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Abstract
Predictive environmental sensor networks provide com-

plex engineering and systems challenges. These systems
must withstand the event of interest, remain functional
over long time periods when no events occur, cover large
geographical regions of interest to the event, and support the
variety of sensor types needed to detect the phenomenon.
Prediction of the phenomenon on the network complicates
the system further, requiring additional computation on the
microcontrollers and utilizing prediction models that are not
typically designed for sensor networks. This paper describes
a system architecture and deployment to meet the design
requirements and to allow model-driven control, thereby
optimizing the prediction capability of the system. We
explore the application of river flood prediction using this
architecture, describing our initial work on the prediction
model, network implementation, component testing and
infrastructure development in Honduras, deployment on a
river in Massachusetts, and results of the field experiments.
Our system uses only a small number of nodes to cover
basins of 1000-10000 km2 using an unique heterogeneous
communication structure, incorporating self-monitoring for
failure, and adapting measurement schedules to capture
events of interest.

1 Introduction
Current work in sensor networks highlights the growing

applicability of networks to everyday problems. In the
area of monitoring and detecting environmental phenomena,
work on habitat monitoring of birds [23], zebras [21, 43],
and a redwood tree [37] exemplifies the usefulness of
these systems. We are interested in developing systems to
monitor large environmental events and to deal with system
constraints required for real-world use of these networks.

Predictive environmental sensor networks require ad-
dressing several complicated design requirements. The
network must cope with element exposure, node failures,
limited power, and prolonged use. When the event damages
the environment such as floods, hurricanes, forest fires, and
earthquakes, this further complicates the requirements. This
system must withstand the event, which usually poses a
serious hazard to network survival especially those nodes
directly measuring the event. Additionally, the system
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must operate throughout long disaster-free periods, measure
a variety of variables contributing to the disaster, thereby
requiring heterogeneous sensor support, and communicate
over the large geographical regions in which these events
occur.

Once the system meets these fundamental sensing design
requirements, it then needs to actually predict the event of
interest. Most algorithms for this do not conform easily to a
sensor network, instead focusing on a centralized computing
system with significant processing power and complex
system models. This sort of computational power does not
exist everywhere we might want to install such a prediction
network, especially rural and developing countries, nor do
we want to install such computing power. We instead
would like to parsimoniously use the computing power on
the sensor network to perform this prediction by adaptively
sampling data from the network. Model computing on a net-
work requires executing a simplified form of the underlying
physical model and developing distributed implementations.
Key to this process involves eventually connecting the model
to the data collection such that the model drives when and
what is measured. As specific measurements are required to
reduce the prediction uncertainty, the model identifies this
need and, within the network, requests the data from the
sensors.

We examine the effects of these constraints and system
architectures within the context of river flood prediction.
We chose the Aguán River basin in northern Honduras as
our test basin after learning about the seriousness of the
flood problem there from a non-governmental organization
in the region. Specifically, in 1998, Hurricane Mitch
caused approximately 5000 deaths, 8000 injuries and 12000
missing after a wall of water swept down the river at
night while everyone was sleeping (see Figure 1) [39].
Additionally, in the Aguán region, flooding is not limited
to hurricanes, occurring annually due to heavy rainfall.
Many lives and property could be saved if people knew
the flood was coming and, after flooding occurred, could
monitor the river to understand how to best concentrate relief
efforts. With this application in mind, we further define
the system requirements. The system must withstand river
flooding and the severe storms causing the floods, monitor
and communicate over a 10000 km2 river basin, predict
flooding autonomously, and limit costs allowing feasible
implementation of the system in a developing country.
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While our eventual goal is Honduras, for practicality
reasons and speed of debugging, we also chose a local test
site on the upper Charles River at Dover, Massachusetts. The
Charles encompasses a basin of 1000 km2, only one order
of magnitude less than our proposed basin, and provides
support from the USGS along with verification of our
measurements through their sensors.

Figure 1. Aftermath of Hurricane Mitch in 1998 in
Northern Honduras

This paper describes a system architecture to meet these
requirements along with describing our initial work on the
flood prediction model that will drive the network, system
implementation, field experiments in Honduras, deployment
of the network in Massachusetts, and the result of modeling
the Massachusetts field experiment data.
2 Previous Work

Previous work covers a wide variety of topics including
sensor networks for environmental monitoring, sensor
networks for flood detection, and operational flood detection
systems.

Sensor Networks for Environmental Monitoring
Several sensor network systems have been designed for

outdoor monitoring purposes especially animal monitoring.
While this work does not directly relate to ours, implementa-
tions sharing some interesting characteristics including cattle
ranch monitoring [31], cattle control [5], sheep monitoring
[36], zebra herd monitoring [21, 43], seabird nests [23],
and frog vocalizations [17]. Of greater relevance is work
in environment monitoring where several projects have
implemented related systems.

Tolle [37] developed a sensor network to monitor a
redwood tree. Installing nodes throughout the height of
the 70 m tree, the system measured air temperature, relative
humidity, and solar radiation over a 44 day period. The
system logged data every five minutes and transmitted it via
GPRS modem to an external computer. All analysis was
performed off-line after the test period.

Selavo [29] created a sensor network for measuring
light intensity. Each node can connect to 8 resistive
or voltage-based sensors, communicating data locally via

Zigbee and remotely via a single Stargate at 2.4 GHz with
delay tolerance of the data arrival at the base station. They
performed a field experiment of 1 day with 7 nodes and
have installed 19 sensor nodes in another experiment (but
no results were available at time of publication). No data
analysis occurred on the nodes.

