V ector-based Pong on
an Oscilloscope

Edmond Lau
6.115 Final Project
May 13, 2004

Edmond Lau Page 2 5/13/2004

Table of Contents

w

1 Introduction

2 Hardware Design Description
2.1 Using the Oscilloscope Display in XY Mode
2.2 Interfacing the D/A Converters with the Oscilloscope Display
2.3 Creating Potentiometer Controllersto Move the Paddles
2.4 Integrating a Sound System into Pong

~NOoh~bhow

3 Software Design Description
3.1 Refreshing the Oscilloscope Display
3.2 Loading and Drawing Vector-based Grgphics
3.3 Deding with Resolutionsin Ball Velocity

P O O

4 Possible Design Extensions 11
5 Conclusion 12

6 Appendix 13
6.1 Hardware Schematics— System Core 13
6.2 Hardware Schematics — Auxiliary Sound System 14
6.3 Assembly Code for pong.asm 15

List of Figures

Screenshot of Oscilloscope Pong

Block Diagram of System Hardware
Coordinate System of the Oscilloscope Display
Potentiometer Controller for the Paddle

Audio Amplifier Circuit

Flowchart of Software Control Logic

OO, WNPEF
o~NO O~ W

Edmond Lau Page 3 5/13/2004

1 I ntroduction

In 1972, the cofounder of Atari, Nolan Bushnell, launched the video- game revolution with the arcade
game Pong and set out on the path to become the father of the video-game industry. Although he
developed the original Pong game for television consoles, the world' s first video game was actually
constructed using a laboratory oscilloscope as a display medium. Inspired by Bushnell’ s attempts, |
recreated the original Pong, but on an oscilloscope rather than on a TV for my fina project.

Building Pong using vector-based graphics on an oscilloscope provided a fun and enjoyable project with
both visible and playable results. Moreover, it enabled me to explore a new and exciting use of the
oscilloscope and introduced me to the world of vector-based graphics. The traditional Pong video game
involves two players controlling paddles on opposite sides of the screen, trying to score agoa by
bouncing a ball past the opponent’s paddle. The ball accel erates on each subsequent bounce against a
paddle, and the first player to score seven points wins. Figure 1 shows a screenshot of my Pong game.
My origina goal had ssmply been to build afunctioning version of Pong, but | succeeded in integrating
collision and goa sounds as well as a scoreboard on the oscilloscope as well.

Figure 1. Screenshot of Oscilloscope Pong.

2 Hardwar e Design Description

In this section, | describe the hardware used for the core system components, including the configuration
for the oscilloscope, the D/A converters used to draw graphics, and the potentiometers used as game
controllers. Figure 2 shows the block diagram for the hardware structure. The lab kit's two built-in
potentiometers connect to separate A/D converters and function as the paddle controllers. Two D/A
converters connect to channels 1 and 2 of the analog oscilloscope and serve as the drawing tools. A third
D/A converter drives an audio amplifier circuit to play collision and goal sounds.

The full schematic for the hardware is included in Appendix 6.1.

Edmond Lau Page 4 5/13/2004
R3t1JF
0. D7 8051 DO D7 ™ Horizontal Channel 1
- Enahle Fositioner
Audia =E o W DIAC Yoltage
Amplifier Saund DAC |« nante > -
Circuit - WYRH Cscilloscope
" =g Do-D7 — >
—— ertica
h |2
__Enable] Png:igner Vnﬁ?angee
EFPROM W
F 3
Flayar 1 ADC Flayar 2 ADC
Fy
Flayer 1 Contral Plaver 2 Cantral
Flayer 1 Flayer 2
Fotentiometer Fotentiometer
Figure 2: Block Diagram of System Hardware.
21 Using the Oscilloscope Display in XY Mode

Conventional usage of the oscilloscope runsin YT mode, where each voltage signal detected on the
various probes is displayed as a function of time. However, most oscilloscopes also have an XY mode,
which allows inputs to be plotted as functions of each other; the voltage reading on one probe determines
the horizontal component and the reading on the other determines the vertical component. According to
common oscilloscope manuals, the XY mode is used primarily for measuring the phase shift of two input
waveforms.

For my video game system, | used the XY mode to generate graphicson an analog oscilloscope. For
example, by generating two 90 degree off-phase sinusoids with the 8051, | traced out the image of a
circular ball on the screen. By varying the offsets, the 8051 can then change the position of the ball
around the screen to simulate movement. The major challenge in implementing the systemwas to
generate a sufficiently fast refresh rate so that the oscilloscope screen did not appear to flicker.

2.2 Interfacing the D/A Converters with the Oscilloscope Display

For the graphics display, | used two AD558 D/A converters to generate voltages to the oscilloscope
probes; the voltage output of one chip determined the horizontal X component and the voltage output of
the other determined the vertical Y component.

The first major design consideration involved determining how to configure the D/A converters and the
resolution and offset settings of the oscilloscope to create the video game display’ s coordinate system.
Since the D/A converters could only generate positive voltages, | configured the offset settings to place
the XY mode origin at the lower left corner of the screen. Solving the problem of how to configure the
D/A converters and the oscill oscope resolution settings entailed balancing three constraints:

Edmond Lau Page 5 5/13/2004

1. The AD558 maps a digital input range of 00h to FFh to either an analog output range of 0 —
2.56V or 0—10V. This output range needs to cover the entire visible portion of the oscilloscope
screen.

2. The analog oscilloscopes provide eight vertical divisions and ten horizontal divisions, and the
resolutions of interest are limited to values of 50 mV, 100 mV, 200 mV, 500 mV, and 1V.

3. The higher the screen resolution, the sharper the graphics will be.

After some calculations, | determined that by using the 0 —2.56V configuration of the D/A converters and
by setting the voltage resolutions on channels 1 and 2 to 200mV per division, | could create a low power
160x200 display. Figure 3 illustrates the coordinate map that | used for the oscilloscope; because each of
the D/A converters provided a 10 mV resolution at the output range 0 — 2.56V, | could essentially output
20 discrete points for each 200 mV division.

A
2.56 V
16V
oscilloscope screen
>
oV 20V 2.56 V

Figure 3: The Coordinate System of the Oscilloscope Display.
2.3 Creating Potentiometer Controllersto Move the Paddles

The design of the paddle controllers involved another major design decision. Conventional video game
experiences suggest using two buttons on a game controller, keyboard, or keypad; a player holds down
one of the buttons to move his paddle either up or down. This would involve either triggering external
interrupts to notify the 8051 that a button has been pushed or using a polling strategy to check for button
presses.

This approach has fundamental drawbacks from the perspectives of software implementation and the
user’s gaming experience. A strategy using external interrupts introduces the additional programming
complexity of have to deal with the specia case where a player drains too much CPU time by holding a
button down too long; the software must turn the exterral interrupt off periodically so that it can continue
running the control logic. A polling strategy avoids this issue but makes the speed of paddle movement
constant: the paddle speed is constrained to be proportional to the polling rate.

