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Abstract

Human environments present special challenges for robot manipulation. They are often
dynamic, difficult to predict, and beyond the control of a robot engineer. Fortunately, many
characteristics of these settings can be used to a robot’s advantage. Human environments
are typically populated by people, and a robot can rely on the guidance and assistance of a
human collaborator. Everyday objects exhibit common, task-relevant features that reduce
the cognitive load required for the object’s use. Many tasks can be achieved through the
detection and control of these sparse perceptual features. And finally, a robot is more than
a passive observer of the world. It can use its body to reduce its perceptual uncertainty
about the world.

In this thesis we present advances in robot manipulation that address the unique chal-
lenges of human environments. We describe the design of a humanoid robot named Domo,
develop methods that allow Domo to assist a person in everyday tasks, and discuss general
strategies for building robots that work alongside people in their homes and workplaces.

Thesis Supervisor: Rodney A. Brooks
Title: Professor of Computer Science and Engineering
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CHAPTER 1

Introduction

I have seen the future and it doesn’t work.

–Robert Fullford

Robots have long been imagined as mechanical workers, helping us with the chores of daily

life. Robots that can work alongside us in our homes and workplaces could extend the time

an elderly person can live at home, provide physical assistance to a worker on an assembly

line, or help with household chores. Already, robots can be found working in factories around

the world, performing manipulation tasks with remarkable speed and precision. Why is it,

then, that a robot can pick up and place a massive engine block with submillimeter precision

but can’t yet put away the groceries in a typical kitchen?

Everyday, human environments present special challenges for robot manipulation. They

are often dynamic, difficult to predict, and beyond the control of a robot engineer. Fortu-

nately, many characteristics of these settings can be used to a robot’s advantage. Human

environments are typically populated by people, and a robot can rely on the guidance

and assistance of a human collaborator. Everyday objects exhibit common, task-relevant

features that reduce the cognitive load required for the object’s use. Many tasks can be

achieved through the detection and control of these sparse perceptual features. And finally,

a robot is more than a passive observer of the world. It can use its body to reduce its

perceptual uncertainty about the world.
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Figure 1-1: Traditional, model-based approaches to robot manipulation are well suited to

idealized environments such as this kitchen(left). However, actual, everyday settings (right)

can exhibit difficult to model effects such as variability in lighting, clutter, and unknown

objects. In this thesis, we consider manipulation within this class of environments.

In this thesis we present advances in robot manipulation that address the unique chal-

lenges of human environments. We describe the design of a humanoid robot named Domo,

develop methods that allow Domo to assist a person in everyday tasks, and discuss general

strategies for building robots that work alongside people in their homes and workplaces.

1.1 Human Environments

As we see in Figure 1-1, everyday human environments have a number of defining charac-

teristics that make life difficult for today’s robots. Foremost, they are variable, dynamic,

and difficult to model. The location of a couch or a lamp can change without the robot

acting. There can be wide variation within related objects. Consider the variety of coffee

cups found in the average home. Every home and workplace is different, and any attempt

to enumerate their objects and their locations is sure to become incomplete and out of date.

Human environments are also perceptually noisy. The appearance of a sunlit table changes

throughout the day. Even the tidiest office or home is cluttered, and objects obstruct each

other in unpredictable ways. Draping a coat over a chair can suddenly render the chair un-

recognizable to a robot. Objects are often worn or dirty, making prior descriptions of their

appearance inaccurate. Also, many of the items that people manipulate on a daily basis

aren’t rigid, violating a common assumption in robotics. Fitting a mathematical model to a

crumpled towel, an extension cord, a newspaper, or a handful of dish soap seems ill-advised

at best.
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People are also present in human environments and they present their own unique chal-

lenges. A person may put away a tool in one of several locations in one of several orien-

tations. While a roboticist will often knowingly stereotype their behavior for a robot, an

untrained person will act in unpredictable ways. In human environments, people can no

longer be fenced off from the robot’s workspace. Robots that work with people must be

safe for physical interaction. People also expect a robot to be responsive, operating in real

time and adapting to their actions.

Finally, human environments have been built to accommodate the size and shape of

human bodies. The size of a chair, the handle on a cabinet, the amount space between the

coffee table and the couch are all designed around people. A robot working in a human

environment will need to work with human sized tools, navigate human sized corridors, and

perceive the world from a similar physical perspective as a person.

1.2 Robots Doing Useful Work

It seems that robots are always on the verge of moving into daily life, transforming the

way we live and work. Commercially available robot toys and vacuum cleaners are already

in our homes, entertaining and cleaning. The number of robots in human environments is

expected to increase dramatically in coming years. However, before robots can realize their

full potential in everyday life, they will need the ability to manipulate the world around

them, as it is.

Imagine a newly purchased robot helper. You remove it from its box, power it on, and

bring it into your kitchen. It has never seen your particular kitchen before, or the dishes

in the dishwasher, but after some brief instruction, perhaps by demonstration, it begins

putting away the dishes. Perhaps you remove the dishes from the dishwasher, hand them to

your helper, and it puts them away in the cabinet. After finishing the dishes, it follows you

into the kid’s bedroom. Again, you demonstrate how to pick up and put away the clutter

of toys on the floor, and the robot sets about its task.

Robots have a ways to go before they are doing this type of useful work in our homes.

Currently, robots can perform impressive manipulation acts when the state of the world

and the robot are known. These tasks are typically achieved by first sensing the world,

updating an internal model to match the sensory state, updating a task plan, and then pro-
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ducing a planned motor action. This approach is often characterized as sense-model-plan-act

(Brooks, 1991a). Unfortunately, human environments are generally not amenable to inter-

nal models and the sense-model-plan-act approach. A popular alternative to sense-model-

plan-act is the behavior-based approach. Behavior-based robotics has been demonstrably

successful in robot navigation, but not yet robot manipulation within human environments.

We now consider these two approaches in further detail.

1.2.1 The Sense-Model-Plan-Act Approach

Robot manipulation emerged from the industrial workplace around 40 years ago and quickly

found success with the sense-model-plan-act approach. This was because the robot’s body

and workplace could be engineered to match a well defined internal model. On an auto-

motive assembly line, the geometry of a car part is known precisely and any uncertainty

about its pose in the world can be limited through alignment jigs. Of course, this requires

careful design of the assembly line, and also very stiff, precise control of the robot. As a

consequence, robot assembly lines are very costly to design and industrial manipulators are

very dangerous around people.

In the early days of artificial intelligence, researchers concerned with manipulation fol-

lowed the industrial paradigm and constructed static, homogeneous sets for their robots,

complete with controlled lighting and polyhedral objects. This allowed researchers to con-

tinue within the sense-model-plan-act framework. As Brooks (1991a) points out, these

carefully engineered environments allowed the robot to transform its sensory world into a

model world. The robot could then plan its manipulator trajectory within this model, and

finally output the computed plan to its actuators.

However, work within manipulation has long been concerned with uncertainty. Early

on, researchers realized that, according to Lozano-Perez et al. (1984), “Knowing the object

shapes and positions to sufficient accuracy is not enough.” However, uncertainty was gener-

ally an issue regarding the positioning accuracy of the manipulator relative to the assembly

tolerances of a part. Lozano-Perez et al. go on to describe compliant motion strategies for

the canonical peg-insertion task given uncertainty about the peg’s position. Later work by

Mason (1985) and Erdmann (1988) takes this work one step further, proposing a sensorless

manipulation approach, where a part in a completely unknown initial pose can be aligned

to a known final pose.
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Even when uncertainty is considered, the underlying assumption in this work was that

a detailed model can sufficiently describe the interaction of the robot with the world. As

a consequence, there was often little need for an expensive and failure-prone robot. Be-

cause the interaction of a high-impedance manipulator with a known object could be fully

simulated or modelled analytically, much of the ensuing work in robot manipulation was

done either virtually, theoretically, or with stiff, well-characterized manipulators such as

the Puma arm. Relevant, recent work by Taylor (2004) brings the sense-model-plan-act

approach to manipulation in human environments. Taylor’s robot uses a laser scanner to

reconstruct a dense, 3D model of household objects, and then grasps an object using this

model.

1.2.2 The Behavior-Based Approach

In the late 80’s an alternative to sense-model-plan-act emerged. Researchers such as Brooks

(1986), Agre and Chapman (1987), and Arkin (1989) developed what is now commonly re-

ferred to as the behavior-based approach to robotics. In this approach, a robot continuously

refers to its sensors instead of a model of the world. The robot’s behavior is not necessarily

predictable, but is an emergent property of its interaction with a dynamic and changing

world. The robot’s controller is composed of many simple behaviors operating locally over

an incomplete sensory representation of the environment, and the embodiment of the robot

in the actual world is an essential components of the controller design. In this approach, the

physical robot is no longer irrelevant to the problem, but central. Everyday environments

are embraced instead of avoided.

Using behavior-based methods, robots began to do useful work in human environments.

The robot Herbert (Connell, 1989) could find and retrieve empty soda cans within an office

building. The robot Polly (Horswill, 1993) lead scores of guided tours of the MIT Artificial

Intelligence Laboratory. The success of this approach in robot navigation later led to the

algorithms controlling the NASA Mars Soujourner and the iRobot Roomba Vacuum robots,

among many others.

However, there has been a scarcity of behavior-based approaches to robot manipulation.

For now, and the foreseeable future, sensor and actuation technologies will force a robot

to perform tasks using uncertain, piecemeal views of its body and the world. Likewise,

robot manipulation in human environments will require an assemblage of algorithms and
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approaches to deal with this uncertainty. A behavior-based approach is now emerging as

an essential part of the puzzle.

1.3 The Robot Domo

Robots are complex machines, involving sensors, actuators, computation, power electron-

ics, control systems, and perceptual algorithms. These components often have interrelated

effects on each other. The placement of touch sensors on a hand can determine the type

of contact that can be detected. This, in turn, can reduce, or increase, the need for visual

detection of contact. The mechanical stiffness of an arm can limit the bandwidth of the con-

trol system, dictating the real-time computational horsepower required. As a consequence

of the coupling among its many components, a robot is ideally designed as an integrated

whole and not as an assemblage of existing modules.

In addition, a robot’s design often suggests a particular research path. As an example,

a manipulator with high stiffness lends itself to the well travelled agenda of position control

in external, Cartesian coordinates. This has the effect of transforming tasks into problems

of geometric positioning relative to a 3D visual scene reconstruction. At this point, a sense-

model-plan-act approach to manipulation is not very far off.

As an alternative to this path, over the last three years we have developed the upper-

torso humanoid robot, Domo, shown in Figure 1-2. Domo has 29 active degrees of freedom

(DOF), with 9 DOF in the head, 6 DOF in each arm, and 4 DOF in each hand. It has two

CCD cameras, a 3 axis gyroscope in the head, and speech synthesis and recognition. The 22

DOF from the neck down use safe, compliant, force controlled actuators. The hands are also

covered in a compliant rubber skin. A Linux cluster of 15 Pentium computers implements

a behavior-based control architecture, including visual attention and manipulator coordi-

nation. Although the robot is not mobile, it can be manually rolled to different locations

in order to vary the robot’s workspace.

The design of Domo is covered in further detail in Chapter 4. We would like Domo to

exhibit the qualities of both a partner robot and a creature robot. In the next sections we

expand on these qualities.
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Figure 1-2: Domo, the humanoid robot developed by the author for this work.
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1.3.1 Partner Robots

By our definition, a partner robot is a machine of roughly human form designed to work

with and assist people. A partner robot is intrinsically safe for human interaction, allowing

people to communicate with it using physical cues. For example, if it is performing a task

incorrectly, a person could grab its arm and correct its action. The robot’s body posture,

eye-gaze, and gestures are intuitively understood by people because they immediately map

to human social cues. An infant learns early on that pointing combined with crying can

cause a caregiver to respond by handing an out of reach object (Vygotsky, 1962). Likewise,

if the robot looks at and reaches for an out of reach object, a person would intuitively

understand that it wishes to be handed the object. Finally, because a partner robot has a

roughly human form, it is able to navigate and work in human environments. It can reach

a shelf in a closet, fit through a doorway, grasp a screwdriver, and even safely shake hands

with a person.

Partner robots offer several advantages. They do not require specialized tools or fixturing

but can use the objects typically found in human environments. People find greater ease

in working with a robot that can understand and respond to instruction in a way that is

intuitive for them (Breazeal et al., 2004). The robot, in turn, can leverage the advanced

perceptual, motor, and planning abilities of a person for assistance in portions of a task

that are beyond its ability. The physical and social interface of the partner robot brings a

person in to the loop, allowing the robot and person to collaborate in achieving a common

goal.

1.3.2 Creature Robots

Many research robots are limited in their autonomy and integration. They often require

human intervention, teleoperation during and between tasks, or only run long enough to col-

lect a desired experimental result. Cheng et al. (2001) summarizes the architectures of most

robots as either being organized around specific tasks, switching between distinct modes,

a compendium of sub-systems, or richly integrated. The richly integrated perspective de-

scribes what Brooks (1990) calls the creature approach. A creature robot is an autonomous

robot that operates over a long period of time in a dynamic world that has not been specif-

ically engineered for the robot. It utilizes a behavior-based control system that is tightly
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coupled to the structure found within its environment. A creature robot, by definition,

exhibits coherent observable behavior, responds to salient stimuli, and adequately achieves

some long-term task specification.

For manipulation in human environments, a creature robot should be able to smoothly

transition between tasks, handle contact disturbances gracefully, respond to human cues,

recover from task failures, and do work that is ultimately useful to people. As we will show,

Domo’s richly integrated control architecture allows it to exhibit many of the creature robot

qualities.

1.4 Manipulation in Human Environments: Our Approach

Our goal is to enable robots to accomplish useful tasks through the manipulation of everyday

objects. Because of the characteristics of human environments, we avoid methods that rely

on precise knowledge about the state of the world. Instead, we are guided by the ideas of

embodied artificial intelligence and behavior-based robotics. We have adopted the following

tenets:

1. The robot should exhibit the creature robot qualities of coherent behavior, respon-

siveness to the environment, and adequacy in task execution.

2. The robot should exhibit the partner robot qualities of intrinsic safety for physical

interaction, humanoid morphology, and social cueing.

3. The robot should be able to work in the world without significant modification.

4. The robot should be able to work with the everyday objects found in human environ-

ments.

5. The robot should accomplish useful tasks.

As much as possible, these tenets have served to guide our design choices and research goals.

Out of this exploration, we have arrived at three themes which characterize our approach

to manipulation in human environments.

1. The first theme, let the body do the thinking, encompasses several ways in which a

robot can use its body to simplify manipulation tasks.
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2. The second theme, cooperative manipulation, refers to the advantages that can be

gained by having the robot work with a person to accomplish a task as a team.

3. The third theme, task relevant features, emphasizes the benefits of carefully selecting

the aspects of the world that are to be perceived and acted upon during a manipulation

task.

These themes address many of the unique challenges of human environments. We elaborate

on them in the next chapter and describe their application in the remainder of this thesis.

1.5 Contributions

This thesis advances our understanding of how to build robots that can work with people

to accomplish useful work. The significant contributions include:

Real robot Our work has been implemented and tested on real hardware. We have de-

signed and built Domo, a full upper-torso humanoid robot using compliant, force

controlled actuators. Domo’s safe design allows it to exhibit many of the desired qual-

ities of a partner robot. In addition, we have created a behavior-based system called

Slate that allows Domo to exhibit creature robot qualities such as coherent behavior

and responsiveness to the environment.

Real tasks Domo can assist a person in useful tasks using unmodeled, everyday objects.

The tasks are accomplished in a naturally lit office environment containing all of

the uncertainty, dynamics and clutter that one would expect. These abilities are

integrated into a single, real-time behavior system, allowing for responsive interaction

with a person during task execution. We demonstrate the capabilities of our approach

in an unscripted scenario where the robot:

1. Assists in putting items way by:

(a) taking objects from a person

(b) passing the objects between its hands

(c) placing the objects on a shelf

2. Assists in preparing a drink by:
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(a) taking a cup and bottle from a person,

(b) inserting the bottle into the cup

(c) taking a spoon from a person and stirring the cup

3. Assists in cleaning up by:

(a) grasping a box between two hands

(b) positioning the box near a person as they place items in it

Three themes for design We present a general strategy for manipulation in human en-

vironments. It is summarized by the three themes: let the body do the thinking,

cooperative manipulation, and task relevant features. We show how useful tasks can

be accomplished without explicit models of the world or strong environmental con-

straints. This strategy is an important piece of a bigger puzzle that will undoubtedly

involve planning, statistical models of uncertainty, and task learning, among other

things.

1.6 Roadmap

This thesis is organized around a generic algorithm for manual skills which integrates the

aforementioned design themes. This algorithm is presented in Section 5.3.3 and illustrated

in Figure 5-5. We demonstrate the algorithm, and each theme, using modules implemented

in Domo’s behavior-based control architecture. The organization of these modules is shown

in Figure1-3, and they are are summarized in Appendix A. The remainder of the document

is outlined as follows:

• Chapter 2: Overview of our three themes for design.

• Chapter 3: Recent work in robot manipulation in human environments.

• Chapter 4: The design of the robot’s body.

• Chapter 5: The robot’s control architecture.

• Chapter 6: The robot’s visual attention system.

• Chapter 7: Modules and experiments illustrating the theme of let the body do the

thinking.
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• Chapter 8: Modules and experiments illustrating the theme of cooperative manipula-

tion.

• Chapter 9: Modules and experiments illustrating the theme of task relevant features.

• Chapter 10: Integration of the modules into broader tasks.

• Chapter 11 Discussion and future work.
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PersonSeek

PersonDetect
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AssistedGrasp

AssistedGive

ContainerInsertPutStuffAway BimanualFixture

HelpWithChores

SwitchHands

GraspDetect
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TipUse

ContactDetect

CompliantLower

StiffnessAdapt

FixtureServo
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SurfaceTest
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Task Relevant Features

Cooperative Manipulaton

Figure 1-3: The thesis is organized around our three design themes. Each theme is demon-

strated using modules (italics) from Domo’s behavior-based control architecture. For clarity,

related modules are grouped and colored according to the strategy they best illustrate. Mod-

ules can be composed from simpler modules, and arrows show dependence. The modules

in the dotted box provide basic motor and perceptual processing to all of the higher-level

modules. Combined, the modules allow Domo to accomplish the HelpWithChores task.

Appendix A provides a brief summary of all of the modules.

26



CHAPTER 2

Three Themes for Design

In this chapter we expand on the three themes which characterize our approach to manip-

ulation in human environments.

2.1 Let the Body do the Thinking

This theme bundles together a number of design strategies that make use of the robot’s

body to simplify manipulation.

2.1.1 Human Form

As we have discussed, human environments are well matched to the human body and human

behavior. The width of a door, the height of a cabinet, and the handle on a refrigerator

are all designed with people in mind. Manipulation tasks can often be simplified by taking

advantage of these built-for-human characteristics. A robot with a camera at eye-level can

look down on tables, counter tops, and shelves where many domestic items are placed. A

gripper with a human range of grasp sizes can work with many of the same tools and objects

that people do. If the robot’s footprint is similar to a person’s, it can navigate the tight

passages of a cluttered room. And if the workspace of a robot’s manipulators is comparable

to a human’s, then the robot can work on an assembly line or in putting away dishes while
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keeping its lower body stationary, as people do.

Of course, a robot doesn’t require a humanoid appearance to work in human envi-

ronments. For example, the Cardea mobile manipulator matched the physical properties

deemed important to human environments, but did not have a humanoid form. This robot,

for which we designed the manipulator, could navigate office environments and push open

doors (Brooks et al., 2004). However, humanoids such as Domo have advantages over robots

such as Cardea. Domo’s form allows it to intuitively cue the person with whom it is work-

ing. When reaching for an out-of-reach object, Domo’s eye gaze, arm gesture, and open

hand will have a similar appearance to a human requesting an object. This more effectively

communicates Domo’s request than if it had a wholly alien body.

2.1.2 Designing for Uncertainty

Within the domain of robot navigation, researchers have addressed perceptual uncertainty

by explicitly modeling it using statistical methods (Thrun et al., 2005), typically with respect

to state representations in the form of 3D maps and the robot’s pose. This has allowed robots

to localize their pose within unmodeled environments and traverse unstructured terrains.

Related statistical methods will almost certainly play a role in addressing the challenges of

manipulation in human environments, but they are only one piece to the puzzle.

Often, uncertainty in a robot’s environment can be reduced, or ignored, through clever

design of the body. Research on robot locomotion by Raibert (1986), Cham et al. (2002),

and Tedrake (2004), among others, has convincingly demonstrated the benefits of exploiting

compliance and natural dynamics for robot control when the robot is in contact with an

unmodeled world. Moreover, the work of Williamson (1998a) on exploiting the natural

dynamics of a task has demonstrated that similar strategies can be successfully applied to

robot manipulation. A common feature among these robots is that the natural dynamics

of the body are exploited instead of overridden, and mechanical compliance is embraced

instead of avoided.

Compliance can allow a manipulator to adapt to positioning errors resulting from percep-

tual uncertainty, to limit restoration forces caused by these errors, and to improve contact

stability. In manipulation, compliance is often achieved through active impedance control,

where the controller maintains a desired force-velocity relationship at the end-effector via

velocity or force sensors. The impedance control of manipulators and hands has been widely
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studied (Salisbury, 1980; Cutkosky and Kao, 1989). Unfortunately, fundamental limitations

on the bandwidth of existing actuator technologies prevent impedance controlled manipu-

lators from effectively responding to unexpected contact with the world (Lawrence, 1989).

An alternative, which we adopt with Domo, is to incorporate passive compliance into the

body.

Passive compliance is exploited in the wrist of many of today’s manufacturing robots.

The Remote Center of Compliance (RCC) wrist incorporates elastic elements that allow for

small amounts of position uncertainty during a contact task (Whitney and Nevins, 1979).

Recent work by Dollar and Howe (2005) optimized the design parameters of a robot hand so

that it could better grasp objects with uncertain positions. The hand is made entirely out of

soft, urethane materials of varying stiffness. It has embedded tactile and position sensors,

and is actuated by remote motors through tendons. The hand’s compliance, combined

with its optimized design, allows it to robustly form power grasps on a variety of objects.

Remarkably, the hand is also robust to sustained impacts from a hammer.

When designing a robot’s body with uncertainty in mind, we can trade off perceptual

computation for physical computation. This tradeoff is central to Pfeifer’s notion of morpho-

logical computation (Pfeifer and Iida, 2005). Morphological computation is characterized

as performing a “task distribution” between the robot’s controller, body, and environment.

This distribution is designed through clever use of sensor placement, material properties,

body kinematics, and matching of the robot’s body to its environment. For example, Iida

and Pfeifer (2006) present a planar biped that uses a simple feedforward sinusoidal con-

troller to achieve locomotion. Elastic, polyarticulate tendons spanning across the hip and

knee provide the robot with a human-like gait and compliant contact with the unsensed

ground. The gait dynamics, in turn, are sensed to provide information about the world

(e.g., friction).

2.1.3 Taking Action

A significant advantage of embodied creatures is that they can take actions in the world.

Their actions can serve to test a perceptual hypothesis, gain a better view on an item of

interest, or increase the salience of a sensory signal. For example, a person will tilt their

head in order to better hear a speaker. When a robot moves its sensors in order to resolve

ambiguity about a feature of interest, it is engaged in active perception.
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Research in active perception is generally tied to active vision and control of eye move-

ment to assist vision processes. Eye movement is a particularly informative area because

large amounts of human data are available, and the motor behaviors are simple enough

to allow analysis of the full sensorimotor loop. In humans, involuntary eye-jitter has been

shown to assist visual discrimination (Rucci and Desbordes, 2003). In robots, (Santini and

Rucci, 2006) have shown that motion parallax cues, induced by eye motion, can be used to

acquire visual depth information. A notable example involving manipulation is the work of

Fitzpatrick et al. (2003), where a robot poked at objects with its manipulator in order to

obtain a visual segmentation. We discuss this work further in the next chapter.

One form of active perception is a compensatory action, a term of our invention. Com-

pensatory actions are actions that compensate for the robot’s physical or perceptual limi-

tations. They are designed to increases the robot’s ability to sense and control important

aspects of a task. For example, when a person writes with a pencil, they usually rest their

hand on the table and keep the pencil angled to the side. This simple action stabilizes the

hand from arm-induced disturbances, increasing the person’s certainty about the pencil’s

pose and allowing for precision control. By holding it at an angle, the person increases the

visibility of the tip for visual control, and increases their sensitivity to lateral forces felt at

the pencil tip.

A robot can be designed with a suite of compensatory actions. These behaviors are

not directly involved in solving the task, but critically precondition the robot’s body and

sensors such that task success is more likely. Some examples of human compensatory actions

include:

• Using arms as feelers when walking down a dark hallway.

• Stiffening of the arm before inserting a key into a lock.

• Resting a coffee cup on a table before pouring coffee.

• Bracing a hand on a table while writing.

• Increasing the distance between the thumb and forefinger when grasping in the dark.

• Supporting an awkward grasp with a second hand.

People constantly take actions such as these. This suggests that robot tasks in human envi-

ronments can be assembled piecemeal using many compensatory strategies. Compensatory
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actions often involve what Erdmann and Mason (1988) have called “sensorless manipu-

lation.” In sensorless manipulation, a robot uses perceptually blind motion strategies to

eliminate uncertainty. For example, the authors demonstrated that a binder clip resting

on a tray can be positioned and oriented unambiguously through careful tilting of the tray.

This also relates to a large body of work concerning peg insertion tasks under uncertainty,

where peg orientation strategies can be used to achieve insertion (Inoue, 1979).

2.2 Cooperative Manipulation

Cooperative manipulation emphasizes the advantages that can be gained by having a robot

work with a person to accomplish a task. For at least the near term, robots in human

environments will be dependent on people. Fortunately, people also tend to be present

within human environments. If we take cooperative manipulation as a design strategy, to

what extent can we include the actions of a collaborator into the task design? Can we design

a robot’s behavior in a way that people will intuitively understand how to assist it? Are

there common physical and social cues that a collaborator will generate in order to guide

the robot?

Certainly, if the robot’s usefulness outweighs the efforts required to help it, people will

be motivated to assume the role of a collaborator. For example, the initial version of the

Roomba vacuum cleaning robot relies on a person to occasionally prepare the environment,

rescue it when it is stuck, and direct it to spots for cleaning and power. The robot and the

person effectively vacuum the floor as a team, although the person’s involvement is reduced

to a few infrequent tasks that are beyond the capabilities of the robot. By treating tasks as

a cooperative process, people and robots can perform tasks that neither one could perform

as an individual.

As an example, imagine a mechanic working underneath a car. She reaches out for a

wrench but can’t quite get it. As she reaches about for the wrench, an assistant picks it

up and hands it to her. At this moment, the utility of the mechanic’s reaching action has

been increased beyond her physical limitations. There are several subtle aspects to this

cooperative effort that should be familiar to anyone who has ever worked on a car with a

friend.

1. The assistant recognizes that the mechanic is physically and perceptually constrained
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because she is lying under the car. Consequently, he adapts his actions in order to

compensate for her limitations.

2. As the mechanic reaches for the wrench, the assistant naturally adapts the trajectory

of his delivery to match hers such that their hands meet at the correct point. A

coupled feedback loop is formed between his motor actions and her motor actions.

3. The assistant offers the mechanic the wrench such that her hand naturally grasps the

handle in an appropriate manner, knowing that she will have difficulty reorienting it

in her hand otherwise.

4. If her view is obstructed, the assistant may push the wrench into her hand with a

deliberate force to signal that he is ready for her to grasp it.

In this example, cooperation occurs not just in the physical transport of the wrench. Sec-

ondary actions are employed that compensate for the mechanic’s physical and perceptual

constraints. This is just one example of many such cooperative mechanisms. People will

guide someones arm if they are doing a task wrong, provide guiding disturbance forces to a

commonly held object during transport or assembly, or hold an object steady while someone

works on it.

Cooperative manipulation is as much about understanding how a person will respond

to a robot as it is about programming the robot. Consequently, work in human-robot

interaction (Burke et al., 2004), socially interactive robotics (Fong et al., 2002; Breazeal,

2004), and assistive robotics (Pineau et al., 2003) is particularly relevant. Although these

overlapping areas of research do not typically involve manual tasks, they do emphasize

putting people “in the loop” in a way that is intuitive and comfortable for the person. In

the next sections we discuss work in assistive robotics and the use of collaborative cues

within social robotics.

2.2.1 Assistive Robotics

Assistive robots aim to provide physical or instructional assistance to people in need, such

as the elderly, hospital patients, and people with physical disabilities. This is a rapidly

expanding area of robotics research due largely to worldwide increases in the elderly popu-

lation combined with shortages of qualified nurses. For example, within the next five years,
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the percentage of the Japanese population over the age of 65 will increase to 25% while

the number of available nurses will decline (Ogawa, 2003). This is a worldwide trend, and

as workforces age, industrialized countries will face significant labors shortages for which

robotics will be one part of the solution.

The field can be partitioned into two categories: hands-on and hands-off (Kyong et al.,

2005). The hands-off approach emphasizes social interaction (Tapus and Mataric, 2006;

Pollack et al., 2002) for therapeutic aid while the hands-on approach emphasizes physical

interaction. The hands-on approach is most relevant for our work. A recent survey on

assistive robotics by Haigh and Yanco (2002) shows that manipulation assistance is but one

topic in a broad field involving human factors, autonomous wheelchair navigation, cognitive

assistance devices, physical therapy, and smart homes. In a survey of 200 potential users

of manipulation assistance technology (Stanger et al., 1994), respondents replied that most

useful tasks include preparing food, operating electronics devices, picking items up from the

floor, and placing items on a shelf. Interestingly, hobby activities such as gardening were

also rated highly. These activities all require mobile assistive manipulation. Consequently,

work being done with wheelchair mounted manipulators is particularly important.

Wheelchair manipulators provide an incremental path from human teleoperation to au-

tonomous manipulation in human environments. Currently, these manipulators are con-

trolled by a person using a joystick or keypad. For example, the Manus arm is a popular,

commercially available manipulator that can pour a drink, put a dish in a microwave, feed

food to a person, and open a doorknob (Rosier et al., 1991; ExactDynamics, 2006). Human

factors and manipulator design are generally emphasized in this research area (Hillman

et al., 1999). However, teleoperation of these manipulators places a significant cognitive

load on their users. Although autonomy is an active area of research, there hasn’t yet been

a strong emphasize on perception in human environments. For example, the KARES robot

incorporates force sensing and vision to achieve autonomous tasks such as picking up a pen

or a cup (Song et al., 1998). However, color markers and templates are required to sense

these objects while the dynamics of everyday environments are not considered.

Contact between a robot and a person is common during physical rehabilitation and

workplace assistance tasks. Safe, intelligent control of the interaction forces is therefore

critical. Contact can be lethal if the large inertial mass of a typical manipulator is moving

with sufficient velocity. We consider the design of safe manipulators in Section 4.6. One
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notable example in this area is the cobot. Cobots (Collaborative-Robots) are passive robot

devices intended for direct physical interaction with people (Worsnopp et al., 2006; Pan

et al., 2005). A cobot and a person collaborate to produce control of the end-effector.

The person supplies motive forces and moments, while the cobot constrains the motion.

Constraint surfaces can be programmed to assist a human in manipulating a load from one

configuration to another, or to assist in physical rehabilitation of stroke patients. Safety is

a critical concern for hands-on assistive robotics.

Recently, a third category of assistive robots has been emerging: autonomous partner

robots. As described previously, partner robots provide both social companionship and

physical assistance. The ARMAR robot at the University of Karlsruhe is a notable example

(Zöllner et al., 2004). ARMAR operates in an everyday kitchen environment specially

constructed for the robot. It has demonstrated the bimanual unscrewing of a jar lid based

on human demonstration and the ability to recognize and respond to human gestures during

non-manual collaboration in the kitchen (Stiefelhagen et al., 2004). The highly integrated

Hermes robot can navigate dynamic environments and perform scripted manipulation tasks

such as fetching a glass of water (Bischoff and Graefe, 2005). At AIST, Sian et al. (2006)

have pursued a combination of teleoperation and behavioral autonomy for the bipedal HRP-

2 humanoid. The robot manages low-level control and perception under a user’s guidance,

allowing the robot to execute complex domestic tasks such as fetching a carton from a

refrigerator .

2.2.2 Collaborative Cues

During a manipulation task, a robot can use social and physical cues to direct its collabora-

tor. Likewise, the collaborator can use these same cues to supervise the robot. As noted by

Breazeal et al. (2004), a true collaboration requires that the robot and person have a mutual

understanding of each others’ beliefs, intentions, and desires. This shared understanding

can be established in part through contextually appropriate cues. If the robot looks to the

collaborator, this can cue them to take their turn at a task (Kikuchi et al., 1998). If the

collaborator points to an object, this can cue the robot to pick it up (Littman et al., 1996).

However, we are still a long ways from robots that can form a nuanced understanding of a

person’s internal state. Breazeal maintains that without this understanding, the robot acts

as a tool and not a partner during a collaborative task. However, even without this rich
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understanding, a robot can use rudimentary cues to induce a person to assist it.

One of the earliest examples of this is the demonstration of turn-taking and social

amplification with the robot Kismet (Breazeal et al., 2001; Breazeal, 2000). Kismet would

engage in dialogue based turn-taking with a naive subject by vocalizing a phrase and then

pausing until it had detected the subject’s reply. The subject intuitively understood the

pause as a cue that the robot was relinquishing its turn in the interaction. Turn-taking

simplified the robot’s auditory perception because it restrained the person from talking over

the robot. The term social amplification describes the use of a social cue to amplify the effect

of a motor act. With Kismet, if a subject was too far away for the visual attention system

to perform well, the robot would crane its head forward. This had the effect of bringing the

camera closer in. It also has a greater, secondary effect of beckoning the person to come

closer. With this simple act, Kismet could regulate the subject’s distance from the camera,

improving its ability to detect and track faces. Social cues such as these, as well as affective

displays, have been widely investigated within the social robotics community (Fong et al.,

2002).