Guy [14] built a sensor network system that has been
installed in four different locations to date. In the James
Reserve, a forest setting, the system measured temperature,
humidity, rain, and wind using up to 27 nodes over 1.5
years. 2 nodes were installed for 1.5 years in a high-
desert farm and 24 nodes in the UCLA Botanical Gardens
for 3 months. Finally, a 12-node system was installed in
a Bangladesh rice paddy for 2 weeks to measure nitrate,
calcium, and phosphate (this experiment also described in
[26]). These nodes used 433 MHz communication systems
to share the data measured and a base station sent the data for
offline analysis. The goal of the researchers for the system
was portability and rapid deployment, focusing on a very
different set of requirements than our system.

Werner-Allen [42] installed a wireless sensor network on
a volcano in Ecuador, running 16 nodes for a 19 day test.
Their system focused on scientific effectiveness, specifically
the quality of the data and quantity measured allowing for
delays in data gathering as long as correctly timestamped.
The nodes measured seismic and acoustic data, transmitting
to each other at 2.4 GHz and back to the base station through
a single repeater node at 900 MHz. Detection of recordable
signals did occur on the system, but no further data analysis
within the network.

While the above systems do share some characteristics
to the system and problem we describe, none envision the
level of heterogeneity our system requires, the minimalistic
number of sensors available for the extensive network
area, the real-time need for the data, or the computational
autonomy and complexity to perform the prediction
operation.

Sensor Networks for Flood Detection
Previous work on sensor networks for flood detection

is sparse with only two different examples discovered in
the literature. Castillo-Effen [6] suggests an architecture
for a system, but is unclear on the basin characteristics and
no hardware details are suggested. Closest to our work
is a paper by Hughes [18], describing a flood-predicting
sensor network that uses Gumstix sensor nodes, which
require significant power but allow for a Linux operating
system to run on the node. As described, the system had
been tested in the lab, but no field tests were performed by
time of the paper. The planned field test would consist of
13 nodes along 1 km of the river. It is unclear what flood
prediction model they are using and if it is currently running
on their lab test system. Given lack of information on the
flood prediction side, the known details of the hardware
platform dismiss it as an immediate solution to the problem
introduced here as it has limited geographic range, high
cost, and large power requirements.
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Current Operational Systems for Flood Detection
While not specifically sensor network installations,

understanding the current operational systems helps clarify
the problem space in which we are working. The lack of
published information on operational flood systems makes
generalizations difficult, but three systems seem to summa-
rize the approaches currently taken.

One type involves a highly technical solution with
significant resource support such as seen in the US. For
this system, companies develop sensor, communication,
and computation technology based on the ALERT protocol,
which defines the data structure and polices of environmental
monitoring systems [2]. The US Emergency Alert System
provides communication of the alerts throughout the nation
using television and radio channels by creating special
technology and policies, requiring the installation of the
technology in stations across the country along with weekly
testing, and ensuring protocol compliance at all levels [11].
Implementation of specific systems trickles through each
level of government: federal, state, and county. Given the
large number of counties in the US, systems and policies do
vary, but the majority rely on large numbers of personnel
(some highly technical) and significant technical resources.
Usually, counties implement the direct measurement system
with help from the United States Geological Survey and
create polices on how their county defines a disaster and
evacuation procedures. Actual prediction usually depends
on qualified hydrologists examining the data (thus removing
measurement errors) and running it through a complicated
physical model called the Sacramento model, which requires
calibration of several unmeasurable parameters using years
of historical data.

The other type is the system commonly seen in Central
America, especially Honduras [3], relying on volunteers and
limited technology. Sensors to measure river state include
river level markings painted on bridges and water collecting
rain gages. Volunteers read the river level and rain level
(also emptying the rain gage) at several intervals during a
day, radioing that information to a central office run by the
government. In that office, a person listens to the radio,
records the values in a book, and compares them to a defined
policy whereby the river level measured corresponds to a
color alert. This color alert is radioed to the head office
of the government branch, which then decides on the need
for an evacuation alert in that region and implements some
form of emergency alert procedures. Overall this system
relies on very little technology and extensive policies to
warn communities, working best in small river basins where
measurements indicate flooding in that area (as opposed to
downstream of the measurement area).

A third solution exists in Bangladesh, a country regularly
devastated by flooding due to its low sea level and large
rivers. To combat this, the Danish Hydraulic Institute
initially outfitted the country with local telemetry stations in
1995 and created a MIKE 11-based flood forecasting system
[20]. However, this system experienced sustainability
problems along with issues due to the fact that the
headwaters of its major flood-causing rivers originate in
India, creating complexities with monitoring. A solution

to this was created by a global community of researchers
and government institutions, collating all of the satellite
information and forecasts generated by the US to provide
short, medium, and long-term flood predictions of the major
basins [15, 41]. A system called the Flood Forecasting
and Warning Response System distributes the alert through
reports submitted to various government agencies along with
internet, e-mail, fax, telephone, radio and TV sources [8].
This takes advantage of the ubiquity of satellite information,
which looks to provide input data for flood forecasting
systems of the future [16]. The success of the system does
rely on very regular satellite passes, still not common in all
parts of the world, and a large amount of US resources, also
not available everywhere.

