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Abstract|

In 1991, Ballard [1] described the implications of hav-
ing a visual system that could actively position the camera
coordinates in response to physical stimuli. In humanoid
robotic systems, or in any animate vision system that inter-
acts with people, social dynamics provide additional levels
of constraint and provide additional opportunities for pro-
cessing economy. In this paper, we describe an integrated
visual-motor system that has been implemented on a hu-
manoid robot to negotiate the robot's physical constraints,
the perceptual needs of the robot's behavioral and motiva-
tional systems, and the social implications of motor acts.

Keywords| Active vision, robots, social interaction with
humans.

I. Introduction

Animate vision introduces requirements for real-time
processing, removes simplifying assumptions of static cam-
era systems, and presents opportunities for simplifying
computation. This simpli�cation arises through situating
perception in a behavioral context, by providing for op-
portunities to learn exible behaviors, and by allowing the
exploitation of dynamic regularities of the environment [1].
These bene�ts have been of critical interest to a variety
of humanoid robotics projects [2], [3], [4], [5], and to the
robotics and AI communities as a whole. On a practical
level, the vast majority of these systems are still limited by
the complexities of perception and thus focus on a single
aspect of animate vision or concentrate on the integration
of two well-known systems. On a theoretical level, exist-
ing systems often do not bene�t from the advantages that
Ballard proposed because of their limited scope.

In humanoid robotics, these problems are particularly
evident. Animate vision systems that provide only a lim-
ited set of behaviors (such as supporting only smooth pur-
suit tracking) or that provide behaviors on extremely lim-
ited perceptual inputs (such as systems that track only
very bright light sources) fail to provide a natural interac-
tion between human and robot. We propose that in order
to allow realistic human-machine interactions, an animate
vision system must address a set of social constraints in
addition to the other issues that classical active vision has
addressed.

It is useful to view social constraints not as limitations,
but opportunities. They induce a natural \vocabulary"
to make the robot's behavior and state readable by a hu-
man. This in turn can provide a framework for the robot
to negotiate a change in a human's behavior. For example,
section XI-A discusses a procedure the robot can use to
control the \inter-personal" distance a human assigns to
it. Having this control means that in social situations the
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robot can get quite far with a simple vision system that is
tuned to a particular distance.

II. Social constraints

For robots and humans to interact meaningfully, it is
important that they understand each other enough to be
able to shape each other's behavior. This has several im-
plications. One of the most basic is that robot and human
should have at least some overlapping perceptual abilities.
Otherwise, they can have little idea of what the other is
sensing and responding to. Vision is one important sen-
sory modality for human interaction, and the one we focus
on in this article. We endow our robots with visual per-
ception that is human-like in its physical implementation.

Fig. 1. Kismet, a robot capable of conveying intentionality through
facial expressions and behavior. Here, the robot's physical state ex-
presses attention to and interest in the human beside it. Another
person { for example, the photographer { would expect to have to at-
tract the robot's attention before being able to inuence its behavior.

Similarity of perception requires more than similarity of
sensors. Not all sensed stimuli are equally behaviorally rel-
evant. It is important that both human and robot �nd
the same types of stimuli salient in similar conditions. Our
robots have a set of perceptual biases based on the human
pre-attentive visual system. These biases can be modulated
by the motivational state of the robot, making later percep-
tual stages more behaviorally relevant. This approximates
the top-down inuence of motivation on the bottom-up pre-
attentive process found in human vision.

Visual perception requires high bandwidth and is compu-
tationally demanding. In the early stages of human vision,
the entire visual �eld is processed in parallel. Later com-
putational steps are applied much more selectively, so that
behaviorally relevant parts of the visual �eld can be pro-
cessed in greater detail. This mechanism of visual attention
is just as important for robots as it is for humans, from the
same considerations of resource allocation. The existence
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of visual attention is also key to satisfying the expectations
of humans concerning what can and cannot be perceived
visually. We have implemented a context-dependent atten-
tion system that goes some way towards this.

Human eye movements have a high communicative value.
For example, gaze direction is a good indicator of the locus
of visual attention. Knowing a person's locus of attention
reveals what that person currently considers behaviorally
relevant, which is in turn a powerful clue to their intent.
The dynamic aspects of eye movement, such as staring ver-
sus glancing, also convey information. Eye movements are
particularly potent during social interactions, such as con-
versational turn-taking, where making and breaking eye
contact plays an important role in regulating the exchange.
We model the eye movements of our robots after humans,
so that they may have similar communicative value.

Our hope is that by following the example of the human
visual system, the robot's behavior will be easily under-
stood because it is analogous to the behavior of a human
in similar circumstances (see Figure 1). For example, when
an anthropomorphic robot moves its eyes and neck to ori-
ent toward an object, an observer can e�ortlessly conclude
that the robot has become interested in that object. These
traits lead not only to behavior that is easy to understand
but also allows the robot's behavior to �t into the social
norms that the person expects.

There are other advantages to modeling our implemen-
tation after the human visual system. There is a wealth
of data and proposed models for how the human visual
system is organized. This data provides not only a modu-
lar decomposition but also mechanisms for evaluating the
performance of the complete system. Another advantage
is robustness. A system that integrates action, perception,
attention, and other cognitive capabilities can be more ex-
ible and reliable than a system that focuses on only one of
these aspects. Adding additional perceptual capabilities
and additional constraints between behavioral and percep-
tual modules can increase the relevance of behaviors while
limiting the computational requirements [6]. For example,
in isolation, two diÆcult problems for a visual tracking sys-
tem are knowing what to track and knowing when to switch
to a new target. These problems can be simpli�ed by com-
bining the tracker with a visual attention system that can
identify objects that are behaviorally relevant and worth
tracking. In addition, the tracking system bene�ts the at-
tention system by maintaining the object of interest in the
center of the visual �eld. This simpli�es the computation
necessary to implement behavioral habituation. These two
modules work in concert to compensate for the de�ciencies
of the other and to limit the required computation in each.