In addition, perception of deictic, e.g. pointing and gazing, cues have been used in several

robots to allow a person to direct the attention of the robot. Calinon demonstrated a system

where a robot and person used eye gaze, pointing, and head nodding cues to switch context

during a collaborative game (Calinon and Billard, 2006). The Infanoid robot of Kozima and

Yano (2001) captures the direction of a caregiver’s face and gaze in order create a shared

attentional focus. Nagai (2005) has shown that subtle differences between the motion of

reaching and pointing gestures can be learned by a robot, allowing it to differentiate the

intent of such actions. And Breazeal et al. (2004) demonstrate a collaborative task with the

Leonardo robot that uses an overhead stereo system to recognize deictic gestures. However,

the task is the simple, coordinated pressing of buttons. Particularly relevant to cooperative

manipulation is work done at NASA on Robonaut. Robonaut used human pointing cues

to determine where to apply a power drill during a lug-nut tightening task (Bluethmann

et al., 2004). Related work on the Dexter humanoid accomplishes a similar task where the

intention of a teleoperator is inferred from the motion of the manipulator (Rosenstein et al.,

2005). Unfortunately, the perceptual environments of these robots are typically constrained

and not representative of realistic human environments.

Physical interaction cues have been explored to a lesser extent for cooperative tasks.
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Figure 2-1: The Coffeepot for Masochists by artist Jacques Carelman (Norman, 1990). Many

objects in human environments have been designed to match our physical and cognitive

abilities. The design of the coffeepot, for example, has evolved such that inertia of the

pot and coffee is well controlled from the handle, the handle is matched to a human-scale

power grasp, and the spout is positioned to accommodate visual observation during the

pour. (Personal collection of D. A. Norman. Photograph by Norman. Reproduced with

permission).

One commonly explored example is the collaborative carrying of an object. On the HRP-2

platform, the robot and a person carry a sheet of plywood together. The person can apply

forces to the plywood, which are sensed in the robot’s impedance controlled arms, in order

to direct the robot as it walks (Yokohama et al., 2003). Other work (Yigit et al., 2003b,a;

Waarsing et al., 2001) has also demonstrated cooperative holding of an object but with

lesser degrees of integration.

2.3 Task Relevant Features

Human environments have been designed to match peoples’ physical and mental abilities,

reducing the cognitive load required to function within them. People design in common

structural features, or task relevant features, so that they can manage in a world of thou-

sands of objects they have never encountered before. The theme of task relevant features

emphasizes the benefits of carefully selecting the aspects of the world that are to be per-

ceived and acted upon during a manipulation task.

Rather than pursue the problem of general perception within unstructured environments,
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we use specialized perceptual detectors for common features that are important to a task.

Our expectation is that these detectors will be more robust because of their specialization,

and more general because they detect features that are representative of the task, not the

object.

Donald Norman’s book The Design of Everyday Things (Norman, 1990) exemplifies this

approach. Norman describes how common features among everyday objects are matched

to peoples’ bodies and cognitive abilities. A person can pick up and pour coffee from a

pot even though they’ve never seen that particular pot. The physical appearance of the

handle and spout may be unfamiliar, but functionally these features are identical to other

coffeepots that the person has used. Also, the handle is shaped to match the shape of

human hands. Objects that violate expectations of design and function can be exceedingly

frustrating for people to use. For example, the Coffeepot for Masochists, shown in Figure 2-1

with its spout pointing in the wrong direction, seems absurd because it is poorly matched

to a human body.

By specializing perception and control for task relevant features, we can simplify robot

manipulation in human environments. In the next sections we discuss how this is possible.

2.3.1 Background

The idea of task relevant perception and control has its roots in the early work of Agre

and Chapman (1987) with the Pengi video game agent. Pengi exhibited seemingly complex

behavior through a set of simple actions taken in a complex world. Pengi’s representa-

tion of the world was specified using indexical functional aspects. Aspect indicates that

only a partial representation of the world is required–knowledge of the global state is not

assumed. Indexical indicates that the world is defined relative to the agent and its moti-

vations. Particular objects are interchangeable and their representation dependent on the

agent’s context. For example, “the screwdriver nearest me” defines a relative relationship,

not a particular object or location in the world. Functional emphasizes that things in the

world are defined by how they are used rather than descriptively. In the subsequent work

of Brooks (1999), perception is directly coupled to action in the form of modular behaviors

that eschew complex intermediate representations. Rather than attempting to reconstruct

the world in its entirety, these behaviors focus the robot’s sensory resources on elements of

the world that are important to the current task.
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Many researchers treat robot manipulation as a planning problem performed with re-

spect to the global state of the world (Simeon et al., 2004; Saha and Isto, 2006; Taylor,

2004). In contrast, a task relevant approach is aligned with the work of researchers who

make use of carefully chosen aspects of the world’s state. Jagersand and Nelson (1995) have

demonstrated that many tasks can be visually planned and executed using sparse fiducial

markers placed on an object’s task relevant control points. Piater and Grupen (2002) have

shown that task relevant visual features can be learned to assist with grasp preshaping.

The work was conducted largely in simulation using planar objects, such as a square and

triangle. Platt et al. (2004) have shown that complex dexterous manipulation behaviors can

be composed in terms of simple, hierarchical wrench-closure features. Pollard and Hodgins

(2002) have used visual estimates of an object’s center of mass and point of contact with a

table as task relevant features for object tumbling. While these features allowed a robot to

generalize learning across objects, the perception of these features required complex fiducial

markers. Natale et al. (2004) have demonstrated that a robot can learn to identify objects

using only sparse tactile and proprioceptive features.

Task relevant features also have a strong relation to Gibson’s notion of an object af-

fordance (Gibson, 1977, 1979). An affordance is a relationship between an object and its

environment, defined by how the object could possibly be used. For example, a chair af-

fords sitting while a table affords support. Affordances have been explored within robotics

to develop action-oriented perception (Rome et al., 2006).

Human use of task relevant features has been explored experimentally and theoretically.

In particular, Todorov and Jordan (2002) suggest that motor coordination may be optimized

in terms of the task objectives rather than detailed motor trajectories.

2.3.2 Perceptual Robustness

Robust perception is one of the most significant challenges for robots in human environ-

ments. For example, consider the images in Figure 2-2 that show typical views from Domo’s

camera as it completes a task. In Domo’s office environment, the background is cluttered

with books and papers, making objects grasped in the robot’s hand difficult to distinguish. A

person interacting with the robot generates unexpected dynamics. In addition, the lighting

changes drastically throughout the day. Humans exhibit incredible adaptivity to this type of

variability. In fact, a person teleoperating NASA’s Robonaut can accomplish human-level
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Figure 2-2: Typical views from Domo’s camera of its office environment. Everyday environ-

ments can be perceptually very difficult for robots. The background is cluttered with books

and papers, making objects grasped in the robot’s hand difficult to distinguish. A person

interacting with the robot, generates unexpected dynamics in the environment. Also, the

lighting varies widely throughout the day. (Left) During the day, the natural light in the top

corner saturates the scene. (Right) At night, the color hue and contrast shift substantially.

manipulation tasks if they act as the robot’s perceptual system (Glassmire et al., 2004).

Outside of teleoperation, robot manipulation is typically limited to controllable laboratory

and factory environments, or specialized skills. Fitzpatrick (2003) has described two general

approaches to perception in real, everyday environments:

1. Robustness from perspective: Adopting the right frame of reference can simplify

a problem.

2. Robustness from experience: The robot’s experience in the world can be used to

improve perceptual models.

The robustness from perspective approach includes the careful selection of perceptual fea-

tures that are relevant to the task and environment. This has been successful in a number

of robotics projects. For example, the robot Polly could navigate the dynamic, cluttered

hallways of the MIT AI Lab in real-time using relatively little computation (Horswill, 1993).

Polly’s perception and control was highly specialized for office environments, where obsta-

cle avoidance could be reduced to carpet detection, an obstacle was defined simply as a

non-carpet region, and an obstacle’s depth was a easily found as a function of its height in

the image. Fitzpatrick and Metta (2003) specialized perceptual detectors for the motion
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generated at a robot’s hand while coming into contact with an object, allowing the robot

to obtain clean visual segmentation of objects of interest by poking them. Fitzpatrick also

demonstrated robust, uncalibrated reaching over a surface by visually servoing both the

end-effector and its cast shadow (Fitzpatrick and Torres-Jara, 2004). Reaching over a sur-

face is a common activity within human environments, and a cast shadow is potentially less

affected by variability in an object’s appearance.

The success of work in face detection (e.g, Viola and Jones (2004)) has demonstrated

the power of developing perceptual algorithms within specialized domains. Our approach of

task relevant features looks to leverage this robustness in the context of perceptual features

that are common to everyday tasks.

2.3.3 Generalization

We can specify a manipulation task in terms of the perception and control of sparse fea-

tures that represent the task, not the object. Focusing the robot’s resources on only those

aspects of the world that are important to the task should also allow the same controller

to extend to multiple objects. As noted earlier, a coffeepot handle and spout define its use,

and perception and control of these sparse features allow us to use unfamiliar coffeepots.

However, mastery of the use of a coffeepot handle can also generalize, roughly, to the use of

a briefcase handle. Another example is the tip of a tool. The tip of a screwdriver and the

tip of a knife are often used identically to pry something open. As we will show in Chapter

9, manipulation of a large set of human tools can be specified in terms of the tool’s tip.

In addition, a task relevant approach allows for motor-equivalent control strategies,

where a high-level goal can have multiple solutions at the control level. For example, we

typically use a pencil by grasping it between our fingers. However, we could still write by

grasping the pencil between our forearm and bicep, or even by wrapping our toes around it.

This indicates that the planning and control of many tasks very likely occurs in a frame of

reference that is invariant to the joint postures and forces. In fact, findings in neural motor

control provide evidence that humans plan and execute tasks based in the coordinate frame

of the intended motion of an object, not the desired joint trajectory (Cisek, 2005). Also, the

motor representation used to plan an action appear to be independent of the effector used.

A pincher grasp formed with our fingers has remarkably similar velocity and grasp aperture

characteristics to a pincher grasp formed with a hand tool (Gentilucci et al., 2004).
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CHAPTER 3

Recent Work

Robot manipulation is a broad research area, and in this chapter we discuss mostly recent

work within the field. We refer the reader to excellent surveys and texts on model-based

manipulation (Mason, 2001), visual servo control of manipulators (Kragic and Chrisensen,

2002), issues for general purpose manipulation (Grupen et al., 1989), calibration techniques

for manipulators (Hollerbach and Wampler, 1996), design approaches for robot hands and

graspers (Bicchi, 2000), approaches to model based grasping (Shimoga, 1996), and tactile

sensing for manipulation (Tegin and Wikander, 2005).

In the last few years, there has been a resurgence of interest in robot manipulation, par-

ticularly for domestic applications, within Europe, Japan, and the US. In a recent whitepa-

per defining the nascent field of of Autonomous Mobile Manipulation (AMM) (Brock and

Grupen, 2005), a large community of researchers outline the potential impact, challenges,

and research directions for robots that can perform manual tasks in unstructured environ-

ments. The stated target is the development of robots with the visual recognition abilities

of a two-year-old child, the manual dexterity of a six-year-old, and the ability to navigate

human-scale environments. Much of this current generation of research aims to bring robots

out of the labs and factories and into the world. It emphasizes the importance of human

environments, the unique challenges that they pose, and the need for alternatives to the

sense-model-plan-act approach.
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In this chapter we discuss in more detail several research projects that illustrate alter-

natives to the sense-model-plan-act approach to manipulation.

3.1 Connell: Behavior-Based Manipulation

The Herbert robot of Connell (1989) represents one of the first autonomous mobile ma-

nipulators to use a behavior-based approach. Although not a recent result, this work still

represents an important direction for the field. Connell developed a mobile robot with a

planar two DOF arm able to locate and retrieve empty soda cans in an everyday, office

environment. Remarkably, this was achieved with only simple sensing and a small net-

work of behaviors fashioned after the early subsumption architecture of Brooks (1986). We

attribute the success of this work primarily to two sources.

First, the robot’s body and controllers were carefully designed to match its world of

office buildings and soda cans. The gripper and arm were specialized for reaching to and

grasping cylindrical objects on cluttered tables. The gripper was equipped with contact

switches and IR break-beam sensors. It relied on a simple kinematics and sensors instead of

complex 3D models and inverse kinematics. Connell notes that soda cans are all the same

size, rotationally symmetric, and typically found in a vertical orientation on a table-height

flat surface. By specializing the robot’s reaching and grasping behaviors for these features,

Connell leveraged the structure of human environments and the task.

Second, the robot controllers were constructed as simple behaviors that, in Connell’s

words, “communicate through the world”. For example, the manipulator is left in the Stop

state when a can is grasped. A Retract behavior pulls in the arm whenever it senses the

Stop state. A third Home behavior causes the robot to head back to its base whenever

it senses that the arm is retracted. In this way, the state of the robot’s body interacting

with the world, not the state of an internal model, is used to coordinate behaviors. Connell

maintains that directly referencing the state of the body and sensors improves the system’s

robustness.

A number of researchers have developed behavior-based controllers for manipulators

subsequent to Connell’s early work. However, few systems have demonstrated the extensive

integration of this robot or the ability to perform more than a single, well defined task at

a time. In the case of Waarsing et al. (2001), an industrial arm on a mobile base was used
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to collaboratively carry an object with a person by sensing the forces in the arm through

a load cell. Work by Wasik and Saffiotti (2003) with a small industrial arm demonstrated

more complex behaviors for a visual pick-and place task. However, this was done in a very

controlled environment using homogeneous blocks. Much of the work on the Dexter robot

(Platt et al., 2003a) has behavior-based components, and this project is reviewed shortly.

3.2 Metta and Fitzpatrick: Poking and Affordances

Work on the Cog robot by Metta and Fitzpatrick (2003a) treats manipulation as a means

to assist perception under uncertainty. Often, vision alone is not enough to reliably segment

distinct objects from the background. Overlapping objects or similarity in appearance to

the background can confuse most visual segmentation algorithms. Rather than defining an

object in terms of its appearance or shape, the researchers defined an object in terms of

coherent motion generated through contact.

Cog poked at objects on a table with its manipulator. It then used the tight correlation

between its arm motion and the sensed optic flow to detect both its hand and the boundaries

of the object. As a result, Cog could obtain clean visual segmentations of otherwise difficult

to segment objects. This a clear demonstration of leveraging the robot’s embodiment to deal

with the type of uncertainty found in human environments. Although not demonstrated, a

robot’s perceptual system could employ this type of behavior to actively test perceptually

ambiguous scenes.

Subsequent work (Fitzpatrick and Metta, 2003) used this poking behavior to learn about

an object’s rolling affordance. This a general affordance often explored by infants playing

with bottles and toy cars, for example. A car rolls in the direction of its primary axis while a

bottle does not. To learn this distinction, Cog poked at an object placed in front of it, using

one of four directions. It then observed the motion of the segmented object relative to its

primary axis. Subsequently, it could learn the correct direction to poke an object to cause it

to roll. Although described as a “proof of concept,” this work points to an affordance based

representation of everyday objects, gained through manipulation, that avoids full blown 3D

models.
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3.3 Robonaut: Collaborative Tool Use

The Robonaut humanoid (Ambrose et al., 2000) developed at NASA JSC is perhaps the

most mechanically sophisticated bimanual manipulation platform in use today. Its primary

purpose is as a collaborative robot assistant that can work with astronauts during a space

mission. Under teleoperation, the robot has achieved impressive cooperative tasks such as

inserting a flexible cable into a receptacle (Glassmire et al., 2004). Recent work has pursued

autonomous manipulation with marginal teleoperation. For example, Diftler et al. (2004)

present an autonomous system where Robonaut visually detects a person, navigates to the

person, takes a tool from the person, and then carries the tool while following them.

In a significant collaboration among many researchers, Bluethmann et al. (2004) describe

a system whereby Robonaut reaches for and grasps a power drill, watches as a collaborator

points to the lugnuts on a car wheel, determines the desired order for tightening, and

inserts the drill on to and tightens each lugnut. This work demonstrates an impressive

level of integration, using modules for learning under teleoperation, spatial reasoning and

memory, gesture recognition, and tool pose recognition. The team reports that inserting

the drill onto the nut is the most challenging aspect of the task as the grasp on the drill

varies with each trial. However, the insertion is done open-loop in world coordinates, and

not with visual feedback.

The Robonaut tasks are supervised by an operator and specified as a deterministic

sequence of behaviors (Aldridge et al., 2000). A layered behavior architecture could poten-

tially expand its autonomy, allowing it to respond to unexpected events during the task and

perhaps better recover from failures. Robonaut’s perceptual system uses template matching

to known objects in order to recover the 3D pose of the object Huber and Baker (2004).

This approach is reasonable for a space mission where the tools are presumably known, but

not suitable for everyday, domestic environments.

3.4 Dexter: Manipulation Gaits and Grasp Features

Researchers at UMass Amherst are working with a bimanual robot, Dexter, to study cogni-

tive development through manual interaction with the world. The group has taken a largely

embodied approach, employing reactive, closed-loop controllers based on haptic feedback

to acquire task knowledge, learn object properties, and accomplish bimanual tasks (Platt
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et al., 2003a). Here we consider two such projects in further detail: composing tasks us-

ing manipulation gaits (Platt et al., 2004) and the learning of visual features to support

grasping (Piater and Grupen, 2002).

A manipulation gait moves a grasped object into a desired pose while maintaining stable

contact by essentially walking the fingers or hand around the object. This had previously

been demonstrated on known, modelled objects, but Huber and Grupen (2002) introduced

a reactive strategy for manipulation gaits that can be done without prior models. Their

approach sequences a combination of concurrent, closed-loop haptic controllers. Each con-

troller, drawn from a control basis (Platt et al., 2003c), achieves a simple force objective

such as wrench closure. Manipulation behaviors are composed by nesting a controller ob-

jective, such as a posture, within the null-space of another controller objective, such as

contact. In Huber and Grupen (2002), the approach demonstrated rolling of a cup between

the robot’s fingertips. The strategy was extended to bimanual tasks by treating each hand

as a giant fingertip, and the fingertip controllers independently maintained the local contact

objectives (Platt et al., 2003b,c).

Their treatment of dexterous manipulation is essentially behavior-based, as the robot

continually monitors its haptic state in the world to update simple, reactive controllers.

Although the work has been primarily concerned with rich haptic sensing on idealized

objects, recent work by (Platt, 2006) demonstrated a grocery bagging task on everyday

objects in a controlled environment.

When a person reaches for an object, they preshape their grasp in anticipation of contact

with the object. Planning a grasp, prior to contact, is typically achieved through the

selection of contact points on a 3D model (Shimoga, 1996). In contrast, an approach

developed by Piater and Grupen (2002), as well as Coelho et al. (2000), learns the relevant

visual features on an object that afford a stable grasp. Selection of these features allow the

grasp to be preshaped, increasing the robustness of their control basis grasp controller. This

work is a demonstration of task relevant features, as the object is sensed through sparse,

visual features that afford grasping rather than a detailed 3D model. However, the approach

was only demonstrated on simple, planar geometric objects. In subsequent work by (Platt,

2006), a 3D ellipsoid representation is used, and the robot learns to orient its grasp to the

major axis of the ellipsoid.
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3.5 STAIR: Learning of Grasp Points

A number of researchers at Stanford have begun an ambitious new project, named STAIR,

aimed at autonomous mobile manipulation within human environments. Their stated goals

include tidying up a living room, picking up and throwing away trash, loading the dish-

washer, using multiple tools to assemble a bookshelf, as well as guiding guests around a

museum or lab. Initial results from the project are encouraging.

Saxena et al. (2006) have developed a learning algorithm that predicts, based on a

monocular image, the best position to form a pincer grasp on an object. The supervised

learning was achieved offline using synthetic data, but the learned feature detector works

on real images. When several views of the object are acquired, the most likely 3D location

of the grasp feature is estimated, and the robot can reach to and grasp the object. The

algorithm has successfully learned grasped points on a variety of everyday objects, including

a pen, screwdriver, book, and duct tape. However, as of yet it hasn’t been demonstrated

using an everyday, cluttered background. This preliminary work is an excellent example of

a specialized, task-relevant feature detector. Although the single-grasp-point representation

does not encompass the variety of objects found in human environments, it is applicable to

a wide range of objects, particularly objects with handles. The learning algorithm’s choice

of a single, sparse visual feature enables allows it to work with different, unmodeled objects.
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CHAPTER 4

Building Bodies

This chapter describes the design of Domo1. As we will see, this is an integral part of

our broader design theme to let the body do the thinking. Clever design of a robot’s body

can reduce the complexity of the perception and control required, especially in human

environments. Actuators that exhibit passive compliance and force control can adapt to

unforeseen disturbances in the world. Physical traits of a robot’s body can replace sensing

and computation. For example, the Roomba vacuum is a low-profile disc. This allows it to

avoid getting snagged in tight spaces and trapped under beds, greatly reducing its need to

sense its environment.

Often, a robot’s design will influence the research questions that are pursued. Poor reli-

ability and robustness can limit long time-scale experiments. High manipulator momentum

can be unsafe for human experiments. Design limitations can also inspire new research

approaches. For example, the inexpensive robot design of Horswill (1993) experienced drift

in its mechanical components, precluding the possibility of precise camera calibration. This

lead to the design of novel visual algorithms for robot navigation that were robust to this

type of uncertainty. In other cases, such as with the Series Elastic Actuator (SEA) (Pratt

and Williamson, 1995), the imprecision of inexpensive mechanical components can be can-
1The mechanical design is greatly indebted to the significant contributions by research engineer Jeff

Weber.
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celled by using control feedback.

Our robot Domo (shown in Figure 1-2) has 29 active degrees of freedom (DOF), with

9 DOF in the head, 6 DOF in each arm, and 4 DOF in each hand. It also has two CCD

cameras, a 3 axis gyroscope in the head, speech synthesis, and speech recognition. The

initial design included 24 FSR tactile sensors in the hands2. The hands are also covered in

a compliant, rubber skin. All 29 DOF provide joint-angle sensing through potentiometers

or encoders. The 22 DOF from the neck down use compliant, Series Elastic Actuators,

providing the robot with the proprioceptive sense of joint torque. Each appendage has a

dedicated embedded controller that handles sensor acquisition and motor control. These

controllers are networked together using CANbus and are interfaced to a cluster of Linux

PCs.

4.1 Notation

In this section, we briefly review the mathematical notation used to describe the robot .

The kinematic structure and significant coordinate frames of Domo are shown in Figure 4-1.

In general, a vector is written in lowercase boldface and a matrix in uppercase boldface. We

add a superscript to a vector or matrix in order to refer it to a particular coordinate frame.

The superscript may be dropped for clarity if it is evident from the context. For example,

a vector in coordinate frame {A} is specified as

pA =


px

py

pz

 .

The world frame is often implicit: p = pW . A homogeneous transform, describing a rotation

and translation, from frame {A} to {B} is denoted as BTA. Point pA has coordinates

pB = BTA pA in {B}, where
2It was found that the FSR sensors were not reliable for tactile sensing but increased the hand’s com-

plexity. These were eventually removed from the robot.
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X

{W}

{S}

Y
Z

{H}

{C}

Figure 4-1: The kinematic structure and significant coordinate frames for the robot. {W}

is the gravity aligned world frame. {H} is the hand coordinate frame at the end of the 6

DOF manipulator. {C} is the camera frame with its origin at the focal point, and {S} is

the gravity aligned ego-sphere frame described in Chapter 6. A particular manipulator is

delineated by a subscript such as {Hright} if required.

49



pc

Y

Z

X

f
{C,I}

uc

u , v

v '

vc

optical axis

focal point

u '

u
v

Figure 4-2: Coordinate frames for the calibrated pinhole camera.

BTA = [ BRA|tB
Aorg] =


r1 r2 r3 t1

r4 r5 r6 t2

r7 r8 r9 t3

0 0 0 1

 .

BRA is a 3x3 rotation matrix and tB
Aorg is the origin of frame {A} with respect to {B}.

A position vector pA is 4x1, though a 3x1 vector is used when considering directions only.

For example,

BTApA = BTA


px

py

pz

1

 ,

but also

BRApA = BRA


px

py

pz

 .

4.1.1 Pinhole Camera Model

We use a pinhole camera model for the robot’s cameras. The model’s intrinsic parameters

are estimated with the Calibration Toolbox for Matlab and the lens distortion is corrected
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in real-time using the undistort method in the Intel OpenCV computer vision library. We

use the standard coordinate system for the pinhole camera model as shown in Figure 4-2.

A 3D point in the world pW , with position pC = CTWpW = [x, y, z]T in camera frame

{C}, projects onto the image plane at

k =

 u

v

 =

 fx
z

fy
z

 ,

for a focal length f . For simplicity, the optical axis intersects the image plane at pixel [0, 0].

The true pixel coordinates of the point are relative the upper-left corner at

k′ =

 u′

v′

 =

 u + uc

v + vc

 ,

where uc and vc are dependent on the camera calibration.

4.2 Compliant Actuators

The 22 actuators in Domo’s arms, hands, and neck incorporate linear springs to provide

force sensing and passive compliance, as shown in Figure 4-3. These actuators are called

Series Elastic Actuators (SEA). The SEA design originates with Pratt and Williamson

(1995). The idea is simple. A linear elastic element is placed between the motor and the

joint. The elastic deflection is measured using a displacement sensor such as a strain gauge

or potentiometer. The force or torque at the actuator can then easily be computed using

Hooke’s law (f = −Ksx, where Ks is the spring constant and x is the spring displacement).

4.2.1 Design

We developed a cable-drive SEA for Domo’s arms and a novel, compact configuration of

the SEA for Domo’s hands. According to Pratt and Williamson (1995), there are several

advantages to these actuators:

1. The spring and potentiometer provide a mechanically simple method of force sensing.

2. Force control stability is improved when intermittent contact with hard surfaces is

made. This is an important attribute for manipulation in unstructured environments.
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Figure 4-3: Left: the Series Elastic Actuator (SEA) used in the arms. Right: a novel

SEA configuration developed for the hands. The traditional, arm SEA places a compliant

element between the motor output and the load. The hand SEA places the compliant

element between the motor housing and the chassis, allowing for a simpler and more compact

design. The arm SEA drives a cable with motor (A) and measures the cable force through

the spring deflection (B) with a linear potentiometer (C). For the hand SEA, the motor (A)

is on bearings and held captive by the springs (B). The motor deflection is measured by a

rotary potentiometer (C). The deflection is linearly related to the output torque for small

deflections.
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3. Shock tolerance is improved. The use of an N:1 geartrain increases the reflected inertia

at the motor output by N2, causing shock loads to generate high forces on the gear

teeth. The passive spring serves as a mechanical filter of these high bandwidth forces,

reducing the potential of damage to the gears.

4. The dynamic effects of the motor inertia and geartrain friction can be actively can-

celled by closing a control loop around the sensed spring displacement. This allows a

highly backdrivable actuator to be constructed out of low-grade components.

5. A traditional force controlled actuator exhibits a large impedance at high frequencies

due to insufficient motor response. In contrast, the elastic elements in an SEA act as

passive springs, reducing the effective impedance. This allows for intrinsic manipulator

safety.

In contrast to traditional SEA designs, Domo’s hand SEA places the elastic element between

the motor and the chassis. While this method of sensing the actuator torque has recently

been used for non-compliant sensing (Kim et al., 2005), this is the first demonstration using

an elastic element. As shown in Figure 4-3, the motor is on bearings and held captive by

springs. The motor’s deflection is measured by a rotary potentiometer. This deflection is

linearly related to the torque at the motor output for small deflections. The differences

between these two SEA designs provide distinct advantages and disadvantages. The arm

SEA uses a linear ballscrew and a cable transmission. The ballscrew provides greater

efficiency and shock tolerance than a gearhead. However, this SEA is limited by the travel

range of the ballscrew, creating packaging difficulties. The linear potentiometer must move

with the motor output, precluding applications requiring continuous rotation. In contrast,

the hand SEA can allow continuous rotation at the motor output as the sensor does not

move with the motor output. This configuration is also much more compact than the arm

SEA as it is mechanically simpler with fewer moving parts.

The springs in the arm actuators have a stiffness of Ks = 91kN/m while those in the

hand have Ks = 21kN/m. For the arms, the precision ballscrews have a pitch of 1-1.5mm

and the actuator stall force using Maxon EC20 brushless motors is approximately 800 N.

For the hands, the brushed 13mm Maxon motors can output 5.4N at the fingertip.
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f load

X loadX motor
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+

Fdesired Commanded force

Fload Force applied to load

Xmotor Position of motor

Xload Position of load

Ks Spring stiffness

Imotor Inertia of motor

Iload Inertia of load

Nmotor Motor gear ratio

D(s) PD controller transfer function

Figure 4-4: Control topology for the SEA (Zinn et al., 2002).

54



4.2.2 Control

The control of an SEA has been well characterized (Robinson, 2000; Pratt and Williamson,

1995; J. Pratt and Pratt, 2001). We review the relevant details here. Controllers of Domo’s

two SEA configurations are identical, as the series ordering of the spring and motor does not

affect the physical transfer function. Figure 4-4 depicts the control topology for the SEA.

One advantage of the SEA is that it reduces the output impedance of the actuator across

the entire frequency spectrum, making it inherently compliant, and therefore safe, when

interacting with the world. In contrast, a stiff actuator will have high output impedance

at high frequencies beyond its control bandwidth. It can be shown (Zinn et al., 2002) from

Figure 4-4 that the output impedance of the SEA is

Fload(s)
Xload(s)

=
s2N2

motorImotor

s2N2
motorImotor

Ks
+ 1 + NmotorD(s)

. (4.1)

We see that for frequencies above the closed loop bandwidth (s is large), the output

impedance reduces to the spring stiffness: Fload(s)
Xload(s) = Ks. In contrast for a stiff actua-

tor (Ks ≈ ∞), the output impedance reduces to Fload(s)
Xload(s) = s2N2

motorImotor, which goes up

with the square of the gear reduction.

The inherently low output impedance of an SEA makes it suitable for applications where

human safety is important. However, the compliance also reduces actuator performance.

The flexible modes of an SEA prevent control bandwidths greater than about one-third of

its fundamental resonant frequency. The resonant frequency for cable-driven robots can be

10 Hz or less (Zinn et al., 2004). Fortunately, robot’s that work cooperatively with people

do not typically need to achieve high-performance ballistic motions during a task. In human

environments, the lower control bandwidths of an SEA are a reasonable given the added

benefits of safety and compliance. We consider safety issues further in Section 4.6.

4.3 Arms

4.3.1 Arm Design

Domo’s arms were designed to be lightweight, safe, compact, efficient and mechanically

robust. These are sometimes competing, but often complementary objectives. Lowering the

manipulator weight reduces its effective inertia, improving the inherent safety. This also

reduces the motor power requirements which can increase efficiency. Placing compliance
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Figure 4-5: The mechanical structure of Domo’s arms. A compact cable-drive differential

at the shoulder provides pitch (A) and roll (B). These two DOF are driven by actuators

placed in the robot torso. The bicep of the arm contains four other actuators: shoulder yaw

(C), elbow pitch (D), and wrist roll (E) and pitch (F) driven by two cables routed through

the elbow.
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Figure 4-6: Layout of the arm cable-drive. Each SEA (located at the arrow) drives the joint

through a pull-pull cable-driven hub. The cable-drive design allows the actuators for the

differential shoulder to be placed in the body. The wrist actuators are placed in the forearm

and their cable-drives pass through the elbow. This mass distribution lowers the arm inertia,

though it also causes coupling between the elbow and wrist. This is compensated for in

software.

in the drive train can improve safety and protect the geartrain. The primary innovation

in Domo’s arms is to combine the compliance provided by SEAs with the weight-reduction

given by cable-drive WAM arms (Townsend and Salisbury, 1993). The resulting arm is

lightweight (2.1kg ), safe for human interaction, reasonably strong ( 5kg payload), human

scale, and efficient (12W during static extension without load, 80W during peak ballistic

motion).

The SEA arm design originated with our work on the Cardea robot (Brooks et al.,

2004) as well as Williamson’s SEA manipulator design for the Cog robot (Williamson,

1998b). As shown in Figure 4-5, a compact cable-drive differential at the shoulder provides

pitch and roll. These two DOF are driven by actuators placed in the robot torso. The

bicep of the arm contains another four actuators for shoulder yaw, elbow pitch, wrist roll,

and wrist pitch. The cable-drive system, shown in Figure 4-11, allows for non-collocation of

the actuators (though the joint angle is sensed at the joint). The drive-cables for the wrist

actuators are routed through the center of the elbow joint. Placing the wrist actuators in the

bicep lowers the arm inertia but causes mechanical coupling between the elbow and wrist.
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This is compensated for in software. Unfortunately, a cable-drive manipulator can also

be substantially more complex, and friction and elastic effects of the cables can introduce

control complexity. Salisbury et al. (1988) consider design issues with cable-drive arms

further.

4.3.2 Arm Control

Different methods are used to control the arms depending on the task. These include:

1. Joint torque. The DSP implements a PD controller of the form

Fmotor = KfpEf + KfdĖf ,

where the error Ef is measured with respect to the SEA spring as

Ef = Fdesired −Ks · (Xmotor −Xload). (4.2)

This controls the force output of each actuator. A desired joint torque τdesired is

readily converted to Fdesired using the known mechanics of the cable-drive system.

2. Gravity compensated joint torque. Given the manipulator joint angle vector Θ =

[θ1, θ2, . . . , θ6]
T , the joint torques resulting from gravity, G(Θ), are computed using the

kinematic model and point mass estimates for the forearm and bicep (Gourdeau, 2005).

The controller’s desired joint torque is modified such that τdesired = τgdesired −G(Θ),

allowing for gravity independent control of the arm as it moves through its workspace.

3. Joint angle. The joint angle is controlled on the DSP by a PID loop around the

gravity compensated torque controller. This controller is of the form

τdesired = KppEp + KpdĖf + Kpi

∫
Epdt−G(Θ), (4.3)

where Ep = θdesired−θ. In practice, we use an extended form of the controller without

damping:

τdesired = Kps(Kpp ·B(Kbp, Ep) + Kpi ·B(Kbi,

∫
Epdt))−G(Θ) + τbias (4.4)

The function B(K, E) bounds the error E within ±K to safely limit the commanded

torques. The stiffness of each joint can be set by Kps, where 0 ≤ Kps ≤ 1 and Kps = 0

puts the arm in a zero-gravity mode. In this mode, a controller can command a

non-zero bias torque τbias.
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Figure 4-7: The inverse kinematics (IK) for Domo’s manipulators are approximated using

the analytic approach of Tolani et al. (2000). If the robot’s wrist is held fixed at the target

x, the elbow e is still free to swivel about a circular arc centered at c with radius r. The

arm link lengths l1 and l2, along with x, uniquely define c and r , as well as the unit vectors

u and v, which define a local coordinate system at c. The desired joint angles are uniquely

defined by the hand location x and the swivel angle φ of elbow e. The desired swivel angle

was learned through K-means clustering over arm postures collected while manually moving

the arm about its workspace.