Figure 2. Example of Current Physically-based Model:
Sacramento Soil Moisture Accounting (SAC-SMA)

Computation Requirements of Current Operational
Flood Prediction Model

The current operational model works by modeling the
different methods of rainfall surface runoff to determine
how much water will enter the river, thus increasing the
level. Called the Sacramento Soil Moisture Accounting
model (SAC-SMA), it predicts runoff out to 12 hours
based on rainfall over the area. It creates three different
water compartments (see Figure 2 [7]): a zone describing
the direct runoff from rain falling on impervious soils, a
zone describing water flowing into the river after exceeding
the soil moisture capacity of pervious soils, and a zone
describing runoff occurring after soil moisture capacity is
exceeded above water impervious regions [13]. The model
describes each zone using several differential equations; all
are too many to list, but just those governing one zone are:

dxF(t)
dt

=−p f (t)−u f (t)− eF(t)

xT (t) < x0
T and xF(t) < x0

F
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dxF(t)
dt

= r f (t)− p f (t)−u f (t)

xT (t) = x0
T and xF(t) < x0

F

dxF(t)
dt

= 0; xT (t) = x0
T and xF(t) = x0

F

with
u f (t) = αxF(t)

p f (t) =
xF(t)

x0
F

p0

eF(t) = ep(1−
xT (t)

x0
T

); xF(t) > 0

eF(t) = 0; xF(t) = 0

where eF = evapotranspiration rate from upper zone free
water storage, p f = percolation rate to lower zone storage,
r f = excess flow rate from upper zone tension water to upper
zone free water storage, u f = interflow rate from upper zone
free water storage, xF = upper zone free water volume per
unit area of catchment, x0

F = upper zone free water capacity,
xT = upper zone tension water volume per unit area of
catchment, x0

T = upper zone tension water capacity, and α =
rate of interflow production (in inverse time units).

A similar set of equations describes the other zones and
several more complex equations describe the interconnection
of these zones into a single surface runoff value. These
clearly cannot easily run on a sensor network.

Determining the actual computation time of these equa-
tions is a bit uncertain. Two papers exist that outline
some information on this although the information seems
to differ between them. Experiments by Vrugt [40] on
autocalibration methods using this model resulted in 25
minutes for calibration on a Pentium IV 3.4 GHz computer.
This calibration appears to involve running the model.
Other work by Ajami [1], also in the area of parameter
autocalibration, includes Figure 3, displaying the run time
and calibration time for a number of calibration methods
where it appears that running the model requires on the order
hours. However the paper doesn’t specify numbers. Of
the two papers, the first paper is more specific regarding
computational numbers but much less detailed on procedure
whereas the second is clearly using the SAC-SMA model
over the same data set we also use. Either way, the
information from both suggests that the model requires more
computational power and time than available on a sensor
network or in rural and developing country locations.

Additionally, these equations use 11 parameters, not all
corresponding to actual physical, measurable quantities [25].
To calibrate these parameters and the model requires at least
8 years of rainfall and runoff data for calibration, ideally 8
years of further data for verification, detailed topographic
maps, and hand-calibration by trained hydrologists [12]. The
resulting model operates only on that basin; model creation
for a different basin requires 8 years of calibration data for

Figure 3. Computation and Calibration Time for SAC-
SMA Model Using Manual and Automated Methods

the new river and expert hand-calibration. This again does
not work for a sensor network nor regions where such data
does not exist (and putting sensors in for 8 years to gather
enough information is impractical). Simpler models with
self-calibration and small data requirements that can run on
a sensor network need to be created.

3 Prediction Model
Rainfall driven floods are the most common seasonal

events1. They occur when the soil no longer has the capacity
to absorb rainfall. Surface runoff and sub-surface discharge
processes are the primary contributors to river flow and arise
as a direct (but nonlinear) response of the basin to infiltration.
To predict flooding, a model requires knowing how much
rain falls and what the soil’s time-dependent response to the
rainfall will be.

Physically-based models deduce the runoff, discharge,
and subsequent stream-flow using numerical implementa-
tions of the equations governing transport through the soil
medium and the river channels [28, 32] (see Figure 2 for
an example [7]). Modeling runoff processes using physics
creates a challenge from a simulation point of view. The
model requires details of the topography, soil composition,
and land cover, along with meteorological conditions and
hydrometeorological quantities such as soil moisture [19].

Ongoing work exists in the development of rainfall-
runoff models, ranging from lumped to spatially-distributed
variations [28, 32]. Although popular in academic research,
the need for calibrating spatially-distributed models to
individual basins, model sensitivity to basin conditions, and
the tremendous computational burden involved in running
them makes wide-spread application complicated and, in
resource-strapped underdeveloped areas, nearly impossible.

In contrast, statistics gleaned from the observed record
can lead to the development of low-dimensional distributed
models, which are local in the sense of being valid for a given
site. Such models intrinsically self-calibrate because the
evolving record of observations allows them to adapt to the
latest conditions. This creates portability from one locality to
the next, from one season to the next, and from one climate
regime to the next. Statistical models can yield low computa-

1Storm surges are not considered in this work.
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tional complexity (as we propose), making them well suited
for on-site and real-time implementations. Several of such
statistical models running on different portions of the basin
can collaborate in a distributed inference network to estimate
flow at unobserved portions of the basin. Thus statistical
models can also yield spatially-extended estimates. These
benefits cut across the traditional justification for physically-
based models and motivate their use in our work.