III. Physical form

Currently, the most sophisticated of our robots in terms
of visual-motor behavior is Kismet. This robot is an ac-
tive vision head augmented with expressive facial features
(see Figure 2). Kismet is designed to receive and send
human-like social cues to a caregiver, who can regulate its
environment and shape its experiences as a parent would

for a child. Kismet has three degrees of freedom to control
gaze direction, three degrees of freedom to control its neck,
and �fteen degrees of freedom in other expressive compo-
nents of the face (such as ears and eyelids). To perceive
its caregiver Kismet uses a microphone, worn by the care-
giver, and four color CCD cameras. The positions of the
neck and eyes are important both for expressive postures
and for directing the cameras towards behaviorally relevant
stimuli.

Eye tilt
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Camera with wide
field of
view

Camera with narrow
field of
view

Neck tilt

Neck pan

Neck lean

Fig. 2. Kismet has a large set of expressive features { eyelids, eye-
brows, ears, jaw, lips, neck and eye orientation. The schematic on
the right shows the degrees of freedom relevant to visual perception
(omitting the eyelids!). The eyes can turn independently along the
horizontal (pan), but turn together along the vertical (tilt). The
neck can turn the whole head horizontally and vertically, and can
also crane forward. Two cameras with narrow \foveal" �elds of view
rotate with the eyes. Two central cameras with wide �elds of view
rotate with the neck. These cameras are una�ected by the orientation
of the eyes.

The cameras in Kismet's eyes have high acuity but a
narrow �eld of view. Between the eyes, there are two un-
obtrusive central cameras �xed with respect to the head,
each with a wider �eld of view but correspondingly lower
acuity. The reason for this mixture of cameras is that typ-
ical visual tasks require both high acuity and a wide �eld
of view. High acuity is needed for recognition tasks and
for controlling precise visually guided motor movements.
A wide �eld of view is needed for search tasks, for tracking
multiple objects, compensating for involuntary ego-motion,
etc. A common trade-o� found in biological systems is to
sample part of the visual �eld at a high enough resolution
to support the �rst set of tasks, and to sample the rest
of the �eld at an adequate level to support the second set.
This is seen in animals with foveate vision, such as humans,
where the density of photoreceptors is highest at the cen-
ter and falls o� dramatically towards the periphery. This
can be implemented by using specially designed imaging
hardware [7], space-variant image sampling [8], or by using
multiple cameras with di�erent �elds of view, as we have
done.
The designs of our robots are constantly evolving. New

degrees of freedom are added, old degrees of freedom are
reorganized, sensors are replaced or rearranged, new sen-
sory modalities are introduced. The descriptions given here
should be treated as a eeting snapshot of the current state
of the robots. Our hardware and software control architec-
tures have been designed to meet the challenge of real-time
processing of visual signals (approaching 30 Hz) with min-
imal latencies. Kismet's vision system is implemented on
a network of nine 400 MHz commercial PCs running the
QNX real-time operating system. Kismet's motivational
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system runs on a collection of four Motorola 68332 pro-
cessors. Machines running Windows NT and Linux are
also networked for speech generation and recognition re-
spectively. Even more so than Kismet's physical form, the
control network is rapidly evolving as new behaviors and
sensory modalities come on line.

IV. Levels of visual behavior

Visual behavior can be conceptualized on four di�erent
levels (as shown in Figure 3). These levels correspond to
the social level, the behavior level, the skills level, and the
primitives level. This decomposition is motivated by dis-
tinct temporal, perceptual, and interaction constraints that
exist at each level. The temporal constraints pertain to
how fast the motor acts must be updated and executed.
These can range from real-time vision rates (30 Hz) to the
relatively slow time scale of social interaction (potentially
transitioning over minutes). The perceptual constraints
pertain to what level of sensory feedback is required to
coordinate behavior at that layer. This perceptual feed-
back can originate from the low level visual processes such
as the current target from the attention system, to rel-
atively high-level multi-modal percepts generated by the
behavioral releasers. The interaction constraints pertain
to the arbitration of units that compose each layer. This
can range from low-level oculomotor primitives (such as
saccades and smooth pursuit), to using visual behavior to
regulate human-robot turn-taking.

inter-motor
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Fig. 3. Levels of behavioral organization. The primitive level is
populated with tightly coupled sensorimotor loops. The skill level
contains modules that coordinate primitives to achieve tasks. Behav-
ior level modules deal with questions of relevance, persistence and
opportunism in the arbitration of tasks. The social level comprises
design-time considerations of how the robot's behaviors will be inter-
preted and responded to in a social environment.

Each level serves a particular purpose for generating the
overall observed behavior. As such, each level must ad-
dress a speci�c set of issues. The levels of abstraction help
simplify the overall control of visual behavior by restricting
each level to address those core issues that are best man-
aged at that level. By doing so, the coordination of visual
behavior at each level (i.e., arbitration), between the levels

(i.e., top-down and bottom-up), and through the world is
maintained in a principled way.

� The Social Level: The social level explicitly deals with is-
sues pertaining to having a human in the interaction loop.
This requires careful consideration of how the human in-
terprets and responds to the robot's behavior in a social
context. Using visual behavior (making eye contact and
breaking eye contact) to help regulate the transition of
speaker turns during vocal turn-taking is an example.
� The behavior level: The behavior level deals with issues
related to producing relevant, appropriately persistent, and
opportunistic behavior. This involves arbitrating between
the many possible goal-achieving behaviors that the robot
could perform to establish the current task. Actively seek-
ing out a desired stimulus and then visually engaging it is
an example.
� The motor skill level: The motor skill level is responsi-
ble for �guring out how to move the motors to accomplish
that task. Fundamentally, this level deals with the issues
of blending of and sequencing between coordinated ensem-
bles of motor primitives (each ensemble is a distinct mo-
tor skill). The skills level must also deal with coordinating
multi-modal motor skills (e.g., those motor skills that com-
bine speech, facial expression, and body posture). Fixed
action patterns such as a searching behavior is an example
where the robot alternately performs ballistic eye-neck ori-
entation movements with gaze �xation to the most salient
target. The ballistic movements are important for scan-
ning the scene, and the �xation periods are important for
locking on the desired type of stimulus.
� The motor primitives level: The motor primitives level
implements the building blocks of motor action. This level
must deal with motor resource allocation and tightly cou-
pled sensorimotor loops. For example, gaze stabilization
must take sensory stimuli and produce motor commands
in a very tight feedback loop. Kismet actually has four
distinct motor systems at the primitives level: the a�ective
vocal system, the facial expression system, the oculomotor

system, and the body posturing system. Because this paper
focuses on visual behavior, we only discuss the oculomotor
system here.

