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Abstract— Human environments present special chal-
lenges for robot manipulation, since they are complex,
dynamic, uncontrolled, and difficult to perceive reliably. For
tasks that involve two handheld objects, the use of two arms
can help overcome these challenges. With bimanual manip-
ulation, a robot can simultaneously control two handheld
objects in order to better perceive key features, control the
objects with respect to one another, and interact with the
user.

In this paper we present an approach to robot ma-
nipulation that emphasizes three design themes for robots
that manipulate within human environments: cooperative
manipulation, task relevant features, and let the body do the
thinking. We have previously illustrated these themes with
a behavior-based control system that enables a humanoid
robot to help a person place everyday objects on a shelf.
This system predominantly manipulates a single object at
a time with a single arm. Within this paper, we present
an extension to this control system that enables a robot to
bimanually perform tasks that involve two handheld objects.
In our tests, the robot successfully performs insertions that
are akin to common activities such as pouring and stirring
using a variety of objects, including a bottle, spoon, box, and
cup. The success of this extended system suggests that our
approach to robot manipulation can support a broad array
of useful applications, and demonstrates several distinct
advantages of using two arms.
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I. INTRODUCTION

Robots that work alongside people in their homes and
workplaces could potentially extend the time an elderly
person can live at home, provide physical assistance to
a worker on an assembly line, or help with household
chores. Human environments present special challenges
for robot manipulation, since they are complex, dynamic,
uncontrolled, and difficult to perceive reliably. For tasks
that involve two handheld objects, the use of two arms can
help overcome these challenges. With bimanual manipu-
lation, a robot can simultaneously control two handheld
objects in order to better perceive key features, control
the objects with respect to one another, and interact with
the user.

1This work was sponsored by Toyota Motor Corporation: Au-
tonomous Manipulation Capabilities for Partner Robots in the Home.

Addressing the challenges of manipulation in human
environments is an active area of research. For example,
the ARMAR project is investigating manipulation in
human environments and has shown results including the
bimanual opening of a jar [21]. Researchers working with
the NASA Robonaut [1] have demonstrated a cooperative
manipulation task where the robot employs a power drill
to tighten lugnuts under human direction. Work at AIST
has pursued fetch-and-carry tasks of everyday objects
under partial teleoperation[18], while work at Stanford
has recently investigated learning to grasp novel, everyday
objects [16]. Many groups are also pursuing research on
autonomous mobile manipulation in human environments
[11], [19].

For most of these projects, the robots do not physically
interact with people. They also tend to use detailed models
of the world that are difficult to generalize and neglect
opportunities for physical interactions with the world
that can simplify perception and control. In contrast,
our approach to robot manipulation emphasizes three
design themes: cooperative manipulation, task relevant
features, and let the body do the thinking. We have
previously illustrated these themes with a behavior-based
control system that enables a humanoid robot to help a
person place everyday objects on a shelf [5]. Within this
paper we extend this control system to enable a robot to
perform tasks bimanually with everyday handheld objects.
The success of this extended system suggests that our
approach to robot manipulation can support a broad array
of useful applications, and demonstrates several distinct
advantages of using two arms.

Our work is implemented on the 29 degree-of-freedom
humanoid robot, Domo, pictured in Figure 1. Domo is
mechanically distinctive in that it incorporates passive
compliance and force sensing throughout its body [7]. Its
Series Elastic Actuators lower the mechanical impedance
of its arms, allowing for safe physical interaction with
a person [15], [20]. Working with unmodeled objects
against a cluttered background, Domo is able to assist
a person in a task akin to preparing a drink. As shown in
Figure 1, Domo can socially cue a person to hand it a cup



A B C D

E F G H

Fig. 1. The humanoid robot Domo assisting a collaborator in a task similar to making a drink. (A-B) Working at a cluttered table, Domo physically
verifies the location of a shelf surface. (C-D) Upon request, Domo grasps a bottle and a cup handed to it by the collaborator. (E-F) Domo inserts
the bottle into the cup, hands the bottle back to the collaborator, and then acquires a spoon from the collaborator. (G-H) Domo inserts the spoon
into the cup, stirs it, and then puts the cup on the shelf.

and a bottle, grasp the objects that have been handed to it,
and conduct a visually guided insertion of the bottle into
the cup. Domo can then repeat this process using a spoon
to stir the interior of the cup, and place the cup on a
shelf upon completion. This type of help might enable
a person with serious physical limitations to maintain
independence in everyday activities that would otherwise
require human assistance. For a factory worker, this type
of help could potentially offload physically demanding
aspects of a task onto a robot.