A growing body of evidence indicates that statistical
models are useful in earth systems. This is true of flood
prediction and, although the evidence [4, 30, 33, 34, 35] here
is sparse, we can see mature applications in other areas. In
particular, statistical-models have proven among the best in
forecasting hurricane intensity (which presents similar chal-
lenges to flood forecasting) [9]. Indeed, statistical models
are used for guidance in operational cyclone forecasting [22].
We believe that machine learning combined with physically-
based features for estimation and inference can produce
effective, highly-efficient, self-calibrating, distributed or
lumped models of physical phenomena.

We can approach creating a model for predicting flow
time-series using a set of predictors in many ways [4, 33].
A single global model (one with time invariant parameters)
can operate either using functional (autoregression, neural
networks, support vector machines) or distribution-oriented
(Bayesian) means. However, global models, we think, may
be insufficient due to the non-linearity of the processes
we are modeling, requiring a more local (time varying)
model to best capture that behavior. Localized modeling
approaches include model trees, mixture of experts, and
example-based methods. Ultimately, judging by other
applications [10], we think that using local statistical models
with simplified physical models may be the best stochastic
modeling approach for flood prediction. We set out to
encompass the model design space, beginning with simple
models.

One of the simplest models is an autoregression model,
appearing in various forms for hydrological modeling. This
model assumes that a linear equation can describe the
system behavior, weighting the past N observations of all
relevant input variables taken at time t − Tlead to produce
a prediction of the output variable at time t. N describes
the order of the model and is a parameter determined
by the application. To determine the weighting factors,
some amount of data designates the training set for the
model (another application-defined parameter) and a simple
inversion-multiply operation provides the coefficients from
this data, which is the prediction model until recalibration
occurs. In case the data provided contains local perturbations
limiting the effectiveness of the coefficients, we can smooth
the data using a low-pass filter.

While our experiments showed that an autoregression
model of order 3 seems to work best over a broad range
of prediction times, it is unclear if low-frequency time
variability of predictors can enhance this performance. A
natural way to test this, common in many signal process-
ing problems, involves building autoregression models in
wavelet space. We do this using multiscale differential
features [27] and call it the features plus autoregression

model (hereby called features). This captures information
in the signals at several bandwidths (scale) and frequencies
(order of derivative).

We developed two models using these techniques, with
inputs of rainfall, temperature, and flow-history, and a
single output, river flow. Using these models allowed us
to gain insight into the system while working with limited
data resources. These models, as we implemented them,
self-calibrate, use very little training data (on the order
of weeks), perform a very simple set of operations (an
inversion-multiply and convolution), and require storing
only the amount of data necessary for training. Considering
the complexity of the current model as explained in Section
2, and the goal of computation on the sensor network, the
use of such simple models is easily motivated. However,
as observed (see testing section following), these forms
of models tend to obscure rare behaviors such as floods
by over-weighting the small-scale perturbations occurring
in the longer timeseries of low flow observations. This
suggests the use of local models, which we can construct
more intelligently through our modeling work, thereby
reducing the amount of data needed. Our future work
will explore this direction, especially model-trees, defining
coarse-to-fine organization of the model space in terms of
diurnal, seasonal, annual, and decadal time cycles.

Testing
To analyze our algorithms, we use seven years of rainfall,

temperature, and river flow data for the Blue River in Okla-
homa [24, 38]. This river and data come from an on-going
project called the Distributed Model Intercomparison Project
(DMIP) run by the National Oceanic and Atmospheric
Administration to compare hydrological models [28, 32].
The DMIP test provides more hydrometerological data for
the models than our models uses, allows for calibration based
on 1 year of data, and requires a 1 hour prediction of river
level for assessment [28, 32]. We define three different
criteria for determining the quality of our algorithms: the
modified correlation coefficient (taken from DMIP [32]),
the false positive rate of prediction, and the false negative
rate of prediction. For the modified correlation coefficient,
since we use the definition from DMIP, we can also compare
our models to those listed as a reference of quality. False
positive and negative detections provide a more common
sense criteria as minimizing these increases the confidence
of the end user in the system predictions.

We implemented the models as described above in
Matlab, defining the training window as 4 weeks of data
and recalibrating after each observation. Given these two
parameter definitions, we analyzed the remaining parameters
describing the models to determine optimal values. We
discovered that an Order=3 autoregression model with
smoothing using σ2 =

√
2 suffices for a variety of prediction

lead times. When adding in the feature computation, com-
puting features at a single point using scls = [1,

√
2,2

√
2]

outperforms other scale factors and feature convolution over
a range of data points. In addition to the two models
with these parameters, we computed predictions using two
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Modified Correlation Coefficient False Positive Rate False Negative Rate
DMIP LMP Uncalibrated 0.77 - -
DMIP OHD Uncalibrated 0.71 - -
DMIP Average Uncalibrated 0.58 - -
DMIP LMP Calibrated 0.86 - -
DMIP OHD Calibrated 0.86 - -
DMIP Average Calibrated 0.70 - -
Climatology 1 Hour -0.009 17 13
Climatology 16 Hour -0.009 17 13
Persistence 1 Hour 0.997 0 0
Persistence 16 Hour 0.76 2 10
Autoregression 1 Hour 0.98 3 0
Autoregression 16 Hour 0.63 23 0
Feature-Based 1 Hour 0.96 4 0
Feature-Based 16 Hour 0.63 36 3

Table 1. Overall Results: DMIP Best Cases and Four Linear Cases

naive approaches: climatology (or predicting the average of
all previously seen flow observations at that hour and date
in past years) and persistence (or assuming that the flow
will stay at its currently observed value). Using all four
approaches, for comparison with the DMIP results, we run
our test over all seven years of data, computing the modified
correlation coefficient at the end for the complete set. The
test computes predictions for time periods of 1 hour (for
comparison with DMIP) and 16 hours (as a more realistic
prediction window).