We describe these levels in detail as they pertain to
Kismet's visual behavior. We begin at the lowest level,
motor primitives pertaining to vision, and progress to the
highest level where we discuss the social constraints of an-
imate vision.

V. Visual motor primitives

Kismet's visual-motor control is modeled after the hu-
man ocular-motor system. The human system is so good
at providing a stable percept of the world that we have
no intuitive appreciation of the physical constraints un-
der which it operates. Humans have foveate vision. The
fovea (the center of the retina) has a much higher density
of photoreceptors than the periphery. This means that to
see an object clearly, humans must move their eyes such
that the image of the object falls on the fovea. Human
eye movement is not smooth. It is composed of many
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quick jumps, called saccades, which rapidly re-orient the
eye to project a di�erent part of the visual scene onto the
fovea. After a saccade, there is typically a period of �xa-
tion, during which the eyes are relatively stable. They are
by no means stationary, and continue to engage in correc-
tive micro-saccades and other small movements. If the eyes
�xate on a moving object, they can follow it with a con-
tinuous tracking movement called smooth pursuit. This
type of eye movement cannot be evoked voluntarily, but
only occurs in the presence of a moving object. Periods of
�xation typically end after some hundreds of milliseconds,
after which a new saccade will occur [9].

Vergence
angle

Right eye

Left eye

Ballistic saccade
to new target

Smooth pursuit
and vergence
co-operate to track
object

Fig. 4. Humans exhibit four characteristic types of eye motion.
Saccadic movements are high-speed ballistic motions that center a
target in the �eld of view. Smooth pursuit movements are used to
track a moving object at low velocities. The vestibulo-ocular and
opto-kinetic reexes act to maintain the angle of gaze as the head
and body move through the world. Vergence movements serve to
maintain an object in the center of the �eld of view of both eyes as
the object moves in depth.

The eyes normally move in lock-step, making equal, con-
junctive movements. For a close object, the eyes need to
turn towards each other somewhat to correctly image the
object on the foveae of the two eyes. These disjunctive
movements are called vergence, and rely on depth percep-
tion (see Figure 4). Since the eyes are located on the head,
they need to compensate for any head movements that oc-
cur during �xation. The vestibulo-ocular reex uses iner-
tial feedback from the vestibular system to keep the orien-
tation of the eyes stable as the eyes move. This is a very
fast response, but is prone to the accumulation of error
over time. The opto-kinetic response is a slower compen-
sation mechanism that uses a measure of the visual slip of
the image across the retina to correct for drift. These two
mechanisms work together to give humans stable gaze as
the head moves.

Our implementation of an ocular-motor system is an ap-
proximation of the human system. The motor primitives
are organized around the needs of higher levels, such as
maintaining and breaking mutual regard, performing vi-
sual search, etc. Since our motor primitives are tightly
bound to visual attention, we will �rst discuss their sen-
sory component.

VI. Pre-attentive visual perception

Human infants and adults naturally �nd certain percep-
tual features interesting. Features such as color, motion,
and face-like shapes are very likely to attract our attention
[10]. We have implemented a variety of perceptual feature
detectors that are particularly relevant to interacting with
people and objects. These include low-level feature detec-
tors attuned to quickly moving objects, highly saturated
color, and colors representative of skin tones. Examples
of features we have used are shown in Figure 5. Looming
objects are also detected pre-attentively, to facilitate a fast
reexive withdrawal.

Fig. 5. Overview of the attention system. The robot's attention
is determined by a combination of low-level perceptual stimuli. The
relative weightings of the stimuli are modulated by high-level behav-
ior and motivational inuences. A suÆciently salient stimulus in any
modality can pre-empt attention, similar to the human response to
sudden motion. All else being equal, larger objects are considered
more salient than smaller ones. The design is intended to keep the
robot responsive to unexpected events, while avoiding making it a
slave to every whim of its environment. With this model, people in-
tuitively provide the right cues to direct the robot's attention (shake
object, move closer, wave hand, etc.). Displayed images were cap-
tured during a behavioral trial session.

A. Color saliency feature map

One of the most basic and widely recognized visual fea-
ture is color. Our models of color saliency are drawn from
the complementary work on visual search and attention
from Itti, Koch, and Niebur [11]. The incoming video
stream contains three 8-bit color channels (r, g, and b)
which are transformed into four color-opponency channels
(r0, g0, b0, and y

0). Each input color channel is �rst normal-
ized by the luminance l (a weighted average of the three
input color channels):

rn =
255

3
�
r

l
gn =

255

3
�
g

l
bn =

255

3
�
b

l
(1)

These normalized color channels are then used to produce
four opponent-color channels:

r
0 = rn � (gn + bn)=2 (2)



IEEE TRANSACTIONS ON MAN, CYBERNETICS AND SYSTEMS, VOL. XX, NO. Y, MONTH 2000 5

g
0 = gn � (rn + bn)=2 (3)

b
0 = bn � (rn + gn)=2 (4)

y
0 =

rn + gn

2
� bn � krn � gnk (5)

The four opponent-color channels are clamped to 8-bit val-
ues by thresholding. While some research seems to indicate
that each color channel should be considered individually
[10], we choose to maintain all of the color information in a
single feature map to simplify the processing requirements
(as does Wolfe [12] for more theoretical reasons).

B. Motion feature map

In parallel with the color saliency computations, a second
processor receives input images from the frame grabber and
computes temporal di�erences to detect motion. Motion
detection is performed on the wide FoV camera, which is
often at rest since it does not move with the eyes. The
incoming image is converted to grayscale and placed into a
ring of frame bu�ers. A raw motion map is computed by
passing the absolute di�erence between consecutive images
through a threshold function T :

Mraw = T (kIt � It�1k) (6)

This raw motion map is then smoothed with a uniform
7 � 8 �eld. The result is a binary 2-D map where regions
corresponding to motion have a high intensity value. The
motion saliency feature map is computed at 25-30 Hz by a
single 400MHz processor node. Figure 5 gives an example
of the motion feature map when the robot looks at a toy
block that is being shaken.

