-
ters, sorting, scalar calculations and aggregates, but are limited to
queries that can be expressed in Microsoft Access’ visual query
designer; this excludes queries requiring nested results as well as
multi-block queries (e.g. aggregates used as inputs to other aggre-
gates). The exact tasks are listed in Table 6 (appendix). In both
tools, we configured foreign key relationships upfront so that the
user would not have to manually specify exact join constraints be-
tween tables. The first five tasks are guided training tasks, intended
to expose the user to all features, in both tools, that are needed to
complete the subsequent unguided tasks. The guided tasks tended
to take about half of the 20 minutes that users had available to try
each tool. After the guided tasks, users were asked to try solv-
ing four unguided tasks without help. Since the main purpose of
tasks was to give the user enough of an impression of each sys-
tem to complete the subsequent SUS survey, we gave hints during
unguided tasks whenever users reported being stuck.

The results of the study are shown in Table 4. The raw SUS score
is reported along with separate Learnability and Usability scores

Table 4: Mean SUS survey results for the controlled study, us-
ing various standard scales. Higher scores are better. Error
bars show the standard error of the mean.

Scale Tool Score (0-100)
Raw SUS Access 50

10 20 30 40 50 60 70 80 90 100

Sieuferd 68
Learnability Access 49

Sieuferd 64
Usability Access 50

Sieuferd 69
Percentile Access 6

Sieuferd 52

as defined by Lewis and Sauro [39], as well as a percentile rating
among 30 other studies in the B2B (Business Software) category as
detailed by Sauro [49]. The difference in raw SUS scores between
Access and SIEUFERD is statistically significant (p = 0.0019 with
two-tailed paired t-test).

Interpreting the results, with the caveat that these observations
are based on only 20-minute interactions with each tool, we see that
SIEUFERD significantly outperformed Microsoft Access in terms
of usability. Most of the difference can be attributed to the poor
performance of Microsoft Access, considering its low ranking on
the percentile scale; SIEUFERD simply achieved an average rat-
ing compared to other business software. This supports the orig-
inal hypothesis of our paper: database querying is hard, but can
be made significantly easier using a direct manipulation interface.
SIEUFERD still has significant potential for improved usability. In
conversations with users, the main requests for future design im-
provements were (1) the ability to get an overview of the complete
database schema from within the query interface and (2) reduced
dependency on formulas during query building. This is consistent
with observations from the formative study.

6. CONCLUSION
SIEUFERD is a visual query system that achieves SQL-like ex-

pressiveness from a pure direct manipulation interface. Whereas
previous direct manipulation systems either sacrifice expressive-
ness or hide the actual query from the user, SIEUFERD integrates
the query and its result into a single interactive visualization, using
spreadsheet concepts like filters and formulas to expose the com-
plete state of the current query. Compared with the diagram-based
query designer of Microsoft Access 2016, users greatly preferred
our direct manipulation interface, with the latter scoring 46 per-
centiles higher on a SUS-based percentile scale. For data-minded
people of all professions, we believe SIEUFERD’s interaction style
holds promise as an alternative to hand-coded SQL.

7. FUTURE WORK
In the current query interface, some queries are expressible yet

awkward to construct; examples include range filters, grouping
on custom attributes, and UNION-type queries. Here, the interface
could be improved without significant changes to the underlying
query model. See for example the proposed syntactic sugar for
union queries in Figure 7 (appendix). Other future work will
focus on expanding the ways in which results can be displayed;
our query model is well-suited for the retrieval of data for
visualizations such as dashboards, crosstabs, calendars, forms, and
reports. Already supported are crosstabs, see Figure 5 (appendix),
and form/report layouts [5]. Finally, we hope to incorporate
editing of data; this will allow SIEUFERD to act as a complete
schema-independent end user front-end for relational databases.