Table 1 shows the overall results, comparing our two
models and two naive approaches as well as to the best
cases for calibrated and uncalibrated DMIP models. The
DMIP models listed performed best in the project testing
for the category of modified correlation coefficient for the
Blue River. LMP offers the best results, but this model (the
SAC-SMA model described earlier) demonstrates the current
operational centralized method. For this reason, we include
the OHD (or NWS Office of Hydrologic Development)
model to demonstrate the best distributed model in current
research. Examining the modified correlation coefficient,
as the table demonstrates, persistence performs the best for
1 hour predictions with the autoregression model closely
following. At 16 hours, persistence performs better than
the average DMIP model, calibrated or uncalibrated, while
autoregression outperforms the average uncalibrated DMIP
result and performs only slightly worse than the average
calibrated result.

Does this then mean the best approach to flood prediction
is to assume the current state will hold? Examining the other
two metrics for the 16 hour prediction claims otherwise.
While persistence tracks the observed data closely in the
aggregate sense over the seven years of data, it fails to detect
10 flood events. Autoregression, on the other hand, detects
all flood events and adds 23 new ones. In this case, the
failure to detect a flood is a significantly worse event than
the false prediction of a flood. The first causes loss of life
and property while the second reduces confidence in the
model; the former cannot be remedied, but the latter can be
alleviated through training and external verification methods.
The low correlation value for autoregression, however,

suggests that the large number of low flow data points
saturates the model with examples of minor perturbations
such that it mispredicts actual flood events. This suggests
the need for more local modeling efforts and future work
will examine the use of multiple models to reduce this error,
although that may require at least one significant flood event
to occur for the training set to properly anticipate the large
increases.

In addition to multiple model creation, future work on
this algorithm includes exploration of online definition of the
uncertainty of the prediction to better indicate the potential
of false positives and negatives, and increasing the timeframe
of recomputing of coefficients from each hour to something
more reasonable. Next we would like to do this on a
sensor network platform with in-situ data collection and
computation. The following sections describe our work on
the sensor network platform to achieve this direction.

4 System Description
Complex system requirements constrain the system, forc-

ing careful examination of the architecture and design of
the network. We defined the following requirements for the
overall system:

• Monitor events over large geographic regions of ap-
proximately 10000 km2

• Measure a wide variety of variables contributing the
occurrence of the event

• Survive long-term element exposure (on the order of
years)

• Recover from node losses

• Power system for years

• Withstand the event of interest such as a river flood

• Minimize costs

Looking deeper at event prediction results in the follow-
ing additional requirements:
• Detect and predict event of interest

• Handle significant computation requirements
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• Allow for the distribution of the model across the
network and ability of model to drive data collection

Due to the distance requirement, the inability to populate
the entire area with sensors, and cost limitations, the network
will consist of a small number of nodes, communicating
over long distances on the order of 25 km with no recurring
costs as that violates the cost requirement and limits the
sustainability of the system. Yet the system also needs a
variety of sensor measurements around any one location.
This suggests a two-tiered architecture with multiple nodes,
or a mini-network, at each location with a super-network
connecting the locations. Other constraints affect the node
design and system protocols and, taken with the above, result
in Figure 4, showing an idealized overview of our system.
We intend this system architecture as a generic architecture
for model-based computation in sensor networks.

Based on the combination of mini-networks and long-
range links, as demonstrated in Figure 4, the system
communicates via two different methods. To cover the long-
range communication links of approximately 25 km range,
the system uses 144 MHz radios. In the US, this band
covers the amateur radio operators and thereby provides
many mobile radio systems for possible use. These systems
focus on voice communication, however, so we designed a
modem to allow data communication within this frequency
over Kenwood TM271A VHF radios. The modem uses a
MX614 Bell 202 compatible integrated circuit to convert
1200 baud serial signals to FSK modulated signals for
radio transmission. This allows for data transmission across
a cheap, long-range communication method without the
recurring costs of a satellite or mobile telephone system.
For short-range communication links within a 8 km range
such as required by the mini-networks, the system operates
within the 900 MHz band, using Aerocomm AC4790 off-
shelf modules.

Figure 4. Idealized Sensor Network Consisting of Two
Communication Tiers: 144 MHz Computation, Govern-
ment Office, Community, and 900 MHz Sensor Nodes

In addition to two communication methods, the system
consists of four different regimes of operation: sensing,

computation, government office interface, and community
interface. Each of these regimes requires a slightly different
instantiation of hardware and software. Some regimes may
overlap so each hardware/software instantiation needs to
contain enough similarity to allow for this overlap within
one node; we achieve this by starting from the same base
system electronics and add an expansion daughter-board if a
regime instantiation requires any extra hardware components
to perform its specialized operations. In the following,
the paper overviews each of these different nodes of the
system, discussing the design decisions in more detail. The
paper describes these sections within the context of a generic
architecture for predictive environmental sensor networks
(see Figure 5). Section 5 discusses all details specific to a
flood prediction instantiation.