4.3.3 Inverse Kinematic Control

An inverse kinematic (IK) controller computes the joint angles that will bring the manip-

ulator end-effector to a target pose in the world. Methods for solving manipulator inverse

kinematics abound, and Buss (2004) provides an accessible introduction. In practice, these

techniques require careful implementation, otherwise kinematic singularities and joint limits

will cause stability and safety concerns. Anthropomorphic manipulators are also kinemat-

ically redundant and additional optimization criteria are often required to fully specify

the manipulator pose. For these reasons, we use a straightforward, analytic approach for

inverse-kinematics described by Tolani et al. (2000). This approach considers only the posi-

tion of the end-effector and not its orientation. While there are numerous potential criteria

for handling the kinematic redundancy, we would like to generate postures that appears

natural while avoiding collision with the body.

We briefly describe Tolani’s method as shown in Figure 4-7. If the robot’s wrist is held
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fixed at the target x, the elbow e is still free to swivel about a circular arc centered at c

with radius r. The arm link lengths l1 and l2 define c and r. We parameterize the arm

pose for target x by the swivel angle φ which uniquely defines the elbow position. This is

straightforward to derive as e(φ) = c + r(cos(φ)u + sin(φ)v) if unit vectors u and v define

a local coordinate system at c. Therefore, given an desired φ and x, the desired joint angles

can be determined using the analytic form of Tolani et al. (2000).

The kinematic redundancy allows an infinite number of swivel angles for a target x. We

would like to select φ so that the arm appears qualitatively natural, avoids joint limits, and

avoids contact with the body. To achieve this, we used unsupervised learning of canonical

arm configurations based on captured data. The arm was placed in zero-gravity mode

and manually moved through naturalistic arm poses within the safely reachable workspace.

Approximately 4000 joint angle samples were recorded. K-means clustering (Duda et al.,

2000) (k = 100) was then applied to find a set of canonical arm postures. Now, given a target

x, we can use a look-up table to find the canonical posture that brings the end-effector closest

to x. The swivel angle, φ, associated with this posture determine e(φ) and consequently

the desired arm pose. This method is fast, scaling linearly with k . For smooth, real-time

tracking of 3D targets in the world, φ is temporally smoothed. Although our selection of φ

is qualitative, a natural appearing posture is a common criteria for humanoid robots in the

absence of optimization criteria.

4.4 Hands

Hands for humanoid robots are notoriously difficult to design. Humanoid arms often im-

pose constraints on the size, weight, and packaging of the hand while demanding sufficient

dexterity, strength, and speed. Consequently, these hands often lack force sensing and con-

trol. They often lack the mechanical robustness necessary for use in unknown environments

where impacts and collisions are common. Unfortunately, incorporating these features can

increase the complexity, weight, size, and cost of the hand.

Grasping of unknown objects can be assisted by incorporating passive compliance and

force control into a hand. This allows the fingers to independently maintain contact with an

object’s surface without global knowledge of its shape. Many humanoid hands are position

controlled and rely on tactile sensors or load cells at the fingertip to acquire force knowledge.
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Figure 4-8: Domo’s hand shown grasping a screwdriver (with a human finger for scale).

The two 4 DOF hands that are approximately of human size and shape. Force sensing and

control, combined with a compliant skin, allows them to maintain grasps on many everyday

objects such as hand tools.

For example, the original NASA Robonaut hand utilized Force Sensing Resistors to sense the

pressure at the fingers (Lovchik and Diftler, 1999). The Gifu Hand employs a combination

of load cells and tactile sensors (Kawasaki et al., 2002) , and the Barrett hand used on the

Dexter platform integrates a six axis load-cell in each fingertip (Platt et al., 2003c). These

types of sensing typically require the robot to maintain fingertip contact in order to sense the

grasp forces. In contrast, a hand with force controlled actuators can react to forces applied

anywhere along its fingers. This allows for greater responsiveness to the environment and

unexpected contact. Recently, humanoid hands that integrate force control with passive

compliance have been emerging, notably the Keio hand (Maeno, 2005), the Obrero hand

(Torres-Jara, 2005), as well as Domo’s hand.

A compliant skin is often employed in hand designs to assist grasping. The skin can

conform to an object’s surface, expanding the contact surface area. However, the contact

deformation of the skin is difficult to predict, and approaches that rely on geometric models

for grasping typically avoid compliant skins. Sensing and modelling of the skin’s deformation

can help alleviate this issue, but these techniques are not yet realistic for real robot hands

(Biagiotti et al., 2005) and not aligned with our model-free design approach. In contrast,

recent work by Dollar and Howe (2005) has demonstrated blind, sensorless grasping using

a completely compliant hand made of cast urethane. In addition, the compliance is also

shown to protect the hand from severe impacts and collisions.
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Figure 4-9: The mechanical design of Domo’s hands. The four long cylinders are Series

Elastic Actuators (G, only three visible). Each of the three fingers has three joints (A,B,C).

Joint A is driven by an SEA through a cable-drive. Joint B is passively coupled to A through

a rigid cable-drive. Joint C is passively linked by a compression spring to B. The spread

between two of the fingers (about axis D) is also driven by an SEA. Electronics for sensor

conditioning, force sensing, and the controller interface reside at the rear of the hand (F).
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Figure 4-10: In Domo’s hands, passive compliance of varying stiffness is integrated into the

actuator, finger tip, and silicone skin. Although difficult to model, a compliant skin allows

the robot to expand the contact surface during grasping, greatly improving grasp stability.

4.4.1 Hand Design

As show in Figure 4-9, Domo’s hands contain four modular SEAs acting on three fingers.

The SEA design is shown in Figure 4-3. One actuator controls the spread between two

fingers. Three actuators independently control the top knuckle of each finger. The second

knuckle is mechanically coupled to the top knuckle, and the fingertip is passively spring-

loaded. Springs placed between the motor housing and the hand chassis provide compliance

and force sensing for each finger. The three fingers are mechanically identical, however two

of the fingers can rotate about an axis perpendicular to the palm. These axes of rotation

are coupled through spur gears, constraining the spread between the two fingers to be

symmetric.

Each hand weighs approximately 0.51kg , can lift 0.56kg at its fingertip, and is powered

by a brushed 13mm Maxon motor. The power and control electronics are embedded in the

manipulator forearm. A soft (Shore 00-30) silicone skin covers each finger and the palm.

Figure 4-10 shows the compliance of the skin as it conforms to an object. We found that

the addition of the skin greatly improved Domo’s ability to maintain stable force controlled

grasps on objects.

4.5 Head

4.5.1 Head Design

The design of Domo’s active vision head is an evolution from previous designs used for

Cog and Kismet (Brooks et al., 1999; Breazeal, 2000). It is a mechanical copy of the head
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Figure 4-11: Mechanical layout of Domo’s active vision head. An SEA driven universal

joint (A, not pictured) combined with neck pan (B) provides a compact ball-and-socket like

three DOF neck. The upper head provides roll and tilt through a cable-drive differential

(C). Two FireWire CCD cameras (D) share a single tilt DOF and have two independent

pan DOF. Expressive eyelids provide a final DOF. A 3 axis gyroscope (E, not pictured)

provides an absolute reference with respect to gravity.
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developed by Aryananda and Weber (2004) for the Mertz robot. The head has 7 DOF in

the upper head, a 2 DOF force controlled neck, a stereo pair of synchronized Point Grey

FireFly cameras, and a three axis InterSense gyroscope. The upper head provides roll and

tilt through a compact cable-drive differential. The two cameras share a single tilt DOF

but have independent control of the pan DOF. The head also includes 1 DOF expressive

eyelids.

One design goal for the head was the ability to execute human-like eye movement. Hu-

man eye movements include saccades, smooth pursuit, vergence, vestibulo-ocular reflex, and

the optokinetic response (Kandel et al., 2000). Domo’s head is designed to accommodate all

but the optokinetic response. Saccades require fast, ballistic movements of the eyes (900◦/s)

while smooth pursuit requires slow, controlled tracking movements of less than 100◦/s. Ver-

gence requires independent control of the eye pan to view objects of varying depth. The

vestibulo-ocular reflex typically requires a head mounted gyroscope to counter-rotate the

eyes as the head moves. Accommodating these features required particular attention to the

eye drive system and motor selection. We use a small gearhead motor (Maxon 8mm 0.5W

with 57:1 gearhead) and an efficient cable-drive system for the eye pan to ensure smooth

response and sub-pixel servo errors.

4.5.2 Head Control

Humanoid heads are often kinematically redundant in order to allow for expressive head

postures. Domo is no exception, having a 7 DOF serial kinematic chain between its torso

and each camera. Fortunately, it is often reasonable to control a humanoid head in terms

of a single visual target in the world. A camera’s pan-tilt motors act to servo the target in

the image, and the remaining joints move so as to keep the pan-tilt DOF centered in their

joint range. This strategy has been previously demonstrated on the DB and Cog humanoids

(Gaskett and Cheng, 2003; Brooks et al., 1999).

On Domo, the head controller takes as input the target xS from the visual attention

system. As we will describe in the next chapter, xS is a continuous, smoothly changing

target within the robot’s Sensory EgoSphere. This corresponds to a pixel target [ur, vr]
T

and [ul, vl]
T for each respective camera. The cameras independently servo this target to the

center of their image. For a target [u, v]T , the desired velocity of the pan DOF is

θ̇desired = −Kpu.
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This is simply a P velocity control loop with gain Kp. We limit the maximum controller

error to 50 pixels within a 320 × 240 image so as to prevent excessive velocities. This

controller is implemented for the left and right camera pan and a similar one for the eye

tilt. Combined, these controllers keep xS centered in the images. The vergence of the two

cameras depends on the depth of xS . In order to ensure that the eye gaze appears natural,

we limit the minimum depth to 200mm .

Next, the head’s redundancy is used to keep the pan-tilt joints centered in their range.

This assists the pan-tilt controllers when tracking a moving target by expanding the camera’s

effective field-of-view. For example, the neck pan can act to assist the eye pan. If the eye

pan has joint angle θe and the neck pan θn, then controller for the neck pan has the form

θdesired = θn + Kcθe,

for gain Kc. On Domo, the neck-pitch DOF and upper-head-pitch DOF act to help the

eye-tilt controller. The neck-pan DOF acts to help the eye-pan controllers. The neck-roll

DOF and head-roll DOF are controlled separately to allow for expressive head postures.

Careful tuning of these gains allows for the entire 8 DOF head to smoothly track moving

targets in the world.

4.6 Manipulator Safety

Our design theme of cooperative manipulation requires that a person can safely work along-

side a robot. Industrial manipulators are typically dangerous and unsuitable for human

interaction. One approach to safety is to combine a lightweight arm with torque control

at each joint. For example, the DLR arm can exhibit very low impedance for human in-

teraction (Hirzinger et al., 2002). However, this low impedance is actively controlled and

is not intrinsic to the manipulator. Above its control bandwidth, the manipulator can-

not exhibit low impedance. The WAM arm is a direct-drive torque controlled manipulator

that has been used with success in manipulation research (Guertin and Townsend, 1999).

By eliminating the motor’s gearhead, a direct-drive design can exhibit low effective iner-

tia, improving its safety. Unfortunately, direct drive-designs are usually bulkier than their

counterparts, offsetting these safety gains.

Recently, the field of physical human-robot interaction (pHRI) has emerged as a focused

effort to design manipulators that are intrinsically safe for human interaction (Alami et al.,
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Figure 4-12: A cable-drive design allows for lower inertia and a safer manipulator. (Left)

Domo’s cable-drive design allows the shoulder mass ms to be moved onto the body and

the wrist mass mw to be lumped with the bicep mb. The hand mass is mh. (Right)

A traditional belt-drive design places the actuators near the joints. A point mass model

estimates Domo’s manipulator inertia as Ilink = 0.24kg ·m2 while the traditional design has

inertia Ilink = 0.52kg ·m2 (using mh = 0.45kg, mw = 1.2kg, ms = 1.8kg, and mb = 1.2kg).

2006). One notable example is the Stanford DM2 manipulator which uses parallel motors

at each joint of a 4 DOF manipulator (Zinn et al., 2004; Khatib et al., 1999). A large,

compliant SEA provides high torques at a low-bandwidth while a complimentary, smaller

motor provides lower torques at higher control bandwidths. The combined actuator ex-

hibits the benefits of SEAs but with improved performance. Also, Bicchi et al. (2003) have

explored a promising approach utilizing variable stiffness actuators. These are arranged

antagonistically, allowing the joint stiffness to be increased during ballistic motions. How-

ever, both of these approaches require significant mechanical complexity in order to achieve

the improved performance. For many cooperative tasks, a manipulator shouldn’t need to

move faster than its collaborator. Consequently, an SEA manipulator is sufficient for our

purposes.

4.6.1 Measuring the Head Injury Criterion

Robot safety encompasses a wide range of issues, and Ulrich et al. (1995) provide a com-

prehensive analysis of common robot safety criteria. One of the most significant means

of injury is through unexpected physical contact. A robot can injure a person through

static and impact contact forces, static and impact pinch forces, or crushing forces from its

weight. Of these, impact contact forces are typically the most dangerous. A software bug,

a glitch in the controller, or poor sensing of human proximity can cause a manipulator to

make harmful contact. In the worst case, contact is made with the head. Consequently, the
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Head Injury Criterion (HIC) is the most commonly used index to evaluate robot manipu-

lator safety (Versace, 1971). The HIC, originally defined for the automotive industry, is a

function of the impact acceleration of the head and the duration of impact. Typically it is

solved numerically, though with some simplifications it can be written in a modified form

that is relevant for compliant manipulators (Bicchi and Tonietti, 2004):

HIC = 2
(

2
π

) 3
2
(

Kcov

Moper

) 3
4
(

Mrob

Mrob + Moper

) 7
4

v
5
2
max,

where the stiffness of the arm covering is Kcov, the mass of the operator’s head is Moper,

and the maximum velocity of the end-effector is vmax. The effective robot mass Mrob is a

function of the intrinsic stiffness of the manipulator as well as the rotor and link mass

Mrob = Mlink +
Ks

Ks + γ
Mrot,

where γ is the rigid joint stiffness. As noted previously, a low drivetrain stiffness Ks serves

to decouple the rotor mass Mrot from the link mass Mlink. If a large gearhead is used, Mrot

can be significant.

An HIC value around 100 is generally safe for human contact while an HIC of 1000

is potentially fatal. A manipulator’s HIC index can be improved in a number of ways:

lowering Kcov through a soft covering, limiting in software the velocity vmax, lowering Ks

via passive compliance, and designing for a low manipulator mass Mlink.

With Domo, we adopted all but the first method. The angular velocity of the joints are

limited on the DSP, SEAs provide a low Ks, and Mlink is kept low by using a cable-drive

transmission. As shown in Figure 4-12, when the arm is outstretched (and hand velocity

highest), Domo’s cable-drive manipulator has approximately half the inertia as its belt-

drive counterpart. For Domo, vmax =
∥∥∥JΘ̇max

∥∥∥ ≈ 1m/s based on its kinematic model

and estimated actuator saturation. In Figure 4-13 we see that when vmax = 1m/s, Domo’s

HIC is significantly improved over a non-cable-drive version of the manipulator and the

Puma 560. We also see that a DSP limited velocity of vmax = 0.84m/s will keep Domo’s

manipulator safe for human interaction.
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HIC

Hand Velocity (m/s)

Configuration HIC vmax(m/s)

Domo 167 .84

Domo, non-cable-drive 238 .70

Domo non-SEA 469 .53

Domo, non-cable-drive, non-SEA 489 .52

Puma 560 550 .50

Figure 4-13: The Head Injury Criterion (HIC) for Domo’s manipulator. An HIC of 100 is

generally safe for human interaction while an HIC of 1000 can be fatal. (Top) Estimated

HIC versus hand velocity for five manipulators. (bottom) The estimated HIC for each

configuration given vmax = 1m/s and also the maximum velocity vmax to achieve HIC =

100. We used the following model parameters for Domo: Ks = 120kN/m, γ = 3000kN/m,

Kcov = 25kN/m, Moper = 4kg, and Mrotor = 12Kg. Mlink = 2.8kg for Domo while a

non-cable-drive configuration of the manipulator has Mlink = 4.6kg. The Puma 560 has

Mrob ≈ 25Kg (Zinn et al., 2004).
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4.7 Discussion

A robot’s design should be specialized to match its environment and the tasks expected of

it. Human environments have particular characteristics that render most industrial manip-

ulators inappropriate. Although Domo’s design has many details that are unique to the

robot, we can find general characteristics that make it suitable for human environments:

• Intrinsically safe for human interaction.

• Passive compliance at each joint.

• Force sensing and control at each joint.

• Human form to allow for working with objects designed for people.

These four characteristics can serve as useful design objectives for researchers as the field

moves towards standardized platforms.
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CHAPTER 5

Building Brains

In this chapter we present the organization of Domo’s computation systems, a control

architecture named Slate, and a method for composing manipulation tasks out of Slate’s

behavioral modules.

5.1 Computational Organization

The computational organization is a critical aspect of any complex robot. High degree-of-

freedom robots that perform substantial perceptual processing require carefully designed

architectures that can support scalable computation, real-time control, and low-latency

data transmission. One approach that many humanoid projects have moved towards is to

distribute the computation across many PCs and embedded controllers (Ly et al., 2004;

Brooks et al., 1999; Metta, 2000).

We have followed a similar path, employing 15 Linux PCs networked by a 1Gb LAN.

Our control decomposition is reminiscent of the layered NASREM architecture (Albus et al.,

1989), where the controller rates decrease by an order of magnitude with each additional

layer of abstraction away from the body. As shown in Figure 5-1, Domo’s architecture is

organized into four broad layers: the physical layer, the DSP layer, the sensorimotor layer,

and the behavior layer. The first two layers are physically embedded on the robot while the
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Figure 5-1: The robot’s computation is distributed across five embedded DSP controllers

and 15 Linux PCs. Processes (yellow) are run on dedicated PC nodes. The DSPs handle

real-time control and sensor acquisition at 1kHz. Synchronized image pairs are captured to

a dedicated PC at 30Hz. A daemon interfaces to the DSPs through four 1MHz CANbus

channels. It also generates a timestamp from the CANbus clock to synchronize all image

and sensor data. A 100Hz sensorimotor process computes kinematic and dynamic models,

implements higher level motor control, monitors manipulator safety, and computes the com-

manded setpoints for the DSPs. Our behavior-based architecture, Slate, coordinates the

visual processing, attention system, and task behaviors. These run at parameterized rates

of up to 100Hz . This decomposition is reminiscent of the layered NASREM architecture

(Albus et al., 1989).
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latter two run on the Linux cluster. Each layer is briefly describe in the next sections.

Physical Layer

The physical layer constitutes the electromechanical resources embedded in the robot. This

includes: 12 brushless DC motors and amplifiers in the arms, 17 brushed DC motors and

amplifiers in the hands and head, a force sensing potentiometer at 22 of the joints, a position

sensing potentiometer at all 29 joints, a position sensing encoder for each of the 7 joints in

the upper head, a gyroscope in the head, two cameras, a speaker, and a wireless microphone.

DSP Layer

The DSP layer provides real-time force, position, and velocity control of the actuators as

well as sensor data acquisition. Each body appendage uses a 40MHz Motorola 56F807 DSP

controller that controls up to 10 DOF at 1kHz. These controllers are networked together

using four 1MHz CANbus channels interfaced to a Kvaser PCIcan 4xHS PCI card residing

on a Linux PC. By using embedded controllers, we gain complete control over the real-time

aspects of the sensorimotor system. This avoids pitfalls commonly encountered when using

PC based controllers such as operating system timeouts and complicated startup routines.

Also, each DSP continually monitors the traffic of its CANbus channel. If the CANbus is

disconnected, the arms will switch into a zero-force mode, protecting the arms and nearby

people. The arms will resume activity when the CANbus is plugged back in.

Sensorimotor Layer

The sensorimotor layer creates a coherent snapshot of the proprioceptive data coming from

the DSPs, computes a kinematic and dynamic model, and implements a set of higher-

level controllers. These 100Hz controllers include smooth visual tracking, inverse kinematic

reaching, and operation space control of the arm (Khatib, 1987). We use the Yarp software

package developed by Metta et al. (2006) to provide TCP/IP interprocess communication

among the Linux cluster’s 1Gb LAN. We implemented a custom Python-Yarp interface,

allowing us to dynamically define and transmit data structures between processes. Addi-

tionally, two FireWire framegrabbers provide synchronized image pairs to the cluster at

30Hz. Finally, the image and sensory data are timestamped using the hardware clock from
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the CANbus PCI card. This ensures synchronization of the data up to the transmit time

of the 1Gb LAN.

Behavior Layer

The behavior layer implements the robot’s visual processing, learning, and task behav-

iors. These algorithms run at parameterized rates up to 100Hz within the behavior-based

architecture described in the next section.

5.2 Slate: A Behavior-Based Architecture

We would like robots to exhibit the creature robot qualities of coherent behavior, responsive-

ness to the environment, and adequacy in task execution. For Domo, we have developed a

behavior-based architecture named Slate. Reactive, or behavior-based, designs such as the

subsumption architecture of Brooks (1986) are well suited to the creature robot objectives.

What is a an architecture? Mataric (1992) provides the following definition:

An architecture provides a principled way of organizing a control system.

However, in addition to providing structure, it imposes constraints on the way

the control problem can be solved.

Following Mataric, Arkin (1998) notes the common aspects of behavior-based architectures:

• emphasis on the importance of coupling sensing and action tightly

• avoidance of representation

• decomposition into contextually meaningful units

Roboticists have developed many variants of behavior-based architectures. We refer to

Arkin (1998) for a review. Loosely stated, Slate is a lightweight architecture for organiz-

ing perception and control. It is implemented as a programming abstraction in Python,

allowing one to easily define many small computational threads. These threads run at pa-

rameterized rates within Slate’s non-preemptive scheduler. Importantly, Slate makes it

easy to specify time-contingent behavior and to distribute computation across multiple ma-

chines. Slate falls short of being a full behavior-based programming language such as the
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Figure 5-2: The organization of the Slate architecture. Each Slate process runs on a

node within the Linux cluster. The process starts its own non-preemptive scheduler and

a communication interface to external processes. At startup, the robot’s proprioceptive

stream is automatically imported into the process global namespace (yellow). Within a

process, a module defines a namespace and a set of lightweight threads (and finite-state-

automaton). These threads are scheduled at rates up to 100Hz. Threads communicate

through the global namespace or through wires, and wires provide arbitration between

conflicting writes after every scheduler cycle.

well known L-Mars (Brooks and Rosenberg, 1995) language, but its design draws from this

work. Slate also benefits from its use of a lightweight interpreted language such as Python.

Python allows for rapid development cycles and provides a large toolbox of scientific, ma-

chine learning, and vision libraries such as the open-source package Pysense (Kemp, 2006).

Computationally expensive algorithms in Slate are optimized using Python extensions in

C.

5.2.1 Slate Components

The basic control structure of Slate is shown in Figure 5-2. It is built out of the following

components:

Process At the highest level, Slate consists of many Python processes distributed across

our Linux cluster. Processes pass messages back and forth at rates up to 100Hz using

TCP/IP via Yarp. Messages can be data structures of arbitrary types and can be

defined on the fly. Each Slate process can also dynamically subscribe to other Slate
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processes, image streams, motor command streams, or proprioceptive streams. By

default all Slate processes subscribe to the robot’s proprioceptive stream. Within a

process, data can be shared in the global namespace.

Scheduler A Slate process executes within the Linux kernel as a standard user process

and it implements a non-preemptive scheduler that runs as a user thread. The sched-

uler is at the center of Slate. It’s task is to schedule, and execute, short pieces of

code encapsulated within the methods of Python classes. Each short piece of code is

registered as a Slate object within the scheduler. Each Slate object has a defined

update period specified in milliseconds but limited to the resolution of the scheduler’s

time quanta of 10ms. Every quanta, the scheduler iterates through its list of objects,

determines which are scheduled for update, and executes their update method. Slate

objects can be threads, FSAs, and monostables. A typical process will maintain 20-

200 objects within the scheduler. If all scheduled objects cannot be updated within

the time-window of the quanta, the actual update rate will lag the desired rate.

Module A module is an instance of a Python class. Its function is to encapsulate a

group of related Slate objects within a shared namespace. As modules are readily

parameterized, it is straight forward to define multiple module instances acting on

different robot limbs or perceptual streams, for example.

Thread A thread implements a small amount of computation such as processing an image

frame or updating a sensor model. It is implemented as a class method of a module.

A thread cannot yield and therefore the method must run within a fraction of the

scheduler time quanta. The scheduler will call the class method at a defined update

rate. Multiple threads within a module can communicate through shared variables in

the module namespace.

Port A port allows Yarp based TCP/IP interprocess communication between Slate mod-

ules. Connections between modules are formed through a static naming scheme. A

thread can read and/or write any type of data to a port, but we assume by convention

that the data read from a port is of an expected format. Ports can also connect into

the robot’s raw sensor, camera, and DSP controller streams.

FSA An FSA implements a time-contingent finite state automaton. Each state of the FSA
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is implemented as a class method of a module. The active state is periodically called

by the scheduler at a defined update rate. At the end of each call, the class method

optionally returns the next FSA state. Each state also has an associated timeout.

If the FSA remains in a given state longer than the timeout, the active state will

automatically advance to a defined next state. Optionally, an FSA will automatically

reset to an idle state if it loses control of a robot resource, such as motor control of a

joint.

Monostable A monostable is a simple timing element with a defined time value, in mil-

liseconds. When a thread triggers a monostable, it is reset to the time value. On

every cycle the scheduler decrements the value by the time quanta until the value is

zero. Monostables are globally accessible to all modules within a Slate process.

Wire A wire is a Slate object that supports read/write operations. It is declared in the

Slate global namespace and allows communication between threads and FSAs. Data

written to a wire is not available for read until the next scheduler cycle, ensuring that

two threads do not have inconsistent views of the same data.

Arbitrator An arbitrator resolves write conflicts on a wire. Conflicts are resolved through

a mix of dynamic and fixed priorities. A fixed priority for each module is hardcoded

into its definition. During each scheduler cycle, any thread can increment a module’s

priority by some amount above its fixed priority. At the end of the cycle, the arbitrator

grants control of the wire to the module with the highest priority. All data written to

a wire by its controlling module will be available to a reading thread during the next

scheduler cycle. At the start of each cycle, the module’s priority reverts to its fixed

value, so a thread must constantly send priority adjustments if it intends to maintain

control. Also, a hysteresis setting in the arbitrator prevents rapid switching of wire

ownership.

Tools Good development tools and libraries are extremely important when developing

robots. Slate makes use of numerous optimized Python-C extensions for linear

algebra, machine learning, and computer vision. In addition, we can easily write our

own extensions using the Swig package. We have also developed useful debugging

tools. A Slate thread can dynamically generate a remote GUI and stream data to
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and from it. Additionally, Slate can be run from the Python interactive console,

allowing for online coding and testing of behaviors.

5.2.2 Example Program

The following Python pseudo-code demonstrates how Slate modules are written. It im-

plements a controller for Braitenberg’s (1984) vehicles 2a and 2b using the SeekLight and

AvoidLight modules. The modules are prioritized so the robot will drive towards a light

source by default. However, if it senses too much light, then AvoidLight assumes control of

the motor wire and the robot turns away from the light. The wire arbitrator ensures that

AvoidLight is active for at least 1000ms. The motor threads run every 100ms while the

inhibit thread runs every 500ms as it could potentially perform heavier perceptual compu-

tation.

#------------------------------------------------------------

class SeekLight: #Vehicle 2b

def motor_thread( ):

light=slate.robot.sensors

slate.wire_write(’Wire:Motors’,[light[1],light[0]])

#------------------------------------------------------------

class AvoidLight #Vehicle 2a

def motor_thread( ):

light=slate.robot.sensors

slate.wire_write(’Wire:Motors’,[light[0],light[1]])

#------------------------------------------------------------

class MotorWriter

def output_thread( ): #Output to controller

desired=slate.wire_read(’Wire:Motors’)

slate.robot.motors=desired

def inhibit_thread( ): #Avoid too much light

if (light[0]+light[1])>100:

slate.priority_adjust(’MotorArb’,’AvoidLight’,3.0)

#------------------------------------------------------------
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# Slate declarations

priority={SeekLight:2.0, AvoidLight:1.0}

a=slate.arbitrator(’MotorArb’, priority, hysterisis=1000)

slate.wire(’Wire:Motors’,arbitrator=a)

seek=slate.module(SeekLight( ))

avoid=slate.module(AvoidLight( ))

writer=slate.module(MotorWriter( ))

slate.thread(seek.motor_thread, ms=100)

slate.thread(avoid.motor_thread, ms=100)

slate.thread(writer.output_thread, ms=100)

slate.thread(writer.inhibit_thread, ms=500)

#------------------------------------------------------------

5.2.3 Slate on Domo

Slate is distributed across up to 15 Linux computers. Because the computation is not

embedded on the robot, we can afford to conservatively run only one Slate process per

machine. The complete behavior system described in this thesis runs on about 10 machines,

where the majority of the processes are concerned with real-time perception. We consolidate

the distributed perception and control processes into a single task-level module. This process

runs at 50Hz and implements roughly 125 threads, 40 wires, 10 arbitrators, and 35 FSAs.

5.3 Designing Tasks in Slate

In this section we describe how manipulation tasks are composed out of Slate modules.

Domo’s observable behavior is a consequence of the interaction of many modules with each

other, people, and the environment. Unfortunately the word behavior has many meanings

within the robotics literature, although typically it describes a simple transformation from

sensor information to motor action (Arkin, 1998). We avoid the difficult semantics of the

word behavior and instead use the word module. A module is a well define component of

Slate, corresponding to a perceptual algorithm, motor controller, or both1.
1We name modules using two or three descriptive words in italics, such as RelaxArm or PersonSeek.
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5.3.1 Coordinating Modules

As we described in Section 3.1, the work of Connell (1989) demonstrated that a robot’s

responsiveness and robustness can be improved by coordinating its behaviors indirectly,

through the world, instead of through an internal data wire. In this form of interaction, one

module executes a motor action that influences the perceptual state detected by another

module. Consequently, modules will make control adjustments using constant perceptual

sensing rather than potentially incorrect internal models.

Modules can also communicate by dynamically adjusting each others’ arbitration prior-

ity. This increases the likelihood that a desired module will take control of a fixed resource,

such as an arm controller, but does not guarantee it. Gaining control of a resource depends

not just on the module’s priority, but also on the module’s internal estimate of its readiness

based on perceptual conditions.

As an example, consider a module PersonTouch, that causes an arm to reach out and

touch a person. As shown in Figure 5-3, PersonTouch works as follows:

1. Compute internal readiness based on a desired perceptual state

(a) E.g., Can only act when module PersonDetect signals a person is present

2. Increase priority of modules that may cause readiness

(a) E.g., Increase the priority of the PersonSeek module that will scan the room for

a person

3. Constantly compute a desired action or perceptual feature

(a) E.g., Compute a joint trajectory that will reach to the person

4. Output the readiness value and the computed action to a Slate wire. Allow Slate

to decide if the action is executed.

We see that PersonTouch relies on the successful execution of PersonDetect, but is limited to

increasing the priority of PersonSeek. Consequently, PersonTouch and PersonDetect com-

municate through the world. If the person suddenly hides from the robot, PersonTouch’s

readiness will become false. This will cause the PersonTouch to automatically relinquish
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PersonTouch

PersonReach

RetractArm

PersonDetect

ContactDetect

PersonSeek

Figure 5-3: The flow of control within a Slate module. While a module may activate

other modules during execution, we depict only the significant modules. A module starts

at the top-most state in the diagram and relinquishes control after the bottom-most state.

A state transition (arrow) occurs contingent (bar) on perceptual feedback or the activa-

tion of another module. Often, modules will communicate through the world (diamond) by

taking actions that increase the likelihood of another module detecting a perceptual fea-

ture. Exceptions within a module can cause reset transitions to a previous state (dashed

line). In this example, the PersonTouch module causes the robot to reach out and greet

a person through touch. First, PersonSeek is activated, causing the robot to look around

and increasing the likelihood of PersonDetect. When PersonDetect signals that a person is

present, PersonReach brings the hand near the person. This action increases the likelihood

that ContactDetect will sense a person touching the arm. If ContactDetect is not signalled,

the module reverts to search for a new person. Otherwise, RetractArm brings the arm down

to the robot’s side.

arm control to the next highest priority module. Although this type of coordination re-

quires careful hand design, it can provide a rich responsiveness to unexpected dynamics in

the world.

The flow of control within PersonTouch is shown in Figure 5-3. We will use this type

of graphical depiction throughout this thesis.

5.3.2 Decomposing Manipulation Tasks

As shown in Figure 5-4, Domo’s modules are integrated hierarchically into one Slate process

with a single root module, HelpWithChores. This integration allows Domo to behave as a

creature robot instead of as a compendium of individual experiments. The hierarchical

composition also allows for reuse of modules as the robot’s skill set is expanded. The
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PersonSeek

PersonDetect

VocalRequest

AssistedGrasp

AssistedGive

ContainerInsertPutStuffAway BimanualFixture

HelpWithChores

SwitchHands

GraspDetect

GraspAperature

TipEstimate

TipPriors

TipUse

ContactDetect

CompliantLower

StiffnessAdapt

FixtureServo

InterestRegions

SurfaceTest

ShelfDetect

VisualSeek

SurfacePlace

ContainerPlace

PalmServo

TipServo

TipPose

WristWiggle

Single integrated system

Task skills

Manual skills

Task relevant features
Compensatory actions
Precondition actions

Perceptual detectors
Motor primitives

Figure 5-4: Domo’s modules are integrated hierarchically into one Slate process with a

single root module, HelpWithChores.

hierarchy can be broadly decomposed into four broad layers. We briefly describe each of

these layers next.