C. Skin tone feature map

Colors consistent with skin are also �ltered for. This is a
computationally inexpensive means to rule out regions that
are unlikely to contain faces or hands. Most pixels on faces
will pass these tests over a wide range of lighting conditions
and skin color. Pixels that pass these tests are weighted
according to a function learned from instances of skin tone
from images taken by Kismet's cameras (see �gure 6). In
this implementation, a pixel is not skin-toned if:

� r < 1:1 � g (the red component fails to dominate green
suÆciently)
� r < 0:9 � b (the red component is excessively dominated
by blue)
� r > 2:0 �max(g; b) (the red component completely dom-
inates both blue and green)
� r < 20 (the red component is too low to give good esti-
mates of ratios)
� r > 250 (the red component is too saturated to give a
good estimate of ratios)

VII. Visual attention

We have implemented Wolfe's model of human visual
search and attention [12]. Our implementation is similar

Fig. 6. The skin tone �lter responds to 4.7% of possible (R;G;B)
values. Each grid in the �gure to the left shows the response of the
�lter to all values of red and green for a �xed value of blue. The image
to the right shows the �lter in operation. Typical indoor objects that
may also be consistent with skin tone include wooden doors, cream
walls, etc.

to other models based in part on Wolfe's work [11], but ad-
ditionally operates in conjunction with motivational and
behavioral models, with moving cameras, and addresses
the issue of habituation. The attention process acts in two
parts. The low-level feature detectors discussed in the pre-
vious section are combined through a weighted average to
produce a single attention map. This combination allows
the robot to select regions that are visually salient and to
direct its computational and behavioral resources towards
those regions. The attention system also integrates inu-
ences from the robot's internal motivational and behavioral
systems to bias the selection process. For example, if the
robot's current goal is to interact with people, the attention
system is biased toward objects that have colors consistent
with skin tone. The attention system also has mechanisms
for habituating to stimuli, thus providing the robot with a
primitive attention span. The state of the attention sys-
tem is usually reected in the robot's gaze direction, unless
there are behavioral reasons for this not to be the case. The
attention system runs all the time, even when it is not con-
trolling gaze, since it determines the perceptual input to
which the motivational and behavioral systems respond.

A. Task-based inuences on attention

For a goal achieving creature, the behavioral state should
also bias what the creature attends to next. For instance,
when performing visual search, humans seem to be able
to preferentially select the output of one broadly tuned
channel per feature (e.g. \red" for color and \shallow" for
orientation if searching for red horizontal lines).
In our system these top-down, behavior-driven factors

modulate the output of the individual feature maps before
they are summed to produce the bottom-up contribution.
This process selectively enhances or suppresses the contri-
bution of certain features, but does not alter the underlying
raw saliency of a stimulus. To implement this, the bottom-
up results of each feature map are passed through a �lter
(e�ectively a gain). The value of each gain is determined
by the active behavior. For instance, as shown in Figure 7,
the skin tone gain is enhanced when the seek people be-
havior is active and is suppressed when the avoid people

behavior is active. Similarly, the color gain is enhanced
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Fig. 7. Schematic of behaviors relevant to attention. The activa-
tion of a particular behavior depends on both perceptual factors and
motivation factors. The perceptual factors come from post attentive
processing of the target stimulus into behaviorally relevant percepts.
The drives within the motivation system have an indirect inuence
on attention by inuencing the behavioral context. The behaviors at
Level 1 of the behavior system directly manipulate the gains of the
attention system to bene�t their goals. Through behavior arbitration,
only one of these behaviors is active at any time. These behaviors
are further elaborated in deeper levels of the behavior system.

when the seek toys behavior is active, and suppressed
when the avoid toys behavior is active. Whenever the
engage people or engage toys behaviors are active, the
face and color gains are restored to their default values,
respectively.

Fig. 8. E�ect of gain adjustment on looking preference. Circles
correspond to �xation points, sampled at one second intervals. On
the left, the gain of the skin tone �lter is higher. The robot spends
more time looking at the face in the scene (86% face, 14% block).
This bias occurs despite the fact that the face is dwarfed by the block
in the visual scene. On the right, the gain of the color saliency �lter
is higher. The robot now spends more time looking at the brightly
colored block (28% face, 72% block).

These modulated feature maps are then summed to com-
pute the overall attention activation map, thus biasing at-
tention in a way that facilitates achieving the goal of the
active behavior. For example, if the robot is searching for
social stimuli, it becomes sensitive to skin tone and less sen-
sitive to color. Behaviorally, the robot may encounter toys
in its search, but will continue until a skin toned stimulus is
found (often a person's face). Figure 8 shows the results of
two such experiments. The left �gure shows a looking pref-
erence to a person despite a lesser \raw" saliency when the
robot is seeking out people. Conversely, when the robot is

actively searching for a toy, it demonstrates a looking pref-
erence to the colorful block depite the dominant presence
of a person's face in the visual �eld.

B. Habituation e�ects

To build a believable creature, the attention system
must also implement habituation e�ects. Infants respond
strongly to novel stimuli, but soon habituate and respond
less as familiarity increases. This acts both to keep the
infant from being continually fascinated with any single
object and to force the caretaker to continually engage the
infant with slightly new and interesting interactions. For
a robot, a habituation mechanism removes the e�ects of
highly salient background objects that are not currently in-
volved in direct interactions as well as placing requirements
on the caretaker to maintain interaction with slightly novel
stimulation.
To implement habituation e�ects, a habituation �lter is

applied to the activation map over the location currently
being attended to. The habituation �lter e�ectively decays
the activation level of the location currently being attended
to, making other locations of lesser activation bias atten-
tion more strongly.