Edmond Lau Page 6 5/13/2004

To remedy this problem, | used a little creativity to design controllers that would not drain precious CPU
cycles and that would moreover provide variable speeds for paddle movement. The solution, illustrated
in Figure 4, involved using the lab kit' s two built-in potentiometer knobs as the paddle controllers. By
twiddling the potentiometer knob, a variable voltage in the range of 0 — 5V isinput to an A/D converter
that convertsit to adigital value in the output range of 00h — FFh to determine the paddle position; |
duplicated this idea to make two paddles. A polling strategy is used to update the paddi€’ s position, but
because the speed of paddle movement is only determined by the speed with which a player turns the
knob, game improves substantially.

?+50
29

UCC
To 74138 Y1 L con pa 8-
To 8851 RDE — + 2lopg 2
To 8051 WRE — 3 | ou pele_
R 1K o 115
€ 19 D3
I i!! :4 CLK R § D4 |14 To Data Bus
15@pF S|k N8 s|ia
INTR# D6 112
+3Su [VIN + e
12y ?_{yIn- b [
&
1K VREF -2
S A_GND D _GND

I

Figure 4: Potentiometer Controller for the Paddle.

The other half of this solution involves the software interface to the A/D converters. Denoting the paddie
length as P_LENGTH, the 8051 can then perform the following mathematical calculation to convert the
digital output reading to a value in the coordinate system denoting the y-coordinate of the bottom of the
paddie:

AID output * (160- P_ LENGTH)

- coord =
y 256

This calculation can be performed simply by multiplying the A/D output by (160-P_LENGTH) and taking
the high-order byte, as shown in the following adc ToVal routine that interfaces with the potentiometer
controllers:

Edmond Lau Page 7 5/13/2004

ADCTOVAL: reads the ADC at dptr and outputs the coordinate val ue
in Pong coordinates to acc

i nput: dptr (ADC), SCALING FACTOR (Y_MAX — P_LENGTH)

destroys: dptr, a, b, r4

out puts: acc (val)

adcToVal :
novx @iptr, a ; fire up the adc
mov r4, #08
_wai t ADC:
djnz r4, _waitADC
nmovx a, @ptr

mov b, #SCALI NG_FACTOR ; convert from[0-255] to [0-SCALI NG _FACTOR
nmul ab ; val = ADC out *SCALI NG FACTOR/ 256 = b
nov a, b

ret

24 Integrating a Sound System into Pong

No video gaming system is complete without integrated sound. An integrated sound system was one of
the additional features | implemented for my video game system (with the scoreboard being the other).
To play sounds, | connected athird D/A converter to an audio amplifier circuit as shown in Figure 5.

Sound DRAC

A+Su

11
Vcc

DBa vaut
DBl yautSENSE El
DR2 VoutSELECTH4

DB3
DB4
DB
DBé
DB7

Audio Amplifier

A+l2u

To Data Bus

85500
11
sllc

luf 18K

o bbb o o b b

To 74ALS138 Y4
To 8051 WR#

Figure 5: Audio Amplifier Circuit.

The Pong gaming system gererated an approximately 900 Hz beep on the kit's speaker during collisions
and a 1.2 kHz beep whenever agoal was scored. Noise in the audio amplifier circuit added additional
frequencies to the otherwise monotone sounds and actually improved the sound quality.

3 Softwar e Design Description

In this section, | describe the software control loop that brings the gaming system to life in addition to
some salient features of my code. Figure 6 illustrates the software control logic used to execute Pong.
When the R31JP is reset (or first switched to RUN mode), the gaming system resets both scores to zero
and waits for the start button to be pressed, constantly refreshing the scores, the ball, and the paddiesin
the process.

Edmond Lau

Page 8

5/13/2004

Upon detecting a depressed start button, the
control logic executes the following
initialization algorithm to start a round:

1. Reset the ball location to the middle of the
screen.

2. Check if either player has reached seven
points; if so, end the game.

3. Load the players score for the current
round into RAM.

4. Servetheball by initiaizing it with a
default velocity in the direction of the
previous round’s loser. The ball travelsto
the right on the first round.

Next, the control logic iterates over the
following loop until a goal has been scored:

1. Update the positiors of the both paddlies
by reading the A/D converters connected
to the potentiometer controllers.

2. Detect ball collisions with the walls; if a
collision is detected, change the direction
of the vertical component of the ball’s
velocity and play alow frequency
collision sound.

3. Detect collisions with the paddles if a
collision is detected, increase the ball’s
velocity, change the direction of the
horizontal component of velocity, and
play alow frequency callision sound.

4. Update the location of the ball based on
the current velocity.

5. Detect whether the ball has entered the
goal (i.e. reached the edge of the screen).
If so, play a higher frequency sound,
increment the winner’s score, and jump to
step 1 of the initialization agorithm for
starting a new round.

6. Load the graphics data for the updated
paddles and the ball into the RAM.

7. Wait for the refresh interrupt to trigger
and refresh the oscilloscope display before
jumping back to step 1.

A ef reshl SRinterrupt service routine,
which is not shown in the diagram, draws the
walls, the midfield line, the paddles, the ball,
and the scores at a 70 Hz rate.

The Pong assembly code isincluded in
Appendix 6.2.

Feset Scores

Feset hall location to
middle of zcreen

Load score graphics
data into RAM

v

Serve the ball

. J

Read controllers and
update paddle positiong

Adjust ball Flay a "pong"
b wveloty ™ sound

Adjust ball
velogity

Flay a"pong”
sound

Update hall location

Goal ves Increment winnar'
scared? » ore

Mo
¥
Load updated ball and
paddle graphics data
irnto R A

Figure 6. Flowchart of Software Control Logic.

Edmond Lau Page 9 5/13/2004

In the following subsections, | highlight and explain some of the more details and design considerations
that factored into the above control logic.

31 Refreshing the Oscilloscope Display

The mgjor design risk and challenge in implementing the Pong gaming system was to generate a
sufficiently fast refresh rate so that the oscilloscope screen did not appear to flicker. Using the 70Hz
refresh rate of my LCD monitor as the basis, | set up ther ef r eshl SR interrupt, which redraws the
screen, to fire 70 times per second. This constrained the amount of processing time for reading the
controllers, detecting collisions, loading graphics data to the RAM, playing sounds, and sending the
graphics data to the DACs to 13165 machine cycles By using the potentiometer controllers, which did
not require additional machine cycles to process external interrupts, and by limiting the sounds to simple
square waves, | mitigated the effects of this limitation and ultimately succeeded in running both the
control logic and the refresh logic within the limited number of machine cycles.