II. THREE THEMES FOR DESIGN

As previously described in [5], three themes charac-
terize our approach to manipulation in human environ-
ments. We review these themes here. The first theme,
cooperative manipulation, refers to the advantages that
can be gained by having the robot work with a person
to cooperatively perform manipulation tasks. The second
theme, task relevant features, emphasizes the benefits of
carefully selecting the aspects of the world that are to be
perceived and acted upon during a manipulation task. The
third theme, let the body do the thinking, encompasses
several ways in which a robot can use its body to simplify
manipulation tasks.

A. Cooperative manipulation

For at least the near term, robots in human environ-
ments will be dependent on people. Fortunately, people
tend to be present within human environments. As long
as the robot’s usefulness outweighs the efforts required to
help it, full autonomy is unnecessary. With careful design
robots can be made more intuitive to use, thereby reducing
the effort required.

B. Task relevant features

Donald Norman’s book The Design of Everyday Things
[13], emphasizes that objects found within human en-
vironments have been designed to match our physical
and cognitive abilities. These objects are likely to have
common structural features that simplify their use. By
developing controllers that are matched to these structural
features, we can simplify robot manipulation tasks. Rather
than attempting to reconstruct the world in its entirety, we
focus the robot’s sensory resources on elements of the
world that are relevant to the current task.

C. Let the Body Do The Thinking

This theme bundles together design strategies that make
use of the robot’s body to simplify manipulation in three
ways.

First, human environments, interactions, and tasks are
well matched to the human body. For example, Domo’s
eye gaze, arm gesture, and open hand are similar in
appearance to a human requesting an object, and are able
to intuitively cue uninstructed, non-specialists [6].

Second, we can mitigate the consequences of uncer-
tainty by trading off perception and control for physical
design. This tradeoff is central to Pfeifer’s notion of
morphological computation [14]. For example, Domo
uses passive compliance when inserting one object into
another.

Third, a physically embodied agent can use its body to
test a perceptual hypothesis, gain a better view on an item
of interest, or increase the salience of a sensory signal.
For example, in this work Domo simultaneously controls
two grasped objects in order to better perceive their distal
tips.
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Fig. 2. A collaborator can compose a task using four manipulation be-
haviors: ShelfPlace, BimanualInsert, AssistedGrasp, and AssistedGive.
Transitions (arrows) occur contingent on perceptual feedback (bars).
Exceptions from the expected feedback result in a reset transition
(dashed line). The collaborator coordinates the task through voice
cues (VocalRequest) while the robot tracks the person in the scene
(PersonSeek, PersonDetect). The person can ask the robot to take an
object (AssistedGrasp), give back an object (AssistedGive), insert one
object into another (BimanualInsert), or place an object on a shelf
(ShelfPlace). The robot can reattempt a manual skill if failure is signaled
(GraspDetect, VocalRequest, ContactDetect).

III. BEHAVIOR-BASED CONTROL

A. The Behavior System

Domo performs tasks through the coordination of its
perceptual and motor behaviors over time. These behav-
iors (denoted in italics) are composed hierarchically, and
run in a distributed, real-time architecture at 15− 100hz
on a 12 node Linux cluster. We have adopted a layered
architecture similar to that of Brooks[2] and Connell[3].
We couple constant perceptual feedback to many simple
behaviors in order to increase the task robustness and
responsiveness to dynamics in the environment. For exam-
ple, if a person removes the object from the robot’s grasp
at anytime during task execution, the active behavior will
become inhibited and a secondary behavior will attempt
to reacquire the object or to smoothly bring the arm to a
relaxed posture.