C. Consistency of attention

In the presence of objects of similar salience, it is useful
be able to commit attention to one of the objects for a pe-
riod of time. This gives time for post-attentive processing
to be carried out on the object, and for downstream pro-
cesses to organize themselves around the object. As soon
as a decision is made that the object is not behaviorally
relevant (for example, it may lack eyes, which are searched
for post-attentively), attention can be withdrawn from it
and visual search may continue. Committing to an object
is also useful for behaviors that need to be atomically ap-
plied to a target (for example, a calling behavior where the
robot needs to stay looking at the person it is calling).
To allow such commitment, the attention system is aug-

mented with a tracker. The tracker follows a target in
the visual �eld, using simple correlation between succes-
sive frames. Usually changes in the tracker target will be
reected in movements of the robot's eyes, unless this is
behaviorally inappropriate. If the tracker loses the target,
it has a very good chance of being able to reacquire it from
the attention system.

D. Experiments with directing attention

The overall attention system runs at 20 Hz on several 400
MHz processors. In section VII-A, we presented Kismet's
looking preference results with respect to directing its at-
tention to task-relevant stimuli. In this section, we examine
how easy it is for people to direct the Kismet's attention
to a speci�c target stimulus, and to determine when they
have been successful in doing so.
Three naive subjects were invited to interact with

Kismet. The subjects ranged in age from 25 to 28 years
old. All used computers frequently but were not computer
scientists by training. All interactions were video-recorded.
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The robot's attention gains were set to their default values
so that there would be no strong preference for one saliency
feature over another. The subjects were asked to direct the
robot's attention to each of the target stimuli. There were
seven target stimuli used in the study. Three were satu-
rated color stimuli, three were skin-toned stimuli, and the
last was a pure motion stimulus. Each target stimulus was
used more than once per subject. These are listed below:
� A highly saturated colorful block
� A bright yellow stu�ed dinosaur with multi-color spines
� A bright green cylinder
� A bright pink cup (which is actually detected by the skin
tone feature map)
� The person's face
� The person's hand
� A black and white plush cow (which is only salient when
moving)
The video was later analyzed to determine which cues

the subjects used to attract the robot's attention, which
cues they used to determine when they had been success-
ful, and the length of time required to do so. They were
also interviewed at the end of the session about which cues
they used, which cues they read, and about how long they
thought it took to direct the robot's attention. The results
are summarized in Table I.

motion
only

5.856Total

commonly 
read cues

skin-toned 
& 

movement

color & 
movement

stimulus
category

commonly 
used cues

3.58face

5.08hand

6.58pink cup

5.08b/w cow

6.08green cylinder

6.58multi-colored 
block

8.58yellow dinosaur

average
time (s)
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motion across
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shaking motion

bringing target 
close to robot

eye behavior, 
especially 
tracking

facial expression, 
especially raised
eyebrows

body posture, 
especially 
forward lean
or withdraw

TABLE I

Summary from attention manipulation interactions.

To attract the robot's attention, the most frequently
used cues include bringing the target close and in front of
the robot's face, shaking the object of interest, or moving
it slowly across the centerline of the robot's face. Each cue
increases the saliency of a stimulus by making it appear
larger in the visual �eld, or by supplementing the color
or skin-tone cue with motion. Note that there was an in-
herent competition between the saliency of the target and
the subject's own face as both could be visible from the
wide FoV camera. If the subject did not try to direct the
robot's attention to the target, the robot tended to look at
the subject's face.

The subjects also e�ortlessly determined when they had
successfully re-directed the robot's gaze. Interestingly, it is
not suÆcient for the robot to orient to the target. People
look for a change in visual behavior, from ballistic orienta-
tion movements to smooth pursuit movements, before con-
cluding that they had successfully re-directed the robot's
attention. All subjects reported that eye movement was
the most relevant cue to determine if they had successfully
directed the robot's attention. They all reported that it
was easy to direct the robot's attention to the desired tar-
get. They estimated the mean time to direct the robot's
attention at 5 to 10 seconds. This turns out to be the case;
the mean time over all trials and all targets is 5:8 seconds.

VIII. Post-attentive processing

Once the attention system has selected regions of the vi-
sual �eld that are potentially behaviorally relevant, more
intensive computation can be applied to these regions than
could be applied across the whole �eld. Searching for eyes
is one such task. Locating eyes is important to us for engag-
ing in eye contact, and as a reference point for interpreting
facial movements and expressions. We currently search for
eyes after the robot directs its gaze to a locus of attention,
so that a relatively high resolution image of the area being
searched is available from the foveal cameras (see Figure
9). Once the target of interest has been selected, we also
estimate its proximity to the robot using a stereo match
between the two central wide cameras. Proximity is an im-
portant for interaction as things closer to the robot should
be of greater interest. It's also useful for interaction at
a distance, such as a person standing too far for face to
face interaction but is close enough to be beckoned closer.
Clearly the relevant behavior (beckoning or playing) is de-
pendent on the proximity of the human to the robot.

Fig. 9. Eyes are searched for within a restricted part of the robot's
�eld of view. The eye detector actually looks for the region between
the eyes. It has adequate performance over a limited range of dis-
tances and face orientations.

Eye-detection in a real-time, robotic domain is compu-
tationally expensive and prone to error due to the large
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variance in head posture, lighting conditions and feature
scales. We developed an approach based on successive fea-
ture extraction, combined with some inherent domain con-
straints, to achieve a robust and fast eye-detection system
for Kismet. First, a set of feature �lters are applied succes-
sively to the image in increasing feature granularity. This
serves to reduce the computational overhead while main-
taining a robust system. The successive �lter stages are:

� Detect skin colored patches in the image (abort if this
does not pass above threshold).
� Scan the image for ovals and characterize its skin tone
for a potential face.
� Extract a sub-image of the oval and run a ratio template
[13], [14] over it for candidate eye locations.
� For each candidate eye location, run a pixel based multi-
layer perceptron on the region. The perceptron is previ-
ously trained to recognize shading patterns characteristic
of the eyes and bridge of the nose.