3.2 Loading and Drawing Vector-based Graphics

TV-based video games and most electronic images use raster images, where the image is determined by
the colors of various pixels on the screen. Vector-based images, on the other hand, consist of
mathematical descriptions of pointsand lines. Oscilloscope Pong uses vector-based images for the ball
and the score. The datafor the ball and score’s representation is coded into the pong.asm file as program
data To simulate ball movement and to use one set of score data for both players, a horizontal and
vertical offset is applied to the vector data before loading it into RAM.

To illustrate the concept of vector-based graphics, | describe, as an example, how the data for the ball is
loaded into RAM and drawn onto the oscilloscope. The graphics data for the ball is represented in the
following piece of assembly code:

bal | X3:
db 00h, 00h, 01h, 02h, 03h, 04h, 05h, 06h, 06h
db 06h, 05h, 04h, 03h, 02h, 01h, 00h, Offh

bal | Y3:
db 03h, 04h, 05h, 06h, 06h, 06h, 05h, 04h, 03h
db 02h, 01h, 00h, 00h, 00h, 01h, 02h, Offh

Bal | X3 denotes the sequence of x-coordinates and bal | Y3 denotes the corresponding sequence of y-
coordinates used for drawing a ball with radius 3 a the lower Ieft corner of the screen The Offh at the
end of each datatable isadiscipline that | developed for framing the graphics data, i.e. encoding where
the graphics data ends; the discipline removes the need to hardcode into the program the number of points
that need to be loaded from the data table into the appropriate place in RAM.

Using the graphics data, the main control loop then executesthe | oadBal | subroutine to copy the data
into RAM locations BALL_X VECTOR and BALL_Y VECTOR. The datafrom the above tables are first
offset by the horizontal and vertical coordinates of the ball’s current position, M_BALL X and

M _BALL_Y, respectively, prior to being loaded to the RAM. For instance, the actual x-values |oaded to
RAM are calculated as follows:

x-value = x-value fromball X3 + ball’s x-location — ball’s radius

The following code snippet performsthel oadBal | subroutine:

Edmond Lau Page 10 5/13/2004

; LOADBALL: | oads the vector data for the ball into RAM
; destroys: a, dptr, P2, r0, r4, r5, b, c

| oadBal | :

nmov r0, #Oh ; initialize input offset rO to O
nmov dptr, #ball X3 ; set input pointer to ballX table
mov P2, #BALL_X VECTOR HI ; set output pointer to vector

_l oadBal | XLoop:
nov a, ro0 ; load the rO-th point fromtable
novc a, @+dptr
cjne a, #0ffh, _loadBallXOK ; term nating value found?
sjmp _endLoadBal | X

_l oadBal | XCOK:
add a, MBALL_X ; offset the ball's |ocation
clr ¢ : x-value = val + offset - radius

subb a, #BALL_RADI US

mvx @0, a

inc r0
sjnmp _l oadBal | XLoop ; keep loading
_endLoadBal | X:
nov a, #0ffh ; copy termnating character over

mvx @0, a

nmov r0, #Oh ; initialize input offset rO to O
nov dptr, #ball Y3 ; set input pointer to ballY table
mov P2, #BALL_Y_ VECTOR_HI ; set output pointer to vector

_l oadBal | YLoop:
mov a, ro0 ; load the rO-th point fromtable
novc a, @+dptr
cjne a, #0ffh, _loadBall YOK ; terninating value found?
sjnmp _endLoadBal | Y

_l oadBal | YOK:
add a, MBALL_Y ; offset the ball's location
clr ¢ ; x-value = val + offset - radius

subb a, #BALL_RADI US

mvx @O0, a
inc r0
sjnp _l oadBal | YLoop ; keep | oading
_endLoadBal | Y:
nmov a, #0ffh ; copy term nating character over
mvx @0, a
ret

Inther ef r eshl SRinterrupt service routine, the 8051 then alternates between sending a value to the x-
coordinate DAC and a value to the y-coordinate DAC using the data loaded into RAM:

; DRAVWBALL: draws the ball to the scope
; destroys: P2, r0O, rl1, r3, dptr, a, dph2, dpl2

drawBal | :
mov dptr, #BALL_X VECTOR
mov DPH2, #BALL_Y_VECTOR Hi
nov DPL2, #00
I call drawxyY
ret

Edmond Lau Page 11 5/13/2004

DRAWKY: draws the values at dptr and dph2:dpl 2
destroys: P2, r0, r1, r3, a

dr awXyY:

mov P2, #OFEh
mov r0, #X DAC LO ; set up pointers to X _DAC and Y_DAC
mov rl, #Y_DAC LO
mov r3, #0 o initialize offset to O
_dr awxYLoop:
mov a, r3 ; set acc to offset
novc a, @-+dptr ; get the next x-value
cjne a, #0ffh, _drawxXYOK ; term nating character?
sj mp _endDr awxyY
_dr awXYCOK
mvx @0, a ; send the x-value to the X DAC
mov a, r3 ; set acc to of fset
push dph
push dpl

nmov dph, DPH2
nmov dpl, DPL2

novc a, @-+dptr ; get the next y-value

pop dpl

pop dph

nvx @1, a ; send the y-value to the Y_DAC
inc r3

sj mp _dr awXYLoop

_endDr awxyY
I call clearCursor
ret

3.3 Dealing with Resolutionsin Ball Velocity

One interesting design challenge involved determining howto represent ball velocity. | had already
straightforwardly decided to represent ball position using two 8-bit numbers, one for the horizontal
position and one for the vertical position in the 160x200 coordinate space. Inspired by the vector-related
ideas for the graphics, the obvious choice would have been to also use two 8-bit numbers for the velocity,
one for the horizontal component and the other for the vertical component. For each unit of velocity, the
ball would then move that many units in the 160x200 grid for every update. However, the problem with
this representation was that the resol ution was too coarse; a speed of four would aready be extremely fast
for a Pong game.

To solve this problem, | instead used two 16-bit numbers to represent ball position. At each update, |
added the 8-hit speed values to the 16-bit numbers, and used the high bytes to determine the actual ball
position. By itself, thiswould only allow speeds ranging from 0 to 1. To support higher speeds, | added a
loop to the control logic that iterated over the collision detection code and ball update code multiple times
before finaly loading the new ball positions into RAM.

4 Possible Design Extensions

The mgjor feature that | would have loved to add to the Pong game would have been support for ball spin.
The current version of Pong assumes a physics model in which the paddies apply no frictional force to the
ball upon collision. Constructing a more complicated physics model in which the paddles could indeed
apply frictional forces would enable players to change the trgjectory and velocity of the ball. This
extension would improve game play by incorporating an additional dimension of different techniques of
hitting the ball.

Edmond Lau Page 12 5/13/2004

5 Conclusion

In this project, | developed a Pong video game system with integrated sound and scoreboard. | explored
additional functionality on the analog oscilloscopes and discovered an infrequently used application of the
oscilloscope display. | gained an introduction to the world of vector-based graphics in drawing the
various paddles, balls, and scores. Most importantly, | successfully built acomplete system that works.