B. Behaviors

A collaborator coordinates the robot’s manual skills to
accomplish a task. For example, the task of Figure 1 is
accomplished using four manual skills: ShelfPlace, Bi-
manualInsert, AssistedGrasp, and AssistedGive. As shown
in Figure 2, these behaviors run concurrently, allowing a
person to vocally request them at any time. If the col-
laborator notices that Domo is failing at a task, they can
provide vocal (VocalRequest) or contact (ContactDetect)
feedback to alert the robot. If Domo accidentally drops an
object (GraspDetect), the person can pick it up and ask
the robot to grasp it again (AssistedGrasp). Alternatively,
at anytime the person can ask Domo to hand him or her a
grasped object (AssistedGive). In this way, the robot and
the person work as a team. The person provides task-level
planning and guides the robot’s action selection using
intuitive modes of interaction, such as handing objects

to the robot and simple verbal commands. In return,
the robot performs requested manipulation tasks for the
person using the provided objects.

The AssistedGrasp, AssistedGive, and ShelfPlace be-
haviors are fully described in [4] and [5]. In the next
section we describe the implementation of the Bimanu-
alInsert behavior in more detail.

IV. THE BIMANUAL INSERTION TASK

In the BimanualInsert behavior, Domo grasps a com-
mon object such as a stirring spoon or bottle in one
hand and a container such as cup or coffee mug in the
other hand. It inserts the object into the container and
then optionally stirs the contents. The specific geometric
properties and appearance of each object and container
are unknown, and their pose in the grasp is uncertain. The
robot relies on visual sensing and manipulator compliance
to overcome this uncertainty.

This behavior is related to the classic peg-in-hole task
often studied in model-based manipulation under uncer-
tainty [12]. For this task a single manipulator controls a
peg with the goal of inserting it into a hole. Bimanual
insertion is less common.

Through bimanual manipulation a robot can simultane-
ously control two grasped objects independently. In doing
so, the robot can actively control the objects in order
to simplify perception and control. For example, Domo
wiggles both objects so that it can more easily perceive
them through visual motion. Likewise, Domo is able to
stabilize the container on a flat surface where it can easily
view its opening, hold it steady while inserting the other
object, and physically confirm the poses of the objects.
Domo is also able to move the objects into its dexterous
workspace, where it can more easily perform the physical
motions necessary for the task. Finally, by holding both
objects at all times, Domo clearly and unambiguously
communicates to the person which objects it intends to
use for the current task. This is important for cooperative
tasks.

The following sections describe the sequential phases
of the task in order.

A. AssistedGrasp

AssistedGrasp enlists the person’s help in order to
secure a grasp on a utensil and a container. By handing
Domo the objects, the person directly specifies the objects
that Domo will manipulate. In the case of tasks that
involve two handheld objects, Domo clearly and unam-
biguously indicates which objects are in use by holding
the objects in its hands. This approach to coordination
is both intuitive and effective. It avoids the need for the
person to select objects through speech or gesture, and
makes it easier for the person to interpret the state or
intentions of the robot. By handing the objects to the
robot, the system also avoids the challenging robotics
problem of locating and autonomously grasping selected



Fig. 3. Execution of the ContainerPlace behavior. (Top) The spatio-
temporal interest point operator finds the roughly circular opening of
a box, jar, and bowl. The detector is robust to cluttered backgrounds.
(Bottom) The robot exploits active and passive compliance to align the
container to the table.

objects. Robotic grasping of objects is still an active area
of research and an open problem [17], [16].

AssistedGrasp locates a person in the scene, extends
its arm towards the person, and opens its hand. By
reaching towards the person, the robot reduces the need
for the person to move when handing over the object. In
assistive applications for people with physical limitations,
the robot could potentially adapt its reach to the person’s
capabilities and effectively extend the person’s workspace
and amplify his or her abilities.

