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Abstract: Robots that can manipulate everyday objects in un-
structured, human settings could more easily work with people
and perform tasks that are important to people. Ideally, a robot
would be able to detect and control task-relevant visual features
of an object it has not previously encountered, since the set of ob-
jects found within human environments is large and diverse. For
a significant set of tasks and tool-like objects, detection and con-
trol of the distal end of the object is sufficient for its use. The tips
of these objects, such as the end of a screwdriver or the mouth of
a bottle, have an approximately convex projection into the visual
scene. In this paper we address the problem of visually detect-
ing and controlling the tip of an unknown tool-like object that
is rigidly grasped by a robot. We present a multi-scale motion-
based feature detector that visually detects a tool tip and we show
results in using a series of these 2D detections to produce a 3D
estimate of the tool tip’s position in the hand’s frame. We also
describe and evaluate a method for controlling the tool tip’s po-
sition and orientation in the image.1

1 Introduction

Robots that can manipulate everyday objects in unstructured, hu-
man settings could more easily work with people and perform
tasks that are important to people. Ideally, a robot would be able
to detect and control task-relevant visual features of an object it
has not previously encountered, since the set of objects found
within human environments is large and diverse. For a signifi-
cant set of tasks and tool-like objects, detection and control of
the distal end of the object is sufficient for its use. The tips of
these objects, such as the end of a screwdriver or the mouth of a
bottle, have an approximately convex projection into the visual
scene. In this paper we address the problem of visually detect-
ing and controlling the tip of an unknown tool-like object that is
rigidly grasped by a robot.

1This work was sponsored by the NASA Systems Mission Directorate, Tech-
nical Development Program under contract 012461-001.

Figure 1: Domo, the robot with which we obtained our results.

We decompose this general problem into the detection of task
relevant visual features, the estimation of the pose or other state
variables associated with these visual features, and the control of
these features. This decomposition has the advantage that it im-
mediately focuses the robot’s resources on task relevant aspects
of the object, rather than attempting to reconstruct potentially ir-
relevant complexities in the appearance of the object.

One example of a task relevant feature is the tip of a tool. For
a wide variety of human tools, control of the tool’s endpoint is
sufficient for its use. For example, use of a screwdriver requires
precise control of the tool blade relative to a screw head but de-
pends little on the details of the tool handle and shaft. Radwin
and Haney [1996] describes 19 categories of common power and
hand tools. Approximately 13 of these tool types feature a distal
point on the tool which can be considered the primary interface
between the tool and the world.
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Figure 2: We previously demonstrated the approach on these
tools (hot-glue gun, screwdriver, bottle, electrical plug, paint
brush, robot finger, pen, pliers, hammer, and scissors).

We have previously presented a method that uses the max-
imum point of optical flow to detect the tip of an unmodeled
tool and estimate its 3D position with respect to the robot’s hand
[Kemp and Edsinger, 2005]. In this approach, the robot rotates
the tool while using optical flow to detect the most rapidly mov-
ing image points. It then finds the 3D position with respect to its
hand that best explains these noisy 2D detections. The method
was shown to perform well on the wide variety of tools pictured
in Figure 2. However, the detector was specialized for tools with
a sharp tip, limiting the type of objects that could be used.

In this paper, we extend this work in two important ways.
First,we present a new multi-scale motion-based feature detec-
tor that incorporates shape information. This detector performs
well on objects that do not have a sharp point, allowing us to ex-
pand our notion of the tip of an object to include such items as
a bottle with a wide mouth, a cup, and a brush. The bottle and
the cup are not tools in a traditional sense, yet they still have a
tip or endpoint that is of primary importance during control. We
show that this new feature detector significantly outperforms our
previous method on these three objects. We also show that the
estimated position and scale of the tip can be used to extract vi-
sual features associated with the tip in a manner similar to visual
interest point operators. Second, we describe a method for con-
trol of the position and orientation of the tool in the image given
an estimate of the tip location in the hand’s coordinate frame.
We show results from the humanoid robot (Figure 1) described
in Edsinger-Gonzales and Weber [2004], using an integrated be-
havior system that first performs tip detection and estimation,
and then uses open-loop control to servo the tool in the image to
a target location and orientation.

We start by discussing related work in Section 2 and then re-
view the tool tip detection method of Kemp and Edsinger [2005]
in Section 3. Next, in Sections 4 and 5, we describe methods for
tip detection and control. We conclude with experimental results
and a discussion of our approach as applied to three different
objects.