12

8. REFERENCES

[1] A. Abouzied, J. Hellerstein, and A. Silberschatz. DataPlay:
Interactive tweaking and example-driven correction of graphical
database queries. In Proceedings of the 25th annual ACM symposium
on User interface software and technology (UIST ’12), pages
207–218, New York, NY, USA, 2012. ACM.

[2] S. Achler. GBXT: A gesture-based data exploration tool for your
favorite database system. In Model and Data Engineering, pages
224–237. Springer International Publishing, Cham, Switzerland,
2014.

[3] M. Angelaccio, T. Catarci, and G. Santucci. Query by Diagram: A
fully visual query system. Journal of Visual Languages &
Computing, 1(3):255–273, 1990.

[4] E. Bakke and E. Benson. The schema-independent database UI: A
proposed holy grail and some suggestions. In Proceedings of the 5th
Biennial Conference on Innovative Data Systems Research (CIDR
’11), 2011.

[5] E. Bakke, D. R. Karger, and R. C. Miller. Automatic layout of
structured hierarchical reports. IEEE Transactions on Visualization
and Computer Graphics, 19(12):2586–2595, December 2013.

[6] E. Baralis and J. Widom. An algebraic approach to static analysis of
active database rules. ACM Transactions on Database Systems
(TODS), 25(3):269–332, September 2000.

[7] T. Berners-Lee, Y. Chen, L. Chilton, D. Connolly, R. Dhanaraj,
J. Hollenbach, A. Lerer, and D. Sheets. Tabulator: Exploring and
analyzing linked data on the semantic web. In Proceedings of the 3rd
International Semantic Web User Interaction Workshop (SWUI ’06),
2006.

[8] J. Brooke. SUS: A quick and dirty usability scale. In P. W. Jordan,
B. Thomas, B. A. Weerdmeester, and I. L. McClelland, editors,
Usability evaluation in industry, pages 189–194. Tailor & Francis,
London, UK, 1996.

[9] M. Burnett, J. Atwood, R. Walpole Djang, J. Reichwein,
H. Gottfried, and S. Yang. Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming, 11:155–206, March 2001.

[10] B. Cao and A. Badia. SQL query optimization through nested
relational algebra. ACM Transactions on Database Systems (TODS),
32(3):18, 2007.

[11] T. Catarci, M. F. Costabile, S. Levialdi, and C. Batini. Visual query
systems for databases: A survey. Journal of Visual Languages &
Computing, 8(2):215–260, 1997.

[12] J. P. Caulkins, E. L. Morrison, and T. Weidemann. Spreadsheet errors
and decision making: Evidence from field interviews. Journal of
Organizational and End User Computing, 19(3):1, 2007.

[13] K. S.-P. Chang and B. A. Myers. Using and exploring hierarchical
data in spreadsheets. In Proceedings of the 34th Annual ACM
Conference on Human Factors in Computing Systems (CHI ’16),
New York, NY, USA, 2016. ACM.

[14] S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic
ranking of database query results. In Proceedings of the 30th
International Conference on Very Large Data Bases (VLDB ’04),
pages 888–899. VLDB Endowment, 2004.

[15] W.-K. Chen and P.-Y. Tu. VisualTPL: A visual dataflow language for
report data transformation. Journal of Visual Languages &
Computing, 25(3):210–226, 2014.

[16] C. Clack and L. Braine. Object-oriented functional spreadsheets. In
Proceedings of the 10th Glasgow Workshop on Functional
Programming (GlaFP ’97), 1997.

[17] E. F. Codd. Relational completeness of data base sublanguages. In
Database Systems, pages 65–98. Prentice Hall, 1972.

[18] R. Collie. The 3rd most common button in data apps is...
http://www.powerpivotpro.com/2012/03/
the-3rd-most-common-button-in-data-apps-is, March 2012.

[19] G. Das, V. Hristidis, N. Kapoor, and S. Sudarshan. Ordering the
attributes of query results. In Proceedings of the 2006 ACM SIGMOD
International Conference on Management of Data, pages 395–406,
New York, NY, USA, 2006. ACM.