5/13/2004

Page 13

Edmond Lau

Appendix

6

Hardwar e Schematics — System Core

6.1

ot [g (i RN Bl B i B 1 It

S5h
#0IX

v3-
21ulx
17691X

20
20
s
+0a
A
<l
1a
eq
2" 1d
92°1d
S°1d
vid
E"1d
2"1d
1°1d
B"1d
A
U
[~1-]
U

8831

3w
N3Sd~
#0d-27Ed
#aM-9"Ed
11-67Ed
Bl-¥"Ed
H1INIZE'Ed EbB
HBINI-Z7Ed 2®
axl-s17td 19
axd-8"td oy

o)y}

m|m‘ﬂ| ®L4>
4 = ™ o

R31JP Data Bus

EA BEISTPe OL

Jua p-ooJ-A
AN

2 1suveyy #3M 1588

20025071950 O] el

ﬂd_ 21
OND OND
#30 280

ini g

91

452 240
saa
#aa
€qaa

AD3S8

2A BEISTKL O

T$7]1331353n0N"

240
§7|3SN353N0NH
1N0n

14a
eda

17 1711999

201
11

NG+V

FaN

1 {ouueyy HdM 158

md_ 21

ol
ang-

adooso[19s0 O]

B1

#52 290 ONNDS

#5J 200 X

#50 ¥OBROUY — 7] 1A

2 Jsherg

S
#5J +BBBIIY

1 Jshelg
NG+

[

Bl

1|

#S2 U0 A —g7|
e

1

1

A OND
GA [
kA 12
EA #8290
A #9290

m|m

0|
2
n
+

[

DM74ALS5138

BA g
oy} 5]

~|m| of <] 1]

3

@w%
nZl+

%1

G1

OND OND

#30 280

#82 sga
==}

+a0d

Apo998

€ga

1237353nen 2EO

ISNISINOA g

— gl) =] 0 o~ o

1N0A paEd

o)y}

11

NG+V

Jud p4003-X

R31JP Data Bus

Ja[1043u0] 2 Jafield

A

GA%
NG+

OND 0 OND © ~
CLE 1o — A1
m
T 20 Z
. + NI —5 e
g 3 RN E——
el 2 NI 1D Jdpg1
T P0 S ¥ I
S ¥¥m
g7|E0 < 61 ABT Ny I
57| 20 #9M ————— yam 1588 °I
77110 #0¥ =——— 40N 1588 ©OL
57| o0 #8504 1A BETbZ ©L
296
u@
NG+
s% M
OND 0 OND U
E2E 1] —
3
7|0 . NIA—
-k £l
L nC+
e 2 NI 312 JdpST
Tt 3 i
g3 y¥xm
FeT|el a 61 a1’y J
o720 #aM —=———— g4am 15@B ©°1
Zz7]10 #0¥ =—— 40y 1588 ©OL
—gT]@d #50 4 PA BETFZ OL
296

Ja[1043u0] 1 Jaferd

Edmond Lau

Page 14

5/13/2004

6.2

Har dware Schematics— Auxiliary Sound System

To Data Bus

Sound DAC
A+Sv
L1 Buffer
vCe
—1{pBa YauT 16
2 r2
DBl youtSENSE[LS Y
— 3/ ppp VoutSELECTHL4]
—4me3 o c
—3ips & T
& % B.luf
—&)n8s
—Z{ Be coy @
8

7 CE#
GND GND

Ta 74ALS138 Y4
Ta 8051 WR#

18K

Audio Amplifier

A+tl2u

Edmond Lau Page 15 5/13/2004

6.3 Assembly Code for pong.asm

LR EEEEEEEEEE SRR R R R R R R R EREEEEEEEEEEEEEEEEEEEEEEE

Vect or - based Pong on an GCscil | oscope
6.115 - Final Project

* *
* *
* *
; * Massachusetts Institute of Technol ogy *
* Ednond Lau, My 2004 *

* *

* *

R R R R R R EEEEEEEEEEEEEEEEEEEEE SRS RS RS SRR EEEEEE S

., Conventions:

;; r0-r3 are used by interrupts

;5 r0, rl and r4-r7 are used by main program
;; Offh is special term nating character

; PERI PHERALS

P1_ADC equ OFEOOh
P2_ADC equ OFEO4h

X _DAC equ OFEO8h
X_DAC_LO equ 08h
Y_DAC equ OFEOCh
Y_DAC LO equ 0Ch
SOUND_DAC equ OFE10h

© STATI C CONSTANTS

X_MAX equ 200

X MNequ 0

Y_MAX equ 160

Y_MNequ O

P1 X equ 10 ; X location of paddle 1
P2_X equ 190 ; X location of paddle 2
P_LENGTH equ 30 ; length of paddle

SCALI NG_FACTOR equ 130 ; set to Y_MAX - P_LENGTH

P1_SCORE X equ 80
P1_SCORE Y equ 140
P2_SCORE_X equ 115
P2_SCORE_Y equ 140

BALL_RADI US equ 3
DEFAULT_SPEED X equ 90
DEFAULT_SPEED Y equ 90
N_BALL_PQO NTS equ 12

VARI ABLES, MEMORY LOCATI ONS

M's shoul d never have #' s precedi ng them

M BALL_X equ 60h

M BALL_Y equ 61h

M BALL_SPEED X equ 62h
M BALL_SPEED_Y equ 63h
M BALL_MOVE X equ 64h
M BALL_MOVE_ Y equ 65h

RIGHT_F equ P1.1 ; flag: ball noving to the right
UP_F equ P1.2 ; flag: ball noving up

SERVI NG RI GHT_F equ P1.3 ; flag: serving ball to the right
GOAL_F equ P1.4 ; flag: goal ?

M P1_Y_PREV equ 66h ; previous bottomY locations

Edmond Lau Page 16 5/13/2004

M P2_Y PREV equ 67h
M P1_ Y equ 68h ; bottomY location of paddles
M_P2_Y equ 69h

M P1_SCORE equ 6ah
M _P2_SCORE equ 6bh

DPH2 equ 6¢ch

DPL2 equ 6dh

REFRESHED F equ P1.0 ; flag: has current data been refreshed yet?
START_BUTTON equ P3. 2

SOUND H GH F equ P1.5 ; flag: next beep, high or |ow

GOAL_BEEP_F equ Pl1.6 ; flag: a goal beep?