2 Related Work

Research involving robot tool use often assumes a prior model
of the tool or constructs a model using complex perceptual pro-
cessing. Industrial robot arms typically use specialized, well-
modeled tools that are rigidly mounted using exchangeable end-
effectors [Kurfess, 2005]. For example, [Ruf et al., 1997] has
demonstrated a real-time system that can visually localize the
tool end of a manipulator using a polyhedral model of the tool.
A recent review of robot tool use by St. Amant and Wood [2005]
fails to find significant examples of robots using human tools
outside of work at NASA. NASA has explored the use of human
tools by robots with the Robonaut platform [Bluethmann et al.,
2004]. They used a detailed set of tool templates combined with
stereo depth information to successfully guide a standard power
drill to fasten a series of lugnuts [Huber and Baker, 2004]. These
approaches are not likely to scale to the wide variety of human
tools since they depend on detailed models.

In the work of Brooks [1999], perception is directly coupled
to action in the form of modular behaviors that eschew complex
intermediate representations. Our method relates to this work
in three ways. First, the robot’s action is used to simplify the
perceptual problem. Second, the method directly detects the tip
of the tool without requiring an initial segmentation of the tool
or reconstruction of its shape. Third, our approach is suitable for
implementation as a real-time modular behavior.

The robot hand can be considered as a specialized type of
tool, and many researchers have created autonomous methods
of visual hand detection through motion. Fitzpatrick and Metta
[Fitzpatrick et al., 2003] used image differencing to detect ballis-
tic motion and optic-flow to detect periodic motion of the robot
hand. For the case of image differencing they also detected the
tip of the hand by selecting the motion pixel closest to the top of
the image. Natale [2004] applied image differencing for detec-
tion of periodic hand motion with a known frequency, while Ar-
senio and Fitzpatrick [2003] used the periodic motion of tracked
points. Michel et. al. used image differencing to find motion that
is coincident with the robot’s body motion [Michel et al., 2004].
Kemp [2005] combined the motion model described in Section 3
with a wearable system to detect the hand of the wearer and learn
a kinematic model. These methods localize the hand or arm, but
do not select the endpoint of the manipulator in a robust way.

With respect to the computer vision literature, our tip detector
is a form of spatio-temporal interest point operator that gives the
position and scale that are likely to correspond with the moving
tool tip [Laptev, 2005]. The multi-scale histograms generated
by the detector have similarities to the output from classic image
processing techniques such as the distance transform, medial axis
transform, and hough transform for circles [Forsyth and Ponce,
2002], all of which can be viewed in terms of wave fronts that
start at the edges and propagate away from the edges, intersecting
one another at significant locations, see Figure 4.

In our work, we use our knowledge of how the robot’s hand
rotates while holding the tool to make 3D estimations about the
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location of the tool tip. This relates to methods for 3D scan-
ning in which objects are placed on a rotating platform in front
of a single camera [Fitzgibbon et al., 1998]. These methods,
however, typically rely on a well modeled background to cleanly
segment the object, simple platform motion, and occlusion free
views of the object. More generally, our estimation technique
relates to the well-studied area of 3D estimation from multiple
views [Hartley and Zisserman, 2004].

The tool tip can be viewed as an extension of the robot hand by
an additional rigid link with an unknown pose. A wide variety
of control techniques can then applied to the tool. We chose a
variant of the operational-space control method [Khatib, 1987]
because of its simplicity. A large literature exists for visually
servoing a robot hand to an object [Kragic and Chrisensen, 2002]
and our method is a natural extension this literature.

3 Review of Basic Tip Detection and Estimation

In this section we summarize the basic tool tip detection method,
which we describe in detail within Kemp and Edsinger [2005].
Our approach consists of two components. First, a tool tip detec-
tor finds candidate 2D tool tip positions within the image while
the robot rotates the tool within its grasp. Second, a generative
probabilistic model is used to estimate the 3D position of the
tool tip within the hand’s coordinate system that best accounts
for these 2D detections.

3.1 Tip Detection

We wish to detect the 2D image position of the end point of a
tool in a general way. This 2D detection can be noisy since the
3D position estimation that follows uses the kinematic model to
filter out noise and combine detections from multiple 2D views
of the tool.