By doing so, the set of possible eye-locations in the im-
age is reduced from the previous level based on a feature
�lter. This allows the eye detector to run in real time on
a 400Mhz PC. The methodology assumes that the light-
ing conditions allow the eyes to be distinguished as dark
regions surrounded by highlights of the temples and the
bridge of the nose, that human eyes are largely surrounded
by regions of skin color, that the head is only moderately
rotated, that the eyes are reasonably horizontal, and that
people are within interaction distance from the robot (3 to
10 feet).

IX. Eye movements

Kismet's eyes periodically saccade to new targets chosen
by an attention system, tracking them smoothly if they
move and the robot wishes to engage them. Vergence eye
movements are more challenging to implement in a social
setting, since errors in disjunctive eye movements can give
the eyes a disturbing appearance of moving independently.
Errors in conjunctive movements have a much smaller im-
pact on an observer, since the eyes clearly move in lock-
step. A crude approximation of the opto-kinetic reex is
rolled into our implementation of smooth pursuit. An ana-
logue of the vestibular-ocular reex has been developed us-
ing a 3-axis inertial sensor, but has yet to be implemented
on Kismet (it currently runs on other humanoid robots in
our lab). Kismet uses an e�erent copy mechanism to com-
pensate the eyes for movements of the head. An over of
the oculomotor control system is shown in �gure 10.
The attention system operates on the view from the cen-

tral camera (see Figure 2). A transformation is needed to
convert pixel coordinates in images from this camera into
position setpoints for the eye motors. This transforma-
tion in general requires the distance to the target to be
known, since objects in many locations will project to the
same point in a single image (see Figure 11). Distance esti-
mates are often noisy, which is problematic if the goal is to
center the target exactly in the eyes. In practice, it is usu-
ally enough to get the target within the �eld of view of the
foveal cameras in the eyes. Clearly the narrower the �eld of
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Fig. 10. Organization of Kismet's eye/neck motor control. Many
cross level inuences have been omitted. The modules in gray are
not active in the results presented in this paper.

view of these cameras is, the more accurately the distance
to the object needs to be known. Other crucial factors are
the distance between the wide and foveal cameras, and the
closest distance at which the robot will need to interact
with objects. These constraints determined the physical
distribution of Kismet's cameras and choice of lenses. The
central location of the wide camera places it as close as
possible to the foveal cameras. It also has the advantage
that moving the head to center a target as seen in the cen-
tral camera will in fact truly orient the head towards that
target { for cameras in other locations, accuracy of orienta-
tion would be limited by the accuracy of the measurement
of distance.

Fig. 11. Without distance information, knowing the position of a
target in the wide camera only identi�es a ray along which the object
must lie, and does not uniquely identify its location. If the cameras
are close to each other relative to the closest distance the object is
expected to be at, the foveal cameras can be rotated to bring the
object within their narrow �eld of view without needing an accurate
estimate of its distance. If the cameras are far apart, or the �eld
of view is very narrow, the minimum distance the object can be at
becomes large.

Higher-level inuences modulate eye and neck move-
ments in a number of ways. As already discussed, mod-
i�cations to weights in the attention system translate to
changes of the locus of attention about which eye move-
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ments are organized. The regime used to control the eyes
and neck is available as a set of primitives to higher-level
modules. Regimes include low-commitment search, high-
commitment engagement, avoidance, sustained gaze, and
deliberate gaze breaking. The primitive percepts gener-
ated by this level include a characterization of the most
salient regions of the image in terms of the feature maps,
an extended characterization of the tracked region in terms
of the results of post-attentive processing (eye detection,
distance estimation), and signals related to undesired con-
ditions, such as a looming object, or an object moving at
speeds the tracker �nds diÆcult to keep up with.

X. Visual motor skills

Given the current task (as dictated by the behavior sys-
tem), the motor skills level is responsible for �guring out
how to move the actuators to carry out the stated goal.
Often this requires coordination between multiple motor
modalities (speech, body posture, facial display, and gaze
control). Requests for these modalities can originate from
the top-down (e.g. from the emotion system or behavior
system), as well as from the bottom-up (the vocal system
requesting lip and jaw movements for lip synching). Hence,
the motor skills level must address the issue of servicing the
motor requests of di�erent systems across the di�erent mo-
tor resources.

Furthermore, it often requires a sequence of coordinated
motor movements to satisfy a goal. Each motor movement
is a primitive (or a combination of primitives) from one of
the base motor systems (the vocal system, the oculomotor
system, etc.). Each of these coordinated series of motor
primitives is called a skill, and each skill is implemented
as a �nite state machine (FSM). Each motor skill encodes
knowledge of how to move from one motor state to the
next, where each sequence is designed to bring the robot
closer to the current goal. The motor skills level must
arbitrate among the many di�erent FSMs, selecting the one
to become active based on the active goal. This decision
process is straight forward since there is an FSM tailored
for each task of the behavior system.

Many skills can be thought of as a �xed action pattern

(FAP) as conceptualized by early ethologists. Each FAP
consists of two components, the action component and the
taxis (or orienting) component. For Kismet, FAPs often
correspond to communicative gestures where the action
component corresponds to the facial gesture, and the taxis
component (to whom the gesture is directed) is controlled
by gaze. People seem to intuitively understand that when
Kismet makes eye contact with them, they are the locus
of Kismet's attention and the robot's behavior is organized
about them. This places the person in a state of action
readiness where they are poised to respond to Kismet's
gestures.

A simple example of a motor skill is Kismet's \calling"
FAP. When the current task is to bring a person into a
good interaction distance, the motor skill system activates
the calling FSM. The taxis component of the FAP issues
a hold gaze request to the oculomotor system. This serves

to maintain the robot's gaze on the person to be hailed. In
the �rst state of the gestural component, Kismet leans its
body toward the person (a request to the body posture
motor system). This strengthens the person's perception
that the robot has taken a particular interest in them. The
ears also begin to waggle exuberantly (creating a signi�cant
amount of motion and noise) which further attracts the
person's attention to the robot (a request to the face mo-
tor system). In addition, Kismet vocalizes excitedly which
is perceived as an initiation of engagement. At the com-
pletion of this gesture, the FSM transitions to the second
state. In this state, the robot \sits back" and waits for a
bit with an expecting expression (ears slightly perked, eyes
slightly widened, and brows raised). If the person has not
already approached the robot, it is likely to occur during
this \anticipation" phase. If the person does not approach
within the allotted time period, the FSM transitions to the
third state in which the face relaxes, the robot maintains
a neutral posture, and gaze �xation is released. At this
point, the robot is likely to shift gaze. As long as this FSM
is active (determined by the behavior system), the hailing
cycle repeats. It can be interrupted at any state transition
by the activation of another FSM (such as the \greeting"
FSM when the person has approached).