In addition, the robot cues the person through eye
contact, directed reaching, and hand opening. This lets
him or her know that Domo is ready for an object and
prepared to perform the task. The robot monitors contact
forces at the hand. If it detects a significant change, it
performs a power grasp in an attempt to acquire an object.
If the detector GraspDetect indicates that an object has
been successfully grasped, the robot attempts to acquire
another object with its free hand in the same way. Once
the robot has an object in each hand, it proceeds to the
next phase of the task.

B. ContainerPlace

After AssistedGrasp, the orientation of the grasped
object in the hand is uncertain. The ContainerPlace
behavior reduces the orientation uncertainty of a grasped
container. Using force control, the behavior lowers the
container onto a table while keeping the impedance of
the wrist low. This robot behavior is shown in Figure 3.

Since each of the container objects has a flat bottom
that is parallel to its opening, this action aligns containers
with the table, which results in a stable configuration that
is favorable for insertion. This behavior takes advantage
of common task relevant features of everyday containers,
which have been designed to both accommodate the
insertion of objects and stably rest on the flat surfaces
that are often found in human environments. For example,
people often rest a cup on a table before pouring a cup
of coffee.

By using two arms, Domo is able to stably hold the
container object against the table throughout the insertion
operation. This is important, since compliant contact

during the insertion that can generate significant forces
and torques on the container. Moreover, throughout the
insertion, Domo has the opportunity to physically detect
whether or not the object is still being held against the
table.

C. TipEstimate

For a wide variety of tools and tasks, control of the
tool’s endpoint is sufficient for its use. For example, use
of a screwdriver requires precise control of the tool blade
relative to a screw head but depends little on the details
of the tool handle and shaft.

The tip of an object is an important task relevant
feature, and we have previously described a method to
rapidly localize and control this feature [9], [10]. This
method detects fast moving, convex shapes using a form
of spatio-temporal interest point operator. As the robot
rotates the object, it detects the most rapidly moving
convex shape between pairs of consecutive images. Due
to the tip’s shape and distance from the center of rotation
it will tend to produce the most rapidly moving, convex
shapes in the image. The robot uses its kinematic model
to estimate the 3D point in the hand’s coordinate system
that best explains these noisy 2D detections.

The TipEstimate behavior brings a grasped object into
the field of view, rotates its hand, and then localizes
the tip. The robot uses the same spatio-temporal interest
point operator to detect the opening of the container
as it is aligned to the table. As shown in Figure 3,
using visual motion and the kinematic model enables the
robot to robustly detect this opening on a cluttered table.
This method works with a variety of containers such as
drinking glasses, bowls, small boxes, and coffee mugs.
The opening of the container serves as a form of object
tip. Since the tip detector is edge-based, multi-scale, and
sensitive to fast moving convex shapes, the edges of the
container openings are readily detected.

D. TipPose

Once TipEstimate has localized the utensil tip within
the hand’s coordinate system, the TipPose behavior con-
trols the feature by extending the robot’s kinematic model
by one link. This enables the robot to use traditional
Cartesian space control. As the grasped object is moved,
the spatio-temporal interest point operator provides visual
detections of the tip. This enables the robot to visually
servo the tip in the image [4].

Within the insertion task, the TipPose behavior visually
servoes the object’s tip to the container’s opening. We
adopt an approach similar to [8] where the object is
aligned at a 45 degree angle to the table. This advan-
tageous pose avoids visual obstruction of the tip by the
hand and expands the range of acceptable misalignment
when performing the insertion. During servoing, the tip
is kept on the visual ray to the center of the container
opening. The depth of the tip is then increased along the



ray until the tip is just above the insertion location. This
effectively compensates for errors in depth estimation.

Throughout this process, the use of two arms is im-
portant. The tip estimation is performed with respect to
the hand’s coordinate system. By continuing to rigidly
grasp an object after estimating the location of its tip,
the estimation continues to be relevant and useful. If the
robot were to release one of the objects, the uncertainty
of the tip’s pose relative to the robot’s body would be
likely to increase, and additional perceptual mechanisms
would be required to maintain the estimate, especially in
the context of mobile manipulation.