The 2D tip detector looks for points that are moving rapidly
while the hand is moving. This ignores points that are not con-
trolled by the hand and highlights points under the hand’s control
that are far from the hand’s center of rotation. Typically tool tips
are the most distal component of the tool relative to the hand’s
center of rotation, and consequently have higher velocity. The
hand is also held close to the camera, so projection tends to in-
crease the speed of the tool tip in the image relative to back-
ground motion.

In our initial work, the tool tip detector returned the location
of the edge pixel with the most significant motion relative to a
global motion model. In this paper, we use the same optical flow
algorithm to compute the significance of an edge’s motion, but
perform multi-scale processing on a motion-weighted edge map
to detect the tool tip.

As described in detail within Kemp and Edsinger [2005], the
optical flow computation first uses block matching to estimate
the most likely motion for each edge along with a 2D covariance
matrix that models the matching error around this best match.
Next, a global 2D affine motion model is fit to these measure-
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Figure 3: The geometry of the tool tip 3D estimation problem.
With respect to the hand’s coordinate system,{H}, the camera
moves around the hand. In an ideal situation, only two distinct
2D detections would be necessary to obtain the 3D estimate.
Given two observations with kinematic configurationsc1 andc2,
the tool tip,Hxt, appears in the image atTc1(

Hxt) andTc2(
Hxt).

ments. Finally, the significance of the motion for each edge is
computed as the Mahalanobis distance between the edge’s mea-
sured motion model and the global motion model. This motion
measurement incorporates both the magnitude of the edge’s mo-
tion and the uncertainty of the measurement.

3.2 3D Estimation

After acquiring the 2D tip detections in a series of images with
distinct views, we use the robot’s kinematic model to combine
these 2D points into a single 3D estimate of the tool tip’s po-
sition in the hand’s coordinate system. To do this, we use the
same 3D estimation technique described in Kemp and Edsinger
[2005], which we summarize here. With respect to the hand’s co-
ordinate system,{H}, the camera moves around the hand while
the hand and tool tip remain stationary. This is equivalent to a
multiple view 3D estimation problem where we wish to estimate
the constant 3D position of the tool tip,xt, with respect to{H}
(For clarity we will usext to denote the tip position in the hand
frame Hxt). In an ideal situation, only two distinct 2D detec-
tions would be necessary to obtain the 3D estimate, as illustrated
in Figure 3. However, we have several sources of error, including
noise in the detection process and an imperfect kinematic model.

We estimatext by performing maximum likelihood estima-
tion with respect to a generative probabilistic model. We model
the conditional probability of a 2D detection at a locationdi in
the imagei given the true position of the tool tip,xt, and the
robot’s configuration during the detection,ci, with the following
mixture of two circular Gaussians,

p(di|xt, ci) = (1 − m)Nt(Tci
(xt), σ2

t I)(di)+

mNf (0, σ2
fI)(di). (1)

Nt models the detection error dependent onxt with a 2D circular
Gaussian centered on the true projected location of the tool tip in
the image,Tci

(xt), whereTc is the transformation that projects

3



Figure 4: An example of the raw interest point detector scale-
space produced from a rectangle of edges weighted equally with
unit motion. Strong responses in the planes correspond with cor-
ners, parallel lines, and the ends of the rectangle.

the position of the tool tip,xt, onto the image plane given the
configuration of the robot,ci. Tci is defined by the robot’s kine-
matic model and the pin hole camera model for the robot’s cali-
brated camera.Nf models false detections across the image that
are independent of the location of the tool tip with a 2D gaussian
centered on the image with mean0 and a large varianceσf . m is
the mixing parameter.

Assuming that the detections over a series of images,i, are
independent and identically distributed, and that the position of
the tip,xt, is independent of the series of configurationsc1 . . . cn,
the following expression gives the maximum likelihood estimate
for xt,

x̂t = Argmaxxt

(
log(p(xt)) +

∑
i

log(p(di|xt, ci))

)
(2)

We define the prior,p(xt), to be uniform everywhere except at
positions inside the robot’s body or farther than1 meter from the
center of the hand. We assign these unlikely positions approx-
imately zero probability. We use the Nelder-Mead Simplex al-
gorithm implemented in the open source SciPy scientific library
[Jones et al., 2001] to optimize this cost function.