4.1 Base System
To allow easy interchange of node types and the com-

bination of regimes within one node, all nodes begin
with the same base electronics designed to provide for a
variety of options. An ARM7TDMI-S microcontroller core,
specifically the LPC2148 from NXP, provides the necessary
computation power for the board. The LPC2148 operates at
a high CPI (cycles per instruction) rate and provides many
useful internal components including a real-time clock, 10-
bit analog to digital converters, and I2C communication.
However, it limits the number of physical serial ports to
2, which cannot cover all needed operations so we add a
Xilinx CoolRunner-II CPLD to the system and configure
it as a serial router. This allows for up to 8 different
serial devices and all possible connections between them.
In addition to limited serial ports, the small package size
of the LPC2148 requires multiplexing of the operations
on the digital input/output (I/O) pins thereby limiting the
actual operations available. The base board sends all free
pins to the daughter-board connectors allowing for a variety
of operations and potential multiplexing of each I/O on
specialized boards.

The base system also contains the AC4790 900 MHz
wireless module as most nodes will require one. A mini-SD
circuit and FRAM (Ferroelectric Random Access Memory)
supply data and configuration storage. Finally, a charging
circuit on the board allows photovoltaic charging of lithium-
polymer batteries, which power the system at 3.7 V.

In addition to the base hardware constructed, the system
runs a custom base software package developed in C using
the WinARM libraries. This package consists of: serial
libraries which hide the underlying CPLD serial router, a
custom EFAT file system for SD-Card logging, sensor access
libraries, AC4790 radio libraries, power regulation, and a
scheduler system based on the real-time clock and internal
timers.

4.2 Sensing
Sensing nodes measure the variables needed to detect and

predict the event of interest. In addition to the measurements,
the nodes log the raw data, compute data statistics over each
hour and inter-transmission time period, analyze data for
indications of incoming events and potential sensor failures,
and scan for faults based on current operational status and
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Figure 5. Generic Predictive Environmental Sensor Network Architecture Consisting of Sensing, Computation,
Government Office, and Community Interface Nodes

power. These nodes also regularly transmit the computed
data to the computation nodes via the underlying AC4790
protocols internal to the radio module. For these types of
systems, a node may monitor multiple sensors and multiple
sensor types requiring hardware and software support for
both scenarios. Additionally, these nodes survive out in the
field for many months so cannot use much power and should
self-monitor for the warning signs of node failure.

Our nodes accomplish this through a daughter-board
attached to the base system that expands the available I/Os
through an I2C integrated circuit and creates several ports for
sensors ranging from resistive to interrupt to voltage. In case
the sensor requires a more complicated interface, we include
RS485 and RS232 circuits for external communication to
sensors. The nodes also measure charge current supplied by
small photovoltaic panels to determine the power available,
a helpful indicator of the remaining life of the node.

These nodes communicate via 900 MHz with all nodes in
immediate range, creating mini-networks of sensors within
the greater system (the combination of few nodes and large
areas ensures each node only joins one mini-network).
Nodes regularly transmit data measurements to all other
nodes, providing a way to monitor each other through
examining the data for errors and immediately noticing the
failure of any node not transmitting within an appropriate
window. To both capture the event of interest and monitor
the state of the sensor, the system modifies the measurement
rate and transmission rate based on criteria supplied by the
model through the computation nodes as well as allowing the
computation nodes to request measurements outside of the
regular measurement schedule. Repeated measurements of
odd values such as the maximum possible value of the sensor
or rapid rates of change trigger a warning that the sensor may

not function anymore, which the node then transmits via the
900 MHz network to other nodes nearby.

4.3 Computation
Computation nodes connect the mini-networks of sensors

and provide the computational muscle (see Figure 6). These
nodes run the algorithms to detect and predict the event
of interest, focusing on their local region. As data arrives
from nearby sensors, the node combines the data from each
sensor, including information from other mini-networks’
related sensors (such as upstream sensors in the case of river
flooding), and examines the correctness of the data using
information received from the government office interface
nodes. The node runs the data through the distributed model,
computing the prediction along with the uncertainty of that
prediction over the time window specified. To reduce the
uncertainty, the computation node requests additional data
from the sensing nodes and modifies the parameters affecting
the measurement schedule for the sensing nodes.

To achieve this, nodes communicate both via the
900 MHz network and to each other via the 144 MHz
network. Because these nodes use the 144 MHz network,
they require a different daughter-board from the sensing
nodes. This board includes the modem and power switching
circuitry for radio control while also including the various
sensing ports and RS485 communication. With the second
radio and differing daughter-board requirements, this node
add several libraries to the existing base software structure,
most specifically wrapper functions to use the modem at a
higher level than raw serial data.

The system cannot use lithium-polymer batteries and
small photovoltaic panels due to the power requirements
of the radio when transmitting so this system uses lead-
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acid batteries along with 6 W photovoltaic panels. To
power the radio, the system needs 12 V instead of the
base board requirement of 3.7 V so we use the daughter-
board to power the base board for these nodes. To ensure
radio communication over the 25 km range, these systems
ideally need antennas located at least 5 m high in the air,
requiring antenna towers for the system with added benefits
of ensuring proper sunlight for the photovoltaic panels and
theft protection for the system (see Figure 7).
4.4 Government Office Interface

These nodes provide a user interface to the network.
This interface will focus on the government and relief
agencies who will maintain the system, providing data and
predictions regarding the event of interest along with detailed
information to monitor the system and display those nodes
no longer functioning.