E. CompliantLower

CompliantLower performs the insertion phase of the
task by generating a constant downward force at the
object’s tip. The impedance of the manipulator wrist
is also lowered in order to accommodate misalignment.
Although the insertion forces are not used for control
feedback, the sensed force between the object and the
bottom of the container is used to signal task completion.

V. RESULTS

Our three design strategies allow BimanualInsert to
generalize across a variety of insertion objects and con-
tainers. In total, we have executed BimanualInsert in
nearly one hundred informal trials with a variety of ob-
jects. To quantify its performance, we tested BimanualIn-
sert in two experiments. In the first experiment, we tested
the insertion of a mixing spoon, bottle, paint roller, and
paint brush into a paper cup. In the second experiment,
we tested the insertion of the mixing spoon into a paper
cup, bowl, coffee mug, and jar. On these objects, the size
of the container opening varies between 75-100mm and
the size of the tool tip varies between 40-60mm. In each
experiment, seven trials were conducted on each object
pairing.

In a single experiment trial, the object was handed to
the robot in an orientation that was deliberately varied be-
tween ±20◦ along the axis of the hand’s power grasp. The
grasp location on the object was varied by approximately
±50mm along its length. Each trial took less than 20
seconds to complete and was performed over a visually
cluttered table with the collaborating person nearby. A
trial was successful if the object was fully inserted into
the container. The success rates for both experiments are
shown in Figure 4. As the results show, BimanualInsert
was successful in roughly 90% of the trials. When the
visual detection of the tip was disabled, the success rate
fell to about 15%.

As a final example, we tested BimanualInsert using a
flexible hose. The hose has an unknown bend, making it
essential that Domo actively sense its distal tip in order
to orient the hose prior to insertion. The execution of
this test is shown in Figure 5. While BimanualInsert can
handle the flexible hose in many cases, the single point
representation for the tip lacks the orientation information

required to reorient the hose and successfully perform
the insertion task when the hose has a very large bend.
Extending the tip detection system with estimation of the
tip’s orientation would be useful for these situations.

VI. DISCUSSION

With bimanual manipulation, a robot can simultane-
ously control two handheld objects in order to better
perceive key features, control the objects with respect to
one another, and interact with the user. Within this paper,
we have presented evidence that these advantages can
dramatically simplify manipulation tasks that involve two
handheld objects. The control system we have presented
relies on both arms, and would not succeed otherwise.

Maintaining rigid grasps on the objects throughout the
manipulation task enables the robot to reliably maintain
pose estimates for object features, and actively control the
objects in order to facilitate new perceptual detections and
reestimations. Rigidly grasping the two objects enables
the robot to attach the objects to its body and the accom-
panying coordinate system. Although the world in which
the robot is operating is uncontrolled and unmodeled, the
robot’s body is controlled and well-modeled. Once the
robot is holding the two objects, it effectively brings them
into a controlled environment.

Within this controlled environment, the robot can effi-
ciently move the objects into favorable configurations for
sensing and control. For example, by actively fixturing
an object with one arm, the robot can ensure that that the
object maintains a favorable configuration in the presence
of interaction forces. The ability to handle interaction
forces is important to our approach, since it enables the
robot to use physical interactions between the objects
that help with the task, such as compliance during the
insertion. By maintaining contact with the fixtured object,
the robot also has the opportunity to physically sense
whether or not the fixtured object’s state has changed,
and provides another channel with which to measure the
influence of the interactions between the objects.

With respect to human-robot interaction, the use of two
arms enables the robot to directly indicate the objects
with which it is working. If the robot is only holding one
object, this will be readily apparent to the human. For
example, if the task is to pour a drink and the robot is
only holding an empty cup, the user can readily infer
that the robot should be handed a bottle. Likewise, if
the robot is holding a spoon and a mixing bowl, the
user can determine an appropriate task for the robot to
perform, such as stirring, or decide that the objects are
inappropriate.

In the long run, we suspect that these advantages, and
others, may outweigh the costs and complexity associated
with two armed robots that manipulate in human environ-
ments.
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