Perceptual Detectors and Motor Primitives

The lowest layer of the hierarchy implements shared perceptual and motor primitives. The

robot perceives the world through simple detectors of sparse perceptual features. As we will

see in subsequent chapters, the detector modules in Slate include (among others):

• The aperture of the robot’s grasp

• The distal tip of a grasped object

• Manipulator contact with the world

• The circular opening of a grasped container

• The contact surface of the robot’s palm

The share motor primitives include (among others):
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• Modifying joint stiffness

• Reaching towards a person

• Reaching along a camera ray

• Directing the eye gaze

Learning can be readily introduced into this layer of the hierarchy. We use offline learning

to assist in feature detection, such as mapping the kinematic state of the hand to the grasp

aperture (as we will see in Section 7.3). We use online learning to adapt to environmental

variability, such as the apparent change in human skin tone during the day. When simple

prior models are employed, we often use perceptual feedback to compensate for model

inaccuracies. For example, if we use a prior model to predict the location of a visual

feature, we then initialize a feature detector at the expected location and sense the true

location.

Compensatory Actions, Precondition Actions, and Task Relevant Features

Within this layer of the hierarchy, one class of modules take compensatory actions in order to

reduce perceptual uncertainty, as described in Section 2.1.3. For example, we will present

the ContainerPlace module that rests a grasped container, such as a cup, on a table in

order to passively align the container to a known orientation. Another class of modules

take precondition actions. These are actions which pose the robot’s body prior to control.

For example, a precondition action might bring the hand within the field-of-view before

visually controlling it.

A final class of modules localize task-relevant features. This can require precondition

actions, compensatory actions, as well as the accumulation of detections over time to form

robust estimates of stable features in the world. These modules also provide control with

respect to these features.

Manual Skills

In this layer, fundamental manual skills are generated by coordinating the detection and

control of task relevant features over time. One example we will present is the SwitchHands
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module, which passes an object from one hand to the other. In Section 5.3.3 we describe a

general algorithm for composing manual skills.

Task Skills

In this layer, manual skills are coordinated to accomplish manipulation tasks. A human col-

laborator is included in this coordination through interaction with the robot. For example,

in PutStuffAway, the collaborator first verbally requests Domo to take an object from the

person, and then requests Domo to put the object on a shelf. In this way, the person uses

their knowledge about the task to coordinate task execution. The person can also readily

detect failure and adapt the task plan accordingly. For example, if Domo drops an object,

the person can pick it up and hand it back to Domo.

5.3.3 An Algorithm for Manual Skills

A manual skill within Slate requires the careful coordination of many modules. For exam-

ple, the SwitchHands skill requires the precondition action WatchHand, the compensatory

action StiffnessAdapt, the feature detection of PalmDetect, as well as the control action

PalmServo. We can generalize the flow of control required for this type of skill into the

algorithm shown in Figure 5-5. We will use this algorithm to describe the various manual

skills developed in this thesis.

We can describe this algorithm as the succession of stages shown in Figure 5-5. In

the Ready stage, the module computes its readiness based on perceptual preconditions. It

increases the activation of modules that may cause these preconditions to be met, and mon-

itors the perceptual detectors that signal these preconditions. Throughout the algorithm

execution, if the module loses its readiness (drops an object, for example), then the algo-

rithm returns to a previous stage in order to reacquire readiness. Once a module is ready,

and Slate has granted it control of a resource (such as an arm), the module optionally ini-

tiates Compensatory and Precondition actions. These prepare the robot’s body for control

and act to assist in the detection of a task relevant feature. Next, in the Detect stage, the

module coordinates the initial detection of a controllable feature (such as an object’s tip).

Both learned and prior models may be used in the feature’s detector. In the subsequent

Control stage, the manipulator is servoed to a control objective. This can be achieved

using feedforward control based on the initial feature detection, or using feedback based on
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Wait

Ready

Detect

Compensatory

Control

Success

Prior Model

Learned Model

Ready

Detect

Precondition

Ready Monitor perceptual features required for readiness and activate modules that may

cause these features to be detected.

Compensatory Take actions that assist perception and reduce uncertainty.

Precondition Pose the robot body to support detection of task relevant features and to

prepare for control.

Detect Detect the task relevant feature(s), incorporating learned or prior models.

Control Servo the manipulator to a control objective, incorporating perceptual detection

of the feature into the controller.

Success Monitor perceptual features that indicate success.

Figure 5-5: A generic control algorithm for manual skills. The flow of control begins in the

Wait stage and ends in the Success stage.
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updated feature detections. During control, the perceptual features related to task success

are monitored. When Success is signaled, the module relinquishes control of the resource.

This algorithm integrates our three design themes into a single controller. The Compen-

satory and Precondition stages leverage the robot’s embodiment. The Detect and Control

stages accomplish the skill in terms of task relevant features. Finally, a collaborator can be

brought into the loop by cueing the controller when it is required, when it has succeeded,

or when it has failed.

5.4 Discussion

We have presented a control architecture for designing manipulation tasks within human

environments. The behavior-based architecture, Slate, allows us to design tasks by co-

ordinating computational modules over time contingent on perceptual feedback. As it is

a fairly modular decomposition, we can reuse modules for different tasks. However, the

coordination of these modules is currently achieved by careful hand design. This can be

a time consuming process. Ideally, this coordination would be learned from experience or

from human demonstration. We have also presented a general control algorithm for manual

skills that integrates our three design themes. This algorithm serves as a design template

for the manual skills developed in this thesis. It should also be of practical use to other

researchers as they develop manipulation skills.
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CHAPTER 6

Visual Attention System

A visual attention system allows a robot to select interesting, salient items in a complex

world filled with numerous competing distractions. It reduces the perceptual complexity of

the environment to a small number of salient regions that can be analyzed in more detail

using computationally more intensive perceptual processes. It can also provide the robot

with a short-term perceptual memory through the spatial registration of perceptual features

over time.

Models of human visual attention, such as Wolfe’s Guided Search 2.0 (Wolfe, 1994),

have generated design strategies for many humanoid vision systems. For example, a system

developed by Breazeal et al. (2001) combines several low-level image features into a single

saliency map. Each feature’s saliency is weighted according to the current motivation and

drives of the robot. The region with the highest saliency is used to direct the gaze of the

robot.

In the spirit of Itti et al. (1998), we have implemented a visual attention system as a

means to consolidate many disparate perceptual streams into a single spotlight of attention.

These streams provide a continuous source of simple, visual features that are relevant for

cooperative manipulation tasks. Their perceptual algorithms run on different computers at

different rates. Accordingly, we use a spatial representation called the Sensory EgoSphere

(SES) as a mechanism for perceptual synchronization and spatial localization (Peters et al.,
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Image Block Matching

Affine Motion Model

Canny
 Edges

 , ̇

Sensory Ego­Sphere
Tracker

Kinematic
Model

Camera
Model

InterestRegionsTask Relevant Feature

PersonDetect xS

Figure 6-1: Overview of the visual attention system. Images are either 160× 120 or 320×

240 pixels. The visual motion model (dashed box) selects for fast moving edges in the

foreground. It can be informed by the kinematic model to discount ego-motion and to

select for the robot’s hand. The InterestRegions module detects convex shaped edges, both

moving and stationary, at multiple scales. This is the principal visual feature that we use

throughout this thesis. A block-matching tracker is used to track these features during a

task. The PersonDetect module integrates a face detector, skin color model, and interest

points in order to detect and track human features. PersonDetect will be described in

Chapter 8. Finally, the Sensory EgoSphere consolidates the visual features into a single

attention point, xS , to direct the robot’s eye gaze.
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2001). The principal components of Domo’s visual attention system are described in Figure

6-1. In this chapter we present the visual motion model, the InterestRegions module, as

well as the Sensory EgoSphere.

6.1 Visual Motion

Visual motion can be a robust and powerful attentional cue for robot perception. For

example, Fitzpatrick et al. (2003) use the motion generated through a robot’s contact with

the world to visually segment an object from its background. In human environments, visual

motion often corresponds to objects under a person’s or robot’s control. However, there can

be multiple sources of visual motion, such as the ego-motion of the head, a person within

the environment, or motion of the manipulator. Segregation of multiple motion sources

can be difficult. On Domo, we use a visual motion model to detect image points that

are moving significantly with respect to the background. This model, developed by Kemp

(2005), is briefly reviewed in the next section. We then show how kinematic predictions of

head motion and manipulator motion can be used to segregate multiple motion cues.

6.1.1 Visual Motion Model

In the approach of Kemp (2005), the global background motion is estimated using by fitting

a 2D affine model to the edge motion(Stiller and Konrad, 1999). Individual edges are then

weighted based on their difference from the model’s global prediction. Consequently, an

edge’s weight reflects both the estimated speed of an edge point and its difference from the

global background motion.

The global background motion, A, is represented as a 2×3 affine matrix that transforms

a pixel location [u1, v1]T in image I1 into pixel location [u2, v2]T in image I2,

 u2

v2

 =

 a1 a2 a3

a4 a5 a6




u1

v2

1

 . (6.1)

This model can account for global changes in translation, scale, rotation, and shearing. The

algorithm for estimating A is described in detail in Kemp (2005). It can be summarized as

follows:
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1. Find the edges in consecutive images I1 and I2 using a Canny edge detector (Canny,

1986).

2. Using the standard technique of block matching (5 × 5 block over 11 × 11 window),

estimate the translation ti of each edge pixel between images.

3. For each translation ti, also compute the covariance matrix, Ci, of the block matching

error.

4. Use weighted linear-least-squares to fit the model A to translations ti when weighted

by Ci.

5. Iterate the fitting process in order to remove edge points that are unlikely to be part

of the background motion.

6. Using the Mahalanobis distance, go back and weight each edge by how well it fits the

motion model.

This algorithm generates a weighted edge map where the weight of each edge is proportional

to its velocity and its difference from the global background motion. Consequently, it selects

for fast moving edges in the foreground. By computing on edges instead of pixels, the

model can be estimated in real-time and also reduces the use of uninformative points. The

algorithm executes at approximately 25Hz using a 3GHz Pentium and 160×120 images and

at 11Hz for 320× 240 images.

The weighted linear least squares solution can be considered the maximum likelihood

estimation of the model A where the error is Gaussian distributed according to the covari-

ances Ci. Also, the Mahalanobis distance is in units of image pixels, so working with these

distances is intuitive. Domo’s visual attention system selects the top n edge points with the

largest weights as the most salient locations in the image. If this weight is below a conser-

vative threshold, the detection is ignored. Sample output from the algorithm is shown in

Figure 6-2. Because the algorithm selects for edges moving with respect to the background,

small amounts of camera motion are tolerated. This is important when working with an

active vision head such as Domo’s.
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Figure 6-2: Output from the visual motion model using head motion prediction (bottom)

and without (top) while the camera tracks a moving person. The edge map (left) shows

that the edges of the person are weighted more strongly when the prediction is included,

allowing the person’s head to be detected. The green circle shows the interest region selected

by the InterestRegions module of Section 6.2. The direction and magnitude of the motion

estimated by the affine model are shown by the green lines (magnified 2×).

6.1.2 Visual Motion Prediction

Predictions can tell perceptual processes at least two things: where to look for an event

and how that particular event will appear. They enable limited computational resources

to perform effectively in real time by focusing the robot’s attention on an expected event

(Endo and Arkin, 2003). A robot can know the translational and rotational velocity of its

body through a kinematic model. This can be used to extend our visual motion model in

order to predict the perceived visual motion as the robot moves its hand or head.

Head Motion Prediction

We would like to find an affine matrix Aego that describes the global optic-flow due to

ego-motion of the robot’s head. Aego predicts the motion of a pixel between image I1and
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image I2 as  u2

v2

 = Aego


u1

v1

1

 .

This prediction is used to inform the block-matching process in the visual motion model.

The block matching estimated the translation of each edge pixel by searching over an 11×11

pixel window centered at [u1, v1]T in I2. Pixel translations greater than 5 pixels cannot be

matched because they fall outside of the search window. This limits the effectiveness of the

model during fast camera motion. However, using Aego, we can center the search window at

the predicted location [u2, v2]T in I2. As shown in Figure 6-2, this allows the visual motion

model to be robust during the rapid head motions that are common for an expressive, social

robot head.

To estimate Aego, we use proprioceptive feedback to compute C2TC1, the transform

describing the motion of the camera between image frames I1 and I2. This is simply

C2TC1 = C2TW WTC1,

where C1TW is the world-camera transform when I1 was captured. If head motion is

not present, then C2TC1 = I.

A stationary point in the world, xW , viewed from {C} over time has coordinates
x1

y1

z1

 = C1TW xW ,

and 
x2

y2

z2

 = C2TW xW .

With a pinhole camera, this corresponds to pixels k1 =
[

fx1

z1
, fy1

z1

]
and k2 =

[
fx2

z2
, fy2

z2

]
. We

can now describe the image motion of a stationary 3D point, xW , viewed through a moving

camera: 
z2
f k2

z2

1

 = C2TC1


z1
f k1

z1

1

 . (6.2)
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We can make the approximation z2 ≈ z1 (weak perspective camera constraint) if the dif-

ference in depth is small compared to the average depth. For head ego-motion, this is a

fair assumption if we assume that the background is far from the camera (Kemp, 2005). A

characteristic of humanoid ego-motion is that the predominant source of optic flow is from

camera rotation and not translation. Domo is currently stationary, so ego-motion will not

be induced by motion of the body1. Consequently, we ignore image motion resulting from

camera translation, allowing us to reduce Equation 6.2 into our desired form. This gives

 u2

v2

 ≈

 r1 r2 r3f

r4 r5 r6f




u1

v1

1

 , (6.3)

where we use the upper-left 2× 3 submatrix, R, of C2TC1.

Hand Motion Prediction

We now consider how to select for visual edges that correspond to the robot’s moving hand.

The visual motion model generates a weighted edge map, where fast moving edges in the

foreground are weighted highly. However, given an affine model, Ahand, of the expected

hand motion in the image, we can adapt the visual motion model to select for the moving

hand but ignore other objects moving in the foreground. As in the previous section, we

use Ahand to center the block-matching window at the predicted location of an edge pixel.

Consequently, pixels that move according to the Ahand model should fall within the 11×11

search window. Motion of other objects in the environment, such as a person, will be

naturally discounted.

There is one subtle point to this. The motion model selects for foreground edges that

differ from the predicted background motion. However, we now wish to select for edges that

match the prediction of Ahand. Consequently, we must invert the weight assigned to each

edge. Within the motion model, each edge is weighted by the Mahalanobis distance, where

a large distance indicates foreground motion. If M is the matrix of Mahalanobis distances

for each edge, then we substitute Mhand = max(0, k −M) for M using a constant k.

It is straightforward to estimate Ahand, which has the same form as in Equation 6.1.

We select a point of interest, xH , in the hand frame {H} such as a fingertip or the tip of
1For mobile platforms, the ego-motion estimate can be limited to periods when the body is stationary

but the head is moving.
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a grasped object. When viewed from camera frame {C} at the sample times of images I1

and I2, this point has coordinates 
x1

y1

z1

 = C1TH xH ,

and 
x2

y2

z2

 = C2TH xH ,

corresponding to pixels k1 =
[

fx1

z1
, fy1

z1

]
and k2 =

[
fx2

z2
, fy2

z2

]
. If xH undergoes translation

but not rotation, then

Ahand =
1
f

 f 0 x2
z2
− x1

z1

0 f y2

z2
− y1

z1

 .

Typically, we are only interested in selecting for motion corresponding to the point xH

and not the motion of the entire hand. Consequently, it is sufficient to ignore the effects of

rotation .

6.2 InterestRegions

We saw previously that the visual motion model selects for strong moving edges in the

image. The regions around these edges will often correspond to important visual features.

In order to incorporate visual information distributed near strong motion edges, we use a

multi-scale interest point operator developed by Kemp (2005). This algorithm is embedded

in the InterestRegions module. We review Kemp’s algorithm here.

The interest point operator detects the position and scale of significant shape features

within the image. Several different shape features can be detected, including circles, parallel

lines, and corners. In order to meet the real-time constraints of our work, we have only used

the circular shape feature. Therefore, an interest region is defined as a circular image patch

at a given radius and location in the image. The other shape features would certainly expand

the descriptive potential of InterestRegions, and it would be straightforward to parallelize

their detection across multiple machines.
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(x,y)
 r s

r s

Figure 6-3: Voting by the interest point operator at scale s using radius rs. The figure

depicts the approximate locations in the image of the two votes cast by an edge with

orientation θ and position (x, y) (Reproduced, with permission, from Kemp (2005)).

Traditional interest point methods, often characterized as blob-detectors, rely on con-

stant contrast within an interest region. However, Kemp’s method is an edge-based ap-

proach, making it compatible with the weighted edge map generated by our visual motion

model. This algorithm has similarities to classic image processing techniques such as the

distance transform, the medial axis transform, and the Hough transform for circles (Forsyth

and Ponce, 2002).

The output of the interest point detector is a set of salient locations in the image and

their associated radii, [(u1, v1, r1), (u2, v2, r2), . . .]. The input to the detector is a set of

weighted edges where each edge ei has a weight, wi, an image location, xi, and an angle,

θi. This input is provided by our visual motion model.

A log-polar discretization is used over the space of feature scales and edge orientations.

Kemp (2005) covers the discretization process in detail. Each scale space, s, corresponds to

a circle of a given radius, rs, in pixels. At each scale space, the edges each vote on two circle

feature locations. As depicted in Figure 6-3, the two votes are approximately at distance rs

from the edge’s location and are located in positions orthogonal to the edge’s length. The

angle θi denotes the direction of the edge’s length and is in the range [−π
2 , π

2 ].

For each scale s there is a 2D histogram that accumulates the votes for interest points.

The discretization of these histograms is determined by a integer bin length, ls , which is a

function of rs such that larger scales spaces have appropriately lower histogram resolution.
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The bin indices, (bx, by), for the histogram at scale s are computed as

bs(x, θ) = round(
1
ls

(x + rs

cos(θ + π
2 )

sin(θ + π
2 )

)), (6.4)

which adds a vector of length rs to the edge position x and then scales and quantizes the

result to find the appropriate bin in the histogram.

Now, the edges are iterated over. The two votes of edge ei are weighted by wi and added

to the appropriate histogram bins. This results in the interest point detection maps, ms. In

order to soften the effects of the log-polar and histogram discretization, each 2D histogram,

ms, is low-pass filtered with a separable, truncated, FIR Gaussian. The response for each

bin within ms is ranked across all scales and the top 10 bins are selected as interest regions.

These selections are then made available to the visual attention system.

The algorithm is suitable for real-time perception. When added to the motion model,

the frame rate on a 3GHz Pentium is reduced from 25Hz to 17Hz. In our implementation

using 160× 120 images, we use 8 scale spaces ranging from 2 to 30 pixels, and the [−π
2 , π

2 ]

range is discretized into 32 possible orientations. The algorithm can also be used without

the motion model (wi = 1) to detect circular edges within a single image. Sample output

from the algorithm is shown in Figure 6-4.

6.3 The Sensory EgoSphere

The Sensory EgoSphere (SES) is short-term memory mechanism for a robot. The notion

originated with Albus (1991) and was further developed by Peters et al. (2001). Using a

mechanically identical head to Domo, Aryananda (2006) has used the SES in learning the

spatio-temporal signatures of simple perceptual features. The SES, depicted in Figure 6-5,

allows perceptual features that may be sensed in different modalities, coordinate frames,

and at different times to be brought into a single, spherical coordinate frame centered on

the robot. In doing this, the data is fused according to its spatio-temporal coincidence.

The SES retains the spatial location of the data as the robot redirects its attention to other

locations. For visual features, this involves transforming from pixel coordinates to spherical

coordinates. If a visual feature is stationary in the world while the head is moving, then the

feature will be stationary in the SES frame though not in the image frame. Thus, the SES
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Figure 6-4: Output from the InterestRegions module. The motion weighted edge map (top,

left) and unweighted edge map (bottom, left) are fed to the multi-scale interest point oper-

ator. The green circles indicate the location and size of circular interest regions. Weighting

the edges by the foreground motion localizes the interest regions on salient features such as

a person’s head and the tip of the robot’s finger (top, right).
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Figure 6-5: The Sensory EgoSphere (SES) transforms a point in the world, xW , into the

stationary, spherical coordinate frame of the SES as the point xS = [θ, φ, r]. Pixel locations

of unknown depth are projected onto a sphere of fixed radius of r = 500mm.

Figure 6-6: View of the Sensory EgoSphere (SES). Left: View of the SES showing the

detection of a face (red) and a fiducial (green). The camera’s field-of-view projected into

the SES is shown in blue. Middle: The detected features in the image. Right: The spatial

distribution of face detections over time within the SES.
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provides a head-pose invariant frame of reference for perception, allowing for stable visual

tracking when a tracked feature is detected intermittently or with high latency.

Domo uses a simplified version of Peters’ SES formulation as its torso is stationary with

respect to the world. A point in the SES frame {S} has spherical coordinates xS = [θ, φ, r],

where θ is yaw in the transverse plane, φ is pitch in the sagittal plane, and r is the radius.

The SES is defined in the [−π
2 , π

2 ] hemisphere with [0, 0] pointing straight ahead of the body.

As shown in Figure 4-1, we define {S} as a translation, tS
Worg, of the world frame {W} such

that its origin is at the midpoint between the robot’s eyes when it is looking straight ahead.

Given this, we can project a point in the world xW into SES by

[x, y, z]T = xW − tS
Worg

r =
(
x2 + y2 + z2

) 1
2

θ = arctan
(x

z

)
φ = arcsin

(y

r

)
xS = [θ, φ, r].

In order to project an image pixel with unknown depth into the SES, we assume a fixed

pixel depth of 500mm and then find its world coordinates xW . This assumes that the visual

effects of head translation are small compared to rotation which is true for points far from

the camera. We visualize Domo’s SES in Figure 6-6.

6.3.1 Features in the SES

On Domo, the SES serves as a consolidation point for several types of features, including:

• A person’s face

• A person’s waving hand

• One of its hands

• The tip of a grasped object

• A randomly selected target

• The most likely location to see a face
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• A colored fiducial

The perceptual algorithms for the non-trivial of these features will be described in coming

chapters. Feature detections are added to the SES at rates from 10-30Hz. We low-pass filter

a feature’s location, allowing the head to smoothly track a feature even if it disappears

momentarily or a false detection occurs. Because the SES is larger than the camera’s

field-of-view, we would like it to eventually forget out-of-view features. Each feature has a

monostable timeout of 1s, after which it is removed from the SES unless a new detection

has been received. At any time, the output from the SES is a single target in spherical

coordinates, xS , which is used to direct the robot’s gaze. This target is selected using a

Slate arbitrator and modules compete to direct the robot’s gaze to a particular feature.

For example, a WatchHand module can direct the gaze to the robot’s hand if it has the

highest dynamic priority of all writers to the SES arbitrator.

6.3.2 Spatial Distributions in the SES

We can accumulated evidence over time of a feature’s spatial distribution within the SES.

Some features will appear in predictable regions. For example, Figure 6-6 visualizes the

spatial distribution of face detections over many hours. As we will see in Chapter 8, such

prior information can allow the visual attention system to ignore unlikely feature detections.

Torralba (2003) describes a framework that uses similar information to improve visual search

and modulate the saliency of image regions.

We can model the spatial distribution of an image feature as the probability distribution

p(xS |f). This represents the chance of seeing feature f at location xS = [θ, φ, r]. The

distribution is estimated using a 2D histogram over [θ, φ]. Each dimension of the histogram

maps to a [−π
2 , π

2 ] range of the corresponding dimension of of the SES. The histogram used

is 100× 100 corresponding to a block size of 30× 30 pixels in the image. The distribution is

updated whenever the feature appears and it is saved to disk when the robot is not running,

allowing the robot to estimate the distribution over a long period of time.

We estimate p(xS |f) for visual feature, f , as

p(xS |f) ≈ 1∑
x∈Xf

w(x)

∑
x∈Xf

w(x)δ(round(
100
π

(x− xS))), (6.5)
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where

δ(d) =


1 if d = 0

0 otherwise

and Xf is the accumulated detections of f in the SES.

We use a weighting function w(x) that reduces the influence of older detections. When

a new detection, xi, is added to the distribution, its weight is initialized at w(xi) = 1.0.

This value is decremented at a rate of ∆wf per second. Detection xi is removed from Xf

if w(xi) < 0.01. This allows the distribution to adapt to recent changes such as an object

changing location.
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CHAPTER 7

Let the Body do the Thinking

In this chapter we investigate how the robot’s physical embodiment can be leveraged to

simplify manipulation tasks. We describe several Slate modules, highlighted in Figure

1-3, that illustrate this theme. StiffnessAdapt allows a module to control the manipulator

stiffness during a task. ContactDetect is triggered when manipulator contact is made with

the world. The GraspAperture module estimates the diameter of a grasp given the pro-

prioceptive state of the hand. These modules are then combined into the SurfaceTest and

SurfacePlace modules. SurfaceTest allows Domo to reach out and verify the uncertain lo-

cation of a hypothesized flat surface. SurfacePlace exploits the robot’s compliance to place

unknown objects upright on a surface.

7.1 StiffnessAdapt

Despite its simplicity, the StiffnessAdapt module can be an effective tool for dealing with

perceptual uncertainty. By lowering the stiffness of the arm, StiffnessAdapt trades off precise

position control for compliance. Lowered arm stiffness is advantageous when contact with an

unknown surface is anticipated. It allows the hand to maintain contact and adapt its posture

without generating dangerous restoration forces. Typically, actuator saturation prevents a

manipulator from responding with low stiffness during unexpected contact (Lawrence, 1989).
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Figure 7-1: The effect of manipulator stiffness on controller response. The hand was servoed

between two targets 0.5 meters apart every 3 seconds. (Bottom) The arm stiffness was

ramped from Kps = 1.0 to Kps = 0.0 . (Middle) Blue indicates the distance of the desired

hand location from the first target. Red indicates the hand’s distance from this target.

(Top) Blue indicates the magnitude of the hand’s velocity. The red line illustrates the

learned decision boundary, gv(Kps), for the ContactDetect module described elsewhere.
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However, the springs in Domo’s actuators allow the manipulator to exhibit a low stiffness

even above the control bandwidth of the actuators.

The stiffness for each joint of the arms and hands is specified by the controller parameter

0 ≤ Kps ≤ 1 from Equation 4.4. This DSP controller essentially simulates a virtual torsion

spring at the joint with spring stiffness Kps. Therefore, the stiffness is controlled in joint

space and not Cartesian space. Figure 7-1 shows the effect of varying Kps on the controller

response. As stiffness is lowered, the manipulator position control performance degrades.

However, an integral term in the controller, as well as secondary control loops such as visual

servoing, can be used to improve the positional accuracy. Functionally, StiffnessAdapt sim-

ply provides arbitration among competing modules that require a particular arm stiffness.

The request with the highest priority, as described in Section 5.2, is then transmitted to

the DSP controller. Ideally, a module would learn a desired arm stiffness for a task, or

use sensory feedback to adapt the stiffness. In our work, the joint stiffness requested by a

module is determined experimentally.

7.2 ContactDetect

We would like to use the robot’s proprioceptive state to detect when the manipulator makes

contact with the world. Huber and Grupen (1994) have demonstrated a single detector that

fuses joint torques, positions, and velocities to localize the contact location on a finger. Be-

cause of Domo’s relatively coarse proprioceptive knowledge, we adopt a simplified approach

that detects contact but does not localize the contact point. Our ContactDetect module

partitions the perceptual task into two separate detectors. In the first, low manipulator

stiffness is used to transform contact forces in to detectable motion at the hand. In the

second, high manipulator stiffness allows contact forces to generate detectable errors in a

dynamic model. ContactDetect determines which detector to use based on the manipulator

stiffness commanded by StiffnessAdapt. Figure 7-2 illustrates the ContactDetect module on

Domo.

7.2.1 Contact Motion

This method of contact detection simply monitors the stiffness of the manipulator and the

velocity of its perturbed hand. When the arm has low stiffness, we expect that disturbance
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Figure 7-2: Detecting manipulator contact by using low stiffness and by using a dynamic

model. (Top) A bottle is held by the right hand and the right arm has low stiffness. When

contact forces generated by the left hand cause the right hand to to move, ContactDetect

triggers a grasp reflex. (Bottom) When the arm has high stiffness, torques generated by

human contact violate the prediction of a dynamic model. This triggers the WatchHand

module to direct the eye gaze to the robot’s hand.
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forces will cause unexpected hand motion. As shown in Figure 7-1, the maximum velocity

of the hand decreases with the manipulator stiffness as it tracks a target. The stiffness is

defined by the controller gain Kps while the magnitude of the instantaneous hand velocity

is
∥∥∥JΘ̇

∥∥∥, where the Jacobian J converts joint rates to a Cartesian velocity at the hand. We

define vmax = max(
∥∥∥JΘ̇

∥∥∥) as the maximum velocity of the hand, over time, as it tracks a

target.

In order to detect contact, we would like to learn a function gv(Kps) such that gv(Kps) ≈

vmax. We used the LIBSVM package (Chang and Lin, 2001) for support vector regression

(SVR) to learn gv(·) offline using a Gaussian RBF kernel. First, the hand was servoed

between two targets 0.5 meters apart every 3 seconds for two minutes. Simultaneously, the

arm stiffness was ramped from Kps = 1.0 to Kps = 0.0. For each value of Kps, we collected

vmax. The SVR was then trained on each pairing of Kps and vmax. The top row of Figure

7-1 plots gv(Kps) versus Kps.

ContactDetect signals that external contact has been made when
∥∥∥JΘ̇

∥∥∥ − gv(Kps) is

above a threshold. This method is best suited for when the manipulator exhibits low

stiffness and the disturbance velocity of the hand is large given contact. It is susceptible to

false-positives when the stiffness is high. As a consequence, ContactDetect ignores detections

when Kps > 0.5.

7.2.2 Contact Forces

The joint-space form of manipulator dynamics is

τdyn = M(Θ)Θ̈ + V(Θ, Θ̇) + G(Θ),

where M(Θ)Θ̈ is the torque due to mass accelerations, V(Θ, Θ̇) is the centrifugal and

Coriolis torque, and G(Θ) is the torque due to gravity (Craig, 1989). Given this model,

the error between the predicted joint torques, τdyn, and the sensed torques, τsense, can be

used to detect reaction forces between the manipulator and the world.

A complete model requires estimating the mass distribution of the arms. In practice,

dynamic models can be difficult to obtain and calibrate. In addition, the joint acceleration

is difficult to measure precisely due to sensor resolution and anti-aliasing errors. However,

the presence of external contact forces can be detected using some common model simplifi-

cations. We assume that V(Θ, Θ̇) = 0 and approximate the inertia tensor of M(Θ) using a
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Figure 7-3: (Left) The sensed torque (black) and the predicted torque (red) for the shoulder

pitch joint during non-contact reaching. (Right) The same measurement while a person

makes contact with the arm during reaching.

point mass for the robot forearm and bicep. Using the recursive Newton-Euler formulation,

we can predict the joint torques as τdyn = M(Θ)Θ̈ + G(Θ) (Gourdeau, 2005).

The model error, defined as τdyn − τsense, is used to signal contact. As shown in

Figure 7-3, the error is large when manipulator contact is made. However, during dynamic

reaching, errors can also result from our model simplifications. Therefore, we distinguish

between errors induced by contact and those induced by unmodeled dynamics.

This is done using supervised, offline learning of an error histogram for each joint given

each type of error. Each of the 8 histograms (4 DOF, 2 categories) are computed using

data collected during reaching movements sampled across the manipulator’s workspace.

Two trials were conducted. During one, the arm reached freely to its target. During the

other, a person applied contact disturbances to the arm as it reached. During each trial,

the error τdyn − τsense (Nm) was sampled at 10Hz and labelled according to the trial.

Figure 7-4 shows these histograms. We see that contact errors are largest for the first two

joints (pitch,yaw) of the shoulder. For the other joints, the two error types are difficult

to distinguish. Consequently, only the shoulder joints are used signal contact. Contact is

signaled when the magnitude of the prediction error is above a threshold and it is unlikely

that the error is due to reaching dynamics (as measured by the histograms).
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Figure 7-4: Error histograms for the torque prediction of the first four joints. The arm exe-

cuted reaching movements sampled across its workspace. At 10Hz the error (Nm) between

the predicted and sensed joint torque was measured. Error distributions were measured for

both non-contact reaching (left) and when contact disturbances were applied by a person

during reaching (right). During normal operation, contact is signaled for a joint when the

measured error is unlikely given the non-contact distribution. Contact errors are largest for

the first two joints (pitch,yaw) of the shoulder.
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7.3 GraspAperture and GraspDetect

The grasp aperture, typically defined as the distance between the thumb and forefinger, is

a common measure used when studying human manipulation. Prior to grasping an object,

a person’s grasp aperture varies according to the object being grasped and their perceptual

uncertainty about the object (Mon-Williams and Tresilian, 2001). On a robot, the grasp

aperture can be used to estimate the size of an unknown, grasped object. For example,

the grasp aperture created by a power grasp on a cylinder is proportional to the cylinder

diameter. Ideally, the grasp aperture is measured directly using a kinematic model of

the robot’s hand. However this can be difficult due to non-ideal joint sensing, unmodeled

kinematics, and compliant effects in the robot’s finger and skin. Also, the distance between

the thumb and forefinger is not always a good measure of object size as this distance can

vary depending on the grasp. For some grasps, these digits may not even make contact with

the object.

On Domo, there is substantial compliance in the finger. As shown in Figure 4-10, the

compliant fingertip and skin allow the finger surface to deform during grasping. However,

this deformation cannot be measured directly as it occurs between the joint angle sensor and

the object. Consequently, it would be difficult to measure the grasp aperture kinematically

without modeling the complex effects of the compliance.

Instead of building a detailed hand model, we used support vector regression (SVR)

(Chang and Lin, 2001) for supervised, offline learning of the map between the hand’s joint

angles and the grasp aperture. Training data was gathered for 50 trial power grasps formed

on five cylindrical objects of known diameters between 25mm and 75mm. Because the

power grasp is force controlled, we can manually apply disturbances to the object and cause

displacement from its equilibrium pose. For limited displacements, the fingers will maintain

contact with the object. In this way, we sampled the range of joint postures that result in

a stable grasp for each object. As each object was displaced, the four joint angles of the

hand were recorded and labelled with the object’s diameter. Using the data from all trials,

the function ga(Θ) was learned using SVR and a Gaussian RBF kernel. ga(Θ) predicts the

diameter of a grasped cylinder given the hand configuration Θ.

