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Abstract— Robots that work alongside us in our homes and
workplaces could extend the time an elderly person can live at
home, provide physical assistance to a worker on an assembly
line, or help with household chores. In order to assist us in
these ways, robots will need to successfully perform manipulation
tasks within human environments. Human environments present
special challenges for robot manipulation since they are complex,
dynamic, uncontrolled, and difficult to perceive reliably.

In this paper we present a behavior-based control system that
enables a humanoid robot, Domo, to help a person place objects
on a shelf. Domo is able to physically locate the shelf, socially
cue a person to hand it an object, grasp the object that has been
handed to it, transfer the object to the hand that is closest to the
shelf, and place the object on the shelf.

We use this behavior-based control system to illustrate three
themes that characterize our approach to manipulation in human
environments. The first theme,cooperative manipulatigrrefers to
the advantages that can be gained by having the robot work with
a person to cooperatively perform manipulation tasks. The second
theme, task relevant featureemphasizes the benefits of carefully
selecting the aspects of the world that are to be perceived and
acted upon during a manipulation task. The third theme, let the
body do the thinkingencompasses several ways in which a robot
can use its body to simplify manipulation tasks:

Fig. 1. The humanoid robot Domo used in this paper.
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tion tasks within human environments. Human environments

present special challenges for robot manipulation since they Il. THE TASK
are complex, dynamic, uncontrolled, and difficult to perceive . .
reliably. We present a behavior-based control system implemented

Addressing these issues is a focus of several active ro'egtg the humanoid robot Domo, pictured in Figure 1. For this
9 proJ work, Domo use®9 DOF, a single camera, and Series Elastic

The ARMAR project is investigating manipulation in humar)Aqtuators [7], [8]. As shown in Figure 2, Domo takes objects

envm_)nments f"‘”d has shown results mt_:ludmg the biman ﬁat have been handed to it and places them on a shelf. Domo
opening of a jar [1]. Researchers working with the NASA

Robonaut [2] have demonstrated a cooperative manipula(tifnable to physically locate the shelf, socially cue a person to

task where the robot employs a power drill to tighten lugnu Sand It an Obje.Ct’ grasp the object t'hat has been handed to it,
under human direction. Work at Fraunhofer IPA with Care- ransfer the o bject to the hand that is cI.osest.to the shelf, and
bot Il has pursued fetch-and-carry tasks of everyday obje lace the object on the shelf. By performing this task, the robot
[3]. In addition, many groups are pursuing research on a%_ectively extends the person’s reach, allowing her to place

i ) S . bjects in locations that might be difficult or uncomfortable to
tonomous mobile manipulation in human environments [4i, . . ; . . ;
[5], [6]. ccess without assistance. If this skill were combined with a

mobile base, the person’s effective reach could be dramatically
1This work was sponsored by Toyota Motor Corporation: AutonomotEX_tendEd' F_Or an individual with serious phy_smal |ImltatI0n_S,
Manipulation Capabilities for Partner Robots in the Home. this help might allow the person to maintain autonomy in



everyday activities that would otherwise require help from
another person. For example, an elderly person in a wheelchair
might use a robot with this ability to put away common
household objects, such as books and dishes.

Ill. THREETHEMES FORDESIGN

Three themes characterize our approach to manipulation
in human environments. The first themegoperative ma-
nipulation refers to the advantages that can be gained by
havmg the_ robot work with a person to cooperatlvely perfor@lg. 3. Donald Norman'’s "Coffeepot for Masochists”. Many objects in human
manipulation tasks. The second thertask relevant features environments have been designed to match our physical and cognitive abilities.

emphasizes the benefits of carefully selecting the aspectsTif design of a traditional coffeepot, for example, has evolved such that the

the world that are to be perceived and acted upon duriﬁy and coffee can be easily controlled from the handle, the handle is matched
a human-scale power grasp, and the spout is positioned to accommodate

a manipulation task. The third themist the body do the perception and control of the spout during pouring. (Personal collection of D.
thinking encompasses several ways in which a robot can useéNorman. Photograph by Norman. Reproduced with permission).

its body to simplify manipulation tasks.

A. Cooperative manipulation manipulation in human environments. For example, we have

For at least the near term, robots in human environmertgeVviously shown that the manipulation of a large set of human
will be dependent on people. Fortunately, people tend to E¥ls can be specified in terms of the tool's tip, such as the
present within human environments. As long as the robot® of a screwdriver [12].
usefulness outweighs the efforts required to help it, robotMany researchers treat robot manipulation as a planning
autonomy is unnecessary. Careful design can make robots ifteblem performed with respect to the global state of the world
itive to use, thereby reducing the effort required. For exampld3], [14]. In contrast, our work is influenced by the work
the initial version of the commercially successful Roomb@f researchers such as Jagersand, Platt and Grupen, Connell,
relies on a person to occasionally prepare the environmeafid Brooks [15], [16], [17], [18], who make use of carefully
rescue it when it is stuck, and direct it to spots for cleanirgosen aspects of the world's state. Rather than attempting
and power. The robot and the person effectively vacuum tfe reconstruct the world in its entirety, we focus the robot's
floor as a team, although the person’s involvement is reducg@nsory resources on elements of the world that are relevant
to a few infrequent tasks that are beyond the capabilities fthe current task, such as the contact surface of the hand, the
the robot. edge of the shelf, or the grasp of an object. Other researchers