[20] E. Díaz-Struck. Ethanol industry battles to keep incentives, May
2013. Investigation for the New England Center for Investigative

Reporting and Connectas, available at http://eye.necir.org/2013/05/
26/ethanol-industry-battles-to-keep-incentives.

[21] S. El-Mahgary and E. Soisalon-Soininen. A form-based query
interface for complex queries. Journal of Visual Languages &
Computing, 29:15–53, 2015.

[22] R. G. Epstein. The TableTalk query language. Journal of Visual
Languages & Computing, 2(2):115–141, 1991.

[23] R. Fagin. Multivalued dependencies and a new normal form for
relational databases. ACM Transactions on Database Systems
(TODS), 2(3):262–278, 1977.

[24] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems:
The Complete Book. Pearson Prentice Hall, Upper Saddle River, NJ,
USA, 2nd edition, 2009.

[25] Y. Han, G. Wang, G. Ji, and P. Zhang. Situational data integration
with data services and nested table. Service Oriented Computing and
Applications, 7(2):129–150, 2013.

[26] L. Hella, L. Libkin, J. Nurmonen, and L. Wong. Logics with
aggregate operators. Journal of the ACM (JACM), 48(4):880–907,
July 2001.

[27] G.-J. Houben and J. Paredaens. A graphical interface formalism:
Specifying nested relational databases. In Proceedings of the IFIP
TC2 Working Conference on Visual Database Systems, pages
257–276, 1989.

[28] Y. E. Ioannidis. Visual user interfaces for database systems. ACM
Computing Surveys (CSUR), 28(4es), 1996.

[29] G. Jaeschke and H. J. Schek. Remarks on the algebra of non first
normal form relations. In Proceedings of the 1st ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems
(PODS ’82), pages 124–138, New York, NY, USA, 1982. ACM.

[30] H. V. Jagadish, A. Chapman, A. Elkiss, M. Jayapandian, Y. Li,
A. Nandi, and C. Yu. Making database systems usable. In
Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pages 13–24, New York, NY, USA, 2007.
ACM.

[31] D. Janvrin and J. Morrison. Using a structured design approach to
reduce risks in end user spreadsheet development. Information &
management, 37(1):1–12, 2000.

[32] M. Jayapandian and H. V. Jagadish. Automated creation of a
forms-based database query interface. Proceedings of the VLDB
Endowment, 1:695–709, August 2008.

[33] M. Jayapandian and H. V. Jagadish. Expressive query specification
through form customization. In Proceedings of the 11th International
Conference on Extending Database Technology (EDBT ’08), pages
416–427, New York, NY, USA, 2008. ACM.

[34] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
Interactive visual specification of data transformation scripts. In
Proceedings of the 2011 annual conference on Human Factors in
Computing Systems (CHI ’11), pages 3363–3372, New York, NY,
USA, 2011. ACM.

[35] E. Kandogan, E. Haber, R. Barrett, A. Cypher, P. Maglio, and
H. Zhao. A1: End-user programming for web-based system
administration. In Proceedings of the 18th Annual ACM Symposium
on User Interface Software and Technology (UIST ’05), pages
211–220, New York, NY, USA, 2005. ACM.

[36] K. Kowalzcykowski, A. Deutsch, K. W. Ong, Y. Papakonstantinou,
K. K. Zhao, and M. Petropoulos. Do-It-Yourself database-driven web
applications. In Proceedings of the 4th Biennial Conference on
Innovative Data Systems Research (CIDR ’09), 2009.

[37] D. Król, J. Oleksy, M. Podyma, and B. Trawiński. The analysis of
reporting tools for a cadastre information system. In Proceedings of
the 9th International Conference on Business Information Systems
(BIS ’06), pages 150–163, 2006.