In Figure 7-5 we show the predicted grasp aperture for test objects of different diameters

from the training set. For each of the six test cylinders, the object was grasped and manually
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Figure 7-5: The predicted grasp aperture ga(Θ) (Y axis) versus the diameter of a known,

grasped cylinder (X axis). For each of six test cylinders, the object was grasped using

force control. The object was then manually moved about the full grasp workspace that

permitted all three fingers to remain in contact. The error bars show the maximum extent

of the predicted aperture around its mean.

moved about the set of postures that permitted all three fingers to remain in contact. We

see that ga(Θ) can predict the cylinder size within 10mm across the set of stable grasps.

In fact, the natural resting grasp posture does even better. As the object is moved far

from this pose, the performance degrades. The GraspAperture module computes ga(Θ) in

real-time during task execution. As we will see, modules such as SurfacePlace can use the

grasp aperture feature to adapt their behavior.

Related to GraspAperature is GraspDetect, which signals that a stable grasp has been

made on an object. As in the work of Connell (1989), GraspDetect is informed by the

sensory state of the hand in the world rather than the internal state of the grasp controller.

It relies on three conditions to detect a grasp. First, it monitors the net torque applied by

the fingers. If it is positive (closing) and above a threshold, then it is assumed that the

controller is forming a grasp. Second, if the net angular velocity of the fingers is close to

zero, it is assumed that the fingers are in a stable state. Third, if ga(Θ) > 20mm, then it

is assumed that fingers are wrapped around an object and not resting on the palm of the

hand. If all three conditions are true, then GraspDetect signals a stable grasp.
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7.4 SurfaceTest

In unstructured environments, it can be difficult to use vision alone to detect with certainty

the presence of an important feature. Fortunately, a robot can use its body to actively test

a hypothetical feature location to learn more. In this vein, the SurfaceTest module uses

the robot’s arm to verify the existence and location of a reachable surface. People exhibit

a similar behavior when placing an object on a surface in the dark. They will often first

reach out and touch the surface. This action serves to reduce their perceptual uncertainty

and confirm their hypothesis of where the surface is.

Our implementation of SurfaceTest is specialized for a shelf surface that has a visible

leading edge, though we are not necessarily restricted to these surfaces. The shelf edge

is a common, task relevant feature in domestic settings. In terms of the generic manual

skill algorithm of Section 5.3.3, SurfaceTest is a compensatory action. The SurfaceTest

algorithm is described in Figure 7-6.

To begin, SurfaceTest identifies a shelf edge through modules VisualSearch and ShelfDe-

tect. VisualSearch causes the robot’s gaze to scan a room until ShelfDetect is signaled.

ShelfDetect uses an HSV color filter and blob detector to detect two green stickers marking

the edge of a shelf. This simple detector is not especially robust as there are often other

green objects in Domo’s office environment. Also, the apparent color of an object changes

as the lighting changes throughout the day. Fortunately, SurfaceTest acts to reduce this

perceptual uncertainty. ShelfDetect could be readily replaced by a more sophisticated tech-

nique using stereo information or surface texture, allowing SurfaceTest to work on a variety

of surfaces without markers.

Once a shelf edge has been identified, SurfacePlace first defines an image target at a

fixed height above the edge midpoint, corresponding to a point xS in the ego-sphere. Using

VisualFixate, the head servos xS into the center of the image. Once the target is centered,

the camera is held fixed so that visual occlusions of the shelf do not effect the arm controller.

The depth of the shelf edge is unknown, so CameraReach now reaches with an arm in depth

along the camera’s optical axis until contact is made. First, the arm closest to xS is selected

and its hand is brought to a defined location [0, 0, zstart]T in the camera frame {C}. Using

the inverse kinematic model, the hand is extended along the optical axis towards [0, 0, zend]T .

We choose zstart and zend so the arm starts close in to the body and ends at an arms
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SurfaceTest

CameraReach

CompliantLower

ShelfDetect

ContactDetect

VisualSearch

RetractArm

ContactDetect

VisualFixate

Ready Wait until VisualSearch, ShelfDetect, and VisualFixate find and center a candidate

shelf edge in the image.

Precondition Use CameraReach to extend the arm along a ray from the camera to a fixed

depth above the shelf edge.

Precondition If premature contact with the shelf is signaled by ContactDetect, reduce the

reach depth.

Control Use the compliant force control of CompliantLower to move the hand down and

make contact with the surface.

Success If ContactDetect signals contact with the shelf, record the posture, prior to de-

scent, that led to success. Allow RetractArm to bring the arm back down to the

robot’s side.

Figure 7-6: The SurfaceTest module uses the robot’s body to verify the location of a

reachable surface.
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length from the head. Often, the reach stops short of zend due to premature contact between

the shelf edge and the forearm. The arm can safely stop short of its target because its

stiffness is kept low. If ContactDetect is signaled prior to reaching zend, the arm posture is

adjusted by retracting a fixed distance from the contact posture. At this point we assume

that the hand is positioned just above the front edge of the shelf. This is typically true,

though a richer search strategy could be implemented based on the contact forces sensed at

the hand.

Next, the CompliantLower module brings the hand to rest on the surface. It uses the

controller of Equation 4.4 to generate a downward force fz at the hand such that Kps = 0

and τbias = JT[0, 0,−fz, 0, 0, 0]T . If a large hand displacement is detected, SurfaceTest

assumes that either the shelf is out of reach or the feature detection was erroneous. Oth-

erwise, ContactDetect detects the surface contact and the joint posture of the arm prior

to CompliantLower is recorded. In this way, SurfaceTest’s internal model of a surface is

simply the joint angles that bring the hand above the surface. Other modules can now use

this direct representation to easily control the arm relative to the surface.

7.4.1 Results

In total, we have run SurfaceTest on Domo for approximately one hundred trials. In one

experiment, we tested SurfaceTest for 15 consecutive trials. For each trial the shelf was

moved to an arbitrary location near the robot. The shelf height was varied between 50 mm

and -150 mm relative to the shoulder. Some locations were deliberately out of reach of the

robot, and some were too close in. A trial was successful if the robot robot’s hand came to

rest on the front edge of the shelf and SurfaceTest correctly verified that the shelf could be

reached. The module was successful for all 15 trials, and the results of five of the trials are

shown in Figure 7-7. The robot is shown executing the module in Figure 7-8. Although the

algorithm is shown to be robust to the shelf location and height, the arm can get trapped

under the shelf if it is too close to the body. In this case, coarse knowledge of the surface

depth would be useful in guiding CameraReach.
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Figure 7-7: The reaching trajectory, in meters, of the hand during five consecutive trials of

SurfaceTest. The final pose of the hand is annotated. The shelf surface is moved to five

arbitrary locations in the robot’s workspace and the shelf height varied. In trials A, B, and

C, the shelf height is at 50mm relative to the shoulder. In trials D and E, the height is at

-150mm . For trials A, B, and D, Domo successfully rests its hand on the front edge of the

shelf. In trials C and E, Domo correctly detects that the shelf is out of reach. For trial B,

the shelf is much closer in and the arm contacts the shelf prematurely. This is detected and

the posture is adjusted to successfully find the shelf edge.

Figure 7-8: Domo’s SurfaceTest behavior verifies the presence and location of a shelf. In

this demonstration, the shelf location is first moved and then SurfaceTest reestimates the

location.
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SurfacePlace

SurfaceReach

SurfaceTest

TipPose

GraspDetect

TipEstimate

CompliantLower

GraspRelease

ContactDetect

RetractArm

StiffnessAdapt

GraspAperature

Ready Wait until SurfaceTest detects a useable surface, GraspDetect signals a grasp on

an object, and TipEstimate find the alignment axis of the object.

Precondition Estimate if the object is to be placed upright or lying down. Use Surfac-

eReach and TipPose to reach to above the surface and align the object to the surface.

Compensatory Use StiffnessAdapt to decrease the wrist stiffness, allowing the object to

self-align during contact.

Control Use CompliantLower to lower the object on to the surface.

Success When ContactDetect is signaled, release the grasp and relinquish control to Re-

tractArm.

Figure 7-9: The SurfacePlace module transfers an object from the robot’s hand to a surface.
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7.5 SurfacePlace

Human environments are full of flat surfaces, and many useful tasks involve placing objects

on surfaces. Stocking goods, setting the table, arranging a product display, placing a part

onto a conveyor belt, and putting away dishes are just a few of the everyday tasks that

require surface placement. Fortunately, many man-made objects are designed so their in-

trinsic mechanics assist placement in a stable, canonical orientation. For example, a wine

glass has a wide base allowing it to remain upright on a shelf. We would expect a pencil

to rest on its side. There are exceptions of course. Books tend to lay on their sides, but

convention dictates that they rest upright on a bookshelf.

In this vein, the SurfacePlace module takes a grasped object and places it on a nearby

flat surface in one of two canonical orientations: upright or lying down. The orientation

is chosen based on an estimate of the object’s stability. The SurfacePlace algorithm is

described in Figure 7-9 in terms of the generic manual skill algorithm of Section 5.3.3.

This algorithm requires a few assumptions about the object’s shape in order to align its

base to the surface. First, we define the object’s alignment axis as a = xH
t −pH

t , where xH
t

is the furthest tip of the object from the wrist’s center of rotation and pH
t is the center of

the palm (See Figure 9-8 for an illustration). We assume that the grasped object’s base is

aligned when a is normal to the surface. This assumption is true for a variety of everyday

objects such as bottles, books, and many hand tools. We will show how xH
t is estimated by

the TipEstimate and TipPrior modules in Section 9.1. The alignment axis can be controlled

relative to the surface using the TipPose module of Section 9.2.

Once the alignment axis is detected and SurfaceTest has located a useable surface,

SurfaceReach positions the arm just above the shelf surface. It then estimates the object’s

placement stability using both vision and haptics. We define the stability, η, as the ratio

between the size of its base and its length. Assuming that the base size is well characterized

by the grasp aperture, this is measured as η = ga(Θ)
‖a‖ . An object with η < 0.25 or ga(Θ) <

30mm is first rotated so a is parallel to the surface (lying down) because it would likely

fall over if placed upright. Once the object has been aligned, CompliantLower drops the

arm stiffness and brings the object down onto the shelf surface using force control. If

ContactDetect is signaled, the grasp on the object is released and the arm retracted.

An important aspect of SurfacePlace is that it exploits compliance in the wrist and hand,
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Figure 7-10: SurfacePlace uses contact with a surface to passively align the base of an

object to the surface. (Left) A downward force applied to the object creates a realignment

moment about the contact point. Ignoring the object’s mass and friction, a lower grasp

or a wider base will increase the robustness of this strategy. We can expect success when

θs + θg < π
2 for θg = tan−1 h

r . (Middle) A 2D histogram showing the number of successful

trials (black=0, grey=1, white=2) in placing a bottle upright on a shelf as the wrist stiffness,

Kps, and the misalignment angle, θs, are varied. We tested −40◦ ≤ θs ≤ 40◦ in 5 degree

increments and wrist stiffness Kps ∈ [0.0, 0.5, 1.0]. As the stiffness is lowered, the tolerance

to misalignment improves. (Right) The bottle used in this experiment.

as well as contact with the surface, to align the object’s base to the surface. In this way,

Domo can achieve a goal orientation despite uncertainty in the pose of the grasped object.

This type of strategy has a long history in manipulation, where the intrinsic mechanics of an

object in contact with the environment are used to reduce uncertainty. Notable examples

include Mason’s analysis of manipulation funnels (Mason, 1985), Inoue’s use of force sensing

for peg-in-hole tasks (Inoue, 1979), and the development of the remote-center-compliance

(RCC) wrist for passive alignment of objects (Whitney and Nevins, 1979).

7.5.1 Results

SurfacePlace relies upon the manipulator compliance to assist in realignment of an object

while placing it. As shown in Figure 7-10, we measured the success of SurfacePlace in placing

a bottle upright on a shelf as the wrist stiffness, Kps, and misalignment angle, θs, are varied.

We define θs as the angle between the surface plane and the object’s base. As Figure 7-10
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illustrates, in the ideal case the expected misalignment tolerance is θs < π
2 − tan−1 h

r for

base radius r and grasp height h. We can deduce that SurfacePlace should be successful

when |θs| < 21.2◦ for the object used in this experiment, where r = 35mm and h ≈ 90mm.

During the experiment, the shelf location was fixed and the bottle was repeatedly handed

to the robot in a near identical pose. When grasped, the bottle’s base is approximately

parallel to the bottom of the hand, allowing for θs to be measured kinematically. We

tested −40◦ ≤ θs ≤ 40◦ in 5 degree increments and wrist stiffness Kps ∈ [0.0, 0.5, 1.0]. We

conducted two trials of each of the 51 parameter combinations. The force at the hand was

approximately [0, 0,−4]T Newtons. A trial was successful if the bottle was left standing

upright on the shelf. The experiment results are shown in Figure 7-10 as a 2D histogram.

They demonstrate that the misalignment tolerance improves as the wrist stiffness is lowered.

For Kps = 0, the tolerance is roughly ±20 degrees as predicted.

In practice, many other factors complicate the success of SurfacePlace. Unstable objects

can be disturbed as the hand is withdrawn. The alignment is only as good as the perception,

and the object assumptions do not always match reality. In the absence of additional

perceptual information, it seems that the best strategy is to keep the wrist as compliant

as possible. This strategy is appropriate so long as the alignment is within the acceptable

tolerance. However, if feedback from force, visual, or tactile sensing is integrated, then the

stiffness could be increased in order to actively control the wrist.

In a second experiment, we tested SurfacePlace on the wide range of everyday objects

shown in Figure 7-11. These objects include a stuffed animal, shoe box, large water bottle,

headphone caddy, spoon, paint roller, hand broom, food tin, small water bottle, duster,

and a spray bottle. In Figure 7-12, we show the robot’s estimate of the object stability, η,

versus the hand measured value for each of these objects. Most of the estimates fall within

10% of the hand measured values. However, the duster’s long length causes it to leave the

camera’s field-of-view, which increased the error in its estimate for η. Likewise, the shoe

box and headphone caddy have larger errors because their shapes violate the assumptions of

SurfacePlace. The broom, duster, and spoon were correctly placed on their sides due to their

low stability. The paint roller, with η = 0.26, is placed either upright or lying down. It is the

most difficult to consistently place upright due to its small, 40mm diameter base. If better

resolution force sensing were available at Domo’s wrist, then the object’s mass distribution

could also be estimated to improve the robustness of the stability measurement.
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Figure 7-11: A variety of everyday objects were successfully tested with the SurfacePlace

module, including (left-right): a stuffed animal, shoe box, large water bottle, headphone

caddy, spoon, paint roller, hand broom, food tin, small water bottle, duster, and a spray

bottle.

Object η measured η sensed

animal 0.48 0.50

box 1.15 0.82

large bottle 0.56 0.54

caddy 0.61 0.49

spoon 0.21 0.24

roller 0.29 0.26

broom 0.24 0.23

food tin 1.20 0.98

small bottle 0.57 0.49

duster 0.13 0.24

spray bottle .36 .42

Figure 7-12: SurfacePlace estimated the placement stability, η, for a variety of objects. η

is sensed by the robot as the ratio between its grasp aperture and the object’s length. The

hand measured value is also shown for comparison. If η < 0.25, the object is placed lying

down instead of upright.
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In total, we have run SurfacePlace on Domo over two hundred times. Within the appro-

priate class of objects, it is nearly always successful at its task. Failures are predominantly

caused by a poor grasp on the object such that the misalignment tolerance is exceeded. In

these cases, CompliantLower creates moments on the object that cause it to rotate until it

lies flat on the surface.

7.6 Discussion

In this chapter, we have demonstrated that a robot can leverage its physical embodiment

to assist in perception and reduce uncertainty. It illustrates the design theme of let the

body do the thinking. In particular, we have emphasized algorithms that do not require

precise geometric and kinematic knowledge about the state of the robot and the world. For

example, Domo leverages low manipulator stiffness and passive compliance to detect unex-

pected contact with the world or to allow a grasped object to reorient during placement.

The SurfaceTest module demonstrates a compensatory action, where the robot takes action

to test a perceptual hypothesis. We should also note that, as much as possible, modules

such as GraspDetect use the sensory state of the robot in the world rather than an internal

representation of its state. In our experience, this has increased the robustness and respon-

siveness of the robot, especially during unexpected task failures that would be difficult to

include in an internal model.

The modules presented in this chapter could be expanded in several ways. Force sens-

ing of the contact moments during SurfacePlace would allow Domo to actively adjust the

object’s orientation. SurfaceTest could be expanded beyond shelf edges to include any

type of flat surface. The limited force sensing resolution and the simple model used in

ContactDetect prevents Domo from knowing the wrench of interaction forces acting on the

manipulator. This information would be useful in developing more adaptive algorithms.

Finally, StiffnessAdapt simply sets the manipulator stiffness to a hand designed value at a

modules request. It would be profitable for this stiffness to be autonomously adapted in

response to sensory feedback.
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CHAPTER 8

Cooperative Manipulation

In this chapter, we investigate several aspects of our cooperative manipulation design strat-

egy. The relevant Slate modules are highlighted in Figure 1-3. We present the PersonDetect

and VocalRequest modules that enable Domo’s real-time interaction with people. We then

describe the AssistedGrasp module that cues a person for assistance in grasping an object.

Finally, we test experimentally the hypothesis that people will intuitively assist Domo in a

manipulation task without prior instruction.

8.1 Perception of People

People expect a robot collaborator to be responsive to their presence in a room, to under-

stand the intent of their gestures, and to adapt to their feedback. Ultimately, cooperative

manipulation requires that the robot can understand referential (looking and pointing) and

goal-directed (reaching) cues. This is an open area of research involving many difficult per-

ception problems such as gesture recognition and learning from demonstration. However,

many cooperative manipulation tasks can be designed around simpler communicative cues

so long as the cues are robustly detected and a person will generate them without much

effort. For example, in the previous chapter we saw that ContactDetect can be used to

detect a person grabbing the arm as it moves. A person will intuitively generate this cue to
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Figure 8-1: During human-robot interaction, faces, hands, and fingers, are important per-

ceptual features for visual attention. As shown in green, the InterestRegions module will

often select for these features because they are well modeled as rapidly moving convex edges.

guide another person during a task. In this section, we present modules that allow Domo

to detect and track a collaborator, react to a hand waving cue, and respond to vocal re-

quests. In these real-time visual algorithms, we emphasize robustness to cluttered, everyday

environments with variable lighting.

8.1.1 Detecting Hands, Fingers, and Faces

During a cooperative manipulation task, much of a person’s attention is directed towards

the hands, fingers, and face of their partner as well their own hands and fingers. Detecting

these features can be a difficult task for a robot working in a dynamic and unstructured

environment. However, in collaboration with Kemp, we have found that the InterestRegions

module will select for these features during human-robot interaction (Kemp and Edsinger,

2006b). This result is illustrated in Figure 8-1.

The interest point operator used by InterestRegions detects convex edges that are moving

rapidly with respect to the background. A person’s hand will often produce the fastest

moving edge in the image because it is the furthest point from the arm’s center of rotation.

It also has a roughly convex projection in the image. The same holds for a person’s fingertips

and head. During interactions with Domo, people naturally gesture with these features and

bring them close to its cameras. The motion from these gestures can serve as natural cues

to direct the robot’s attention.

We evaluated the ability of InterestRegions to select for these features during human-

robot interaction. First, the robot arm reached to random targets in its workspace. During
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Figure 8-2: A random sample of image patches collected by the InterestRegions module.

These predominantly contain hands, fingers, and faces. The lighter, grey colored patches

correspond to the robot’s hand.

this reaching, a person’s interacted with the robot, creating visual dynamics such as full-

body motion, hand waving, presentation of objects, as well as physical contact with the

robot’s arm as it moved. As the person interacted with the robot, we collected approximately

4000 image samples over 4 minutes.

For each sample, we used the InterestRegions module to select the most salient region

in the image. An image patch was selected based on the scale and location of the interest

region. Figure 8-2 shows a random sample of the collected image patches. The majority of

the patches correspond to features relevant to human-robot interaction, including the per-

son’s head, eyes, hands, and fingers, and the robot’s hand and fingers. We hand categorized

200 randomly selected image patches from the data set. Figure 8-3 shows that over 50% of

these patches were of human features, and over 30% were of the robot’s hand.

This experiment was conducted while keeping the robot’s gaze stationary, but similar

results have been obtained when the head is allowed to move. Although the InterestRegions

module will detect many features that do not correspond to a person, the results suggest

that it can be used to direct the robot’s attention to locations for more specialized perception

of human features.
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Figure 8-3: Statistics of feature categories detected during human-robot interaction. We

hand-labelled categories for 200 image patches randomly sampled from the image patches

collected by the InterestRegions module. A patch was labelled as a person (black bars)

if it selected either a person’s hand, finger, head, eye, or object in their hand. A patch

was labelled as a robot (red bars) if it selected either the robot’s hand, finger, or wrist.

Patches that were neither person nor robot were labelled as other. The left plot shows the

probability of each category and the right plot shows the probability of each sub-category.

Sensory Ego­Sphere

Tracker

HandWaving

InterestRegions

Face Detector

HSVSkinModel

Image

Figure 8-4: The PersonDetect module. A face detector initializes a tracker and the tracked

face is used to build an online model of the person’s skin color. This model is combined with

InterestRegions to select for salient moving features on a person. These often correspond

to the person’s hand. Accumulated evidence of hand motion is detected as a hand waving

cue. The face and hand waving features are made available to the SES in order to direct

the robot’s attention. The SES models the spatial distribution of faces, and the model is

used to refine the face detector.
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8.1.2 PersonDetect

PersonDetect is a module in the visual attention system dedicated to perception of the

robot’s cooperative partner. As illustrated in Figure 8-4, it detects and tracks a person’s

face, models the skin color of the face, and uses the skin color and InterestRegions module

to detect a person’s waving gesture.

Tracking Faces

We use the face detector of Viola and Jones (2004) provided in OpenCV to detect one

or more faces in 160 × 120 monochrome images at 30Hz. Whenever a face is detected, a

4× 4 pixel block centered on the face is used to initialize a tracker. The tracker uses block

matching over a 6 × 6 pixel window to track the block between consecutive images. The

location of a tracked face is continually refreshed within the SES. The tracker also produces

a confidence measure, defined as the pixel sum difference between the current block and

the initialization block. The tracker times out and assumes it has lost the face when the

confidence is below a threshold for longer than 60 frames. Fortunately, people normally

move slowly within a scene, and the timeout allows the face detector time to reacquire a

frontal view of the face. The output from the face tracker is shown in Figure 8-5.

The Spatial Distribution of Faces

As Domo interacts with people and tracks their faces, PersonDetect models the spatial

distribution of the face detections within the SES. This model is learned over an extended

period of many human-robot interactions. The detections are used to estimate the proba-

bility distribution p(xS |face) of Equation 6.5, which represents the chance of seeing a face

at location xS . Figure 8-6 shows the distribution after many hours of interaction with the

robot. Once learned, p(xS |face) can provide a confidence measure on a new face detection.

For example, PersonDetect will ignore a face detection if p(xS |face) < 0.35. This prevents

the robot from falsely detecting faces on the floor or ceiling.

Modelling Skin Color

When a face is detected, the image patch within the detection bounding box is used to

automatically update a model of the person’s skin color. The patch is first converted from
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Figure 8-5: Output from the face tracker and skin color filter. The HSV skin color model

adapts to the large shift in apparent skin hue between daylight (top) and night (bottom).

Figure 8-6: The 2D histogram representing the accumulated probability distribution,

p(xS |face), for face detections within the SES. The center of the histogram, xS = [0, 0, r]

corresponds to the robot looking straight ahead. (The asymmetry occurs because we typi-

cally work off to one side of the robot)
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Figure 8-7: The probability of hand waving, p(xS
h |hand), over a 30 second trial. The

detector threshold εh = 0.1 is shown in red. The skin color model is built during the first

10 seconds of the trial. Head motion appears during time 10s to 15s with a low probability.

Two brief hand waving episodes are detected in the last 15 seconds of the trial.

RGB to HSV color space. The hue and saturation of each pixel is added to a 2D 16 × 16

bin histogram. This defines the probability distribution p(k|skin), which represents the

chance that pixel k is skin colored. Now given a region K = [k1...kn] within the image, we

compute the probability that the region is skin colored as the average of each pixel:

p(K|skin) =
1
n

∑
k∈K

p(k|skin).

Also, each contribution to the histogram is given an initial weight of 1.0. This weight is

decremented by a small (.001) amount each time step, biasing the histogram toward more

recent face detections. As shown in Figure 8-5, this allows the skin color model to adapt to

new people and changing lighting conditions. This online approach is similar to that used

on the ARMAR humanoid by Stiefelhagen et al. (2004).

Waving Detection

PersonDetect also detects hand waving. As we demonstrated previously, features selected

by InterestRegions often correspond to hands and faces. An interest region K in the image

corresponding to location xS in the SES is labelled as a hand feature whenever the region

is skin colored, it is not a face, and a face is present in the SES. In other words,

p(K|skin) > εs,
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and

p(xS |face) < εf ,

for thresholds εs and εf . This simple hand detector is prone to false positives such as moving

flesh colored objects and other moving body parts. However, false detections are generally

distributed across the SES. Repeated hand motion in one location can accumulate evidence

over time that a person is waving to the robot. Evidence is accumulated by modelling the

spatial distribution of hand detections in the SES as p(xS |hand) using Equation 6.5 with

∆whand = 0.1. If we define xS
h = Argmax

(
p(xS |hand)

)
, then PersonDetect signals hand

waving whenever p(xS
h |hand) > εh for some threshold εh. In Figure 8-7 we plot p(xS

h |hand)

as Domo interacts with a person. We see that the hand waving is readily detected.

8.1.3 PersonSeek

The PersonSeek module allows the robot’s gaze to be responsive to a person in the room.

Its algorithm is straightforward:

1. If a face is present in the SES, servo the head to track the face as they move around

the room using VisualFixate.

2. If a face is not present in the SES, periodically (0.25Hz) redirect the robot’s gaze to

locations that have a high probability of finding a person. A gaze location is drawn

from the distribution p(xS |face).

3. Whenever hand waving is detected, or p(xS
h |hand) > εh, redirect the gaze to the

waving location xS
h .

The module gives priority to hand waving over face detection. This allows a person to

guide the robot’s attention away from the face to an object of interest. Once the robot is

attending to the object, other modules can assume control of the head if desired. Otherwise,

the robot’s gaze is returned to the face after a 5 second timeout. In the absence of any

competing modules seeking control of the robot’s head, PersonSeek will be active. As a

consequence, after a manual task is complete, PersonSeek automatically redirects the gaze

to the person. This provides an intuitive cue to the person that the robot has finished its

task.
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8.1.4 VocalRequest

Domo has a simple speech interface, allowing it to respond to and generate vocal requests.

Motor noise typically degrades voice recognition performance when using microphones at-

tached to the robot’s body. Consequently, we require that a person talking to Domo wear a

wireless Sennheiser lavalier microphone. The VocalRequest module uses the CMU Sphinx2

voice recognition package that is freely available on Linux. Sphinx is configured to recognize

a small vocabulary of commands such as “Take”, “Give”, and “Shelf”. The prefix “Domo”

is required, allowing VocalRequest to ignore speech that is not directed at it. In response

to a command, Domo repeats the phrase using the Digital DecTalk voice synthesizer,

allowing the person to confirm that they were heard correctly. VocalRequest then increases

the dynamic priority of the command’s module. For example, saying “Domo, put this on

the shelf” will increase the priority of the SurfacePlace module.

8.2 AssistedGrasp and AssistedGive

With the AssistedGrasp module, Domo is able to gain a person’s help in grasping an object.

The AssistedGrasp module simply extends the robot’s open hand towards its collaborator.

If this gesture is generated in the appropriate context, it should be understood by the

collaborator as a request to be handed a particular object. If Domo is successful in enlisting

the collaborator’s assistance, Domo will detect the object being placed in its hand and form

a stable grasp on it. This simple example of cooperative manipulation has also been recently

demonstrated on the Robonaut platform (Diftler et al., 2004).

The AssistedGrasp algorithm is described in Figure 8-8 in terms of the generic manual

skill algorithm of Section 5.3.3. The module can be activated so long as one hand is empty.

First, it employs PersonSeek to find a person in the room. If PersonDetect finds a face at

location xS = [θ, φ, r], then PersonReach uses the inverse kinematic model to reach to the

target [θ, φ+ π
4 , r]. This location should be near the person’s midriff. The orientation of the

extended hand and the pose of its fingers can also be used to cue the person how to hand

the object. For example, a glass of water is usually grasped in a different orientation than

a stirring spoon. This desired orientation is directed by an external module.

Once PersonReach has achieved its target and the arm is nearly stationary, Stiffnes-

sAdapt lowers the stiffness of the arm. This increases the likelihood of ContactDetect given
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AssistedGrasp

PersonReach

PowerGrasp

PersonDetect

ContactDetect

GraspDetect

PersonSeek

RetractArm

StiffnessAdapt

GraspDetect

Ready Wait until PersonSeek and PersonDetect have located a person but GraspDetect is

not signaled .

Precondition Use PersonReach to bring an open hand near the person while directing the

eye gaze to their face.

Compensatory Using StiffnessAdapt, lower the arm stiffness to better detect contact.

Detect Using ContactDetect, signal when the object is placed in the hand.

Control Using PowerGrasp, grasp the offered object.

Success If GraspDetect signals success, allow RetractArm to lower the arm. Otherwise,

re-cue the person.

Figure 8-8: The AssistedGrasp module gains assistance from a person in order to grasp an

object.
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A B C

D E F

G H I

Figure 8-9: Domo executing the AssistedGrasp module to grasp a water bottle (A-D) and

spray bottle (E-I). Domo visually detects the collaborator (A,E) and tracks him throughout

the experiment. It reaches towards the collaborator with an open hand, signalling him to

offer an object (B,G). Domo detects the object being placed in its hand (C,H) and forms a

power grasp on it (D,I).

131



small contact forces. As the person gives Domo the object, small displacements of the

hand are sensed by ContactDetect. PowerGrasp then closes the fingers around the object.

If GraspDetect signals success, RetractArm brings the grasped object to the robot’s side.

However, if ContactDetect or GraspDetect fail, then PersonReach is reactivated and the

robot cues the person again. Figure 8-9 shows the execution of AssistedGrasp.

AssistedGrasp is typically activated by other modules that require assistance in grasp-

ing an object. However, AssistedGrasp can also assist the collaborator by simply holding

something for them. For example, a person can say “Domo, hold this” and VocalRequest

will activate AssistedGrasp, causing Domo to reach out and take the object. In another

scenario, a person can non-verbally request assistance by simply waving the object in front

of Domo. The hand motion is detected by PersonDetect which will also activate Assisted-

Grasp. In these ways, AssistedGrasp allows for natural interaction between the robot and

collaborator.

While AssistedGrasp takes an object from a person, the AssistedGive module hands

a grasped object back. Its implementation is nearly identical to AssistedGrasp, only now

GraspRelease is used instead of PowerGrasp. If a collaborator had asked for assistance by

requesting “Domo, hold this”, they can now request “Domo, give it” and AssistedGive will

cause Domo to reach to the person and hand the object back.

8.3 Testing Cooperative Manipulation

If we take cooperative manipulation as a design strategy, to what extent can we include the

actions of a collaborator into the task design? This is an important question if we wish

to develop manipulation strategies that depend on people for task success. By placing the

collaborator “in the loop”, a robot can do more with less. However, this should also be

a beneficial experience for the person, otherwise they won’t be inclined to work with the

robot. Not only should the robot do something useful, but the collaboration should occur

in a natural, intuitive manner without requiring excessive training for the collaborator or

mental effort in assisting the robot.

One way to induce such a collaboration is to have the robot use socially understood

gestures and cues. We maintain that such cues will be interpreted correctly if they are gen-

erated in the appropriate context. For example, AssistedGrasp expects that a collaborator
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Figure 8-10: One trial of the Give and Take experiment.

will understand the reaching cue as a request for a particular object. This assumes that

the collaborator will assess the task context to select the correct object. People exhibit this

behavior when they pass their coffee cup but not their dinner plate to a waitress holding a

pot of coffee.

We also maintain that a collaborator will develop an understanding of the robot’s per-

ceptual and motor limitations. A well intentioned collaborator will subsequently adapt their

actions to increase task success. As we will see, during AssistedGrasp, a collaborator will

intuitively hand the object to the robot in a pose that anticipates both the robot’s use of

the object and the limitations of its grasping.

This type of cooperative interaction as been investigated recently with the Dexter hu-

manoid (Hart et al., 2006). Dexter learned that when a desired object is out of reach, the

act of reaching towards the object can induce a person to move the object closer. However,

the person’s cooperation occurred as part of the experiment’s design and not because they

were compelled to. Can a robot compel a person to take on the role of collaborator without

instruction? In this section we present an experiment that investigates this question.

8.3.1 The Give and Take Experiment

Experiment Setup

As shown in Figure 8-10, the subject sits in front of the robot. The robot is at a table

and an oblong box ( 60mm× 85mm× 200mm) sits on the table. The box is instrumented

with a gyroscope to measure its orientation. The subject is told only that the robot is

performing an unspecified visual hand-eye calibration task, and that whenever the robot

reaches to them, they are to place the box in the robot’s hand. This explanation is to deter

the subject from explicitly considering the way in which they hand the box to the robot.

In a single trial, the robot reaches to the subject using AssistedGrasp with the hand open
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in a power-grasp preshape. The subject places the box in the robot’s hand and the robot

grasps the box, brings the box up to its cameras, and appears to inspect it. Depending on

the subject, it then lowers its arm in one of two ways.

In the first case, the robot reaches towards the person, bringing the box just in front of

and above the table edge nearest the subject. It says the word “Done” and pauses for one

second. It then releases its grasp, dropping the box onto the table, and retracts its arm.

In the second case, the robot does an identical action as in the first case, but this time it

reaches just past the table edge. Unless the subject takes the box from the robot, it falls to

the floor. This marks the end of a trial. The robot pauses for 5 seconds and then initiates

the next trial. Six trials are performed with each subject.