The office nodes communicate via 144 MHz with the
computation nodes to provide any external requests or data
and receive all of the existing network data. This allows
the office nodes to perform prediction and detection in a
similar manner to the computation nodes, but with a focus
on the entire geographic area instead of a local region,
creating a secondary prediction computation as a redundant
measure for the local computation nodes. Additionally, with
the possibility of internet access in an office, these nodes
could provide external verification for data through online
information, using satellite and other remote data available
to verify the computation results, checking for errors such
as a flood prediction when no rain has fallen or a forest fire
during a rain storm.
4.5 Community Interface

These nodes provide an interface to the communities
interested in the detection and prediction of the events. In
case of disasters, this would allow time to evacuate, but
the system could also provide information such as envi-
ronmental monitoring, agricultural information, or animal
predator detection. The interface displays the known state

Figure 6. Computation Node

Figure 7. 5 Meter Antenna Tower for Computation
Nodes

of the geographic area, event predictions, event detections,
and post-event monitoring. To avoid confusion, the interface
does not supply detailed information regarding the network,
such as node status or the data underlying the computations.
Based on the location of the communities within the
network, these nodes may also double as any of the other
node types.

5 Installation and Results
We implemented this design, focusing on the application

of river flooding. We have traveled nine times to Honduras
over the course of this project with the goal of understanding
deployment issues and testing the system components.
Additionally, we have a local test site in the Charles River
basin, specifically the region of the river located around
Dover, Massachusetts. This site allows us both to quickly
identify any system issues without a trip to Honduras and to
run longer tests, collecting data for our prediction modeling
work and discovering any long range system issues.
5.1 Implementation

For the particular application of river flooding, the sensors
consist of precipitation, air temperature, and water pressure.
Precipitation sensors measure using reed magnetic switches,
which cause an interrupt after every 1 mm of rainfall.
Temperature sensors measure resistively, modifying an ADC
level, which translates into a temperature after calibration.
While the sensor types differ, the system construction is
similar and requires nothing additional to the sensing nodes
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Figure 8. Precipitation Sensor Node Consisting of
Electronics, Sensor and Photovoltaic Board

described in 4.2. We placed the electronics within Otter
boxes to ensure protection from the elements and added
Bulgin connectors for the sensor, antenna, and photovoltaic
boards (see Figure 8).

Measuring water pressure allows us to compute the water
level. While our simulation work with the Blue River data
uses river flow since that is the data available from the
USGS, measuring flow requires several sensors to get a
cross-sectional profile of the river in order to understand
flow at a single location on the river. Level, however,
requires only one measurement to understand the state of
the river yet relates to flow through easily defined and
understood curves (the USGS actually measures level as
well and performs this conversion prior to posting the data
online). Therefore the two values are interchangeable and
we use river level for our discussion of the modeling results
from the Dover site data. To perform the level measurement
requires a special underwater installation. In order to
maintain solar power and wireless communication, we
developed an external pressure sensor box (see Figure 9) to
communicate via RS485 with the sensing node. Our pressure
board consists of another LPC2148 microcontroller, RS485
interface, and instrumentation amplifier. The LPC2148
is much more powerful than necessary, but allows us to
maintain a consistent software system. We complete the box
by attaching a Honeywell 24PCDFA6A pressure sensor, and
output the RS485 lines along with power and ground through
a Seacon underwater connector. Honeywell’s pressure
sensor measures 13.8-206.8 MPa of water pressure directly
instead of the more typical air pressure, allowing us to bypass
the use of extensive tubing to ensure no water touches the
sensor.
5.2 Dover Field Test

We used the Dover site to test the long-term behavior
of the system, specifically the sensing and 900 MHz
communication. The installation consists of 3 distinct sensor
nodes: 1 precipitation, 1 temperature, and 1 pressure sensor.

We installed the three nodes within 900 MHz radio
communication range at the locations shown in Figure 10.
The pressure sensor we placed within a USGS sensing

Figure 9. Pressure Sensor Box to Communicate with
Sensor Node

station, using their concrete shed as a base for our system.
The other sensors we located across the river, with the
precipitation sensor across from the pressure sensor and the
temperature sensor upstream of both.

Figure 10. Dover Site with Three Sensors

With the system we gathered 5 weeks worth of data
before ending the field experiment. Figure 11 shows the
hourly precipitation, pressure, and temperature measured by
the nodes over the complete experiment. While no flood
occurred during this time period, we do see a variety of
interesting behaviors such as a large amount of rainfall
occurring at hour 251 and a period of no change occurring
right before from hours 90 through 250. We then run this
data through three of the models discussed in Section 3
for three prediction times and compare use of one versus
two weeks of training data. The results shown in Table 2
demonstrate the expected conclusion that more training data
improves the prediction, which we can explain by noting
that this benefit derives from the rainfall now present within
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Modified Correlation Coefficient
One Week Training Data Two Weeks Training Data

Persistence 1 Hour 0.992 0.995
Persistence 8 Hour 0.901 0.925
Persistence 16 Hour 0.749 0.797
Autoregression 1 Hour 0.957 0.978
Autoregression 8 Hour 0.743 0.916
Autoregression 16 Hour 0.422 0.800
Features 1 Hour 0.927 0.970
Features 8 Hour 0.613 0.902
Features 16 Hour 0.374 0.779