[38] M. Levene. The Nested Universal Relation Database Model, volume
595 of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 1992.

[39] J. R. Lewis and J. Sauro. The factor structure of the system usability
scale. In Proceedings of the 1st International Conference on Human
Centered Design (HCD ’09)/HCI International 2009, pages 94–103,
Berlin, Heidelberg, 2009. Springer-Verlag.

[40] L. Libkin and L. Wong. On the power of aggregation in relational
query languages. In S. Cluet and R. Hull, editors, Proceedings of the

13

http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is
http://www.powerpivotpro.com/2012/03/the-3rd-most-common-button-in-data-apps-is
http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives
http://eye.necir.org/2013/05/26/ethanol-industry-battles-to-keep-incentives

6th International Workshop on Database Programming Languages
(DBPL ’97), Lecture Notes in Computer Science, pages 260–280.
Springer Berlin/Heidelberg, 1998.

[41] B. Liu and H. V. Jagadish. A spreadsheet algebra for a direct data
manipulation query interface. In Proceedings of the IEEE 25th
International Conference on Data Engineering (ICDE ’09), pages
417–428, April 2009.

[42] N. Lorentzos and K. Dondis. Query by Example for Nested Tables.
In Database and Expert Systems Applications, pages 716–725.
Springer, 1998.

[43] R. M. McCutchen, S. Itzhaky, and D. Jackson. Initial report on
Object Spreadsheets. Technical Report MIT-CSAIL-TR-2016-001,
MIT Computer Science and Artificial Intelligence Laboratory,
January 2016.

[44] M. Miah, G. Das, V. Hristidis, and H. Mannila. Standing out in a
crowd: Selecting attributes for maximum visibility. In Proceedings of
the 24th International Conference on Data Engineering (ICDE ’08),
pages 356–365, Washington, DC, USA, April 2008. IEEE Computer
Society.

[45] A. Nandi, L. Jiang, and M. Mandel. Gestural query specification.
Proceedings of the VLDB Endowment, 7(4):289–300, 2013.

[46] Y. Papakonstantinou, M. Petropoulos, and V. Vassalos. QURSED:
Querying and reporting semistructured data. In Proceedings of the
2002 ACM SIGMOD International Conference on Management of
Data, pages 192–203, New York, NY, USA, 2002. ACM.

[47] S. Polyviou, G. Samaras, and P. Evripidou. A relationally complete
visual query language for heterogeneous data sources and pervasive
querying. In Proceedings of the 21st International Conference on
Data Engineering (ICDE ’05), pages 471–482, Washington, DC,
USA, 2005. IEEE Computer Society.

[48] L. Qian, K. LeFevre, and H. V. Jagadish. CRIUS: User-friendly
database design. Proceedings of the VLDB Endowment, 4(2):81–92,
2010.

[49] J. Sauro. A practical guide to the System Usability Scale:
Background, benchmarks & best practices. Measuring Usability
LLC, 2011.

[50] B. Shneiderman. Direct Manipulation: A step beyond programming
languages. IEEE Computer, 16(8):57–69, 1983.

[51] M. Singh, A. Nandi, and H. V. Jagadish. Skimmer: Rapid scrolling of
relational query results. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages 181–192,
New York, NY, USA, 2012. ACM.

[52] M. Spenke and C. Beilken. A spreadsheet interface for logic
programming. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’89), pages 75–80, New York,
NY, USA, 1989. ACM.

[53] H. J. Steenhagen, P. M. G. Apers, and H. M. Blanken. Optimization
of nested queries in a complex object model. In Proceedings of the
4th International Conference on Extending Database Technology
(EDBT ’94), pages 337–350, New York, NY, USA, 1994. Springer
New York.

[54] C. Stolte, D. Tang, and P. Hanrahan. Polaris: A system for query,
analysis, and visualization of multidimensional databases.
Communications of the ACM, 51(11):75–84, November 2008.