P1_Y_VECTOR equ 7000h ; RAM | ocations of vector data

P2_Y_VECTOR equ 7100h

BALL_X VECTOR equ 7200h
BALL_X VECTOR H equ 72h
BALL_Y_ VECTOR equ 7300h
BALL_Y_VECTOR H equ 73h

P1_SCORE_X_ VECTOR equ 7400h
P1_SCORE_X VECTCR H equ 74h
P1_SCORE_Y_VECTCR equ 7500h
P1_SOORE Y VECTOR H equ 75h
P2_SCORE_X_VECTOR equ 7600h
P2_SCORE X VECTOR H equ 76h
P2_SCORE_Y_VECTOR equ 7700h
P2 _SOORE Y VECTOR H equ 77h

© CONTROL LOG C

org 00h

I'jmp main

org Obh

I'jnp refreshl SR
org 1bh

I'jnp beepl SR

org 100h
mai n:
nmov TMOD, #11h ; initializes serial port
; set up timer 0 for 16-bit node 1
;mov | E, #82h ; enable tiner O interrupt
nmov | E, #8ah
mov THO, #0CCh ; set up 13166 counts (70Hz)
nov TLO, #92h

nov dptr, #SOUND_DAC
mov a, #O0ffh
novx @lptr, a

nmov P1l, #0h ; turn off all flags

nmov M_P1_SCORE, #0
mov M_P2_SCORE, #0

setb SERVING R GHT_F
setb TRO
I call clearCursor

nov M BALL_X, #100 ; initialize the ball location
mov M BALL_Y, #80

I call | oadScores

I call | oadBall

_wai t For StartButton:
| cal | updat ePaddl es
| call | oadPaddl es

Edmond Lau Page 17 5/13/2004

clr REFRESHED F ; keep refreshing until start pressed
_Wai t For Refreshil

jnb REFRESHED F, _wait For Refreshl

jnb START_BUTTON, _waitForStartButton

_start:
mov M BALL_X, #100 ; initialize the ball location
mov M BALL_Y, #80

;7 check if anyone won yet
nov a, M Pl_SCORE

clr c

subb a, #07

jz _ganeQver

nmov a, M P2_SCORE

clr ¢

subb a, #07

jz _ganeQver

clr GAL_F

I call | oadScores
;lcall | oadPaddl es
;lcall | oadBal

I call serveBal
_control Loop
nmov r6, #04
_runLoop
| cal | updat ePaddl es
lcall collidewalls
lcall collidePaddles
I call noveBal
I call detect Coal

jb GOAL_F, _start ; goal scored

djnz r6, _runLoop

I call | oadPaddl es
Icall |oadBal
clr REFRESHED F ; clear the refreshed flag

_wai t For Refresh2
jnb REFRESHED F, _wait For Refresh2

Ijmp _control Loop

_ganeQver :
I call | oadScores
| call | oadPaddl es
| call | oadBal
clr REFRESHED F ; clear the refreshed flag

_wai t For Ref resh3
jnb REFRESHED F, _wait For Refresh3
sj mp _ganeOver

; REFRESH SR refreshes the scope screen by sending vector data
; to the scopes

}efreshISR

nmov THO, #0CCh ; set up 13166 counts (70Hz)
nmov TLO, #92h
j b REFRESHED F, _ski pl SR ; not finished cal culating yet

setb REFRESHED F
;7 pushing val ues not necessary because main has finished cal cul ating

c drawl | s
lcall drawM dField
I call drawPaddl es
Icall drawBal

Edmond Lau

Page 18

5/13/2004

I call drawScores

sjmp _endl SR
_ski pl SR
setbh P1.7
_endl SR
set b REFRESHED F
reti

set flag

; BEEPI SR switches for square waves

beepl SR
jb GOAL_BEEP_F, _goa
nmov TH1, #Ofeh
nov TL1, #00h
;mov THL, #0f ch
;mov TL1, #64h
sjnp _beep
_goal
;mov THL1, #0f 8h
;mov TL1, #30h
nmov THL, #0f eh
mov TL1, #080h
;mov TH1, #0Offh
;mov TL1, #0156
_beep:
push dph
push dp
push acc
mov dptr, #SOUND DAC

djnz r7, _continueBeep

clr TRL

nov a, #0ffh

sj mp _sendSound
_cont i nueBeep

jb SOUND HIGH F, _high

clr a

sj mp _sendSound
_hi gh:

nov a, #040h
_sendSound

novx @lptr, a

cpl SOUND H GH F
_endBeep

pop acc

pop dpl

pop dph

reti

900Hz beep (1024 counts)

493Hz beep (934 counts)

229.8 Hz beep
1. 2kHz beep (384 counts)

10 kHz beep

; BEEP: beep for collision

beep:
mov r7, #50
clr GOAL_BEEP F
setb TRL
setb TF1
ret

goal Beep
mov r7, #50
setb GOAL_BEEP F
setb TRL
setb TF1
ret

; destroys: dptr, a, b,

UPDATEPADDLES: updates the paddle Y state based on the ADC
out put values fromthe potentioneter controls

Edmond Lau Page 19

5/13/2004

u

a

outputs: MPLY, MP2_Y

pdat ePaddl es:
mv a, MP1l Y
mov MP1_ Y PREV, a
mov a, MP2_Y
mov M P2_Y_PREV, a

nov dptr, #P1_ADC ; get player 1 paddle position from ADC
I call adcToVal
mv MPLY, a

nov dptr, #P2_ADC ; get player 2 paddle position from ADC
I call adcToVal

mv MP2_Y, a

ret

ADCTOVAL: reads the ADC at dptr and outputs the coordinate val ue
in Pong coordinates to acc

i nput: dptr (ADC

destroys: dptr, a, b, r4

outputs: acc (val)

dcToVal :
nmovx @ptr, a ; fire up the adc
nmov r4, #08

_Wai t ADC:

S

djnz r4, _waitADC
nmovx a, @ptr

nmov b, #SCALI NG FACTOR ; convert from[O0-255] to [0-120]
mul ab ; val = ADC out*120/256 = b

nmov a, b

ret

SERVEBALL: serves the ball fromthe w nner,
i.e. gives ball initial velocity
i nputs: SERVING Rl GHT_F
outputs: RIGHT_F, MBALL_SPEED X, M BALL_SPEED Y
M BALL_MOVE_X, M BALL MOVE_ Y

erveBal | :
jb SERVING RI GHT_F, _serveRi ght
clr RRGHT_F
sjnmp _initBall
serveRi ght:
setb RIGHT_F

CinitBall:

Cc

nmov M BALL_SPEED X, #DEFAULT_SPEED X
nov M BALL_SPEED Y, #DEFAULT_SPEED Y
mov M BALL_MOVE X, #0

nmov M BALL_MOVE Y, #0

ret

COLLI DEWALLS: detects collisions with top and bottomwalls
destroys: r4

output: UP_F

ol lidewvalls:
jb UP_F, _collideUp
nmov a, #BALL_RADI US ; ball's noving down
clr ¢ ; if ball is less than radius away