4 Interest Point Detection

In our original approach we modeled the tip of a tool as a single
point within the image. Here we extend this approach by model-
ing the tip of a tool as occupying a circular area of some radius.
In this section we describe this extension, which has better per-
formance on several tools with tips that do not come to a sharp
point. Since this new estimate includes the spatial extent of the
tip, it also facilitates the use of visual features that describe the
appearance of the tip over this spatial extent. For example, given
the position and radius we can collect appropriately scaled image
patches, see Figure 10.

With respect to our goal of detecting the tip of a tool, this
detector implicitly assumes that the end of an object will consist
of many strongly moving edges that are approximately tangent
to a circle at some scale. Consequently, the detector will respond
strongly to parts of the object that are far from the hand’s center
of rotation and have approximately convex projections into the
image.

The input to the interest point detector consists of a set of
weighted edges,ei, where each edgei consists of a weight,wi,

(x,y)
 r s

r s

Figure 5: This figure depicts the approximate locations in the
image of the two votes at scales cast by an edge with orientation
θ and position(x, y).

an image location,xi, and an angle,θi. For this paper, we use a
Canny edge detector to produce edge locations and orientations,
to which we assign weights that are equal to the estimated mo-
tion, where we use the same motion measurement as described
within Kemp and Edsinger [2005]. In a manner similar to a
Hough transform for circles [Forsyth and Ponce, 2002], each
edge votes on locations in a scale-space that correspond with the
centers of the coarse circular regions the edge borders. For each
edge, we add two weighted votes to the appropriate bin locations
at each integer scales.

As depicted in Figure 5, within the original image coordinates
the two votes are approximately at a distancers from the edge’s
location and are located in positions orthogonal to the edge’s
length. We assume that the angleθi denotes the direction of the
edge’s length and is in the range[−π

2 , π
2 ), so that no distinction

is made between the two sides of the edge.
For each scales there is a 2D histogram that accumulates

votes for interest points. The planar discretization of these his-
tograms is determined by the integer bin lengthls, which is set
with respect to the discretization of the scale-space over scale,
ls = dβ(rs+0.5 − rs−0.5)e, whereβ is a scalar constant that is
typically close to1.

We definers such thatrs+1 is a constant multiple ofrs, where
s ranges from1 to c inclusive. We also definers to be between
rmax andrmin inclusive, so that

rs = exp(
log(rmax) − log(rmin)

c − 1
(s − 1) + log(rmin)) (3)

and

rs+1

rs
= exp(

log(rmax) − log(rmin)
c − 1

). (4)

Settingrmin and rmax determines the volume of the scale-
space that will be analyzed, whilec determines the resolution
at which the scale-space will be sampled. Higher values ofc
result in the scale-space being sampled at higher resolution in
both scale and location, sincec determines the number of planes
andls depends on the spacing between the planes. Alternatively,
we can specify a desired resolution,rs+1

rs
, and find a value forc

that closely approximates this resolution with
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Figure 6: Examples of the two calibrated normalization func-
tions. The left function weights edge points by their angle and
the right function weights each plane of the scale space.

c = round(log rs+1
rs

(
rmax

rmin
) + 1). (5)

We compute the bin indices,(bx, by), for the 2D histogram at
scales with

bs(x, θ) = round(
1
ls

(x + rs

[
cos(θ + π

2 )
sin(θ + π

2 )

]
)), (6)

which adds a vector of lengthrs to the edge positionx and
then scales and quantizes the result to find the appropriate bin in
the histogram.

Algorithmically, we now iterate through the edges, adding
their weighted contributions to the appropriate bins. We can
write the equation for the resulting interest point detection maps,
ms, using delta functions,δ, so that

ms(u) =
∑

i

wi(δ(u − bs(xi, θi))+

δ(u − bs(xi, θi + π))), (7)

whereδ (x) =

{
1 if (xx = 0) ∧ (xy = 0)
0 otherwise

.

In order to soften the effects of our block discretization, we
low-pass filter each 2D histogram,ms, with a separable, trun-
cated, FIR Gaussian, which is approximately equal to giving
each edge a Gaussian vote distribution, since

G ? ms =
∑

i

wi(G(u − bs(xi, θi))+

G(u − bs(xi, θi + π))), (8)

whereG is an ideal Gaussian. This is also approximately equal
to blurring the weighted edge map by scale varying Gaussians,
or blurring the scale-space volume across scale.