[55] C. R. Stolte. Query, analysis, and visualization of multidimensional
databases. PhD thesis, Stanford University, Stanford, CA, USA,
2003.

[56] T. S. Tullis and J. N. Stetson. A comparison of questionnaires for
assessing website usability, 2004. Usability Professionals
Association (UPA) 2004 Conference.

[57] J. Tyszkiewicz. Spreadsheet as a relational database engine. In
Proceedings of the 2010 International Conference on Management of
Data (SIGMOD ’10), pages 195–206, New York, NY, USA, 2010.
ACM.

[58] J. Van den Bussche and S. Vansummeren. Translating SQL into the
relational algebra. Course notes, Hasselt University and the Free
University of Brussels, retrieved April 2016.
http://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf.

[59] L. Wegner, S. Thelemann, J. Thamm, D. Wilke, and S. Wilke.
Navigational exploration and declarative queries in a prototype for
visual information systems. In C. Leung, editor, Visual Information

Systems, volume 1306 of Lecture Notes in Computer Science, pages
199–218. Springer Berlin/Heidelberg, 1997.

[60] F. Yang, N. Gupta, C. Botev, E. F. Churchill, G. Levchenko, and
J. Shanmugasundaram. WYSIWYG development of data driven web
applications. Proceedings of the VLDB Endowment, 1(1):163–175,
2008.

[61] M. M. Zloof. Query-by-Example: A data base language. IBM
Systems Journal, 16(4):324–343, 1977.

APPENDIX
A. EXPRESSIVENESS

Like Liu and Jagadish [41], we demonstrate relational complete-
ness of our visual query language by defining a translation from
a complete set of operators in the relational algebra (σπ×∪−) to
queries in our visual language. We also translate outer joins as well
as the extended projection and grouping operators [24, p. 213]; the
latter two formalize scalar and aggregate calculations, respectively.
Assume set semantics in the relational algebra.

Notation. Let e, ea, and eb be relational algebra expressions. Let
N(e) be the number of attributes in e. Assume that the attribute
names of any relational algebra expression e are e[1], ..., e[N(e)].
Define a formula, notated 〈...〉, to be a functional expression over
attribute names. Formulas are used both in the relational algebra
and in the SIEUFERD query model. Properties in the query model
are used as defined in Table 2.

Translation from relational algebra. Let t(e) be a translation
from a relational algebra expression e to a relation field in the
SIEUFERD query model. We define t(e) recursively as follows:

• Constants. If e = U, where U is a constant relation, then
t(e) is a relation field with INSTANTIATEDTABLE = U.
It has primitive child fields named e[1], ..., e[N(e)] with
COLUMNDEFINITION set to the technical column names
U[1], ...,U[N(e)], respectively.

• Selection. If e = σC(ea), where C is a boolean formula, then
t(e) is a relation field with the following child fields:

– A relation field t(ea).
– Primitive fields named e[1], ..., e[N(e)] having

COLUMNDEFINITION = 〈ea[1]〉, ..., 〈ea[N(e)]〉,
respectively.

– A primitive field with COLUMNDEFINITION = C,
VISIBLE turned off, and FILTER set to include only
values of TRUE.

• Inner/outer joins, and Cartesian product. If e = ea ZC eb,
where Z is either an inner join or left outer join and C is a
boolean formula over attribute names in ea and eb, then t(e) is
a relation field with the following child fields:

– A relation field t(ea).
– A relation field t(σC(eb)) having HIDEPARENTIFEMPTY

turned on iffZ is an inner join. The translation forσC(eb)
applies even though C may reference attributes outside of
eb.

– Primitive fields named e[1], ..., e[N(e)] having
COLUMNDEFINITION =
〈ea[1]〉, ..., 〈ea[N(ea)]〉, 〈eb[1]〉, ..., 〈eb[N(eb)]〉,
respectively.