At the start of each experiment, the box is aligned to the robot’s body and the gyroscope

is calibrated with respect to frame {W}. We define the vector bW as the longest edge of

the box. We define the power-grasp axis as zH which is the z-axis of frame {H} in Figure

4-1. This axis corresponds to the long axis of a soda can held in a power grasp. In frame

{W} this axis is zW . The angle between zW and bW is defined as the grasp alignment error.

During each trial, we measure the average grasp alignment error during the 500ms just prior

to the grasp being formed. We also vary the wrist rotation for each of the six trials such

that the angle formed between zW and gravity is [0◦,−45◦, 90◦, 0◦,−45◦, 90◦].

Experiment Hypothesis

This experiment considers the following three questions:

1. When a subject hands the robot the box, do they adjust its orientation to match the

pose of the robot’s hand?

2. Will the subject correctly interpret the robot’s reaching gesture, vocalization, and

pause as a social cue to take the object?

3. Can a small incentive such as not having to pick up the object increase the subject’s

willingness to respond to the social cue?

We can use the measured grasp alignment error to directly answer the first question. We

would expect to see bW to track zW as it varies between the three wrist orientations. The

second question is more difficult to confirm. For each experiment, we measure the take-back
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rate as the number of trials a subject reached to take the box back from the robot. We

expect that robot’s reaching gesture, vocalization, and pause will cause the subjects to take

back the box. However, they are never instructed to take it back, so if they do, then it is

likely that they correctly interpreted the cue, much as they would with a person. For 50%

of the subjects, the robot drops the cylinder on the floor. If this serves as an incentive, we

should see an increase in the take-back rate. Importantly, the arm postures achieved by the

incentive-reach and the no-incentive-reach are nearly identical. Therefore, the effect of the

reaching cue, prior to dropping the box, should be similar.

Experiment Results

Prior to the experiments, we first measured the average grasp alignment error when we

deliberately oriented the box to match the robot’s grasp. From repeated trials the mean

error was 8.9◦. Next, we measured the possible range of grasp alignment errors by freely

rotating the box within the preshaped hand. In this case the distribution of grasp errors

was fairly uniform between 0◦ and 60◦. We tested the experiment using 10 subjects. All

subjects were naive to the experiment objectives, and had never interacted with Domo

before. In Figure 8-11, we the grasp alignment errors for each of the six trials of a typical

subject. All subjects were matched the orientation of the offered box to the orientation of

the robot’s hand with surprising accuracy. In Figure 8-12 we see that the average error

for each subject is near the average error achieved by the author. We also see that, when

offered the box by the robot, nearly all subjects took the box back, particularly when

the additional incentive was included. This experiment only scratches the surface of the

potentially rich interactions that may occur during cooperative manipulation. However,

it shows quantitatively that people will intuitively adapt to and assist the robot without

instruction. We would expect that more substantiative assistance could be given if the

person possessed greater contextual knowledge about the task and the robot could generate

more nuanced cues.

8.4 Discussion

The interactions between a robot and its collaborator are potentially rich and varied. Con-

sequently, much work is still needed in understanding how to perceive the intent of the
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Figure 8-11: The grasp alignment errors for a typical subject during the Give and Take

experiment. We see that for nearly all trials, the subject aligns the box within a few degrees

of the best expected performance. (Top) Blue shows the grasp alignment error (degrees) of

the box with respect to the grasp preshape. Red (horizontal) shows the mean error achieved

when we deliberately aligned the box with the grasp. The X axis shows the trial time, in

seconds, starting when the reach commenced and ending when the grasp was initiated.

(Bottom) The execution sequence from the initiation of the reach until the grasp is formed.

136



Figure 8-12: (Left) Results showing that the 10 subjects intuitively aligned the cylinder’s

axis with the grasp axis of the robot’s hand when handing it. For each of 6 trials, we

measure the average alignment error, in degrees, during the 500ms prior to grasping. The

error bars show the mean error and standard deviation for each subject. The red lines

indicate the best and worst expected performance. (Right) Results showing the number of

trials each subject took the box back from the robot when cued. For subjects 1-5 (red), the

robot dropped the box on the table, while for subjects 6-10, the box was dropped on the

floor.
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person, respond appropriately to their requests, and leverage their innate social machinery.

In particular, perception of pointing, eye gaze, reach direction, and physical interaction cues

could greatly expand a robot’s repertoire of cooperative tasks. These are open research is-

sues currently being studied within the social robotics community, and more recently, within

the emerging area of physical human-robot interaction (Alami et al., 2006). Although pre-

liminary, the results of this chapter suggest that even basic cooperative skills can be useful

to robots in human environments. A person can bring years of experience to a task, not

to mention capable motor and perceptual skills. Through careful design on the part of the

roboticist, a person can be intuitively brought into the loop by the robot.
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CHAPTER 9

Task Relevant Features

Everyday tasks such as placing a cup in a cabinet or pouring a glass of water can be

described in terms of the perception and control of task relevant features. We have seen

previously how the edge of a shelf can represent the presence of a stable, flat surface. In

this chapter we show that the distal tips of many everyday objects can be treated as task

relevant features as well. The relevant Slate modules are highlighted in Figure 1-3.

We first present a robust method to estimate the 3D location of an object’s tip in the

hand’s coordinate frame. This work was developed in collaboration with Kemp (Kemp

and Edsinger, 2005). Next, we describe the TipPose and TipServo modules which provide

manipulator control of this feature. We then generalize the visual detection of the tip to

include a broader class of objects. This work was also done in collaboration with Kemp

(Kemp and Edsinger, 2006a). We then show that a prediction of the feature location can

be learned. Finally, we integrate these components into the TipUse module which enables

Domo to take an object from a person, quickly find its distal tip, and control the tip for a

task.
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Motion

Figure 9-1: (Left) A typical view from the robot’s camera of the hand holding a pair of pliers.

A naturally lit, cluttered background ensures a non-trivial environment for perception.

(Middle) The tool tip is detected as the maximum point in the weighted edge map of the

visual motor model. (Right) The raw motion-based detection (black), the hand-labeled tool

tip (white), and a prediction based on the estimated tool position (green) are annotated.

9.1 The Task Relevant Tool Tip

For a wide variety of tools and tasks, control of the tool’s endpoint is sufficient for its use.

For example, use of a screwdriver requires precise control of the tool blade relative to a

screw head but depends little on the details of the tool handle and shaft. Radwin and

Haney (1996) describe 19 categories of common power and hand tools. Approximately 13

of these tool types feature a distal point on the tool which can be considered the primary

interface between the tool and the world.

The prevalence of this type of feature may relate to the advantages it gives for perception

and control. For perception, it improves visual observation of the tool’s use by reducing

occlusion, and it assists force sensing by constraining the interaction forces to a small

region. For control, its distal location increases maneuverability by reducing the possibility

of collisions. A single tip also defines the tool’s interface to the world as a simple, salient

region. This allows the user to perceptually attend to and control a single artifact, reducing

their cognitive load. Looking beyond human tools, one can also find this structure in the

hand relative to the arm, and the finger tip relative to the finger.

In this section, we present a straight-forward monocular method for rapidly detecting

the endpoint of an unmodeled tool and estimating its position with respect to the robot’s

hand. The process is shown in Figure 9-1. This can allow the robot to control the position of
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the tool endpoint and predict its visual location. These basic skills can enable rudimentary

use of the tool and assist further learning by helping the robot to actively test and observe

the endpoint. We show successful results for this estimation method using a variety of

traditional tools shown in Figure 9-3, including a pen, a hammer, and pliers, as well as

more general tools such as a bottle and the robot’s own finger.

To find the tip of a tool held in the hand, the robot rotates the tool while detecting the

most rapidly moving point between pairs of consecutive images. It then estimates the 3D

point in the hand’s coordinate system that best explains these noisy detections. Given this

protocol, motion serves as a powerful cue for detecting the endpoint of a wide assortment

of human tools. The method makes few assumptions about the size and shape of the tool,

its position in the robot’s hand, or the environment in which the tool is being manipulated.

Importantly, we use the robot’s kinematic model to transform the perceptual detections

into the hand’s coordinate frame, allowing for the registration of many detections from

multiple views. This makes the algorithm robust to noise from sources such as ego-motion

and human interaction.

9.1.1 Related Work in Robot Tool Use

Research involving robot tool use often assumes a prior model of the tool or construction of

a model using complex perceptual processing. A recent review of robot tool use finds few

examples of robots using everyday, human tools (St. Amant and Wood, 2005). NASA has

explored the use of human tools with the Robonaut platform. Robonaut used detailed tool

templates to successfully guide a standard power drill to fasten a series of lugnuts (Huber and

Baker, 2004). Approaches that rely on the registration of detailed models are not likely to

efficiently scale to the wide variety of human tools. Williamson (1999) demonstrated robot

tool use in rhythmic activities such as drumming, sawing, and hammering by exploiting the

natural dynamics of the tool and arm. However, this work required careful setup and tools

that were rigidly fixed to the hand.

A long history of work in AI and computer vision has focused on learning tool function,

although the representations are typically symbolic and model based (Winston et al., 1983).

More recently, researchers have considered a tool’s function in the context of its action in the

world. In Duric et al. (1996), a tool’s function was associated with its prototypical motion

based on visual observation of a person using the tool. Robots that can actively learn about
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tool use have been the subject of more recent work. Bogoni (1998) investigated relating

the physical properties of the tool to the perceptual outcomes of its use when tested by a

robot. Stoytchev (2005) has explored learning a tool’s function through its interactions with

objects. However, the work of these researchers typically assume that a clean segmentation

of the tool can be extracted from the image or that the tool features are known in advance.

In our method, we use our knowledge of how the robot’s hand rotates while holding the

tool to make 3D estimations about the location of the tool tip. This relates to methods

for 3D scanning in which objects are placed on a rotating platform in front of a single

camera (Fitzgibbon et al., 1998). These methods, however, typically rely on a well modeled

background to cleanly segment the object, simple platform motion, and occlusion free views

of the object. More generally, our estimation technique relates to the well-studied area of

3D estimation from multiple views (Hartley and Zisserman, 2004).

9.1.2 Tool Tip Detection

We wish to detect the end point of a grasped tool in a general way. The detection process

looks for points that are moving rapidly while the hand is moving. This ignores points that

are not controlled by the hand and highlights points under the hand’s control that are far

from the hand’s center of rotation. Typically tool tips are the most distal component of the

tool relative to the hand’s center of rotation, and consequently have higher velocity. The

hand is also held close to the camera, so projection tends to increase the speed of the tool

tip in the image relative to background motion. The wrist is rotated and we detect the tip

as the fastest moving point in the image using the method of Kemp described in Section

6.1.

9.1.3 Probabilistic Estimation of the 3D Tool Tip Position

As described, monocular visual motion is used to detect motion feature points that are likely

to correspond with the tip of the tool in the robot’s hand. After detecting these points in

a series of images with distinct views, we use the robot’s kinematic model to combine these

2D points into a single 3D estimate of the tool tip’s position in the hand’s coordinate system

{H}. With respect to {H}, the camera moves around the hand while the hand and tool tip

remain stationary. This is equivalent to a multiple view 3D estimation problem where we

wish to estimate the constant 3D position of the tool tip xH
t = xt in frame {H}. In an ideal
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Figure 9-2: The geometry of the tool tip 3D estimation problem. With respect to the

hand’s coordinate system, {H}, the camera moves around the hand. In an ideal situation,

only two distinct 2D detections would be necessary to obtain the 3D estimate. Given two

observations with kinematic configurations c1 and c2, the tool tip, xt, appears in the image

at Tc1(xt) and Tc2(xt).

situation, only two distinct 2D detections would be necessary to obtain the 3D estimate, as

illustrated in Figure 9-2. However, we have several sources of error, including noise in the

detection process and an imperfect kinematic model.

A variety of approaches would be appropriate for this estimation, since only three pa-

rameters need to be estimated and we have plenty of data from a moderately noisy source.

In this paper, we estimate xt by performing maximum likelihood estimation with respect

to a generative probabilistic model.

We first model the conditional probability distribution, p(di|xt, ci), which gives the

probability of a detection at a location in the image, di, given the true position of the tool

tip, xt, and the robot’s configuration during the detection, ci. We model the detection error

that is dependent on xt with a 2D circular Gaussian, Nt, centered on the true projected

location of the tool tip in the image, Tci(xt), with variance σt. Tc is the transformation that

projects xt onto the image plane given the configuration of the robot, ci. Tci is defined by the

robot’s kinematic model and the pin hole camera model for the robot’s calibrated camera.

This 2D Gaussian error model on the image plane can coarsely represent a number of error

sources, including the selection of motion edges around the ideal location, and inaccuracies

in the kinematic model. We mix this Gaussian with another 2D Gaussian, Nf , centered on
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the image with mean 0 and a large variance σf . This Gaussian accounts for false detections

across the image that are independent of the location of the tool tip. In summary,

p(di|xt, ci) = (1−m)Nt(Tci(xt), σ2
t I)(di) + mNf (0, σ2

fI)(di), (9.1)

where m is the mixing parameter for these two Gaussians.

We model a series of detections d1 . . .dn with corresponding configurations of the robot,

c1 . . . cn, as being independently drawn from this distribution, so that

p(d1 . . .dn|xt, c1 . . . cn) =
∏

i

p(di|xt, ci). (9.2)

Using Bayes rule we have

p(xt|d1 . . .dn, c1 . . . cn) =
p(d1 . . .dn|xt, c1 . . . cn)p(xt, c1 . . . cn)

p(d1 . . .dn, c1 . . . cn)
. (9.3)

Since we are only looking for relative maxima, we can maximize

p(d1 . . .dn|xt, c1 . . . cn)p(xt, c1 . . . cn). (9.4)

We also assume that the tool tip position in the hand’s coordinate system is independent of

the configurations of the system at which the images were captured, so that p(xt, c1 . . . cn) =

p(xt)p(c1 . . . cn). Since c1 . . . cn are known and constant for the data set, we can drop their

distribution from the maximization to end up with

x̂t = Argmaxxt
(p(d1 . . .dn|xt, c1 . . . cn)p(xt))

= Argmaxxt
(log (p(xt)) +

∑
i log (p(di|xt, ci))) .

(9.5)

We define the prior, p(xt), to be uniform everywhere except at positions inside the robot’s

body or farther than 0.5 meters from the center of the hand. We assign these unlikely

positions approximately zero probability. A variety of methods could be used to find our

estimate x̂t given expression 9.5, including gradient ascent and brute force sampling. We use

the Nelder-Mead Simplex algorithm implemented in the open source SciPy scientific library

(Jones et al., 2001) to optimize this cost function. More efficient optimization algorithms

are applicable, but this algorithm is easy to use since it only requires function evaluations.

Even though each evaluation of the cost function requires O(n) computation, where n is

the number of detections, we found it to converge quickly given our small set of moderately
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Figure 9-3: The approach was evaluated on a hot-glue gun, screwdriver, bottle, electrical

plug, paint brush, robot finger, pen, pliers, hammer, and scissors.

noisy observations. There are many sources of error that we ignore in our model, including

uncertainty about the hand’s rotation (which will have a larger impact on long objects), the

projection dependent aspects of the kinematic uncertainty, and uncertainty in the temporal

alignment of the kinematic configuration measurements and the motion-based detections.

9.1.4 Tool Tip Estimation Results

Experiments were conducted on a variety of tools with differing lengths and endpoints

(Figure 9-3). For each experiment, the 11 DOF kinematic chain from the camera to the

robot wrist was servoed to maintain a fixed pose that ensured tool visibility in the wide-

angle camera. The tool was placed in the robot’s hand and the 2 DOF (pitch,roll) of the

wrist were ramped smoothly to random positions in the range of ±60 degrees for a short

duration. The robot’s joint angles and camera images were sampled at 30Hz. Approximately

500 samples (15 seconds of motion) were captured for each tool and randomly distributed

into a training set of 400 samples and a test set of 100 samples. We then hand labeled the

tool tip location for each frame of the test set.

Tool Tip Detection

Visual detection of the tool tip was computed using the motion model from Section 6.1. In

these experiments, the localization was computed offline for each pair of sequential images,

though real-time rates are achievable. A naturally lit, cluttered background was used (Fig-

145



Figure 9-4: As the robot rotates a grasped object in front of its camera, its attention system

generates monocular detections of the distal end of the object. Each detection is transformed

into a ray within the hand’s coordinate system (white). Many such rays intersect at the

estimated tip location (blue). The left image visualizes these rays without background

motion. The right image is noisier due to background motion, but the tip location is still

robustly estimated.

ure 9-1A) to ensure a non-trivial environment for perception and background motion was

allowed. The detection method is noisy, but as shown in Figure 9-7, the detections tended

to match the hand-labeled tool tip locations. In the experiments we present, the camera

and environment were nearly stationary and the affine model of background motion was es-

timated as close to identity. Without modification the algorithm can be used in situations

with a slowly moving camera and other causes of global affine motion.

Tool Position Estimation

The position estimation accuracy was evaluated by first estimating the 3D tool position in

the hand on the training data set as described in Section 9.1.3. We used the parameter

values σt = 5.0, σf = 150.0, and m = 0.5. The 3D position was projected onto the image

plane for each sample in the test set. The predicted tool tip location was measured against

the hand labelled location to compute the mean pixel error. A baseline comparison can be

made by performing the estimation process on the hand labeled data set. The resulting
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Figure 9-5: The mean prediction error, in pixels, for each tool, using 320×240 pixel images.

The 3D tool tip position is estimated using two data sets: motion-based tool tip detection

and hand-labelled tip detection (both in the image). The 3D estimates for both data sets

are then projected onto the image plane for each sample in the test set and compared to

the hand labelled detection. The left (dark) bar indicates the detector error and the right

(light) bar indicates the hand labelled, baseline error. The baseline errors are an indication

of inaccuracies in the kinematic model and the camera model.

error is indicative of inaccuracies in the kinematic model and the camera model. The

algorithm performs favorably with respect to this baseline error. Figure 9-5 illustrates the

mean prediction error, in pixels, across the set of tools. Figure 9-6 illustrates the typical

tip prediction for each tool.

Discussion of the Results

As Figure 9-6 illustrates, the estimation process performs well as measured by the image

prediction error. The wide angle camera from which the images were captured allows a

larger variety of tool sizes to be explored, but the resolution of the tip was often low, on the

order of 10 pixels. Errors can originate from poor calibration in the kinematic and camera

model, as the baseline errors in Figure 9-5 demonstrate. We trained each estimator on a
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Figure 9-6: An example of the tip prediction for each tool. The white cross is centered at

the prediction point and measures 40 pixels across for scale. The radius of the white circle

indicates the tool’s mean pixel error. The black cross indicates the hand labeled tool tip.
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Figure 9-7: (Left) Error histogram, in pixels, for raw motion-based detection of the tool tip

with respect to the hand-labeled tool tip for all tools. 320 × 240 pixel images were used.

(Right) Detailed view of the left graph.

data set of 400 samples which is conservatively high given the effectiveness of the motion-

based detector and the ideal requirement of only two distinct views. It is important that the

wrist sample a large space of poses. In the extreme case of hand rotation occurring only in

the image plane, the depth of the tool position would be indeterminate. Finally, we should

point out that our method is analyzed with respect to the 2D projection of the tip into the

image. The error between the 3D estimate, x̂t, and the true position xt is dependent on

errors in the kinematic calibration. The 13 DOF kinematic chain between Domo’s hand

and eye amplifies calibration errors, and the 3D estimation error typically varies between

15mm-50mm depending on the arm configuration. In Section 9.2.2 we will show how to use

visual feedback to compensate for these errors.

9.1.5 Discussion

In this section we presented a straight-forward approach to detecting the end point of a

tool in a robot hand and estimating its 3D position. The strength of our approach is that it

assumes little prior knowledge about the tool or its position in the hand and avoids complex

perceptual processing. Rather than segmenting the tool, estimating the 3D shape of the

tool, or otherwise representing the details of the tool prior to detecting the tip, this method

jumps directly to detecting the tip of the tool. The success of the method relies on two

main observations. First, the natural utility of many human tools depends on the tool’s
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endpoint. Second, for many of these tools the endpoint can be detected by its rapid motion

in the image when the robot moves its hand while holding the tool. For the results we

present, the robot’s hand is roughly human in size and shape and thus well-matched to

human tools. This detection method might not perform as well with robot end-effectors

that differ significantly from a human hand (for example they might be large with respect

to the tool).

We estimate the 3D tool tip position in batch-mode by optimizing the cost function

of Equation 9.5. A recursive filter, such as an extended Kalman filter, could provide an

adaptive, online alternative to the estimation technique. This could be used to adjust for

possible slip in the robot’s grasp of the tool during use. As we will see in the Section 9.3,

other perceptual cues can be integrated into this method. Motion does, however, have some

especially beneficial properties for this type of detection. First, motion helps us to find

elements of the world that are controlled by the robot’s hand. Stereo analysis of a static

scene could be used to select elements of the scene that are close to the hand, but without

motion, stereo could not detect which points are under the hand’s control. Second, by

moving the hand and tool we are able to observe them from several distinct views, which

reduces sensitivity to the particular position of the hand and increases overall robustness.

9.2 Control of the Tip

9.2.1 TipPose

The TipPose module places the tip of a grasped tool at a desired position and orientation in

the world frame. The 3D estimate of the tip’s location within the hand’s coordinate frame,

x̂t , can be used to effectively extend the robot’s kinematic model by a link. This provides

many options for control. In this section we describe a virtual spring method for control

of the position and orientation of this task-relevant feature. Virtual spring control uses the

well known Jacobian transpose method for relating manipulator forces to torques (Craig,

1989). It is a straightforward technique strongly related to virtual model control (J. Pratt

and Pratt, 2001) and operation space control (Khatib, 1987). It works by simulating virtual

forces at the tool tip that align the tool to a desired pose. This method typically assumes

that the joint angles start close to their final state.

The Jacobian, J, is known from the kinematic model. It relates a 6 × 1 force-moment
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Figure 9-8: (Left) Virtual springs control the position of the palm pt and the tool tip x̂t in

the hand’s coordinate frame {H}. Forces fH
t ∝ (xd − x̂t) and fH

p ∝ (pd − pt) generate a

virtual wrench at the end-effector which achieves the desired tip location xd and the desired

palm location pd. (Right) Visual tracking of the tool tip defines a ray, ri, in {H}. The

closest point to x̂t on the ray is yt . This location is used to visually servo the tip to a

target.

wrench at the hand to joint torques as τ = JTfW . Instead of controlling the arm’s joint

torque directly, we control the joint angle, and our controller takes the form of ∆θ = σJT fW

for controller gain σ.

Using this controller, the position and orientation of the tip of a grasped object can

be controlled by specifying the virtual wrench fW at the end-effector. As shown in Figure

9-8, this wrench is created through two virtual springs in the hand’s coordinate frame {H}.

One spring controls the position of the tip by moving x̂t to the target location, xd. The

other spring controls the orientation of the tip by moving the robot’s palm, pt, to the target

location pd.

To compute the net wrench fW , we first introduce the force-moment transform (Craig,

1989),

M(R, t) =

 R 0

P (t)R R

 , (9.6)
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where P(t) is the cross product operator

P(t) =


0 −t3 t2

t3 0 −t1

−t2 t1 0

 . (9.7)

Given the coordinate transform ATB = [ ARB|tA
Borg], the force-moment transform relates a

wrench in {B} to a wrench in {A} as M( ARB, tA
Borg). We can now relate a virtual wrench

at x̂t to {H} using M(I, x̂t). Likewise, a virtual wrench at the palm relates to {H} through

M(I,pt). Therefore, each virtual spring generates a virtual wrench at the wrist as

fH
t = KtM(I, x̂t)

[
(xd − x̂t) 0 0 0

]T
(9.8)

fH
p = KpM(I,pt)

[
(pd − pt) 0 0 0

]T
, (9.9)

The spring stiffness Kt and Kp is adjusted in a diagonal gain matrix. We can also relate

forces in {H} to {W} using M( WRH , 0). We arrive at the desired virtual wrench acting

on the end-effector:

fW = M( WRH , 0)
(
fH
t + fH

p

)
. (9.10)

This controller assumes a manipulator with a spherical 3 DOF wrist, allowing arbitrary

rotation and translation of the hand frame. It also assumes that the manipulator is not

near a singularity. Domo’s wrist has only 2 DOF and consequently we must assume that

the correct orientation is locally achievable with the restricted kinematics. If we initialize

this controller from a known pose, then in most cases it is possible to avoid singularities and

issues with the restricted kinematics. Related techniques such as Damped Least Squares

could be used instead of the Jacobian transpose in order to reduce these restrictions (Buss

and Kim, 2005).

9.2.2 TipServo

Visual servoing can allow a manipulator to be controlled using a coarsely calibrated hand-

eye transform. There are numerous techniques for accomplishing this. An excellent survey

of visual servoing for manipulation is provided by Kragic and Chrisensen (2002). In the

absence of visual servoing, a robot will typically map a visual scene to a 3D object model

in the camera frame, transform this model to the world frame, and then use a Cartesian
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space controller to adjust its manipulator relative to the object. This approach requires a

precisely calibrated model which is not always easy, or possible to produce.

TipServo adds visual feedback to the TipPose module in order to compensate for Domo’s

coarsely calibrated hand-eye transform which can cause errors in the estimation of the tool

tip x̂t. When x̂t is estimated, we minimize the pixel error between the feature detections

and the projection of x̂t into the image. Consequently, even if x̂t fits the 2D detection data

well, it can be inaccurate with respect to a coarsely calibrated 3D kinematic frame. As the

arm moves away from the pose where x̂t was learned, these errors often become evident. An

open-loop controller like ToolPose is susceptible to these errors, especially in fine-resolution

tasks such as the insertion of two similar sized objects.

TipServo visually detects the tip and adjusts x̂t online. The algorithm is summarized

as follows:

1. Visually detect the tip whenever the wrist rotates as observation di.

2. Compute the probability that the observation is actually the tip as p(di|x̂t, ci) using

Equation 9.1.

3. Whenever p(di|x̂t, ci) > ε, for some threshold ε, (re)initialize a visual feature tracker

at di.

4. Use the 2D tracked feature to create an online approximation of the 3D tip location

yt.

5. Substitute yt for x̂t in the feedforward TipPose controller.

It should be pointed out that the manipulator is servoed in 3D using 2D information. This

type of controller is classified by Kragic and Chrisensen (2002) as a position-based visual-

servo system. As shown in Figure 9-8, we define yt as the point on the ray ri that is closest

to x̂t, where ri is the ray in the hand frame that passes through the tracked feature. This is

equivalent to choosing the maximum likelihood location on ri when the estimation error is

distributed around x̂t according to a 3D Gaussian model. Of course, the actual distribution

is a complex function of the kinematic state, but this simplification suffices for our purposes.

Robustness is a well known issue for visual servoing, and typically it is achieved through

the use of easy to detect markers, homogeneous backgrounds, and CAD models. Kragic and
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Christensen (2001) describe the practical issues of visual servoing and describe a method for

combining many low-level perceptual features to increase robustness. TipServo is able to

circumvent some of these traditional robustness issues. First, our use of only motion features

allows the use of everyday, cluttered backgrounds. Second, we expect visual observations

to be near x̂t, allowing us to filter out background observations due to noise. And third, we

do not control the tracked image feature di directly, but instead control yt. A visual servo

controller is often susceptible to lags and drop-outs in the feature detector. However, yt need

only be updated intermittently so long as the error changes slowly across the manipulator

workspace. By using yt, we are also able to reuse the TipPose controller.

9.2.3 Results

As shown in Figure 9-9, we tested the TipServo controller versus the TipPose controller.

The robot rigidly grasped a long spoon with a color fiducial marking the tip. In the first

experiment, the TipPose controller estimated the tip x̂t and traced its projection in the

image around an 100 pixel square within a 320 × 240 image. In the second experiment,

visual feedback was introduced into the controller via TipServo. The initial estimate of the

tip, x̂t, was first servoed to the start point on the square. Spoon motion was generated

at the wrist for a period of 5 seconds in order to create an initial estimate of yt. Next,

the TipServo controller traced the projection of yt in the image around the same square.

During this time, the spoon’s motion was used to update yt. In both experiments, the

desired orientation of the spoon was aligned with gravity and the tip was kept at a fixed

depth from the camera of 350mm. The controller error was measured between the location

of the fiducial in the image and the 100 pixel square. As the results show, the visual

feedback significantly reduced the feedforward controller error. Inspection of the results

for the TipPose controller shows a horizontal error in the estimation of x̂t. The TipServo

controller compensates for this error.

9.3 Moving from Tool Tips to Everyday Objects

Previously we described a method for the autonomous detection of the tip of a grasped tool

and the estimation of the tip’s position in the robot’s hand. The approach was demonstrated

on a range of tools, including a screwdriver, pen, and a hammer. For these objects, we
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Figure 9-9: Results from execution of the TipPose (top) and TipServo (bottom) modules.

The robot grasped a spoon and estimated its tip location. (Left) Each module then traced

the projection of its estimated tip (red) around around an 100 pixel square (blue) in the

image. For comparison, the true tip location (black) was sensed in the image using a color

fiducial placed on the tip. As we see, the visual feedback used by TipServo allows it to

reduce its error relative to the feedforward results of TipPose. (Right) For each module, we

show an error histogram of the pixel error between the desired square (blue) and the actual

tip (black).
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assumed that a tool is characteristically defined by a single, distal point. However, this

characterization does not fit objects such as cups, bowls, jars, brushes, pots, and bottles.

These are not tools in a traditional sense, yet they still have a tip or endpoint that is of

primary importance during control.

In this section, we extend our definition of a tool tip. We define the tip of a tool as

occupying a circular area of some radius. In particular, we use the InterestRegions module

to detect rapidly moving edges that are approximately tangent to a circle of some radius.

This detector performs well on objects that do not have a sharp point, allowing us to expand

our notion of the tip of an object to include such items as a bottle with a wide mouth, a

cup, and a brush. This feature detector outperforms our previous method on these three

objects. It also estimates the scale of the tip which can be used to build a visual model.

We use the same protocol as our tool tip detection method. An object is grasped and

rotated at the wrist. Given a pair of sequential images, InterestRegions selects the top 10

bins of the interest point histograms that have the highest response. Of these 10 interest

regions, we select the top three regions with the highest response. Each interest region

is defined by its detection location, di, its scale s, its scale radius rsi, and the kinematic

configuration of the robot ci. Once n interest regions have been accumulated, the detections,

d1 . . .dn, are passed to the tool tip estimation algorithm and x̂t is computed as before.

The size of the object’s tip can now be estimated using the scale radius rsi of each

detection di. Given the tip estimate x̂t, we compute the distance of the tip from the

camera as zi given kinematic configuration ci. The estimated tip size for di is then 2rsizi
f for

focal length f . Next, we filter for only probable detections such that, given di and threshold

ε, p(di|x̂t, ci) > ε. This eliminates the influence of noisy detections that are not indicative

of the tip size. Finally, the estimated size of the object’s tip is taken as the average tip size

for all probable detections.

9.3.1 Results

We validated our method on a bottle, a cup, and a brush, as pictured in Figure 9-10.

The items were chosen for their varying tip size and length. When the tool is placed in

the robot’s hand, it automatically generates a short sequence of tool motion of about 200

detections over 5 seconds. For each tool, we compared the interest region detector to the

original detector. For comparison, we also estimated x̂t based on hand annotated detections
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Figure 9-10: Detection and estimation of the generalized tool tip for three test objects.

(Left) The upper left image gives an example of the images used during estimation. The

movement of the person in the background serves as a source of noise. The red cross marks

the hand annotated tip location and has a width equivalent to twice the mean pixel error for

prediction over the test set. The green circle is at the tip prediction with a size equal to the

estimated tip size. (Right) The mean prediction error, in pixels, for each of the three tools.

The 3D tool pose is estimated in three ways: the hand labelled tips (left bar), detections

from InterestRegions (middle bar), and the maximum motion point (right bar).

of the tip in the image. This provides a baseline for the best we can expect the algorithm

to do given errors in the kinematic model.

Figure 9-10 shows the mean prediction error, as measured by the tool tip projection

into the image, for the two detectors. The interest region detector significantly improves

the predicted location for these three objects that have large, broad tips. We also see that

the detector can correctly extract the size of the tool tip. In addition, the ability to extract

the extent of the tip in the image enables online modeling of its appearance. Figure 9-11

shows the construction of a pose normalized visual model of the tip. This model facilitates

the use of visual features that describe the appearance of the tip over its estimated spatial

extent. For example, an HSV histogram of the tip appearance could be learned online to

augment the detector’s performance.
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Figure 9-11: These average tip images give an example of acquiring a model of the tip’s

appearance. For the three test objects, square image patches of the tips were collected

using the tip detector, tip predictor, and smoothing of the estimated state. They were then

normalized in scale and orientation, based on the kinematic state of the robot, and averaged

together.

9.4 Learning the Task Specific Prior

For many tasks, the tip of a tool being used will appear in a canonical region relative to the

hand. When we write with a pen or use a hammer, we have a strong prior expectation of

where the functional end of these objects will appear. For a given task, a robot could learn

this prior from experience, allowing it to more quickly localize the feature and discount

detections far from the expected location. Even though the exact location of the feature

can vary substantially depending on the object and the grasp, the spatial distribution of

feature locations across many task trials can represent a useful prior. Such priors are task

specific. For example, a bottle being poured should have a different prior than a bottle

being place on a shelf.

Learning the task specific prior allows the robot to predict where the feature might

appear in the image. This relates to the work of Torralba (2003), who describes a framework

that uses contextual priors to improve visual search and modulate the saliency of image

regions. Prior knowledge of where to find a feature can also aid the robot’s controllers. In

order to localize a tool tip using a uniform prior, Domo must hold the object far from the

camera and randomly sample from the full range of wrist postures. Given the task specific

prior, Domo can now bring the object closer to the camera and only sample from wrist

postures that provide unobstructed views of the expected tip location.

In Section 9.1.3 we defined the prior on the expected tool tip location, p(xt), to be

uniform everywhere except at positions inside the robot’s body or farther than 0.5 meters

from the center of the hand. In this section we consider how Domo can learn, off-line, a
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Figure 9-12: The task specific prior, p(xt|q), describes a 3D spatial distribution (yellow)

within the hand’s coordinate system {H}. The maximum likelihood location, xq, represents

the expected location of a task relevant feature on a grasped object, given the current task

q. This prior is used to assist in perceptual estimation of the true feature location, x̂t. The

distribution is represented as a 3D histogram, and a contribution to the histogram, xm, is

defined as the nearest point of intersection between the rays r1 and r2 given two detections

of the feature.

non-uniform prior p(xt|q) conditioned on the specific task category q .

9.4.1 Density Estimation

As shown in Figure 9-12, the task specific prior, p(xt|q), describes a 3D spatial distribution

within the hand’s coordinate system {H}. The maximum likelihood location, xq, represents

the expected location of a task relevant feature on a grasped object, given the current task q.

We estimate p(xt|q) using a 3D histogram. To learn this distribution, the robot manipulates

a small set of typical objects used in the task. In this work, we consider tool tip features,

though other task relevant features could be used. Tool tips are detected as in Section

9.1.2, where each object is grasped and the robot rotates it while detecting the most rapidly

moving point between pairs of consecutive images. Each detection corresponds to a ray in

the hand’s coordinate frame. In the ideal case, any two rays would intersect at the object’s

tip. In the non-ideal case, we can take the closest point between any two rays as a candidate
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location of the tip. The spatial distribution of these candidate locations, accumulated over

the set of task related objects, is then used to represent p(xt|q). This approach is similar

to the statistical triangulation method of Saxena et al. (2006).

Collecting 3D Detections

We first find the point xm that minimizes the distance between two rays. A ray is defined

with a start point s and a point on the ray p. The set of points on a ray are defined by

xα = (p − s)α + s such that xα · (p − s) > 0. We can find the points on the rays that

are closest to one another by using standard linear least squares and solving the following

equation [
p1 − s1 s2 − p2

]  α1

α2

 = s2 − s1,

for α1and α2. If the points associated with α1and α2 are valid points on the rays, then

xm = 1
2(xα1 + xα2) defines a point that minimizes the squared distance between the two

rays. The distance between the rays is also defined as ‖xα1 − xα2‖.

Now, given a visual tip detection in the image, we can define a ray in the hand frame

{H} which passes through the detection pixel and the camera focal point. If the robot

manipulates an object and generates n visual detections, we can construct n(n−1)
2 pairs of

rays. We collect all pairs of rays that come within some distance, kray, of one another.

Pairs beyond these thresholds are unlikely to have visual detections corresponding to the

same feature. This computation is O(n2). We accumulate the location, xm, for all likely

ray intersections and repeat the process for all objects in the training set of q, resulting in

the training data Xq.

3D Histogram

For each data set Xq, we model the spatial distribution of the feature using a 3D histogram

in the hand’s coordinate system {H}. Using this coordinate system allows for visual tip

detections to be registered across multiple views of the same object, and across multiple

objects that could be applied to the same task. The distribution p(xt|q) is estimated using

a kb ·kb ·kb bin histogram that corresponds to a cube centered on the hand with size kd mm

per side. Therefore, kd
2 is the maximum possible extent of any grasped object. We define
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the histogram binning function as

bp(a,b) = δ(round
(

kb

kd
(ax − bx)

)
)δ(round

(
kb

kd
(ay − by)

)
)δ(round

(
kb

kd
(az − bz)

)
),

(9.11)

where

δ(d) =


1 if d = 0

0 otherwise.

The probability distribution is then

p(xt|q) ≈
1∑

x∈Xq
w(x)

∑
x∈Xq

w(x)bp(x,xt). (9.12)

The weighting function w(x) assigns a zero probability to candidate locations that are too

close or to far away from the hand, such that

w(x) =


1 if 50mm < ‖x‖ < 500mm

0 otherwise.

The maximum likelihood location of the task feature is then taken as the maximal histogram

bin, or xq = Argmax (p(xt|q)).

9.4.2 Results

We estimated p(xt|q) for four task categories using three objects for each category:

1. Placing a mug, paper cup or watter bottle on a shelf.

2. Covering a surface with a duster, large paint brush, or small hand broom.

3. Pointing a hot-glue gun, a heat gun, or a wooden toy gun.

4. Inserting a large stirring spoon, small stirring spoon, or condiment bottle into a con-

tainer

These tasks were chosen for the unique, canonical location of the tip of the grasped object

during task execution. For each object of each task, the 11 DOF kinematic chain from the

camera to the robot wrist was servoed to maintain a fixed pose that ensured tool visibility

in the wide-angle camera. The tool was placed in the robot’s hand and the 2 DOF of the

161



Figure 9-13: Probability distributions for the task specific priors.
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Figure 9-14: Results of learning the task specific priors for four different tasks. Each view

shows a scatter plot of the collected 3D data. Each data point is a candidate location of the

tip of the grasped object. For each task, three different objects in the same task category

were used. The data is portioned into two clusters. The distal cluster (red) is used to

estimate the prior for the task feature. The maximum likelihood location, xq, for each task

is shown with the yellow sphere. The cube is 300mm per side for scale. The tasks include

placement of a bottle on a shelf (A), using a feather duster (B), pointing a hot glue-gun

(C), and inserting a spoon into a cup (D).
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wrist were ramped smoothly to random positions in the range of ±60 degrees for a short

duration. Visual detection of the fastest moving point was used to generate 50 detections

of the object tip. For each of the approximately 1200 pairs of detections, xm was computed

and added to the dataset Xq subject to kray = 10mm. The histogram was constructed using

kd = 500mm and kb = 64 bins.

We implemented an additional constraint on each valid pair of detections for practical

reasons. If the two features were detected from similar wrist postures, then the two rays

may be near parallel. This magnifies the influence of kinematic and visual error. To reduce

this effect, we found it useful to discard detection pairs when the wrist rotated less than

15 degrees between samples. It was also found useful to first cluster Xq into two clusters

using K-means. The visual detection algorithm often detects features on the hand when the

object tip is obstructed by the hand. Consequently, a significant component of the data can

correspond to the robot’s hand. By first discarding the cluster that is closest to the hand,

we reduce this effect.

Figure 9-14 shows the spatial distribution of the data around the hand for each task

category, and the histograms are shown in Figure 9-13. As shown, the maximum likelihood

location, xq, corresponds to a location we would expect for each task. The presence of

noise is due to false detections typically resulting from ego-motion of the head, occlusion

by the hand, or a person moving in the background. False detections tend to be randomly

distributed when viewed from the moving coordinate frame {H}. In contrast, tip detections

are stationary in {H} and therefore localized around the true tip.

There are many sources of error that we ignore, including error sensitivity as a function

of distance from the camera due to projection, uncertainty about the hand’s rotation that

will have a larger impact on long objects, and the higher likelihood of intersections at points

that are close to the camera. However, this method is computationally efficient, easy to

visualize, and produces good results.

9.5 Working with Tips

In the previous sections we presented the components required for a robot to localize and

control the tip of a unknown grasped object. This ability is integrated into the TipUse

module so that whenever the robot is handed a new object, it can quickly find the object
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tip and begin controlling it for a task. In this section we describe TipUse and the modules

required for its execution.

9.5.1 TipPriors

Using the task specific prior from the previous section, the TipPriors module simply com-

putes the expected tip location xq given the current task category q. The active module

with control of the manipulator defines q. For example, when SurfacePlace is activated,

TipPriors will compute

xq = Argmax (p(xt|SurfaceP lace)) .

The prediction xq is then used by any module that SurfacePlace might activate such as

TipPose. Although TipPriors limits the generality of ToolUse and is not required, it allows

for greater robustness and efficiency when estimating x̂t. This is convenient for real-time

tasks involving a collaborator.

9.5.2 TipEstimate

The TipEstimate module simply computes x̂t using Equation 9.5. Typically, this is ac-

complished using approximately 200− 300 detections collected over approximately 10− 15

seconds. However, if the task category is defined by TipPriors, then TipEstimate uses the

prediction xq to initialize the optimization process. This allows increases efficiency and

robustness and only 100 detections are used.

Often, a fast online estimation of x̂t is required as the robot executes a task. The

majority of time required by TipEstimate is spent collecting detections while the arm is

held fixed. This can disrupt the flow of human-robot interaction. Therefore, if requested,

TipEstimate can trade off accuracy for speed by using only a small number of detections as

well as the tip prior. In this case, the online method for estimating yt in TipServo (Section

9.2.2) is used.

9.5.3 WristWiggle

The WristWiggle module generates rotations at the wrist in order to allow TipEstimate to

localize the tip. In the absence of tip prediction xq, WristWiggle randomly explores the

wrist workspace. The 2 DOF of the wrist are ramped smoothly to random positions in the
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range of ±60 degrees. This is often inefficient because the tip may go out of the field-of-view

or be obstructed by the hand. Also, if the tip moves too quickly between two images, it may

move outside the search window used in the visual block-matching algorithm. Significant

motion blur may occur at the tip as well.

However, if xq is known, then the TipPose module can be used to keep the tip within

the field-of-view. Knowing xq also allows WristWiggle to restrict the tip velocity. If the

arm and wrist move between configurations c1 and c2 in time t, then the tip velocity in the

image is approximately
‖Tc2(xq)− Tc1(xq)‖

t
,

where Tci is the hand-to-eye transform. It is then straightforward for WristWiggle to limit

the tip velocity as the wrist moves from c1 to c2.

9.5.4 TipUse

The TipUse module enables Domo to take an object from a person, quickly find its distal tip,

and control the tip for a task. As shown in Figure 9-15, the TipUse algorithm integrates

many of the modules we have presented. To begin, Domo acquires an object through

AssistedGrasp and predicts the tip location, xq, with TipPriors. Given xq, the TipPose

module positions the manipulator at a depth such that the tip remains visible by the camera.

We compute this depth as

zc = ‖xq‖
f

u
,

for focal length f and field-of-view 2u pixels. With the object pointing at the camera, Watch-

Hand servos the eye gaze to the hand frame {H}. The arm and head maintain this posture

but the wrist is allowed to move. WristWiggle generates small ±30◦ explorations about this

pose, ensuring that the tip remains facing the camera. TipEstimate then computes the tip

location x̂t using the tip prior. Finally, TipServo controls x̂t through a trajectory specified

by some other module.

9.6 The Task Relevant Hand

The robot’s hand is one of the most significant objects in the robot’s environment. Per-

ception and of the hand can also be cast in the framework of task relevant features. The

importance various features of the hand is dependent on the task. In screwing a cap onto
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TipUse

AssistedGrasp

TipPose

TipEstimate

TipServo

WatchHand

WristWiggle

GraspDetect

TipPriors

Ready Wait for GraspDetect to signal a power grasp on an object.

Precondition Predict the location of the object’s tip using TipPriors. Make the predicted

tip visible to the camera using TipPose. Use WatchHand to direct the eye gaze to

the hand.

Compensatory Use WristWiggle to assist perception by generating motion at the wrist.

Detect Use TipEstimate to detect the tip and estimate its true location.

Control Use TipServo to visually servo the tip through a desired trajectory.

Figure 9-15: The TipUse module allows the robot to take an object from a person, quickly

find its tip, and control the tip for a task.
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Figure 9-16: Left: The robot’s view during execution of PalmServo. This occurs in an

everyday environment which includes a shelf, a person, as well as natural lighting and a

cluttered background. The green circles mark the convex shape of the open hand, detected

by InterestRegions. This detection is then controlled using TipServo. Right: The motion

edges used in the detection of the palm by InterestRegions.

a bottle, we can consider the fingertip as the relevant feature. In flipping through papers,

the tactile slip between the fingers is of primary importance. In picking up a soda bottle,

the contact surface of the palm is critical. In this section we consider this last example. We

present the PalmServo module which visually servos the contact surface of the palm as it

is brought to an object for grasping. This module is an extension of the TipServo module

presented earlier.

9.6.1 PalmServo

Even with precise hand-eye calibration and a 3D model of the hand, it can be necessary to

visually detect the hand in the image. The PalmServo module uses motion cues to detect

the contact surface of the palm. Because it doesn’t require specialized knowledge about

the hand, the approach is extensible to a wide range of robot hands. Many researchers

have created related methods for visual hand detection through motion. Work by Metta

and Fitzpatrick (2003b) used image differencing to detect ballistic motion and optic-flow

to detect periodic motion of the robot hand. For the case of image differencing they also

detected the tip of the hand by selecting the motion pixel closest to the top of the image.

Natale (2004) applied image differencing for detection of periodic hand motion with a known

frequency, while Arsenio and Fitzpatrick (2003) used the periodic motion of tracked points.
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Michel et al. (2004) used image differencing to find motion that is coincident with the robot’s

body motion. These methods localize the hand or arm, but do not select a specific feature

on the manipulator in a robust way. This is important if we wish to use visual feedback to

control the manipulator in the image.

PalmServo uses motion cues to detect the palm feature. The palm is defined by the

convex shape of the open hand projected into the image. The open hand is always directed

towards the camera during execution of PalmServo, increasing the likelihood that the feature

is visible. The convex shape of the palm is detected using the InterestRegions module of

Section 6.2. However, we incorporate the hand motion prediction from Section 6.1.2 to

increase the salience of moving hand edges. When combined with InterestRegions, we can

robustly select for convex edges on the moving hand. Using the robot’s kinematic model,

we can also produce a rough prediction as to the scale and location of the palm feature in

the image. This is used to filter unwanted detections on the hand such as the fingertips.

Now, as the open hand moves in the image, PalmServo passes detections of the palm to

the TipServo controller. As shown in Figure 9-16, it visually servos the contact surface of

the palm when the hand is open. TipPriors also provides a prediction of the palm location,

xq, based on the measured location of the palm feature in the hand frame. We present

results for PalmServo as part Section 10.1 which describes the SwitchHands module.

9.7 Discussion

In this chapter we have considered how a robot can detect and control the distal tip of an

unknown, grasped object, including the robot’s own hand. The work presented exemplifies

our notion of task relevant features. By considering only a single point of an object instead

of its complete 3D geometry, we were able to develop specialized algorithms that are robust

to many of the environmental factors that typically confuse robots. While this single-point

representation could be extended to include a constellation of local features, control of a

single point is sufficient for simple manual tasks. Not only does the approach work with a

cluttered background, background motion, and under variable lighting conditions, but it is

also extensible to a variety of everyday objects. Although our approach used a monocular

camera, depth information from stereo cameras could be beneficially integrated to increase

the efficiency and robustness of tip localization.
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CHAPTER 10

Putting It All Together

In this chapter we demonstrate how the modules presented thus far can be integrated into

useful, cooperative manipulation tasks.

10.1 SwitchHands

Transferring an object from one hand to another is a fundamental component of a person’s

manipulation repertoire. For example, a person taking notes while on the phone will transfer

the phone to their non-writing hand. A person putting away dishes will remove a plate from

the dishwasher with one hand, pass it to the other, and then place it in a cabinet. These

seemingly simple acts increase a person’s versatility while expanding their workspace of

reachable locations. The SwitchHands module, shown in Figure 10-1, allows Domo to pass

a roughly cylindrical object from one hand to another. The SwitchHands algorithm is

described in Figure 10-1 in terms of the generic manual skill algorithm of Section 5.3.3.

Let’s consider the case where an object is passed from the right hand to the left. Switch-

Hands begins by activating TipUseR in order to acquire an object in the right hand and

find its distal tip. Instead of servoing the object, TipPoseR poses the object at a canonical

location and points the object’s tip at the camera. Next, TipPoseL brings the left hand to

a fixed pose relative to the right hand. The top of the hand also points towards the camera.
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SwitchHands

TipUseR

TipPoseR

TipPoseL

PalmServoL

CompliantLowerL

PowerGraspL

RetractArmR/L

WatchHandL

ContactDetectR

TipPriorsL

GraspDetectL

StiffnessAdaptR

Ready Using TipUse, acquire an object and localize its distal tip.

Precondition Using TipPose and WatchHand, bring both hands into the field-of-view.

Compensatory Lower the stiffness of the grasping arm to assist contact detection. Use

TipPose to point the object tip at the camera.

Control Using PalmServo, visually servo the palm of the empty hand to be just below the

object’s tip.

Control Using CompliantLower, lower the empty hand through force control.

Control When ContactDetect is signaled by the grasping arm, use PowerGrasp secure a

grasp with the empty hand.

Success Detect success when GraspDetect is true for both hands. Release the initial grasp

and relinquish control.

Figure 10-1: The SwitchHands module passes an object between the robot’s hands.
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Figure 10-2: Execution of the SwitchHands module. The execution time is approximately

20 seconds. (A) A bottle is grasped using AssistedGrasp. (B-C) The tip of the bottle is

estimated. (D) The arms are moved into canonical poses. (E) The top of the hand and

the bottle tip are pointed to the camera. (F-G) PalmServo brings the palm surface to the

bottle. (H) The palm pushes down on the bottle and ContactDetect signals the hand to

close. (I) The other hand releases its grasp.
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A B C D E

SwitchHands 3/3 3/3 3/3 2/3 3/3

Open-loop 0/3 0/3 1/3 0/3 2/3

Figure 10-3: Experiment results for SwitchHands. (A-D) A poseable dryer hose was bent

by about 60◦ and grasped in one of four orientations by the hand. In the fifth case (E), the

hose was unbent and cylindrical. SwitchHands and an open-loop controller were tested for

three trials on each of the five poses. SwitchHands incorporated visual estimation of the

object’s tip, while the open-loop controller used a fixed estimate for a cylinder. The table

shows the number of trials that the object was not dropped. For non-cylindrical objects,

visual realignment is critical.

This configuration of the manipulators is shown in Figure 10-2-E. Next, WatchHandL keeps

the hand within the field-of-view as PalmServoL visually servos the palm of the hand to

the object. If the object tip is at [xc, yc, zc]T in the camera frame, the target location for

the left palm is just below the tip at [xc, yc, zc + ∆z]T for positive offset ∆z. When the

palm has been servoed into place, StiffnessAdaptR lowers the right arm’s stiffness while

CompliantLowerL brings the left hand down onto the object. The displacement of the right

hand is detected by ContactDetectR, signaling the left hand to form a power grasp on the

object. If GraspDetectL is signaled, the right hand releases the object and both arms are

retracted. If a grasp is not made or contact is not detected, SwitchHands reattempts the

process. Figure 10-2 shows the execution of SwitchHands.

10.1.1 Results

In the ideal case, SwitchHands could be implemented without vision, using open-loop con-

trol. The robot could simply reach to a fixed location relative to a known object held at a

known pose. This approach has been taken by Blackmore and Block (2006), who describe

object transfer between two WAM manipulators. Although impedance control is used to
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Figure 10-4: Visual realignment of the object’s tip during one trial of the SwitchHands

experiment. (A) Initially, the dryer hose is poorly aligned for transfer. (B) After the

TipEstimate process, TipPoseR aligns the hose into the canonical orientation. (C) The left

hand is servoed to the hose. (D) Transfer is complete.

allow for modest manipulator misalignment, visual feedback is not used. As they note, vari-

ation in the initial grasp on the object, as well as errors in the kinematic calibration, can

affect the system performance. On Domo, these issues can cause unwanted collisions be-

tween the fingers and the object, dislodging the object before a secure grasp can be formed.

Also, if the grasp aperture of the open hand is close to the size of the object, the margin for

error is reduced further. While haptic feedback could remedy some issues, visual feedback

is necessary for large variations in the object shape and in the grasp.

SwitchHands improves on this open-loop approach by visually estimating the object’s

pose in the hand and then reorienting the object into a canonical orientation. We exper-

imentally measured this improvement relative to the open-loop controller. As shown in

Figure 10-3, the robot passed a poseable dryer hose between its hands. The hose was bent

by about 60◦ into one of four configurations. SwitchHands was then tested using the visual

estimate of the object’s tip and, in the open-loop case, using an ideal fixed tip location of a

cylinder. Three trials were conducted for each object pose, and a trial was successful if the

object was not dropped. As the results show, the visual realignment of the object is critical

for success. However, the open-loop performance is adequate when the hose is cylindrical.

In Figure 10-4 we show the execution of one trial when visual realignment is used.

SwitchHands is a robust module for roughly cylindrical objects held in a power grasp,

so long as the object extends at least 75mm past the top of the hand. We have used it

successfully on soda cans, watter bottles of various shapes and sizes, paint brushes, and a
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mixing spoon. Of course, many everyday objects in human environments are not roughly

cylindrical and would require more sophisticated planning of the grasp, or haptic feedback

during contact. In this vein, the work of Saxena et al. (2006) in learning grasp points fits our

general approach and could serve as an interesting extension to the SwitchHands module.

In total, we have executed SwitchHands in nearly one hundred trials, largely during the

PuttingStuffAway task of Section 10.4.

10.2 BimanualFixture

In a bimanual fixturing task, a robot holds an object between its two hands in order to

assist a person. For example, a robot could hold a laundry basket while the person loads

in the clothing, or a robot could hold a serving tray at a dinner table. In this section we

describe how Domo controls the position and orientation of a box, grasped between both

hands, in order to assist a person loading objects in to it.

Bimanual control of an object’s pose and internal forces has been widely studied. For

example, Platt et al. (2004) describe a method for composing controllers that can maintain

wrench closure while bimanually transporting a large ball. However, these methods typically

require that the grasp wrench can be sensed and applied with high-fidelity. This would be

difficult in practice given Domo’s actuators and kinematic limitations. Instead, we consider

a restricted form of the problem and leverage the robot’s inherent compliance to maintain

stable control of the box. During the grasp, the object is squeezed between the palms of

the hands and the palms are aligned to the box surface. The size of the box is unknown

but assumed to be of a reasonable size and shape for the manipulators to achieve the task.

The BimanualFixture algorithm is described in Figure 10-5 in terms of the generic man-

ual skill algorithm of Section 5.3.3. To begin, when PersonDetect and VocalRequest signal

that a person requires assistance, BimanualCue reaches with both arms to the person to cue

them to hand the box. ContactDetect is used to detect when the person puts the box in one

of the hands, at which point BimanualServo brings the arms together and forms a stable

grasp between the palms. BimanualServo continually monitors PersonDetect and reposi-

tions the box to be near the person. In the next section we describe the BimanualServo.

If BimanualServo loses track of the person, then it waits until PersonSeek redetects the

person. A person can also remove the box from the robot’s grasp during BimanualServo
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BimanualFixture

BimanualCue

PersonDetect

PersonSeek

PersonSeek
PersonDetect

BimanualServo

ContactDetectL,R

VocalRequest

VocalRequest

BimanualPlace

RetractArmL,R

Ready Wait for PersonDetect to signal the presence of a person and VocalRequest to signal

a request for assistance.

Precondition Using BinmanualCue, raise both arms to signal the person to hand the box.

Detect Lower the arm stiffness and detect placement of the box between the hands using

ContactDetect.

Control Use virtual spring controllers and low arm stiffness to stably grasp the box between

the palms.

Control Position the box near the person using BimanualServo.

Detect Use PersonDetect and PersonSeek to update the BimanualServo controller as the

person moves.

Success Upon VocalRequest, lower the box onto a nearby table if it is present.

Figure 10-5: The BimanualFixture module positions a box, grasped between both hands,

to be near a person.
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Figure 10-6: During bimanual grasping, the robot keeps a box near its collaborator in order

to assist in a task. The object’s position, xb, and orientation, θb, are controlled to keep it

on the arc of radius r and pointing in direction θp. Virtual springs create the squeezing

force fl − fr which keeps the robot’s palms, at xr and xl, in contact with the object.

and the robot will reattempt to grasp the box using BimanualCue. Finally, when the person

tells the robot when the task is complete, and BimanualPlace lowers the box onto a table

in front the robot and the arms are retracted.

10.2.1 BimanualServo

As shown in Figure 10-6, BimanualServo controls the position, xb, and orientation, θb, of a

grasped box within the X-Y plane of {W}. We assume the object is already grasped, so the

robot’s two palms at xl and xr are in contact with the sides of the box. BimanualServo acts

to keep xb = xr+xl
2 at a fixed radius r from the body and at a height zb. For the moment,

we assume that the palms act as point contacts on the box.

When PersonDetect detects a person at xS = [θp, φp, rp], the desired box location is

xd = [rsin(θp), rcos(θp), zb]T . The desired box orientation is θp such that the box remains

tangent to the arc. We infer the box width from the current arm posture as d = ‖xr − xl‖,

giving the desired location of the right palm x̂r = xd + [d
2cos(θp), d

2sin(θp), 0]T . Likewise,

the desired location of the left palm is x̂l = xd − [d
2cos(θp), d

2sin(θp), 0]T .

However, it is not sufficient to just control the pose of the box. BimanualServo must

also maintain a squeezing force on the box. In the model of Figure 10-6, the manipulators
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impart only forces but no moments at the palms due to the non-prehensile grasp. Given

this, it is straightforward to show (Williams and Khatib, 1993) that the resultant forces fb,

interaction forces tb, and moments mb on the box due to the applied forces fl and fr are

fb = fl + fr,

tb = fl − fr,

and

mb =


0 0 0 0 0 0

0 0 d
2 0 0 −d

2

0 −d
2 0 0 d

2 0


 fl

fr

 .

The equilibrating forces, fb and mb, maintain equilibrium under an external load such as

gravity. The interaction force, tb, corresponds to the squeezing force on the box. Virtual

spring controllers create tb by applying opposing forces along the ray xr − xl. These forces

are defined as fr = −kf (xr − xd) and fl = −kf (xl − xd). The gain kf should be sufficiently

large for the grasp to support the weight of the box. The virtual spring forces are generated

through bias errors introduced into the manipulator joint angle controller 1. For example,

a bias error ∆θr = σJT fr in the right arm will cause the controller of Equation 4.4 to

approximately generate force fr at the hand given the appropriate scalar σ.

BimanualServo can now simultaneously control the pose and squeezing force on the box.

The commands to the left and right joint angle controllers are θdesired−l = IK(x̂l) + ∆θl

and θdesired−r = IK(x̂r) + ∆θr, where IK(·) is the inverse kinematic function. For a

smoothly changing θp, this has the desired affect of incrementally adjusting xb and θb while

maintaining a constant squeezing force on the box. Finally, the height of the box can be

controlled within the joint limitations of the manipulators by varying zb.

In practice, the palms do not form point contacts with the box. The interaction between

the palm and box is a complex function of the geometry of the box, the palm, the pose of

the fingers, and the joint torques of the arm. This uncertainty will often cause an undesired

wrench on the box. To accommodate this, the controllers rely on the compliance in the

arms and hands, as well as the large contact surface of the palm, to adapt the box pose and

stabilize the grasp. An independent 2 DOF wrist controller acts to keep the surface normal
1When implementing virtual springs on Domo, we use the joint angle controller instead of the force

controller in order to take advantage of the controller’s safety limits.
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Figure 10-7: The virtual spring controller is able to maintain a stable grasp on boxes of

varying sizes. For each of the three boxes tested, a person applied position disturbances to

the box of up to 0.2m. The controller was able to maintain the grasp and restore the box

position.

of each palm aligned with the ray xr − xl. The controller stiffness is kept low so that the

wrist compliance, combined with the skin compliance, allows the box and wrists to realign

themselves.

10.2.2 Results

We first tested the ability of the virtual spring to maintain a stable grasp on boxes of varying

sizes. As shown in Figure 10-7, three boxes of different sizes were successfully tested. For

each, the box was grasped and servoed to a fixed position for 8-10 seconds. A person applied

external disturbances of the box of up to 0.2m while the controller maintained its grasp and

restored the box position. Figure 10-8 shows the controller response for one of the boxes.

We then demonstrated the complete BimanualFixture module. As shown in Figure 10-9,

Domo is able to assist a person in putting away objects. The module is also able to fail

gracefully in case the box is removed from its grasp or the person is no longer in view. In

total, we have tested BimanualFixture in dozens of trials. Given an appropriately shaped

box, the module encounters few difficulties. However, if it is allowed to work with a person

for an extended period of time, the grasp on the box tends to drift, and no mechanism is

implemented to adapt to this drift.
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Figure 10-8: The magnitude of the equilibrating and interaction forces to a disturbance

during bimanual fixturing. A box was grasped and servoed to a fixed position for 8 seconds.

(Top) During this time a person displaced the box from its rest position by up to 0.2m.

(Middle) The controller responded with equilibriating moments (‖mb‖) and forces (‖fb‖)

to restore its position. (Bottom) Interaction forces (‖tb‖) were maintained throughout the

experiment despite the disturbances. Although they momentarily approach zero in several

places, a stable grasp is maintained. This is likely due to adaptation of the fingers and wrist

to the displaced surface.
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Figure 10-9: Domo assists a person in putting things away using the BimanualFixture

module.
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ContainerInsert

ContainerPlaceL
TipEstimateL

GraspDetectR

WatchHandR

TipPriors

AssistedGraspR

TipPoseR

TipEstimateR

CompliantLowerR

RetractArmR

TipServoR

WristWiggleR

ContactDetectR

Ready Activate AssistedGrasp and wait for GraspDetect to be signaled.

Compensatory Using ContainerPlace, lower the container onto a table and detect its

insertion opening.

Precondition Fixate the gaze on the hand. Using TipPose, bring the tip of the utensil ,

as predicted by TipPriors, approximately above the container opening.

Compensatory Using WristWiggle, assist tip detection by generating utensil motion.

Detect Estimate the location of the utensil tip using TipEstimate.

Control Using TipServo, visually align the tip to the center of the opening.

Control Using CompliantLower, insert the utensil into the container.

Success Detect contact between the utensil and the bottom of the container.

Figure 10-10: The ContainerInsert module inserts a utensil grasped in one hand into a

container grasped in the other hand.
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10.3 ContainerInsert

In the ContainerInsert module, Domo grasps a common utensil such as a stirring spoon in

one hand and a container such as cup or coffee mug in the other hand. It inserts the utensil

into the mug and then optionally stirs the contents. This task involves visually guided

bimanual insertion of two objects. It is related to the classic peg-in-hole task often stud-

ied in model-based manipulation under uncertainty (Lozano-Perez et al., 1984). However,

bimanual insertion is much less common. In the bimanual case, the ability to control the

pose of the second object allows for greater versatility and sensing during task execution.

However, it can also increase the uncertainty of the relative pose between the two objects.

A compliant grasp by the second manipulator is also helpful, allowing the pose of the object

to adapt to the first.

The ContainerInsert algorithm is described in Figure 10-10 in terms of the generic

manual skill algorithm of Section 5.3.3. The module begins with a compensatory action,

using ContainerPlace (described in the next section) to align the container to the top of a

table and to localize the container opening. It then uses the TipPriors prediction to bring

the utensil tip near the opening. The utensil tip is then localized by TipEstimate. The

estimated tip is realigned to the opening using TipServoR, and finally, CompliantLower

uses force control to complete the insertion.

ContainerInsert is primarily a composition of other modules. The critical step is the

localization and servoing of the utensil tip. We adopt an approach similar to Inoue (1979)

where the TipPose module aligns the utensil at a 45 degree angle to the table. This

prevents visual obstruction of the tip by the hand and expands the range of acceptable

misalignment when performing the insertion. During TipServo, the tip is kept on the visual

ray to the center of the container opening. The depth of the tip is then increased along

the ray until the tip is just above the insertion location. The manipulator’s wrist stiffness

is kept low while performing the insertion, allowing for greater misalignment. Although

CompliantLower does use the interaction forces for insertion feedback, ContactDetect signals

the utensil’s interaction with the bottom of the container or the table. The algorithm for

ContainerInsert could be applied with little modification to other insertion-type tasks such

as pouring a bottle of water. However, kinematic limitations in the manipulator wrist make

this difficult.
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ContainerPlace

CompliantLower

InterestRegions

GraspDetect

WatchHand

TipPriors

AssistedGrasp

TipEstimate

Ready Activate AssistedGrasp and wait for GraspDetect to signal a grasp.

Compensatory Using CompliantLower and low arm stiffness, lower the object down onto

a table, allowing it to align with the surface.

Precondition Using WatchHand, direct the eye gaze near to the container opening.

Detect Using InterestRegions, visually detect the container opening near the location pre-

dicted by TipPriors. Using TipEstimate, compute the likely opening location in the

hand frame.

Figure 10-11: The ContainerPlace module assists ContainerInsert by localizing the opening

of a grasped container.

10.3.1 ContainerPlace

ContainerPlace assists ContainerInsert by reducing the location uncertainty of a container’s

insertion opening. The ContainerPlace algorithm is described in Figure 10-11 in terms of

the generic manual skill algorithm of Section 5.3.3. Like the SurfacePlace module, Contain-

erPlace takes advantage of a flat surface to align the object. This is shown in Figure 10-12.

Also, the table is used as a stable support during insertion, much like a person resting their

cup on a table before pouring a cup of coffee. We require that the container can be grasped

with one hand, and that it possesses a roughly circular opening for insertion. We consider

the insertion opening to be a task-relevant feature, inclusive of a variety of objects such as

drinking glasses, bowls, small boxes, and coffee mugs.

ContainerPlace detects the a roughly circular opening using the InterestRegions module.

However, the module is configured to ignore motion cues and to find interest regions in
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Figure 10-12: Execution of the ContainerPlace module. (Top) The InterestRegions module

finds the roughly circular opening of a box, jar, and bowl. The detector is robust to cluttered

backgrounds. (Bottom) A demonstration of CompliantLower using the table to align a cup.

single images. The grasp aperture of the hand and the prediction of TipPriors are used in

selecting the most salient interest region as the opening. Regions far from the prediction or

of an unlikely size are discounted. TipEstimate computes the likely tip location using this

detection given the prior. Figure 10-12 shows opening detections on a variety of objects.

Importantly, use of the tip prior allows for robust detection even on cluttered tables.

10.3.2 Results

ContainerInsert can generalize across a variety of insertion objects and containers due to

our use of task relevant features. In total, we have executed ContainerInsert in nearly

one hundred trials with a variety of objects. To demonstrate its performance, we tested

ContainerInsert in two experiments. In the first experiment, we tested the insertion of a

mixing spoon, water bottle, paint roller, and paint brush into a paper cup. In the second

experiment, we tested the insertion of the mixing spoon into a paper cup, bowl, coffee mug,

and jar. On these objects, the size of the container opening varies between 75-100mm and

the size of the tool tip varies between 40-60mm. In each experiment, seven trials were

conducted on each object pairing.