Table 2. Comparison of Model Results for Dover Data

Figure 11. Data Collected from Dover Test Site

the two weeks of training data where, at one week, no rain
had occurred. Additionally, comparing to the average from
DMIP’s calibrated results to define reasonable (see Table 1),
all three models function reasonably, outperforming DMIP
out to 16 hour predictions with two weeks of training data
and out to 8 hours with only one week. We also see an
interesting result occurring for the 16 hour prediction where
autoregression performs slightly better than persistence.
Figures 12 and 13 demonstrate the performance of the
autoregression model for prediction hours 1 and 16 with
two weeks of training data. At 1 hour, the system tracks
the observations quite well with only a minor lag. At 16
hours, the system lags the observations more noticeably
with a jaggedness suggesting an attempt to compensate
for the chaotic behavior of the data and two overshoots
corresponding to the two large rainfall events captured in
the 5 weeks. The apparent phase delay of the prediction
results from the order of the autoregression; a larger order
would remove this delay, but results in a worse correlation
coefficient.

Overall, the field experiment was a useful indicator of
the potential to predict flooding using statistical methods as
we suggest, demonstrating reasonable results up to 16 hour
prediction windows with only two weeks of training data.
Larger flow variations would help further demonstrate this,

Figure 12. 1 Hour Forecast of Dover Data

although we would prefer to avoid that sort of flooding in
Massachusetts. Additionally, connecting the Dover site to
MIT using the communication nodes would provide a good
test of a larger portion of the system and, given that we can
use the amateur radio band, should occur over the next few
months.

5.3 Honduras Field Tests
During our trips to Honduras, we explored various

problems associated with the system deployment, especially
infrastructure issues, and tested those components associated
with infrastructure. A local non-governmental organization,
the Centro Técnico San Alonso Rodrı́guez (CTSAR), initi-
ated the project in the river basin and aids our work on this
problem.

On the communication side, we verified the usability of
the 144 MHz radios. We tested the various ranges necessary
for the system, ensuring that they can communicate over
those ranges. To communicate at these ranges reliably,
the radio antennas need line-of-sight high in the air, which
requires antenna towers and limits the ability to test this
portion of the system in the US. With CTSAR help, we
arranged access to land and built 5 meter antenna towers at
two river sites where we plan to install water level sensors
for 144 MHz radio communication along with 10 meter
towers at the CTSAR office and the government emergency
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Figure 13. 16 Hour Forecast of Dover Data

Figure 14. Installation of 10 Meter Tower at Office

management office in Tocoa (see Figure 14). With these
towers, we verified both the communication range and the
ability of our modems to communicate data over this range.
Thanks to hurricanes in 2005, we also proved that the towers
and antennas will survive hurricane force winds.

At the offices, in addition to the towers, we worked to
design and install secondary solar power systems. We would
prefer to use grid power if it exists, but need solar power
backup for the daily fluctuations of that system along with
the major outages associated with disasters. CTSAR worked
with a local company to purchase panels, batteries, and a
charge controller. We added an off-the-shelf inverter, a
power strip, and very simple custom electronics to switch to
solar at the absence of grid power. We installed these systems
at both offices and are running long-term usage tests. At
the government office, we also installed a permanent radio
and laptop for development of that interface, using it both
for longer term radio tests and exploring issues with the
interface.

Another area of testing has been the water measuring

Figure 15. Installation of Water Level Prototype

system. We have created five different prototypes of this
system installing each for several months in Honduras (see
Figure 15). Through these prototypes, we settled on mea-
suring water pressure as a method of obtaining river level.
Other options such as resistive water level sensors were
rejected due to corrosion issues, while ultrasonic sensors
were rejected due to the indirect nature of the measurement
along with reduced ability in high winds. These prototypes
allowed us to understand the complexities of installing
something in a flooding river since box movement reduces
the efficacy of the measurement. Structures must hold the
sensor in a fixed spot while ensuring the system does not
sink in the soft ground of the river and that it is retrievable for
maintenance. We developed two different solutions allowing
us to install the system on a bridge for greater reliability and
also in the middle of the river when the situation necessitates.

All of this work has helped create the infrastructure nec-
essary to achieve our goal of a demonstration system. Next,
we plan to perform a long-term test of the communication
system in Massachusetts with the algorithm distributed on
the system and then install everything in Honduras in time
for hurricane season.

6 Conclusion
We described in this paper an architecture for predictive

environmental sensor networks over large geographic areas.
These systems are node-limited due to region size and cost
constraints. They also have significant system requirements
due to the outdoor installation, destructive events, and long
operational lifetime.

Our sensor network solution addresses these require-
ments, consisting of two communication tiers, four node
types, and support for a variety of different sensor types.
We focused on the event of river flooding, specifically in
Honduras. The paper describes our early work on the
flood prediction algorithm that will drive the system and
the implementation of the sensor network architecture for
this application. Locally, we installed 3 nodes on the upper
Charles river at Dover and gathered 5 weeks of data, which
we ran through our prediction algorithm, demonstrating both
our system functionality and algorithmic functionality. In
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Honduras, we built several key pieces of infrastructure,
including the radio antenna towers, and tested several system
components.

Future work involves adding the flood prediction algo-
rithm to the network and connecting the Dover sensors
through the computation nodes to MIT. This will provide a
sufficient enough test for us comfortably plan a permanent
system installation in Honduras, a further test of the practi-
cality and robustness of the system.
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