By treating tasks that involve manipulation as a cooperatifi@ve used task relevant features for manipulation, although
process, people and robots can perform tasks that neither dfcally with fiducial markers or simplified environments
could perform as an individual. Researchers have looked [38], [20]. Except for fiducial markers on the edge of the shelf,
techniques for cooperative manipulation that physically coupi¢e have not altered the world to accommodate perception.
the robot and the person, such as carrying an object togetheYVe define tasks in terms of behaviors that perform closed-
[9], [10]. Fewer researchers have investigated the use of sod@p control with respect to these features, so that at all times
cues for cooperative manipulation [2]. the robot has rich feedback about its performance and the

For the task described in this paper, the person hands Dogfdlity to react to the unexpected. In particular, if one of
the object to be placed on the shelf. This cooperation avoiti£se constantly monitored aspects of the world violates the
the challenges involved with having a robot autonomousf@quirements of the current behavior, the robot has fallback
select, locate, and grasp an object. Domo uses social cue®@baviors to which it can resort. Since a human is present, the
simplify this cooperation. If Domo sees a person, it reaches digPot can ask for help as a last resort.
toward the person with an open grasp, which communicates o
to the person that Domo is prepared to place an object on ftie L€t the Body Do The Thinking
shelf. Domo’s outstretched, open hand gives a clear indicationThis theme bundles together a number of design strategies
of where the person should place the object and biases that make use of the robot’s body to simplify manipulation.
person to place the object within Domo’s hand at a desirabdResearch on robot locomotion has convincingly demonstrated

orientation. the benefits of exploiting compliance and natural dynamics
for robot control when the robot is in contact with the world
B. Task relevant features [21], [22], [23]. Moreover, Williamson’s work [24] on robot

Donald Norman's bookThe Design of Everyday Thingsmanipulation shows that similar strategies can be successfully
[11], indicates that objects found within human environmengpplied to robot manipulation.
are likely to have common structural features that simplify 1) Human Form: As we have discussed within [25] and
their use (see Figure 3). By developing behaviors that akmrman has discussed in [11], human environments are well
matched to such structural features, we can simplify robotatched to the human body. Domo’s human form allows



Fig. 2. Domo assists a person in placing a bottle on a shelf. (A-D) Hypothesis testing. The shelf is rolled up to Domo. It is visually detected and a visually
guided reach in the direction of the shelf is performed. The arm compliantly lowers onto the shelf and its location is confirmed. The proprioceptive state of
the arm is used to represent the location of the shelf in the world. (E-H) Cooperative interaction. A person is detected by Domo. Domo reaches towards the
person, cueing her to place a bottle in its hand. In placing the bottle in Domo’s hand, the person intuitively offers it in an appropriate orientation. A grasp
reflex is triggered when contact forces are detected in the arm. A successful grasp is detected and the arm is lowered. (I-L) Transfer. The shelf is out of the
person’s reachable workspace but within the workspace of the robot’s left arm. The left arm performs a visual reach to the bottle, using hand motion to detect
and estimate the location of the hand’s contact surface in the image. The left arm compliantly lowers on to the right. Contact forces detected in the right arm
trigger a grasp reflex in the left hand. If both hands have a successful grasp, the right hand releases the bottle and the transfer is complete. (M-P)Placement
Domo reaches to just above the shelf surface using its previously estimated location. The arm and wrist are place in a compliant force mode and the bottle
is lowered onto the shelf. The manipulator compliance and downward force allow the bottle to become aligned with the shelf. If successful shelf contact is
detected, the bottle is released and the arm retracted.

it to intuitively cue the person with whom it is working.physical interaction with a person [26]. In addition, the angle

Domo’s eye gaze, arm gesture, and open hand are similarofneach joint can be controlled as a virtual spring, where the
appearance to a human requesting an object. This can helgting setpoint of the spring and the stiffness can be specified
communicate Domo’s request and cue the appropriate respoimseeal-time.

more effectively than a wholly alien body. Also, Domo's o pjiance allows Domo to safely explore the world, such
eyes and arms are high off of the ground, which simplifiegs \yhen it finds the shelf with its hand. Domo also uses
perception and action relative to the shelf. In addition, Domoy§,, stifness control to take advantage of favorable natural
hand is well suited to grasping everyday cylindrical ObJeCtﬁynamics, such as the tendency of an object to stably align
since it is approximately the size of an adult's hand and haSeit with a flat surface. When transferring an object between
a compliant exterior. its hands, compliance helps Domo to achieve a good grasp on

2) Compliance:Domo is mechanically distinctive in that itthe object without knocking the object out of its hands.

incorporates passive compliance and force sensing throughou) Active PerceptionBy taking action, the robot can make
its body [7]. Domo’s22 Series Elastic Actuators lower thetask relevant perception easier. Domo selects postures in order
mechanical impedance of the its arms, allowing for sate more easily view task relevant features, which is especially
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Fig. 4. The robot’s view as it transfers an object to its right hand to its left. