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Abstract— We present a developmental perceptual system for
a humanoid robot that autonomously discovers its hand from
less than 2 minutes of natural interaction with a human. The
perceptual system combines simple proprioceptive sensing with
a visual attention system that uses motion to select salient
regions. We show that during natural interactions with a person,
the majority of the selected visual regions consist of significant
body parts on the human and robot (hands, fingers, and
the human’s head). The system visually clusters the selected
image regions, models their spatial distribution over a sensory
sphere, and uses mutual information to determine how much
the clusters are influenced by the robot’s arm. In our tests,
the visual cluster that most strongly relates to the robot’s arm
primarily contains images of the robot’s hand, and has a spatial
distribution that can predict the location of the robot’s hand in
the image as a function of the arm’s configuration.1

I. I NTRODUCTION

What can I control? This is a critical question for any
autonomous intelligent system. The incremental discovery
of the factors that we have influence over allows us to
direct our resources to more productive ends and expand
our opportunities for action. For an embodied system, a first
step on this path can be the discovery of the body. In this
paper, we present a developmental perceptual system for a
humanoid robot that autonomously discovers its hand in less
than 2 minutes of natural interaction with a human.

We first present a method for visual attention that uses
motion and shape to select salient regions that are important
for a robot that cooperates with people. We show that during
natural interactions with a person, these regions tend to
correspond with the person’s head and hand, and with the
robot’s hand. Second, we show that using mutual information
and non-parametric density modeling of spatial distributions
over a sensory sphere can be used to predict the locations
of salient visual categories and determine which of these
visual categories can be influenced by the robot’s arm. In
our tests, this method ranks visual categories associated with
the robot’s hand higher than those related to the person
with whom the robot is interacting. It also predicts the

1This work was sponsored by the NASA Systems Mission Directorate,
Technical Development Program under contract 012461-001.

Fig. 1. The robot used in this work, Domo, interacting with a person.

location of the robot’s hand in the image as a function of
the configuration of the robot’s arm.

We begin by discussing related work in Section II. In
Section III we provide a review of the approach used in
the visual attention system. Next, in Section IV we discuss
the techniques for clustering, density estimation, and mutual
information applied to discovery of the robot’s hand. Section
V describes our results, and Section VI outlines possible
directions for future work. Finally, Section VII provides
concluding remarks.

II. RELATED WORK

The work for this paper includes a visual attention system
that uses image motion and image edges to select salient
regions of the image. Like the work of Itti, Koch, and Niebur
[8], it attempts to rapidly find salient locations in the image.
With respect to the computer vision literature, it is a form of
spatio-temporal interest point operator that gives the position
and scale of significant parts of the image [12]. The multi-
scale histograms generated by the visual attention system
can be related to scale-space methods and have similarities
to classic image processing techniques such as the distance
transform, medial axis transform, and hough transform for
circles [5].
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Fig. 2. The architecture of the described system. During human-robot
interaction, the visual attention system produces scale and orientation
normalized image patches of interest points. Image patches are clustered
by HSV value and the arm configurations are clustered by joint angle. Each
patch location is mapped into spherical camera coordinates and a density
estimate of the spatial distribution is computed for each visual cluster. The
mutual information between the patch locations and the arm configurations
is used to predict the hand’s appearance in the image.

We have previously used the visual attention system of
this paper to detect the tip of a moving human tool within
the robot’s hand [11]. This work relied on a calibrated
kinematic model of the robot and only modeled the tip of
a rigidly grasped tool within the robot’s hand. In this paper,
no kinematic model of the arm is assumed and a diverse set
of salient regions are considered to be important .

We use mutual information to find visual features that can
be controlled by the robot. Many researchers have success-
fully used mutual information for developmental learning on
robots. Roy, Schiele, and Pentland used a clustering algorithm
based on mutual information to find visual and auditory clus-
ters that link objects with words [15]. Kaplan and Hafner, [3],
and Olsson, Nehaniv, and Polani, [14], have used similarity
measurements related to mutual information to autonomously
develop sensorimotor maps for robots. Olsson, Nehaniv, and
Polani’s work included image sensors on the sensory map,
and discovered the effect of actuators on global optical flow.

Our system makes use of a spherical camera model in
the body’s frame of reference to abstract away from the
details of the head and camera configuration. This type of
approximation has a strong relationship to the Sensory Ego-
Sphere of [7].

One of the main results in this paper is that the robot
autonomously discovers its own hand. Many researchers have
created methods of visual hand detection through motion.
Fitzpatrick and Metta [4] used image differencing to detect
ballistic motion and optic-flow to detect periodic motion of
the robot’s hand. Natale, [13], applied image differencing for
detection of periodic hand motion with a known frequency,

while [1] used the periodic motion of tracked points. Kemp,
[9], created a wearable system that discovers the hand of the
wearer with methods that are similar to what we use in this
paper. However, his method required a parametric kinematic
model and absolute orientation measurements.

Gold and Scassellati explored the idea of temporal contin-
gency for the detection of motion related to the robot’s body
[6]. They used image differencing and motor babbling to
learn a time window that models the delay between executing
a motor command and detecting visual motion. They then
used this time window to detect the onset of motion that was
likely to correspond with the body.

In contrast to [6], our method focuses on spatial relation-
ships rather than time. We do not explicitly model temporal
contingency, nor do we make use of the measured velocity of
the joint angles during motor babbling. Incorporating these
temporal relationships could be a useful extension.

Our method for discovering what can be controlled by
the robot is very strongly related to the formal information
based model for controllability presented by Touchette and
Lloyd in [16]. Their formal information-theoretic framework
for analyzing control systems supports our approach.

III. T HE V ISUAL SYSTEM

The visual system provides robust detection of fast moving
and roughly convex features for the robot’s attention system.
In this section we provide an overview of the system, which
is described in more detail elsewhere [9]–[11].

As in [10], the optical flow computation first uses block
matching to estimate the most likely motion for each edge
and a 2D covariance matrix that models the matching error
around this best match. Next, a global 2D affine motion
model is fit to these measurements. Finally, the significance
of the motion for each edge is computed as the Mahalanobis
distance between the edge’s measured motion model and the
global motion model. This motion measurement incorporates
both the magnitude of the edge’s motion and the uncertainty
of the measurement.

The visual attention system implicitly assumes that salient
regions will consist of many strongly moving edges that
are approximately tangent to a circle at some scale. Due to
projection, the detector will tend to respond more strongly to
objects moving close to the camera and fast moving objects.
It will also respond strongly to shapes with approximately
convex projections onto the image.

The input to the interest point detector consists of a set of
weighted edges,ei, where each edgei consists of a weight,
wi, an image location,xi, and an angle,θi. We use a Canny
edge detector to produce edge locations and orientations,
to which we assign weights that are equal to the estimated
motion. Each edge votes on locations in a scale-space that
correspond with the centers of the coarse circular regions the
edge borders. For each edge, we add two weighted votes to
the appropriate bin locations at each integer scales.



Fig. 3. An example of the set of 2D histograms,ms, produced by the
interest point detector when given a rectangle of edges weighted equally
with unit motion. The scale,s, increases from left to right. Strong responses
in the planes correspond with corners, parallel lines, and the ends of the
rectangle.
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Fig. 4. This figure depicts the approximate locations in the image of the
two votes at scales cast by an edge with orientationθ and position(x, y).

As depicted in Figure 4, within the original image coordi-
nates the two votes are approximately at a distancers from
the edge’s location and are located in positions orthogonal to
the edge’s length. We assume that the angleθi denotes the
direction of the edge’s length and is in the range[−π

2 , π
2 ),

so that no distinction is made between the two sides of the
edge.

For each scales there is a 2D histogram that accumulates
votes for interest points, as shown in Figure 3. The planar
discretization of these histograms is determined by the integer
bin length,ls, which is set with respect to the discretization of
the scale-space over scale,ls = dβ(rs+0.5 − rs−0.5)e, where
β is a scalar constant that is typically close to1.

We definers such thatrs+1 is a constant multiple ofrs,
wheres ranges from1 to c inclusive. We also definers to
be betweenrmax andrmin inclusive, so that

rs = exp(
log(rmax)− log(rmin)

c− 1
(s− 1) + log(rmin)) (1)

Settingrmin and rmax determines the volume of the scale-
space that will be analyzed, whilec determines the resolution
at which the scale-space will be sampled.

We compute the bin indices,(bx, by), for the 2D histogram
at scales with

bs(x, θ) = round(
1
ls

(x + rs

[
cos(θ + π

2 )
sin(θ + π

2 )

]
)), (2)

which adds a vector of lengthrs to the edge positionx and
then scales and quantizes the result to find the appropriate
bin in the histogram.

Algorithmically, we iterate through the edges adding their
weighted contributions to the appropriate bins. We can write

the equation for the resulting interest point detection maps,
ms, using delta functions,δ, so that

ms(u) =
∑

i

wi(δ(u− bs(xi, θi))+

δ(u− bs(xi, θi + π))), (3)

whereδ (x) =

{
1 if (xx = 0) ∧ (xy = 0)
0 otherwise

.

In order to soften the effects of our block discretization,
we low-pass filter each 2D histogram,ms, with a separable,
truncated, FIR Gaussian, which is approximately equal to
giving each edge a Gaussian vote distribution, since

G ? ms =
∑

i

wi(G(u− bs(xi, θi))+

G(u− bs(xi, θi + π))), (4)

where G is an ideal Gaussian. This is also approximately
equal to blurring the weighted edge map by scale varying
Gaussians, or blurring the scale-space volume across scale.

Ideally, the values of corresponding interest points result-
ing from a shape would be invariant to translation, scaling,
and rotation of the shape. We introduce two scalar functions
ns and nθ to reduce scale dependent variations and angle
dependent variations respectively, so that

ms(u) = ns

∑
i

nθi
wi(G(u− bs(xi, θi))+

G(u− bs(xi, θi + π))). (5)

We determine the values for these two functions empirically
using a calibration pattern.

We filter the scale-space for points that are locally max-
imal. We then use fourier-based shape descriptors from [9]
to filter these local maxima for points in the scale-space that
correspond with extended and enclosing curves in the image.
Finally, we take the10 remaining points with the highest
responses, and use the corresponding positions and scales
within the image to extract image patches.

IV. D ISCOVERY OF THEHAND

The visual system provides us with10 salient image
patches for each image. These patches are tagged with time-
aligned joint angles from the robot’s proprioceptive system.
As described in this section, we then cluster these sensory
inputs, compute density estimates of the patches’ spatial
distribution, and then use mutual information to determine
which visual cluster relates most strongly to the robot’s hand.



A. Clustering

We cluster the image patches and the arm configurations
independently using K-means [2] to give uskv visual cat-
egories andka arm configuration clusters. For each image
patch, we first scale the patch to a standard size, and then
multiply the result by a Gaussian mask in order to reduce
the influence of the corners of the square image patch. We
then create a feature vector consisting of a 16x16 hue and
saturation histogram. For the arm configurations, we convert
each of the 4 joint angles,θn, of an arm configuration into
a 2D cartesian coordinate,xn, resulting in an 8 dimensional
feature vector, where

xn = [cos(θn), sin(θn)]. (6)

This allows us to use Euclidian distance when clustering
without worrying about angular wrap-around.

B. Density Estimation

For the resulting visual clusters, we now model the po-
sitions of the image patches with a probability distribution
p(φ, c), which represents the chance of seeing an image
patch of category,c, at location,φ, wherec is the index for
one of thekv visual categories, andφ is the 2D coordinate
that describes the position of the patch in the head-centered
spherical camera model. We estimatep(φ|c) for each visual
category,c, using 2D histograms, so that

p(φ|c) ≈ 1∑
i∈c p(i|c)

∑
i∈c

p(i|c)δ(round(Th(ix)− φ)), (7)

where δ(d) =

{
1 if d = (0, 0)
0 otherwise

, p(i|c) is the estimated

probability of image patchi given visual categoryc, and
Th maps the pixel coordinate for a patch,ix, to spherical
coordinates given the configuration of the head,h. In this
work, Th uses a kinematic model of the robot’s head/camera
system. We modelp(i|c) using a spherical Gaussian. Each
dimension of the 2D histogram maps to a[−π, π] range
of the corresponding dimension ofφ, whereφ = (0, 0) is
directly in front of the robot andφ = (π, π) is directly behind
the robot. Using non-parametric estimates of distributions,
we can easily find estimates forp(φ|a, c) and p(a|c) as
well, wherea is the index for one of theka arm clusters.
By themselves, these density estimates have utility, since
they can be used to predict where visual categories will
appear, and hence serve as priors for visual search and object
detection.

C. Mutual Information

We now wish to determine the extent to which the position
distribution for each visual category,c, is influenced by the
arm’s configuration. Intuitively, we would expect that the per-
son’s face would remain in a similar visual position over the
majority of the configurations of the robot’s arm. Likewise,
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Fig. 5. We hand-labelled the categories for 200 image patches randomly
collected from the attention system. A patch was labelled as a person if
it selected either a hand, finger, head, eye, or object in the hand. A patch
was labelled as a robot if it selected either the robot hand, finger, or wrist.
Patches that were neither person or robot were labelled as other. The left
plot shows the probability of each category and the right plot shows the
probability of each sub-category.

we would expect for the visual position of the robot’s arm
to be strongly related to the current proprioceptively sensed
arm configuration.

We can use the mutual information,Ic(Φ;A), between the
random variablesΦ and A (corresponding with arguments
φ and a) to rank thekv visual clusters according to how
much they are influenced by the robot’s arm configuration.
By definition

Ic(Φ;A) = Hc(Φ)−Hc(Φ|A). (8)

We can estimate the entropy,Hc(Φ), and conditional entropy,
Hc(Φ|A), using our density estimates, since

Hc(Φ) = −
∑

φ

p(φ|c) log(p(φ|c)) (9)

Hc(Φ|A) = −
∑

a

p(a|c)
∑

φ

p(φ|a, c) log(p(φ|a, c)). (10)

In our tests the visual cluster,cbest, with the highest value
for Ic(Φ; A), corresponds with the robot’s hand. We can use
our estimate for the distributionp(φ|a, cbest) to predict the
location of the robot’s hand within the image. In our tests, we
used the maximum likelihood estimate of the hand’s position,

φhand(a) = Argmaxφ(p(φ|a, cbest)), (11)

which returns the most likely spherical coordinate for the
hand,φhand, given the arm configurationa.

V. RESULTS

We tested our approach on the 6 DOF arm and 8 DOF
head of the humanoid robot, Domo, pictured in Figure 1.
The robot head was held fixed while the arm was allowed
to explore its workspace through motor babble. During the
exploration, a human subject was also allowed to freely
interact with the robot through waving, presenting objects,
and interacting with the arm. Each interaction lasted about
1 minute, generating approximately 1000 proprioceptive and



Fig. 6. A random sample of image patches collected by the motion based
attention system.
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Fig. 7. Image clustering was done with K-means (k=2). Image patches
were encoded as a16x16 hue and saturation histogram. The top 24 image
patches for each cluster are shown. Cluster A predominantly contains the
robot’s hand while cluster B contains the human subject.

image points of data. The visual attention system, clustering,
and mutual information computations were performed off-
line, though an online implementation is feasible. The overall
architecture of our system is illustrated in Figure 2.

Using motion and shape as cues, the visual attention
system was robust at detecting the person’s hands, fingers,
head, eyes, and held object, as well as the robots hand,
wrist, and fingers. As Figure 5 illustrates, over50% of
the image patches selected by the attention system were of
salient human features, while over30% were of the robot’s
hands. Figure 6 shows a random sample of the image patches
selected by the interest point operators.

We successfully tested our approach over two different
data sets using the parameterskv = [2, 10, 20] for the K-
means clustering of the image patches. Figure 7 depicts the
top image patches for each cluster whenkv = 2, showing
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Fig. 8. Hand prediction results. In this example, two visual clusters, A
and B, were learned. Cluster A has the higher mutual information and is
the better predictor of the hand in the image. Cluster B is a poor predictor
and has lower mutual information as expected. Each prediction, marked in
green, corresponds to one of 9 arm configuration clusters. The maximum
point of the 2D histogram, conditioned on an arm cluster, is taken as the
predicted hand location within the spherical camera model. For visualization,
the prediction is transformed into pixel coordinates and displayed with the
camera image chosen when the arm was nearest the arm cluster mean. The
images are ranked (left-to-right, top-to-bottom) according to the maximum
value of p(φ|c). As expected, the system is unable to make a prediction
when the hand is out of view.

the ability to segregate the robot’s hand from other image
patches. The K-means clustering of the arm configurations
used ka = 9. After computing the mutual information
between the spatial distribution of image patches and the
arm pose, we consistently found that the cluster of image
patches determined to be under the robot’s control primarily
contained the robot’s hand. We also found that this cluster
could reliably predict the appearance of the hand in the
image, as shown in Figure 8.

VI. SIMPLIFYING ASSUMPTIONS ANDFUTURE WORK

We have made several simplifying assumptions throughout
this paper that could be worth revisiting in future work. First,



we have assumed that the visual system can meaningfully
categorize the salient image patches without feedback from
the proprioceptive system and the position distribution forΦ.
A full developmental system would benefit from gradual dif-
ferentiation of the visual categories based on feedback from
other modalities, or simultaneous clustering akin to Roy’s
work [15]. Likewise, we chose to use a simple clustering
algorithm, K-means, and feature vector, color histogram, to
produce the visual clusters in order to provide a clean exam-
ple. The visual system could more effectively categorize the
image patches with a more sophisticated clustering algorithm
and patch descriptor.

When using the 2D histograms as non-parametric density
estimators for distributions involvingΦ, one should ideally
compensate for the distortions caused by mapping the surface
of a sphere to a plane. For this work we ignored this
complexity and computed a simple linear conversion. This is
a reasonable approximation, since in our data set the image
patches appear over a small portion of the sphere. Similarly,
the motion of the head will bias the distributions to be
stronger over the regions of the sphere that are looked at more
frequently. We could attempt to ensure that the head’s motion
samples some region of the sphere with near uniformity, or
normalize the areas of the histogram based on how often they
have been observed. For this paper, we chose the simplest
model, which ignores the impact of the head motion on the
distribution, and implicitly incorporates it as another source
of randomness.

Finally, the algorithm should work when the head is
moving, due to the global motion model used in the optic
flow and the spherical camera model. Currently we have only
tested it with data taken while the head was held at a fixed
position.

VII. C ONCLUSIONS

In this paper, we have demonstrated a perceptual system
for a humanoid robot that can quickly discover its own hand.
The learning occurs autonomously during natural human
interaction in an everyday, unstructured setting. The visual
attention system, using motion and shape cues, is capable of
autonomously selecting regions corresponding to significant
body parts of the robot and the human. We model the spatial
distribution of these regions over a sensory sphere, and use
mutual information to help determine what the robot can
influence within its environment.
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