4.1 Calibration

Ideally, the values of corresponding interest points resulting from
a shape would be invariant to translation, scaling, and rotation

of the shape. We introduce two scalar functionsns andnθ to
reduce scale dependent variations and angle dependent variations
respectively. These functions are incorporated as follows:

ms(u) = ns

∑
i

nθi
wi(G(u − bs(xi, θi))+

G(u − bs(xi, θi + π))). (9)

The values for these two functions are determined empiri-
cally using a rotating half-plane as a calibration pattern. The
half-plane results in the scale-invariant shape of a straight edge,
which allows us to simultaneously find normalization values for
all scales without explicitly scaling the input shape. We first find
a function fornθ and then find a function forns that together
make the average values of the interest points equivalent over ro-
tations of this calibration pattern. A more natural and varied set
of calibration images might result in better estimates for these
functions, but this method is simple and effective.

4.2 Filtering the Interest Points

Once we have these various interest point maps, we would like
to filter out points that are uninteresting and select points that
are likely to correspond with salient regions. In general, we do
this by selecting points that are local maxima in the scale space,
thresholding the points by their value, and looking at curvature
and shape information to filter out interest points that result from
a single strong edge. For this paper, however, we only require
the best point in the scale space, so we simply select the point
with the strongest response as the most likely position and scale
of the moving tool tip.

5 Control of the Tool in the Image

In this section we describe a method for controlling the tool’s po-
sition and orientation in the image. The approach is a variant of
the well studied area of resolved-rate motion control [Kragic and
Chrisensen, 2002] and operational-space control [Khatib, 1987].
The robot used in this paper, seen in Figure 1, has 4 DOF in the
arm and 2 DOF in the wrist.

The robot uses Series Elastic Actuators [Pratt and Williamson,
1995] at each joint. These actuators allow safe, passively com-
pliant force control of the joint through a simple PID control loop
around the deflection of a spring. A secondary PID loop around
the joint angle commands a desired torque to the force controller.

A kinematic model of the 7 DOF in the robot’s head and 6
DOF in the robot’s arm is known. We assume that the camera’s
intrinsic parameters are known and that the radial distortion in
the image has been removed. The transform between world coor-
dinates and image coordinates,W

I T , is known. We also assume
that the head remains fixed and thereforeW

I T is constant.
A Jacobian transpose approach will allow us to minimize the

error between the desired tool pose and the estimated pose if the
joint angles start close to their final state [Craig, 1989]. The Ja-
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Figure 7: The geometry of the tool tip control problem. The
tip estimation process computes the most likely 3D tool tip posi-
tion, Hxt, in the hand’s coordinate frame{H}. The desired tip
location is Ixd in the image frame{I} with fixed depth zf .
The desired tool orientation,θo, corresponds to locationIxo

in the image given tool lengthl. A virtual spring between the
tip Hxt and Hxd generates forceHft = Hxd − Hxt. A vir-
tual spring between the palmHxp and Hxo generates force
Hfp = Hxo − Hxp. A Jacobian transpose method is used move
the tool to the target position and orientation with a control law
of the form∆Θ = σ W JT

(
W ft + W fp

)
for controller gains

σ .

cobian, W JT , is known from the kinematic model and relates
hand forces to joint torques asτ = W JT W f . Instead of con-
trolling the arm’s joint torque directly, we control the joint angle
in order to limit latency dependent instability, and our controller
takes the form of∆θ = σ W JT W for controller gainsσ.

The geometry of the control problem is illustrated in Figure 7.
The target pose for the tool is constrained to be at a fixed depth
zf along the optical axis. The tip estimation process computes
the most likely 3D tool tip position,Hxt, in the hand’s coordinate
frame{H}. The desired tip locationIxd in the image frame{I}
has hand coordinatesHxd = H

I T Ixd. In order to control the
tool’s orientation, we assume that the tool is grasped such that
it passes through the palm at a fixed locationHxp. The desired
tool orientation,θo, corresponds to a locationIxo in the image
given tool lengthl.

The Jacobian transpose approach can be thought of as apply-
ing virtual springs between the tool and its desired pose in the
image plane. We can transform virtual forces on the tool into
the hand’s coordinate frame. For a point in the hand’s frame,
Hx = [a, b, c], the Jacobian relating forceHf at Hx to forces at

the hand frame{H} is

HJT (Hx) =
[

I 0
P I

]
, P =

 0 −c b
c 0 a
−b a 0

 . (10)

The virtual forces acting at the hand are then:

Hft = HJT (Hxt)
[ (

Hxd − Hxt

)
0 0 0

]T
(11)

Hfp = HJT (Hxp)
[ (

Hxo − Hxp

)
0 0 0

]T
(12)

. We can transform forces from frame{H} to {W} by:

W
H JT =

[
W
H T 0
0 W

H T

]
. (13)

giving us W ft = W
H JT Hft and W fp = W

H JT Hfp. A spher-
ical 3 DOF wrist allows decoupling of the control problem into
position control by the arm and orientation control by the wrist,
giving the controllers:

∆θwrist = W JT
(
σtwrist

W ft + σpwrist
W fp

)
(14)

∆θarm = W JT
(
σtarm

W ft + σparm
W fp

)
(15)

for controller gainsσ. The wrist used in our experiments has
only 2 DOF and consequently we ignore the third joint and as-
sume that the correct orientation is locally achievable with the
restricted kinematics. These decoupled controllers will bring the
estimated tool pose into alignment with a desired pose if the con-
troller is initialized at a joint pose near the final solution.

6 Results

We validated the method on a bottle, a cup, and a brush, as pic-
tured in Figure 8. The items were chosen for their varying tip
size and length. The feature detector, estimator, and controller
were integrated into a real-time behavior module for the robot.
The detection algorithm runs at15Hz on a3GHz Pentium com-
puter without optimization. When the tool is placed in the robot’s
hand, it automatically generates a short sequence of tool motion
of about 200 samples over 15 seconds. Each detection and kine-
matic configuration is logged and then batch processed by the
estimator. The estimated tip location,Hxt, is passed to the tool
pose controller and it servos the tool to a potentially time-varying
location and orientation in the image.

For each tool we compare the multi-scale detector of this pa-
per to the edge-motion detector. Figure 8 shows the mean predic-
tion error, as measured by the tool tip projection into the image,
for the two detectors. The multi-scale detector significantly im-
proves the predicted location for these three objects that have
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Figure 8: The mean prediction error, in pixels, for each tool.
The 3D tool pose in the hand is estimated in three ways, using:
the hand labelled tool tips [left bar], feature-based interest points
[middle bar], and the edge pixel with the maximum motion [right
bar]. The error is computed by projecting the predicted tool tip
onto the image plane for each sample in the test set and com-
paring the projection to the hand labelled tip. The left bar is an
indication of baseline errors in the kinematic and camera calibra-
tions.

large, broad tips. Consequently, it extends the notion of a tool tip
beyond sharply pointed objects.

The multi-scale detector enables online modeling of the tip.
Figure 9 show the average estimated tip scale for each tool,
which demonstrates the ability of the detector to appropriately
extract the size of the tool tip. Figure 10 illustrates the ability to
construct a pose and scale normalized visual model of the tip.

For each tool, the tip position was estimated and the controller
was commanded to servo the tip to the center of the image with a
horizontal orientation. Figure 11 shows the typical errors for the
controller relative to the projection of the estimated tip location
into the image, and relative to the actual hand labelled tip loca-
tion. The controller errors are low with respect to the predicted
tip location but are larger with respect to the hand-labelled lo-
cation due to the reliance of the method on precise kinematic
calibration.

Our work affords many avenues for further exploration. The
reliable prediction of the tool tip in the visual scene allows us
to model the tool’s visual features. A model could be used to
visually track the tip and could allow the robot to actively test
and observe the endpoint during interactions with the world. It
could also be used to more precisely control the tool by visual
servoing.

We have described a general method for visual manipulation
of human tools rigidly held by a robot. Our method extends the
notion of a tool to include objects with broad tips and is robust
to tools of unknown size and shape. It is a step towards robots
that autonomously learn to manipulate novel, unmodeled objects
in human-centric environments.

Figure 9: The upper left image gives an example of the images
used during estimation. The movement of the person in the back-
ground serves as a source of noise. In the other three images the
black cross shows the hand annotated location and has a size
equivalent to the mean pixel error for prediction over the test set.
The black circle is at the tip prediction with a size equal to the
average feature scale. These circles have a radius of 8.96, 9.38,
and 14.96 pixels [clockwise] respectively.
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