The Cartesian product (×) is an inner join with C = 〈TRUE〉.
A full outer join is the union of two left joins.

14

http://cs.ulb.ac.be/public/_media/teaching/infoh417/sql2alg_eng.pdf

Figure 5: A crosstab, shown as an example of one of the many alternative layouts that can be used to render data retrieved using the
SIEUFERD query interface. The query shown here is identical to that of Figure 6, but has a crosstab formatting option enabled on
the TERMS relation. All the usual query interface actions remain available from the crosstab layout.

• Extended projection. If e = πF1→e[1],...,Fn→e[n](ea) where each
of F1, ..., Fn is a formula over attribute names in ea, then t(e)
is a relation field with the following child fields:

– A relation field t(ea).
– Primitive fields named e[1], ..., e[n], with COLUMN-

DEFINITION set to formulas F1, ..., Fn, respectively.

• Grouping (aggregation). If e = γA1 ,...,An (ea), where each of
A1, ..., An is either a grouping attribute name or an aggrega-
tion operator applied to an attribute name in ea, then we can
use the same translation as for extended projection by per-
mitting aggregate functions in formulas. In this case, t(e) =
t(π〈A1〉→e[1],...,〈An〉→e[n](ea)).

• Set union. A conditional formula can be used with a Cartesian
product to produce the desired effect. If e = ea ∪ eb, with
n = N(e), then t(e) = t(πF1→e[1],...,Fn→e[n](ea × eb × V)) where
V is the constant relation {(FALSE), (TRUE)} and Fi denotes
the formula 〈V[1] ? ea[i] : eb[i]〉. In the future, we might in-
troduce an explicit UNION function as syntactic sugar for this
kind of construction; see Figure 7 for an example.

• Set difference. Here, we can filter for null values generated
by a left join. If e = ea − eb, with n = N(e), then t(e) =
t(π〈ea[1]〉→e[1],...,〈ea[n]〉→e[n](σ〈M IS NULL〉(ea ZC e′b))) where Z is
a left outer join, C = 〈ea[1] = e′b[1] ∧ ... ∧ ea[n] = e′b[n]〉, and
e′b adds an arbitrary non-nullable attribute M to eb, e.g. e′b =
π〈eb[1]〉→e′b[1],...,〈eb[n]〉→e′b[n],〈42〉→M(eb). Another approach would
be to COUNT values in eb and filter for zero.

In the query model translations above, except when mentioned,
the FILTER, SORT, JOINEDON, and INSTANTIATEDTABLE proper-
ties are cleared, while the VISIBLE, COLLAPSEDUPLICATEROWS,
and HIDEPARENTIFEMPTY properties are TRUE.

Note that queries created by the fully general translation above
can usually be simplified, e.g. by combining selection, projection,
and table instantiation in a single relation field, or by using the
JOINEDON property instead of filters on formula fields.

Figure 6: Input data for the crosstab example in Figure 5,
shown here in a regular nested table layout. The field
COURSES TAUGHT has a formatting option enabled on it to dis-
play numbers using a bar chart visualization.

15

Table 5: User study participants and backgrounds. Users A-N participated in the formative study, users O-Ø in the controlled study.
Professional Area Educational Background Technical Background/Tools Used