; frombottom then collide

subb a, MBALL_Y ; diff = radius - ball_y
jnc _flipUpDown ; if radius >= ball_y, collide
sjnmp _endCol | i deWal | s

col | i deUp:

mov r4, #Y_NMAX

mov a, MBALL_Y
add a, #BALL_RAD US

Edmond Lau

Page 20

5/13/2004

clr ¢

subb

a, ra

jnc _flipUpDown

sj np

_endCol |i deWal | s

_fli pUpDown:
cpl UP_F

| cal

beep

_endCol i deval | s

ret

; acc = ball _y + radius - y_max
; if acc < 0, collide

; COLLI DEPADDLES: detects collisions with paddles
; To collide, a ball nust touc
; bal | nmust be along the paddle
; destroys: r4

h the paddle and the center of

col I'i dePaddl es
jb RIGHT_F, _collideR ght
mov a, #P1_X
add a, #BALL_RADI US

subb

a, MBALL_X

jnz _endCollide

mov a, MBALL_Y
clr ¢

subb

a, MPLY

jc _endCol lide

mv a, MPlY
add a, #P_LENGTH

subb

a, MBALL Y

jc _endCol lide

sj np

_collide

_collideR ght:
mov a, #P2_X
clr ¢

subb
subb

a, #BALL_RADI US
a, MBALL X

jnz _endCollide

nov a, MBALL_ Y
clr ¢

subb

a, MP2_Y

jc _endCol |i de

mov a, MP2_Y
add a, #P_LENGTH

subb

a, MBALLY

jc _endCol lide

_collide

cpl
| cal

R GHT_F
| beep

mov a, M BALL_SPEED X

cj ne
sj nmp

a, #250, _increaseSpeed
_endCol | i de

_increaseSpeed:

nmov
add
nov

nmov
add
nov

_endCol |
ret

a, MBALL SPEED X
a, #10
M BALL_SPEED X, a

a, MBALL SPEED Y
a, #10
M BALL_SPEED Y, a

i de:

; P1_X + ball_radius == ball _x

; ball y >? P1y

P1 Y + P_length >? ball _y

ball _x + radius == P2_X

; ball_y >? P2y

i P2_Y + P_length >? ball_y

; DETECTQOAL: detects if a goa

has been scored

Edmond Lau Page 21 5/13/2004

; updat es t he scoreboard
; destroys: r4

’det ect Goal :

jb RIGHT_F, _detect Goal R ght

nmov a, #BALL_RADI US ; ball noving left

clr c

subb a, MBALL X ; radius - ball _x <=0 ?
jnc _goal P2

_det ect Goal R ght:
mov r4, #X_MAX

mov a, MBALL_X
add a, #BALL_RADI US

clr ¢
subb a, r4 ; acc = ball _x + radius - x_max
jnc _goal P1 ; acc <= 07?

sj mp _endDet ect Goal

_goal P1:

inc M_P1_SCORE

clr SERVING RI GHT_F

sjnp _scored
_goal P2:

inc M P2_SCORE

setb SERVI NG RI GHT_F
_scored:

setb GOAL_F

| cal | goal Beep
_endDet ect Goal :

ret

MOVEBALL: noves the ball assum ng no collisions
; destroys: a, ¢
outputs: MBALL_MOVE X, MBALL_MOVE Y, MBALL X, MBALL_Y

noveBal | :

mov a, M BALL_MOVE X ; load the ball nove counter

clr c

add a, M BALL_SPEED X ; update x counter with speed

nov M BALL_MOVE X, a

jnc _noveBall'Y ; if carry, update ball x-loc, else nmove Y
jb RIGHT_F, _noveBal | R ght

dec M BALL_X ; nmove ball left

sjnmp _noveBal |'Y
_noveBal | R ght:
inc MBALL_X ; nove ball |eft
_noveBal | Y:
mov a, M BALL_MOVE Y
clr c
add a, M BALL_SPEED Y ; update y counter wth speed
mov M BALL_MOVE Y, a
jnc _endMoveBal | ; if carry, update ball y-loc, else end
jb UP_F, _noveBall Up
dec M BALL_Y ; nmove ball down
sj mp _endMoveBal |
_noveBal | Up:
inc MBALL_Y ; nove ball up
_endMoveBal | :
ret

; LOADPADDLES: | oads the vector data for the 2 paddles into RAM
; destroys: a, dptr, r4

i oadPaddl es:

nmov dptr, #P1_Y_ VECTOR ; set data pointer to beginning of P1 vector
nov a, MPLY ; set bottomy-value for PL_Y
I call | oadPaddl e

nov dptr, #P2_Y_VECTOR
mov a, MP2_Y

Edmond Lau Page 22 5/13/2004

| call | oadPaddl e
ret

; LOADPADDLE: | oads the vector data for the a paddles into RAM
input: dptr (paddle vector), acc (bottomy-val ue)
destroys: a, dptr, r4

oadPaddl e:
mov r4, #P_LENGTH ; nunber of points to wite
_| oadPaddl eLoop:
nmovx @iptr, a
inc dptr
add a, #01 ; increnent at resolution of 1
dj nz r4, _|oadPaddl eLoop
ret

LOADSCORES: | oads the pl ayer scores
; destroys: P2, dptr, r0, r4, r5, acc

| oadScor es:
nmov dptr, #scoreTabl eX
mov r4, M P1l_SCORE
I call setScorePointer ; set dptr to Pl's score x
mov P2, #P1_SCORE_X_VECTOR_ HI
nmov r5, #P1_SOORE X
I call | oadScoreVect or ; load P1's X scores

nov dptr, #scoreTableY

| cal | set ScorePointer ; set dptr to Pl's score y
mov P2, #P1_SCORE_Y_VECTOR | HI

mov r5, #P1_SCORE Y

| call | oadScoreVector ; load P2's Y scores

nmov dptr, #scoreTabl eX

mov r4, M P2_SCORE

I cal |l set ScorePoi nt er set dptr to P2's score x
mov P2, #P2_SCORE X VECTOR_ HI

nmov rb5, #P2_SCOQE_X

| call | oadScoreVector ; load P2's X scores

nmov dptr, #scoreTabl eY

I call set ScorePoi nt er set dptr to P2's score y
mov P2, #P2_SCORE_Y_VECTOR HI

nov r5, #P2 SOORE_Y

I call | oadScoreVect or ; load P2's Y scores

ret

LOADSCOREVECTOR: | oads a score vector
; inputs: P2 (output vector high byte)
; dptr (input vector)
; r5 (output val ue offset)
destroys: r0, acc

| oadScor eVect or:

nov r0, #0h
_| oadScor eLoop:

mov a, ro0

nmove a, @+dptr

cjne a, #0ffh, _|oadScoreXX

sj mp _endLoadScor eVect or
_l oadScoreXX:

add a, rb5

nmovx @0, a

inc r0

sj mp _| oadScor eLoop
_endLoadScor eVect or :

nmov a, #0ffh

mvx @0, a

ret

Edmond Lau Page 23 5/13/2004

SETSCOREPO NTER sets the dptr to data for score inr4 (0-7)
; inputs: r4 (score 0-7), dptr (pointer to scoretable x/y)
; output: dptr (pointer to score data x/y)

set Scor ePoi nter:

nmov a, r4 ; load acc with score

rl a ; multiply by two.