In a single experiment trial, the object was handed to the robot in an orientation that
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Figure 10-13: Execution of the ContainerInsert module with a cluttered background. (A-B)

ContainerPlace aligns the cup to the table and detects its opening. (C) Using TipPriors, a

grasped spoon is brought over the cup. (D) The wrist wiggles the spoon and TipEstimate

estimates the true spoon tip (despite background motion from a person’s hand). (E-G)

Using the estimated tip, the spoon is brought over the cup by TipServo and compliantly

lowered in. (H-I) Stirring motion is executed and the spoon is removed.
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Paper cup Bowl Box Coffee mug Jar

Mixing spoon 7/7 7/7 7/7 6/7 7/7

Water bottle 6/7

Paint brush 6/7

Paint roller 5/7

Spoon (prior only) 1/7

Figure 10-14: Task success for ContainerInsert. In a successful trial, Domo inserted the

tool (rows) into the container (columns). For comparison, the last row shows results where

the visual detection of the tip was disabled.

Figure 10-15: Execution of ContainerInsert using a flexible hose. The unknown bend in

the hose requires the active perception of its distal tip and realignment prior to insertion.

187



was deliberately varied between ±20◦ along the axis of the hand’s power grasp. The grasp

location on the object was varied by approximately ±50mm along its length. Each trial

took less than 20 seconds to complete and was performed over a visually cluttered table.

A trial was successful if the object was fully inserted into the container. The success rates

for both experiments are shown in Figure 10-14. As the results show, ContainerInsert was

successful in roughly 90% of the trials. When the visual detection of the tip was disabled,

the success rate fell to about 15%.

As a final example, we tested ContainerInsert using a flexible hose. The hose has an

unknown bend, making it essential that Domo actively sense its distal tip in order to orient

the hose prior to insertion. The execution of this test is shown in Figure 10-15. While

ContainerInsert can handle the flexible hose in many cases, a single point representation

doesn’t provide sufficient information to reorient the hose when it has a large bend. In

general, if the 3D orientation of the object tip were sensed using stereo or shape features,

the object could be better aligned with the container prior to insertion.

10.4 PuttingStuffAway

A significant portion of domestic and workplace tasks involve putting stuff away. Exam-

ples include unloading a dishwasher, putting groceries in the refrigerator, clearing a desk,

stocking items in a supermarket, and emptying a laundry basket. Although these tasks are

beyond the abilities of today’s robots, an intermediate step is for a robot to assist a per-

son. For an individual with serious physical limitations, this help might allow the person to

maintain autonomy in everyday activities that would otherwise require help from another

person. For example, an elderly person in a wheelchair might use a robot to put a book

back on a shelf.

To this end,the PuttingStuffAway module enables Domo to take items from a person and

put them on a shelf. The PuttingStuffAway algorithm is described in Figure 10-16 in terms

of the generic manual skill algorithm of Section 5.3.3. The module integrates the Assisted-

Grasp, SurfaceTest, SwitchHands, and SurfacePlace modules into a single, high-level task.

To begin, PuttingStuffAway attempts to locate a useable shelf surface with SurfaceTest.

If it has physically located a shelf but the shelf moves within the SES, then SurfaceTest

will reestimate its location. Next, the robot awaits its collaborator’s request for assistance.
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PuttingStuffAway VisualSearch

PersonSeek

SurfaceTest

PersonDetect

AssistedGrasp

SwitchHands

GraspDetect

SurfacePlace

GraspAperature

ShelfDetect

VocalRequest

GraspDetect

RetractArm

ContactDetect

Ready Wait until ShelfDetect signals the presence of a shelf.

Compensatory Using SurfaceTest, verify the location of the shelf surface.

Ready Activate AssistedGrasp to take an item from a person and wait for GraspDetect.

Precondition Use SwitchHands to transfer the object to the hand nearest the shelf.

Control Using SurfacePlace, deposit the item on the shelf.

Success Use ContactDetect to signal when the object makes contact with the shelf.

Figure 10-16: The PuttingStuffAway module assists a person by putting items on a shelf.
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When PersonDetect and VocalRequest are signaled, AssistedGrasp takes an object from the

person. AssistedGrasp uses whichever arm is closest to the person. PuttingStuffAway de-

termines which hand is closest to the shelf. If necessary, it uses SwitchHands to transfer the

object to the hand nearest the shelf. If GraspDetect signals that SwitchHands is successful,

then SurfacePlace puts the item on the shelf. The item is placed upright or horizontally

depending on the item’s placement stability η.

It should be noted that PuttingStuffAway is not simply a temporal sequencing of the

modules shown in Figure 10-16. Instead, it involves a carefully designed layering of these

modules, allowing for partial recovery from failure and increasing the system’s versatility.

Throughout, perceptual features such as GraspDetect or ShelfDetect are constantly moni-

tored to ensure that the state of the world has not changed unexpectedly on the robot. If

this is the case, PuttingStuffAway can lower the priority of an active module and recovery

is attempted without explicit planning. For example, if a person suddenly removes the

grasped object from the Domo’s hand during SwitchHands, then Domo will automatically

direct its gaze back to the person and AssistedGrasp will wait to be handed another object.

Or if the shelf is moved unexpectedly, SurfaceTest will automatically retest the location of

the surface.

10.4.1 Results

In total, we have executed PuttingStuffAway in over one hundred trials. To demonstrate

its performance, we conducted an experiment with PuttingStuffAway comprising 18 trials

and two subjects, where each trial lasted approximately one minute. A trial consisted of

the subject handing Domo a bottle, Domo transferring the bottle to its other hand and

then placing it on the shelf. One trial is depicted in Figure 10-17. Each subject performed

3 trials on each of the 3 bottles shown in Figure 10-18. The bottles vary in diameter from

40-75mm and length from 100−200mm. For each subject, the shelf remained stationary and

the SurfaceTest module executed only once at the start of the experiment. We measured

success using the following criteria:

1. Grasp: Stable grasp after transfer of the bottle from the person to the robot.

2. Switch: Stable grasp after transfer of the bottle between hands.

3. Place: Bottle X was left on the shelf.
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Figure 10-17: Execution of the PuttingStuffAway module. (A-D) Hypothesis testing: A shelf

is rolled up to Domo. It is visually detected and SurfaceTest physically verifies its location.

(E-H) Cooperative interaction: A person requests assistance from Domo. They are visually

detected and AssistedGrasp cues the person to hand it the bottle. (I-L) Expanding the

workspace: The shelf is out of the person’s reachable workspace but within the workspace

of the robot’s left arm. SwitchHands transfers the bottle from the right to left hand. (M-P)

Placement: Domo places the bottle on the shelf at the known location. The manipulator

compliance and downward force allow the bottle to align with the shelf.
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A B C

Figure 10-18: The three bottles used in the PuttingStuffAway experiments.

Grasp Transfer PlaceA StandA PlaceB StandB PlaceC StandC

Subject 1 9/9 9/9 3/3 3/3 3/3 3/3 3/3 2/3

Subject 2 9/9 8/9 2/3 2/3 3/3 2/3 2/3 1/3

Figure 10-19: Experiment results for PuttingStuffAway, with 3 trials for each of 3 bottles

(A,B, and C) and two subjects.

4. Stand: Bottle X was left on the shelf standing upright.

As seen in Figure 10-19, Domo was largely successful at the task for the three objects. One

subject was experienced in working with the robot at this task and consequently achieved a

higher success rate. Failures were typically a result of insecure grasps being formed during

the object transfer phase. Variability in the subject’s placement of the object in the robot’s

hand tended to be amplified by the transfer operation.

We also successfully tested PuttingStuffAway with non-ideal objects such as a cracker

box and a paper bag of coffee beans. As shown in Figure 10-20, Domo transfered the bag

between its hands and placed it on a shelf. In doing so, Domo unknowingly exploited the

intrinsic dynamics of the bag. When grasped at the top, the weight of the beans cause the

bag to naturally align with gravity, and therefore the shelf. This behavior is a characteristic

of deformable objects that would be difficult to predict using a model-based approach.

10.4.2 Discussion

PuttingStuffAway effectively extends the collaborator’s reach, allowing them to place objects

in locations that might be difficult or uncomfortable to access without assistance. If this
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Figure 10-20: Execution of the PuttingStuffAway module on a deformable object. A paper

bag of coffee beans is transfered between Domo’s hands and placed on the shelf. In doing

so, Domo unknowingly exploited the intrinsic dynamics of the bag. When grasped at the

top, the weight of the beans cause the bag to naturally align with gravity, and therefore the

shelf.

skill were combined with a mobile base, the person’s effective reach could be dramatically

extended. While the module demonstrates end-to-end execution of a useful, cooperative

task, there are many ways in which it can be extended. The assumptions of SurfacePlace

and SwitchHands restrict the types of items that can be placed. Richer sensing of the

object’s features could allow for better placement of non-cylindrical items. Also, all items

are placed at the same location on the shelf. For real-world tasks, some planning of the

object’s placement will be required.

10.5 HelpWithChores

HelpWithChores is a final demonstration that integrates all of the modules described thus

far. HelpWithChores enables Domo to assist a person in tasks that might be expected of a

robot working in a domestic setting.

As shown in Figure 10-21, HelpWithChores integrates the BimanualFixture, Container-

Insert, and PuttingStuffAway modules, among others. These modules run concurrently,

allowing a person to vocally request them at any time. The rich integration of these mod-

ules allows for a believable cooperative experience for the person. If the person notices that

Domo is failing at a task, they can provide vocal (VocalRequest) or contact (ContactDetect)

feedback to alert the robot. If Domo accidentally drops an object (GraspDetect), the person

can pick it up and ask the robot to grasp it again (AssistedGrasp). Alternatively, at anytime
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HelpWithChores

PersonSeek

PersonDetect

VocalRequest

AssistedGrasp

AssistedGive

ContainerInsert

PutStuffAway

BimanualFixture

GraspDetect

VocalRequest

ContactDetect

Figure 10-21: The HelpWithChores combines the task-level modules BimanualFixture, Con-

tainerInsert, and PuttingStuffAway modules, among others, into a single integrated module.

These modules run concurrently, allowing a person to vocally request them at any time. A

task can be interrupted prematurely by taking the object away from the robot (GraspDe-

tect), asking it to stop (VocalRequest), or grabbing the arm (ContactDetect).

the person can ask Domo to hand them a grasped object (AssistedGive).

In this way, the robot and person work as a team. The person intuitively provides task-

level planning and guides the robot’s action selection. In return, the robot accomplishes

manual tasks for the person. This interactivity during a task is central to the creature robot

approach. It requires that a module like HelpWithChores is not an algorithmic playback

of a manipulation plan. The person should not act as a proxy to a keyboard, making API

calls into the code. The robot should at all times be responsive to detected failures during

the task and redirection by the collaborator.

With this in mind, one possible HelpWithChores scenario is as follows:

1. Domo is positioned at a table cluttered with objects and near a shelf. Domo first

physically verifies the location of the shelf.

2. A person asks for help in preparing a drink. They hand Domo a cup and bottle of

194



juice. Domo “pours” the juice into the cup.

3. The person now hands Domo a spoon. Domo inserts the spoon into the cup and“stirs”

the drink.

4. Domo hands the spoon back to the person and then places the prepared drink on the

shelf.

5. Next, the person asks for help in putting away groceries. They hand Domo a box of

crackers. Domo passes the box to the other hand and puts them upright on the shelf.

6. The person hands Domo a paper bag of coffee and Domo places it on the shelf as well.

7. Now, the person asks for help in clearing off the table. They hand Domo a box and

Domo grasps it with both hands.

8. Domo keeps the box near the person as they go about clearing the table into it.

9. Finally, the task is done and Domo lowers the box onto the table.

This scenario was realized by Domo and the author. We accomplished it as one consecutive

task, punctuated by vocal requests for the robot, over the course of 5 minutes. Images from

the task execution are shown in Figure 10-22 and 10-23. Of course, other scenarios are

possible using HelpWithChores. For example, Domo could assist a person working on an

assembly line by holding a tool tray for the person, putting tools away, holding a tool and

then handing it back when the person is ready, and performing the insertion of two parts

during assembly.

In total, we have successfully demonstrated the HelpWithChores module on Domo

dozens of times to visitors of our lab. In each demonstration, the task scenario is com-

posed on the spot, and the demonstration lasts for around five minutes. As we can see,

even with the limited perceptual and motor abilities of Domo, a rich behavioral integra-

tion allows it to extend beyond simple, experimental demonstrations. We begin to see the

potential for Domo to be a truly useful, partner robot.

10.6 Discussion

Leading up to this chapter, we have described the implementation of many Slate modules

that form Domo’s basic perceptual and motor skills. In this chapter, we have shown how the
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Figure 10-22: Execution of the HelpWithChores module during the first half of one con-

secutive run. In this sequence, Domo assists in preparing a drink. (A) Domo begins at a

cluttered table. (B) A shelf appears and SurfaceTest verifies its location. (C-D) A juice

bottle and cup are handed to Domo using AssistedGrasp. (E) ContainerInsert “pours” the

drink into the cup. (F-G) Now, Domo is handed a spoon and ContainerInsert “stirs” the

drink. (H) Finally, Domo puts the finished drink on the shelf.
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Figure 10-23: Execution of the HelpWithChores module during the second half of one

consecutive run. (I-L) A box of crackers is handed to Domo’s right hand. It transfers them

to the left hand and places them upright on the shelf. (N-0) A bag of coffee beans is handed

to Domo. This time, it uses its left hand because of the person’s proximity. It then puts

the bag on the shelf. (P) Domo forms a bimanual grasp on a box. (Q-R) Domo keeps the

box near the person as they clean up the table and put items in the box. (S-T) Now that

the task is done, Domo lowers the box onto the table.
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integration of these modules allows Domo to achieve relatively complex manipulation tasks.

While the HelpWithChores module allows Domo to accomplish tasks that are reasonably

close to actual tasks a person might expect assistance with, there are several immediate

extensions that would be useful. First, Domo depends on its collaborator to act appropri-

ately. During ContainerInsert, it expects to be handed two objects that can be inserted

together. If the collaborator hands Domo inappropriate objects, it will still attempt the

task. Basic task knowledge about the expected objects could allow Domo to detect when

a task is not going as expected. Second, the objects that HelpWithChores can work with

are mostly limited to roughly cylindrical shapes. While the physical limitations of Domo’s

hands and wrists excludes many objects, Domo could work with more diverse objects by

extending the perception of task relevant features to include simple 3D shape features.
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CHAPTER 11

Conclusions and Future Directions

This thesis suggests one path forward for the emerging area of robot manipulation in human

environments. Throughout, we have emphasized the importance for a robot to constantly

sense its environment instead of referring to an internal model. Sparse perceptual features

can be used to capture just the aspects of the world that are relevant to a task, and many

manipulation tasks can be designed through the perception and control of these features.

As a consequence, a robot’s perceptual system can be specialized and more robust, and

its controllers can generalize across particular objects. Although human environments are

characterized by uncertainty, we have described strategies for a robot to use its body to

reduce this uncertainty. Human environments also exhibit important structure that can be

used to a robot’s advantage. The people within these settings can be induced to help a

robot, and the everyday objects that a robot might work with are designed with common

features that can simplify their use. For example, we have shown that just the ability to

detect and control the distal tip of a grasped object can afford a robot with a variety of

task opportunities.

Although we have demonstrated only the first steps towards robots working in human

environments, hopefully we have shown the potential of our approach.
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11.1 Contributions

• Compliant manipulators Robot manipulators are traditionally stiff and dangerous.

We have designed light-weight arms and hands that use Series Elastic Actuators to

provide intrinsic safety, force control, and compliance.

• Creature robot Unlike most of today’s manipulation robots, robots that work with

people will need to exhibit a diverse set of responsive behaviors. We have implemented

a behavior-based architecture, Slate, and have integrated many real-time behaviors

into a single system, allowing Domo to seamlessly switch between tasks.

• Let the body do the thinking Often, a robot can avoid difficult perceptual prob-

lems through clever physical design and action. We have demonstrated several com-

pensatory actions, such as using a flat surface to align an object, that allow Domo

to take actions that reduce its uncertainty about the world. We have also demon-

strated the use of passive and active compliance in a manipulator to increase a task’s

robustness.

• Cooperative manipulation Manipulation is usually thought of as the isolated ac-

tivity of just the robot. We have shown that a robot can intuitively leverage the

advanced perceptual, motor, and planning skills of a collaborative partner to assist in

accomplishing a task.

• Task relevant features Current approaches to manipulation often assume, or require

the recovery of, a 3D model. We have demonstrated an alternative approach, where

the the robot views the world as a sparse collection of simple perceptual features

relevant to a task.

• Everyday environment Roboticists do not have the luxury of engineering human

environments, so robots will have to function in the world as it is. The results in

this thesis were obtained in an unmodified office environment characterized by a large

variability in lighting, cluttered backgrounds, and largely unrestricted interactions

with people. To this end, we have developed a visual attention system that relies on

robust motion features.

• Everyday objects Many techniques in robot manipulation depend on prior models
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of an object or fiducial markers. Consequently, they do not always extend to the

variation found in everyday objects. Our methods were demonstrated on a variety of

everyday objects without prior models. Although some restrictions are required on

the size and shape of manipulable objects, we do not require the use of special markers

or backgrounds (with the exception of the shelf edge detection).

• Everyday tasks Ultimately, we want robots to do work that is useful to people. We

have demonstrated a single end-to-end task where Domo assisted a person with do-

mestic chores, including preparing a drink by “pouring” into and stirring the contents

of a cup, putting grocery items away on a shelf, and holding a box for the person as

they clean up.

The spirit of this work, as well as the contributions related to the TipEstimate and Inter-

estRegions modules, was developed in collaboration with Charles Kemp, and we refer the

reader to Kemp and Edsinger (2005, 2006a) for the results of this collaboration.

11.2 How Far Does This Extend?

It is important to consider the generality of our work, where it works best, and where it

breaks. In this thesis, we have addressed the following aspects of human environments:

• Generalization across objects within an object class

• Variability in lighting

• Unpredictable dynamics of human interaction

• Cluttered backgrounds

• No prior 3D models of objects or the environment

• No environment engineering

However, we have not addressed several important aspects of the domain, including:

• Naive collaborators

• Multiple environments
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• Autonomous grasping

• Autonomous task-planning

• Generalization across objects outside of an object class

The unaddressed areas of our work point to three categories of limitations: the robot itself,

the reasonable scope of work, and intrinsic limitations of the approach. In the first category,

the robot’s design and sensory system restricted certain research directions. For example,

the lack of dense tactile sensing, visual depth perception, fine resolution force sensing, as well

as physical limitations in the manipulator prohibited exploration of haptics guided control

and autonomous grasping. In the second category, many areas of work are simply beyond

the realistic scope of a single dissertation. With more time, multiple environments could be

tested, richer perception of social cues could be implemented, and naive collaborators could

work with the robot. In the third category of limitations, we find research problems that

are difficult to address given our framework. Let’s consider what these limits might be.

One potential limitation is in the manipulation of out-of-class objects. We have demon-

strated our approach on objects within a class. For example, the SwitchHands module

works with objects that are roughly cylindrical, such as a box of crackers or a bag of coffee.

However, if the collaborator were to hand the robot a bath towel, the algorithm would fail.

Although we assume the collaborator will hand objects within a class, it is a reasonable

extension to detect when out of class objects are handed. This detector could be learned,

as SwitchHands automatically categorizes objects in to those that can be passed between

hands, and those that can’t. While this would improve the system robustness, we would

prefer if SwitchHands would succeed on out-of-class objects. This is a difficult task as it

requires generalization of the robot’s manual skills beyond their currently specialized form.

This could possibly be achieved using a suite of multi-modal, task-relevant features that

extend beyond a single category.

Another potential limitation involves coordinating and planning complex tasks. Domo

relies on a collaborator to coordinate the robot’s manual skills over time. In this way, the

collaborator performs the task planning. However, we would like to incrementally expand

the robot’s autonomy, and this will require that it assume some of the task planning re-

sponsibility. Local task planning is possible within our framework. For example, when

SurfacePlace activates AssistedGrasp but remains in a wait state until GraspDetect is sig-
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naled, it appears that Domo plans to first grasp an object before placing it on the shelf. This

behavior emerges locally from the control system and is not part of a global plan. However,

this form of planning may be difficult to extend to more complex situations. Consider the

task of loading a dishwasher. To optimize the use of space, a person will first load the

smaller items and then place the large pots and pans in last.

In summary, our approach provides opportunities to expand the variety of objects, envi-

ronments, tasks, and collaborators that it can work with. Although many of its components

are hand designed, it also provides opportunities to integrate online learning. For example,

the system could learn the significant perceptual features of a task, learn the class of ob-

jects that a manual skill is appropriate for, or learn to coordinate the interaction of behavior

modules within a controller.

11.3 Lessons Learned

In developing this work, we have learned a number of implicit lessons that are worth making

explicit. These include:

Assumptions about the world

Assumptions about the state of the world are usually imprecise, and often incorrect. This

is a theme taken up by Brooks (1991b) and particularly true for our work. For example,

after SwitchHands executes, we assume that the regrasped object is appropriately aligned

in the hand. Misalignment can cause SurfacePlace to subsequently fail. Of course, it is

often difficult to avoid these assumptions, as the alternative requires constant sensing and

adaptation.

Communication through the world

Communication through the world, as described in Section 3.1, can limit the implicit as-

sumptions a module makes about the world’s state. For example, SurfacePlace monitors

GraspDetect to determine when to execute. If the object is dropped in transit to the surface,

SurfacePlace is automatically deactivated and RelaxArm takes control of the arm. Com-

munication through the world can also enforce modularity within the design, as it avoids

the complexity of internal wires between modules.
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Testing on real hardware

It is important to test algorithms on real robot hardware as much as possible, particularly

in manipulation. Even with ideal objects, the contact geometry and forces between the

object and manipulator will be far from the ideal. A grasp on an object is rarely a true

rigid grasp, and slippage can introduce unpredictable effects. In some cases, the sensing

resolution required by an algorithm will be unrealistic, particularly when derivatives, such

as Jacobians, are being used.

Dealing with failures

Detection and recovery from failure is perhaps more difficult, and as important, as the

manual skill itself. It is usually possible to achieve a manual skill that works within a

limited range of environment variability, but outside of this range we would like the system

to at least detect failure. In our approach, we can detect basic failures through detectors

such as ContactDetect and GraspDetect. Rather than explicitly consider all failure modes

of a manual skill, we use these detectors as checkpoints during execution. If the checkpoint

fails, then the controller can revert to a previous stage and try again, or relinquish control.

This allows Slate to handle the exception by activating the next-highest priority module.

Feedforward versus feedback

Within a manual skill, we often switch between feedforward and feedback control. Per-

ceptual errors are often amplified by a feedback controller and often feedforward control is

more reliable. Of course, feedback control provides greater precision but it requires a stable

percept. In the generic manual skill algorithm of Section 5.3.3, we first use a feedforward

precondition action, localize the feature, and then use either feedforward or feedback control

based on this localization. With SurfacePlace we use feedforward control during the reach

phase, while with ContainerInsert we use visual feedback to provide precise control during

insertion.

Leveraging human environments

We have shown that an object’s tip is a useful feature for robot manipulation. Consider

that we defined the tip as the furthest point from the center of rotation of a grasped object,
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and we found that this corresponds to the functional feature of a wide class of objects.

This relationship is due to the way everyday objects are designed, and because of the social

conventions surrounding how people hand objects to each other. It suggests that we might

view much of everyday, human manipulation as exploiting such affordances. We can design

robots to leverage these same affordances.

11.4 Going Forward

Rather than pushing for highly complex manipulation tasks, we envision developing founda-

tional manipulation skills that may be coarse, but are capable within human environments.

As advances are made in sensing, machine vision, machine learning, and actuator technolo-

gies, the robustness and generality of these skills can be augmented and expanded. This

provides a smooth path towards full autonomy, where the robot’s dependence on a hu-

man collaborator is incrementally reduced. We now describe a few directions that deserve

immediate attention.

11.4.1 A Suite of Task Relevant Features

In the course of this thesis, we have introduced several task relevant features such as the

edge of a shelf, the opening of a container, and the tip of a tool. There are many other

features that characterize human environments and would be worth pursuing, including flat

surfaces, handles, alignment with gravity, interior cavities, as well as alignment features for

stacking objects. A modular suite of perceptual detectors and controllers for these types

of features would be of great use, both for Domo, and for other robotics researchers. We

would also like to pursue a task relevant approach to tactile and auditory perception. One

example in this direction is the work of Torres-Jara et al. (2005), where the tapping sound

of a hand making contact with an object was used to discriminate between objects.

11.4.2 More Dynamics, More Adaptation

Robots in human environments require significant adaptation to unexpected dynamics.

While Domo can adapt to some unexpected events such as dropping an object, or a person

grabbing its arm, there are many circumstances that it does not adapt to. For example,

during execution of the SurfaceTest module, the hand will sometimes get trapped beneath
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Figure 11-1: Preliminary results in task learning from demonstration. (Top) Domo tracks

the relative location of the tip of a duster and a bottle as a person demonstrates a cleaning

task. (Bottom) Because the relative tip trajectory is largely independent of the objects used,

Domo uses the trajectory to reproduce the cleaning task using the duster and a flexible hose.

the surface as it reaches out. Although this event could be detected and explicitly consid-

ered, it would be preferable for a behavior to automatically subsume control of the arm and

respond appropriately. This type of adaptivity is difficult. It requires richer perception and

a better understanding of how to build integrated, behavior-based systems.

Ideally, these adaptive behaviors would be learned. For example, the perceptual features

indicative of failure within a manual skill could be learned through experience. Currently,

these features are hand selected. As the suite of perceptual features is extended, task

failure could be learned as a complex function of the proprioceptive state and the state

of the perceptual detectors. Along these lines, recent work by Jenkins et al. (2006) on

Robonaut has demonstrated manifold learning of a task-success detector for teleoperation

tasks. Learning an adaptive control policy within our framework is an important extension.

Although our controllers are not composeable as in the work of Platt et al. (2003c), we

could learn a policy for the sequential activation of motor modules based on feedback from

perceptual detectors. This could improve the adaptivity of the manual skills beyond the

performance of our hand designs.
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11.4.3 Learning from Demonstration

The development of a task such as PuttingStuffAway requires a lot of experimentation

and takes a lot of time. It would be preferable for task level behaviors to be acquired

autonomously, perhaps through human demonstration. In the long run, learning from

demonstration could serve as an intuitive way for people to program the robots they work

with.

Our approach to manipulation is well suited for learning from demonstration. By focus-

ing on task relevant features during both the demonstration and the execution of a task,

a robot could more robustly emulate the important characteristics of the task, generalize

what it has learned, and ignore irrelevant features such as the particular kinematic con-

figuration of the demonstrator. This type of approach has already been investigated by

Pollard and Hodgins (2002). As shown in Figure 11-1, we have begun to pursue learning

from demonstration in preliminary work (Edsinger and Kemp, 2007).

11.5 Final Remarks

This thesis is guided by a desire to see robots help people with the work of everyday life.

Robots that can work alongside us in our homes and workplaces could extend the time an

elderly person can live at home, provide physical assistance to a worker on an assembly line,

or help with household chores. In many ways, robot manipulation, and in particular, robot

manipulation in human environments, is the next great challenge for robotics.
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APPENDIX A

Module Summary

1. AssistedGrasp: Grasps an object by cueing a person to hand it.

2. AssistedGive: Gives an object to a person by reaching towards them.

3. BimanualCue: Reaches with both arms to a person.

4. BimanualFixture: Assists a person in putting items away by holding a box near them.

5. BimanualPlace: Lowers an object grasped between two hands onto a table.

6. BimanualServo: Grasps a box with two hands and positions it near a person.

7. CameraReach: Reaches along the optical axis of a camera.

8. CompliantLower: Uses force control to drop the arm in the direction of gravity.

9. ContactDetect: Detects external contact with the arm.

10. ContainerPlace: Places a grasped container on a table and detects its opening.

11. ContainerInsert: Visually servos the tip of a grasped object into a grasped container.

12. GraspAperture: Estimates the size of the opening of the hand.

13. GraspDetect: Detects when the hand is grasping an object.

208



14. GraspRelease: Opens the fingers on a hand.

15. HelpWithChores: Integrates all of the tasks into a single, assistive behavior.

16. InterestRegions: Detects fast moving, convex edges in the visual foreground.

17. PalmServo: Visually servos the contact surface of the palm.

18. PersonDetect: Detects the face or hand waving of a person.

19. PersonReach: Reaches towards a person.

20. PersonSeek: Scans the room in search for a person.

21. PowerGrasp: Forms a power grasp with the hand.

22. PuttingStuffAway: Assists a person by putting items on a shelf.

23. RetractArm: Brings an arm to the robot’s side.

24. StiffnessAdapt: Sets the stiffness of the arm.

25. ShelfDetect: Detects a shelf edge using fiducials.

26. SurfaceTest: Reaches out to a surface to confirm its existence.

27. SurfacePlace: Places a grasped object on a surface.

28. SurfaceReach: Reaches to just above a known surface.

29. SwitchHands: Transfer a grasped object from one hand to another.

30. TipEstimate: Estimates the location of the distal tip of a grasped object.

31. TipPose: Controls the position and orientation of the tip of a grasped object.

32. TipPriors: Predicts the location of the tip of a grasped object for a given task.

33. TipServo: Uses visual feedback to control the tip of a grasped object.

34. TipUse: Grasps an object, finds its tip, and the controls the tip for a task.

35. VisualFixate: Servos a visual feature to the center of the image.

36. VisualSearch: Randomly scans the gaze around a room.
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37. VocalRequest: Detects a person’s vocal commands to perform a task.

38. WatchHand : Servo the eye gaze to the hand.

39. WristWiggle: Rotate a grasped object at the wrist while keeping the arm stationary.
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Zöllner, R., Asfour, T., and Dillmann, R. (2004). Programming by demonstration: Dual-

arm manipulation tasks for humanoid robots. In IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS 2004), Sendai, Japan.

228


	1 Introduction
	1.1 Human Environments
	1.2 Robots Doing Useful Work
	1.2.1 The Sense-Model-Plan-Act Approach
	1.2.2 The Behavior-Based Approach

	1.3 The Robot Domo
	1.3.1 Partner Robots
	1.3.2 Creature Robots

	1.4 Manipulation in Human Environments: Our Approach
	1.5 Contributions
	1.6 Roadmap 

	2 Three Themes for Design
	2.1 Let the Body do the Thinking
	2.1.1 Human Form
	2.1.2 Designing for Uncertainty
	2.1.3 Taking Action

	2.2 Cooperative Manipulation
	2.2.1 Assistive Robotics
	2.2.2 Collaborative Cues

	2.3 Task Relevant Features
	2.3.1 Background
	2.3.2 Perceptual Robustness
	2.3.3 Generalization


	3 Recent Work 
	3.1 Connell: Behavior-Based Manipulation
	3.2 Metta and Fitzpatrick: Poking and Affordances
	3.3 Robonaut: Collaborative Tool Use 
	3.4 Dexter: Manipulation Gaits and Grasp Features
	3.5 STAIR: Learning of Grasp Points

	4 Building Bodies
	4.1 Notation
	4.1.1 Pinhole Camera Model

	4.2 Compliant Actuators
	4.2.1 Design
	4.2.2 Control

	4.3 Arms
	4.3.1 Arm Design
	4.3.2 Arm Control
	4.3.3 Inverse Kinematic Control

	4.4 Hands
	4.4.1 Hand Design

	4.5 Head
	4.5.1 Head Design
	4.5.2 Head Control

	4.6 Manipulator Safety
	4.6.1 Measuring the Head Injury Criterion

	4.7 Discussion

	5 Building Brains
	5.1 Computational Organization
	5.2 Slate: A Behavior-Based Architecture
	5.2.1 Slate Components
	5.2.2 Example Program
	5.2.3 Slate on Domo

	5.3 Designing Tasks in Slate
	5.3.1 Coordinating Modules
	5.3.2 Decomposing Manipulation Tasks
	5.3.3 An Algorithm for Manual Skills

	5.4 Discussion

	6 Visual Attention System
	6.1 Visual Motion
	6.1.1 Visual Motion Model
	6.1.2 Visual Motion Prediction

	6.2 InterestRegions
	6.3 The Sensory EgoSphere
	6.3.1 Features in the SES
	6.3.2 Spatial Distributions in the SES


	7 Let the Body do the Thinking
	7.1 StiffnessAdapt
	7.2 ContactDetect
	7.2.1 Contact Motion
	7.2.2 Contact Forces

	7.3 GraspAperture and GraspDetect
	7.4 SurfaceTest
	7.4.1 Results

	7.5 SurfacePlace
	7.5.1 Results

	7.6 Discussion

	8 Cooperative Manipulation 
	8.1 Perception of People
	8.1.1 Detecting Hands, Fingers, and Faces
	8.1.2 PersonDetect
	8.1.3 PersonSeek
	8.1.4 VocalRequest

	8.2 AssistedGrasp and AssistedGive
	8.3 Testing Cooperative Manipulation
	8.3.1 The Give and Take Experiment

	8.4 Discussion

	9 Task Relevant Features
	9.1 The Task Relevant Tool Tip
	9.1.1 Related Work in Robot Tool Use
	9.1.2 Tool Tip Detection
	9.1.3 Probabilistic Estimation of the 3D Tool Tip Position
	9.1.4 Tool Tip Estimation Results
	9.1.5 Discussion

	9.2 Control of the Tip
	9.2.1 TipPose
	9.2.2 TipServo
	9.2.3 Results

	9.3 Moving from Tool Tips to Everyday Objects
	9.3.1 Results

	9.4 Learning the Task Specific Prior
	9.4.1 Density Estimation
	9.4.2 Results

	9.5 Working with Tips
	9.5.1 TipPriors
	9.5.2 TipEstimate
	9.5.3 WristWiggle
	9.5.4 TipUse

	9.6 The Task Relevant Hand
	9.6.1 PalmServo

	9.7 Discussion

	10 Putting It All Together
	10.1 SwitchHands
	10.1.1 Results

	10.2 BimanualFixture
	10.2.1 BimanualServo
	10.2.2 Results

	10.3 ContainerInsert
	10.3.1 ContainerPlace
	10.3.2 Results

	10.4 PuttingStuffAway
	10.4.1 Results
	10.4.2 Discussion

	10.5 HelpWithChores
	10.6 Discussion

	11 Conclusions and Future Directions
	11.1 Contributions
	11.2 How Far Does This Extend?
	11.3 Lessons Learned
	11.4 Going Forward
	11.4.1 A Suite of Task Relevant Features
	11.4.2 More Dynamics, More Adaptation
	11.4.3 Learning from Demonstration

	11.5 Final Remarks

	A Module Summary