Excel SQL Programming Other Tools
A Data journalism Journalism Daily Weekly A bit of Python Access often, Tableau/OpenRefine occasionally
B Business intelligence Linguistics Daily Daily Some PHP BrioQuery daily
C Business intelligence Psychology Daily No No Spotfire daily, BrioQuery occasionally
D Financial Philosophy, Research Adm. Daily No Learning basic Python Some SAPGUI
E IT decision-making Computer Science Weekly In 1992 Java/VB years ago Some R
F Business intelligence Operations Mgmt., Business Daily Frequently VB.net BrioQuery daily
G CS research, teaching CS, Commun., Art Hist., Lit. Monthly Monthly Java/C years ago R a long time ago
H Business intelligence Sociology, Higher Education Daily No No BrioQuery daily
I Health policy Sociology Weekly No No Access for survey entry once, SPSS in school
J Investigative journalism English, Business/Econ. Journ. Daily No Very basic Python Access weekly, e.g. for joins before continuing in Excel
K Publishing Writing, Literature & Publishing Daily Frequently* No Crystal Rep. frequently*, 2 industry-specific systems
L Health policy, research Public Health, Public Policy Daily* No No Access for data entry*, knows SAS/Stata/SPSS/ArcGIS
M Engineering data analytics Finance, Management Daily Frequently* Python/VB years ago Access/Crystal Rep. frequently*; now Tableau, Alteryx
N University administration Math & Economics, Higher Ed. Daily No No BrioQuery for canned reports, internal CRUD apps
O IT Computer Science Daily Yearly Java/VB/Perl* Access monthly*
P Bioinformatics CS, Bioinformatics Monthly Weekly Weekly R monthly
Q Electrical eng./research Electrical Eng., Systems Eng. Weekly Tried once C/Java/Fortran* MATLAB frequently*
R Medicine MD, Adm. & Management Weekly No No Electronic medical records
S Bioinformatics/research Bioinformatics Weekly Tried twice Daily R daily, MATLAB
T Bioinformatics/research Bioinformatics Daily Monthly Daily (Python, JS) Access monthly*, Spotfire daily*, R weekly
U Biomedical/data science Chemical Eng./Statistics Monthly Daily Some Python R weekly, Access for data entry*
V Student Neuroscience Weekly No Some Python Some MATLAB, SPSS, Access for data entry
W Library adm./info science Biology Weekly No No BrioQuery monthly*, SAP, FileMaker
X Student Electrical Engineering & CS Monthly Once Daily R once, MATLAB
Y Student Journalism Monthly One course One course (Java) N/A
Z Student Journalism Weekly No No N/A
Æ Journalism, teaching Journalism, Law Weekly Monthly No Access*/OpenRefine/Tableau monthly, many others
Ø Research Electrical Engineering Weekly No Weekly (Python, C++) MATLAB, Access for data entry*, R/SAS/SPSS

*In previous job.

Table 6: Tasks used in the controlled study. Some additional bonus tasks were also available to users who finished quickly.

Type # Task Operations involved
Guided 1 Show a list of products with the PRODUCTNAME and DISCONTINUED fields visible. Field selection

2 Find the total quantity sold of each product, via the quantities in the ORDERDETAILS table. Join, aggregate
3 Find the total sales for each product. This involves a UNITPRICE ∗ QUANTITY calculation. Scalar formula, aggregate
4 Include in totals only orders shipped outside the US. Join, pre-aggregate filter
5 Show the products with the most revenue first, hiding any order details if still visible. Sorting

Unguided 6 Show customers and all their orders, sorted by customer. Field selection, join, sorting
7 For each of the customers’ orders, show the total dollar amount for that order. Join, scalar formula, aggregate
8 Show the name and phone number of the shipping company serving each order. Join, field selection
9 Show only orders assigned to employee Margaret Peacock. Join, filter

Figure 7: A union query. Following a classic schema design antipattern, the COURSES table stores course codes using numbered table
columns. To facilitate subsequent operations such as filtering by course code, the query collects course codes under a single nested
relation via the helper table 3ROWS = {(1), (2), (3)}. An explicit UNION function, as proposed above, would make the expression of
such queries more elegant.

16

	1 Introduction
	2 Related Work
	3 System Description
	3.1 Overview
	3.2 Query Model
	3.3 Query Building
	3.4 Architecture

	4 Formative User Study
	4.1 Standardized Tasks
	4.2 Observations
	4.3 General Sentiment

	5 Controlled User Study
	6 Conclusion
	7 Future Work
	8 References
	A Expressiveness