inc a ; load first vector onto stack
nmovc a, @-+dptr ; " "

push acc ; " "

nmv a, r4 ; load acc with nonitor routine nunber
rl a ; multiply by two

nmovc a, @+dptr : load second vect or onto stack
push acc

pop dph

pop dpl

ret

LOADBALL: | oads the vector data for the ball into RAM
; destroys: a, dptr, P2, r0, r4, r5 b, ¢

i oadBal | :

mov r0, #0h ; initialize input offset r0O to O
nmov dptr, #ball X3 ; set input pointer to ball X table
nov P2, #BALL_X VECTOR HI ; set output pointer to vector

_l oadBal | XLoop:
mv a, ro ; load the rO-th point fromtable
nmovc a, @+dptr
cjne a, #0ffh, _|loadBall XOK ; term nating val ue found?
sjmp _endLoadBal | X

_l oadBal | XCK:
add a, MBALL_X ; offset the ball's location
clr ¢ ; x-value = val + offset - radius

subb a, #BALL_RADI US

mvx @0, a

inc r0
sjmp _| oadBal | XLoop ; keep | oading
_endLoadBal | X:
nmov a, #0ffh ; copy terminating character over

nmvx @0, a

mov r0, #0h ; initialize input offset r0 to O
nmov dptr, #ballY3 ; set input pointer to ballY table
mov P2, #BALL_Y_ VECTOR H ; set output pointer to vector

_l oadBal | YLoop:
mov a, r0 ; load the rO-th point fromtable
nmovc a, @+dptr
cjne a, #0ffh, _|loadBallYOK ; term nating val ue found?
sjnp _endLoadBal | Y

_l oadBal | YOK:
add a, MBALL_Y ; offset the ball's location
clr ¢ ; Xx-value = val + offset - radius

subb a, #BALL_RADI US

nmovx @0, a
inc r0
sjmp _l oadBal | YLoop ; keep | oading
_endLoadBal | Y:
nmov a, #0ffh ; copy termnating character over
novx @0, a
ret

DRAWPADDLES: draws the 2 paddles to the scope
; destroys: r2, dptr, a

aramPaddl es:
nmov dptr, #X DAC ; send the x-value of paddle 1 to X DAC

Edmond Lau Page 24 5/13/2004

nmov a, #P1 X
novx @lptr, a

nov r2, #P_LENGTH ; set up nunber of points for drawyLine
mov dptr, #P1_Y VECTOR
I cal |l drawyLi ne

I call clearCursor ; hide the cursor

nmov dptr, #X DAC ; send the x-value of paddle 1 to X DAC
mov a, #P1l_X

clr ¢

subb a, #01

novx @lptr, a

nov r2, #P_LENGTH ; set up nunber of points for drawyLine
nmov dptr, #Pl1_Y VECTOR
I call drawvYLi ne

I call clearCursor ; hide the cursor
nmov dptr, #X DAC ; send the x-value of paddle 2 to X _DAC
mov a, #P2_X

nmovx @iptr, a

mov r2, #P_LENGTH ; set up nunber of points for drawyLine
nov dptr, #P2_Y_VECTOR

| cal | drawyLi ne

I call clearCursor

nmov dptr, #X _DAC ; send the x-value of paddle 1 to X _DAC
mov a, #P2_X

clr c

subb a, #01

novx @lptr, a

mov r2, #P_LENGTH ; set up nunber of points for drawyLine
nmov dptr, #P2_Y_VECTOR

I cal | drawvYLi ne

I call clearCursor ; hide the cursor

ret

; DRAWYLI NE: sequentially sends n (r2) values to the Y_DAC fromthe
; menory | ocation dptr.

; inputs: r2, dptr

; destroys: P2, r0, r2, dptr, a

dr awyLi ne:
nmov P2, #OFEh ; point P2:r0 to Y_DAC
nov r0, #Y_DAC LO

_sendYVal ue:

nmovx a, @ptr ; read the y-value from RAM
mvx @0, a ; send y-value to DAC

inc dptr

djnz r2, _sendYVal ue

ret

; DRAWMLLS: draws the 2 walls to the scope
; destroys: r2, dptr, a

drawal | s:
nmov dptr, #Y_DAC ; send the y-value of wall 1 to X DAC
mov a, #Y_MN
nmovx @iptr, a

nmov dptr, #X DAC
mov r2, #X_NMAX
_drawvél | 1Loop:
mv a, r2
movx @iptr, a
djnz r2, _drawMall 1Loop

Edmond Lau Page 25

5/13/2004

I call clearCursor

nov dptr, #Y_DAC ; send the y-value of wall

mov a, #Y_MAX
nmovx @iptr, a

nmov dptr, #X DAC
mov r2, #X_NMAX
_drawwal | 2Loop:
mv a, r2
nmovx @lptr, a
djnz r2, _drawMall 2Loop
I call clearCursor
ret

1 to X_DAC

; DRAWM DFI ELD: draws the mid-field line to the scope

; destroys: r2, dptr, a

drawM dFi el d:
mov a, #X_MAX
rr a ; acc = x_nmax/ 2
nov dptr, #X DAC

novx @ptr, a ; send x-value of md-field to X DAC

nov dptr, #Y_DAC
mov r2, #Y_NAX
_drawM dFi el dLoop:
mv a, r2
novx @lptr, a
djnz r2, _drawM dFi el dLoop

I call clearCursor
ret

; DRAWBALL: draws the ball to the scope
; destroys: P2, r0, r1, r3, dptr, a, dph2, dpl2

drawBal | :
nov dptr, #BALL_X VECTOR
nov DPH2, #BALL_Y VECTOR H
mov DPL2, #00
I call drawxY
ret

DRAWSCORES: draws the score to the scope
; destroys: P2, r0, rl, r3, dptr, a, dph2, dpl2

dr awScor es:
nov dptr, #P1_SCORE_X VECTOR
mov DPH2, #P1_SCORE_Y_VECTCR Hi
nmov DPL2, #00
I call drawxY
I call clearCursor

nmov dptr, #P2_SCORE X VECTOR
nov DPH2, #P2_SCORE_Y_VECTCOR HI
mov DPL2, #00

I call drawxY

I call clearCursor

ret

DRAWKY: draws the values at dptr and dph2:dpl 2
; destroys: P2, r0, r1, r3, a

dr awXY:
nov P2, #0FEh

mov r0, #X DAC LO ; set up pointers to X _DAC and Y_DAC

mov rl, #Y_DAC LO

Edmond Lau

Page 26

5/13/2004

mov r3, #0
_dr awXYLoop:
nmov a, r3
nmovc a, @-+dptr

cjne a, #0ffh, _drawxXYOK

sj mp _endDr anXY
_dr anXYCK:
novx @0, a

mv a, r3

push dph

push dpl

nov dph, DPH2
nov dpl, DPL2
novc a, @-+dptr
pop dpl

pop dph

nmvx @1, a
inc r3

sj np _drawxXYLoop

_endDr anXY:
I call clearCursor
ret

initialize offset to 0

set acc to offset
get the next x-value
term nating character?