We now move up another layer of abstraction, to the
behavior level in the hierarchy that was shown in Figure 3.

XI. Visual behavior

The behavior level is responsible for establishing the cur-
rent task for the robot through arbitrating among Kismet's
goal-achieving behaviors. By doing so, the observed behav-
ior should be relevant, appropriately persistent, and oppor-
tunistic. Both the current environmental conditions (as
characterized by high-level perceptual releasers, as well as
motivational factors (emotion processes and homeostatic
regulation) contribute to this decision process.

Interaction of the behavior level with the social level oc-
curs through the world as determined by the nature of the
interaction between Kismet and the human. As the hu-
man responds to Kismet, the robot's perceptual conditions
change. This can activate a di�erent behavior, whose goal
is physically carried out the underlying motor systems. The
human observes the robot's ensuing response and shapes
their reply accordingly.

Interaction of the behavior level with the motor skills
level also occurs through the world. For instance, if Kismet
is looking for a bright toy, then the seek toy behavior is
active. This task is passed to the underlying motor skills
which carry out the search. The act of scanning the envi-
ronment brings new perceptions to Kismet's �eld of view.
If a toy is found, then the seek toy behavior is successful
and released. At this point, the perceptual conditions for
engaging the toy are relevant and the engage toy behav-
iors become active. A new set motor skills become active
to track and smoothly pursue the toy.
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A. Social level

Eye movements have communicative value. As discussed
previously, they indicate the robot's locus of attention. The
robot's degree of engagement can also be conveyed, to com-
municate how strongly the robot's behavior is organized
around what it is currently looking at. If the robot's eyes
ick about from place to place without resting, that in-
dicates a low level of engagement, appropriate to a visual
search behavior. Prolonged �xation with smooth pursuit
and orientation of the head towards the target conveys
a much greater level of engagement, suggesting that the
robot's behavior is very strongly organized about the locus
of attention.
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Fig. 12. Regulating interaction. People too distant to be seen clearly
are called closer; if they come too close, the robot signals discomfort
and withdraws. The withdrawal moves the robot back somewhat
physically, but is more e�ective in signaling to the human to back o�.
Toys or people that move too rapidly cause irritation.

Eye movements are the most obvious and direct motor
actions that support visual perception. But they are by
no means the only ones. Postural shifts and �xed action
patterns involving the entire robot also have an important
role. Kismet has a number of coordinated motor actions
designed to deal with various limitations of Kismet's vi-
sual perception (see Figure 12). For example, if a person
is visible, but is too distant for their face to be imaged at
adequate resolution, Kismet engages in a calling behavior
to summon the person closer. People who come too close
to the robot also cause diÆculties for the cameras with
narrow �elds of view, since only a small part of a face may
be visible. In this circumstance, a withdrawal response is
invoked, where Kismet draws back physically from the per-
son. This behavior, by itself, aids the cameras somewhat
by increasing the distance between Kismet and the human.
But the behavior can have a secondary and greater e�ect
through social ampli�cation { for a human close to Kismet,
a withdrawal response is a strong social cue to back away,
since it is analogous to the human response to invasions of
\personal space."

Similar kinds of behavior can be used to support the vi-
sual perception of objects. If an object is too close, Kismet

can lean away from it; if it is too far away, Kismet can crane
its neck towards it. Again, in a social context, such actions
have power beyond their immediate physical consequences.
A human, reading intent into the robot's actions, may am-
plify those actions. For example, neck-craning towards a
toy may be interpreted as interest in that toy, resulting
in the human bringing the toy closer to the robot. An-
other limitation of the visual system is how quickly it can
track moving objects. If objects or people move at excessive
speeds, Kismet has diÆculty tracking them continuously.
To bias people away from excessively boisterous behavior
in their own movements or in the movement of objects they
manipulate, Kismet shows irritation when its tracker is at
the limits of its ability. These limits are either physical
(the maximum rate at which the eyes and neck move), or
computational (the maximum displacement per frame from
the cameras over which a target is searched for).

Such regulatory mechanisms play roles in more com-
plex social interactions, such as conversational turn- tak-
ing. Here control of gaze direction is important for regu-
lating conversation rate [15]. In general, people are likely
to glance aside when they begin their turn, and make eye
contact when they are prepared to relinquish their turn
and await a response. Blinks occur most frequently at the
end of an utterance. These and other cues allow Kismet
to inuence the ow of conversation to the advantage of
its auditory processing. The visual-motor system can also
be driven by the requirements of a nominally unrelated
sensory modality, just as behaviors that seem completely
orthogonal to vision (such as ear-wiggling during the call
behavior to attract a person's attention) are nevertheless
recruited for the purposes of regulation. These mecha-
nisms also help protect the robot. Objects that suddenly
appear close to the robot trigger a looming reex, caus-
ing the robot to quickly withdraw and appear startled. If
the event is repeated, the response quickly habituates and
the robot simply appears annoyed, since its best strategy
for ending these repetitions is to clearly signal that they
are undesirable. Similarly, rapidly moving objects close to
the robot are threatening and trigger an escape response.
These mechanisms are all designed to elicit natural and in-
tuitive responses from humans, without any special train-
ing. But even without these carefully crafted mechanisms,
it is often clear to a human when Kismet's perception is
failing, and what corrective action would help, because the
robot's perception is reected in behavior in a familiar way.
Inferences made based on our human preconceptions are
actually likely to work.