send the x-value to the X DAC

set acc to offset

get the next y-value

send the y-value to the Y_DAC

CLEARCURSOR: sends cursor offscreen

destroys: a, dptr

cl ear Cursor:
nmov a, #O0ffh
nmov dptr, #X DAC
nmovx @lptr, a
nov dptr, #Y_DAC
movx @iptr, a
ret

scor eTabl eX:
dw X0
dw X1
dw X2
dw X3
dw X4
dw X5
dw X6
dw X7

scor eTabl eY:
dw YO
dw Y1
dw Y2
dw Y3
dw Y4
dw Y5
dw Y6
dw Y7

bal | X2:
db 00h, 01h, 02h, O03h,
db 05h, 04h, 03h, 02h,

bal | Y2:
db 03h, 04h, 05h, 05h,
db 02h, 01h, 00h, 00h,

bal | X3:
db 00h, 00h, 01h, 02h,
db 06h, 05h, 04h, 03h,

bal | Y3:
db 03h, 04h, 05h, 06h,
db 02h, 01h, 00h, 00h,

04h,
01h,

04h,
01h,

03h,
02h,

06h,
00h,

05h
00h,

03h
02h,

04h,
01h,

06h,
01h,

Offh

Offh

05h,
00h,

05h,
02h,

06h, 06h
Offh

04h, 03h
offh

Edmond Lau

Page 27

5/13/2004

bal | X3Fi
db 00h,
db 05h,
db 02h,
db 00h,
db 05h,
db 02h,
db Offh

bal | Y3Fi
db 03h,
db 03h,
db 03h,
db 02h,
db 02h,
db 02h,
db Offh

X0:

db 00h,
db O1lh,
db 06h,
db 05h,
db Offh

YO:

db 00h,
db Oah,
db Oah,
db 00h,
db Offh

X1:
db 06h,
db Offh

Y1:
db Oah,
db Offh

xX2:

db 00h,
db 06h,
db 06h,
db 00h,
db 00h,
db Offh

Y2:

db Oah,
db 09h,
db 05h,
db 04h,
db 00h,
db Offh

X3:

db 00h,
db 06h,
db 06h,
db 06h,
db 06h,
db Offh

Y3:

db Oah,
db 09h,
db 05h,
db 04h,
db 00h,
db Offh

Il ed:

00h,
05h,
02h,
01h,
04h,
03h,

Il ed:

04h,
04h,
04h,
01h,
01h,
02h,

00h,
02h,
06h,
04h,

01h,
Oah,
09h,
00h,

06h,

09h,

01h,
06h,
05h,
00h,
01h,

Oah,
08h,
05h,
03h,
00h,

01h,
06h,
05h,
06h,
05h,

Oah,
08h,
05h,
03h,
00h,

01h,
04h,
03h,
02h,
03h,
04h

05h,
05h,
04h,
00h,
01h,
02h

00h,
03h,
06h,
03h,

02h,
Oah,
08h,
00h,

06h,

08h,

02h,
06h,
04h,
00h,
02h,

Oah,
07h,
05h,
02h,
00h,

02h,
06h,
04h,
06h,
04h,

Oah,
07h,
05h,
02h,
00h,

02h,
03h,
04h,
03h,
02h,

06h,
05h,
04h,
00h,
01h,

00h,
04h,
06h,
02h,

03h,
Oah,
07h,
00h,

06h,

07h,

03h,
06h
03h,
00h
03h,

Oah,
06h
05h,
01lh
00h,

03h,
06h
03h,
06h
03h,

Oah,
06h
05h,
01h
00h,

03h,
02h,
04h
04h,
01lh

06h,
05h,
03h

00h,

00h,
05h
06h,
01lh

04h,
Oah
06h,
00h

06h,

06h,

04h,
02h,

04h,

Oah,
05h,
00h,

04h,
02h,

02h,

Oah,
05h,

00h,

04h,
01h,

05h,

06h,
04h,

01h,

00h,

06h,

05h,

05h,

06h,

05h,

05h,
01h,

05h,

Oah,
05h,
00h,

05h,
01h,

01h,

Oah,
05h,

00h,

05h,
01lh

06h

05h,
03h

02h

00h,

06h,

06h,

04h,

06h,

04h,

06h
00h

06h

Oah
05h
00h

06h
00h
00h

Oah
05h

00h

06h,

04h,

00h,

06h,

07h,

03h,

06h,

03h,

06h

03h

00h,

06h,

08h,

02h,

06h,

02h,

00h,

06h,

09h,

01h,

06h,

01h,

00h

06h

Oah

00h

06h

00h

Edmond Lau Page 28 5/13/2004

X4

db 00h, 00h, 00h, 00h, 00h, 00h

db 01h, 02h, 03h, 04h, 05h, 06h

db 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h
db Offh

Y4

db Oah, 09h, 08h, 07h, 06h, 05h

db 05h, 05h, 05h, 05h, 05h

db 0ah, 09h, 08h, 07h, 06h, 05h, 04h, 03h, 02h, 01h, 00h
db Offh

X5

db 06h, 05h, 04h, 03h, 02h, 01h, 00h
db 00h, 00h, 00h, 00h

db 00h, 01h, 02h, 03h, 04h, 05h, 06h
db 06h, 06h, 06h, 06h

db 06h, 05h, 04h, 03h, 02h, 01h, 00h
db Offh

Y5

db Oah, Oah, 0Oah, 0Oah, 0Oah, Oah, Oah
db 09h, 08h, 07h, 06h

db 05h, 05h, 05h, 05h, 05h, 05h, 05h
db 04h, 03h, 02h, 01h

db 00h, 00h, 0O0h, 00h, 00h, 00h, 00h
db Offh

X6

db 06h, 05h, 04h, 03h, 02h, 01h, 00h
db 00h, 00h, 0O0h, 00h

db 00h, 01h, 02h, 03h, 04h, 05h, 06h
db 06h, 06h, 06h, 06h

db 06h, 05h, 04h, 03h, 02h, 01h, 00h
db 00h, 00h, 0Oh, 00h

db Offh

Y6

db Oah, Oah, Oah, 0Oah, 0Oah, Oah, Oah
db 09h, 08h, 07h, 06h

db 05h, 05h, 05h, 05h, 05h, 05h, 05h
db 04h, 03h, 02h, 01h

db 00h, 0O0h, 0O0h, 00h, 00h, 00h, 00h
db 01h, 02h, 03h, 04h

db Offh

X7

db 00h, 01h, 02h, 03h, 04h, 05h

db 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h, 06h
db Offh

db Oah, Oah, Oah, Oah, Oah, Oah
db Oah, 09h, 08h, 07h, 06h, 05h, 04h, 03h, 02h, 01h, 00h
db Offh