B. Evidence of Social Ampli�cation

To evaluate the social implications of Kismet's behav-
ior, we invited a few people to interact with the robot in a
free-form exchange. There were four subjects in the study,
two males (one adult and one child) and two females (both
adults). They ranged in age from 12 to 28 years. None of
the subjects were aÆliated with MIT. All had substantial
experience with computers. None of the subjects had any
prior experience with Kismet. The child had prior experi-
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ence with a variety of interactive toys. Each subject inter-
acted with the robot for 20 to 30 minutes. All exchanges
were video recorded for further analysis.
We analyzed the video for evidence of social ampli�ca-

tion. Namely, did people read Kismet's cues and did they
respond to them in a manner that bene�ted the robot's
perceptual processing or its behavior? we found several
classes of interactions where the robot displayed social cues
and successfully regulated the exchange.

B.1 Establishing a Personal Space

The strongest evidence of social ampli�cation was appar-
ent in cases where people came within very close proximity
of Kismet. In numerous instances the subjects would bring
their face very close to the robot's face. The robot would
withdraw, shrinking backwards, perhaps with an annoyed
expression on its face. In some cases the robot would also
issue a vocalization with an expression of disgust. In one
instance, the subject accidentally came too close and the
robot withdrew without exhibiting any signs of annoyance.
The subject immediately queried, \Am I too close to you?
I can back up," and moved back to put a bit more space
between himself and the robot. In another instance, a dif-
ferent subject intentionally put his face very close to the
robot's face to explore the response. The robot withdrew
while displaying full annoyance in both face and voice. The
subject immediately pushed backwards, rolling the chair
across the oor to put about an additional three feet be-
tween himself and the robot, and promptly apologized to
the robot.
Overall, across di�erent subjects, the robot successfully

established a personal space. This bene�ts the robot's vi-
sual processing by keeping people at a distance where the
visual system can detect eyes more robustly. This behav-
ioral response was added to the robot's repertoire because
previous interactions with naive subjects illustrated the
robot was not granted any personal space. This can be
attributed to \baby movements" where people tend to get
extremely close to infants, for instance.

B.2 Luring People to a Good Interaction Distance

People seem responsive to Kismet's calling behavior.
When a person is close enough for the robot to perceive
his/her presense, but too far away for face-to-face ex-
change, the robot issues this social display to bring the
person closer. The most distinguishing features of the dis-
play are craning the neck forward in the direction of the
person, wiggling the ears with large amplitude, and vocal-
izing with an excited a�ect. The function of the display is
to lure people into an interaction distance that bene�ts the
vision system. This behavior is not often witnessed as most
subjects simply pull up a chair in front of the robot and
remain seated at a typical face-to-face interaction distance.
The youngest subject took the liberty of exploring di�er-

ent interaction ranges, however. Over the course of about
�fteen minutes he would alternately approach the robot
to a normal face-to-face distance, move very close to the
robot (invading its personal space), and backing away from

the robot. Upon the �rst appearance of the calling re-
sponse, the experimenter queried the subject about the
robot's behavior. The subject interpreted the display as
the robot wanting to play, and he approached the robot.
At the end of the subject's investigation, the experimenter
queried him about the further interaction distances. The
subject responded that when he was further from Kismet,
the robot would lean forward. He also noted that the robot
had a harder time looking at his face when he was farther
back. In general, he interpreted the leaning behavior as
the robot's attempt to initiate an exchange with him. We
have noticed from earlier interactions (with other people
unfamiliar with the robot) that a few people have not im-
mediately understood this display as a \calling" behavior.
The display is amboyant enough, however, to arouse their
interest to approach the robot.

XII. Limitations and extensions

There are a number of ways the current implementation
could be improved and expanded upon. Some of these rec-
ommendations involve supplementing the existing frame-
work, others involve integrating this system into a larger
framework.

Kismet's visual perceptual world only consists of what
is in view of the cameras. Ultimately, the robot should be
able to construct an ego-centered saliency map of interac-
tion space. In this representation, the robot could keep
track of where interesting things are located, even if they
are not currently in view. Human infants engage in so-
cial referencing with their caregiver at a very young age.
If some event occurs that the infant is unsure about, the
infant will look to the caregiver's face for an a�ective as-
sessment. The infant will use this assessment to organize
its behavior. For instance, if the caregiver looks frightened,
the infant may become distressed and not probe further. If
the caregiver looks pleased and encouraging, the infant is
likely to continue exploring. With respect to Kismet, it
will encounter many situations that it was not explicitly
programmed to evaluate. However, if the robot can en-
gage in social referencing, it can look to the human for
the a�ective assessment and use it to bias learning and to
organize subsequent behavior. Chances are, the event in
question and the human's face will not be in view at the
same time. Hence, a representation of where interesting
this are in ego-centered interaction space is an important
resource.

The attention system could be extended by adding new
feature maps. A depth map from stereo would be very use-
ful { currently distance is only computed post-attentively.
Another interesting feature map to incorporate into the
system would be edge orientation. Wolfe and Triesman
among others argue in favor of edge orientation as a
bottom-up feature map in humans. Currently, Kismet has
no shape metrics to help it distinguish objects from each
other (such as its toy block from its toy dinosaur). Adding
features to support this is an important extension to the
existing implementation.

There are no auditory bottom-up contributions. A sound
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localization feature map would be a nice multi-modal ex-
tension. Currently, Kismet assumes that the most salient
person is the one who is talking to it. Often there are multi-
ple people talking around and to the robot. It is important
that the robot knows who is addressing it and when. Sound
localization would be of great bene�t here.
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XIII. Conclusions

Motor control for a social robot poses challenges beyond
issues of stability and accuracy. Motor actions will be per-
ceived by human observers as semantically rich, regardless
of whether the imputed meaning is intended or not. This
can be a powerful resource for facilitating natural interac-
tions between robot and human, and places constraints on
the robot's physical appearance and movement. It allows
the robot to be readable { to make its behavioral intent
and motivational state transparent at an intuitive level to
those it interacts with. It allows the robot to regulate its
interactions to suit its perceptual and motor capabilities,
again in an intuitive way with which humans naturally co-
operate. These social constraints give the robot leverage
over the world that extends far beyond its physical compe-
tence, through social ampli�cation of its perceived intent.
If properly designed, the robot's visual behaviors can be
matched to human expectations and allow both robot and
human to participate in natural and intuitive social inter-
actions.
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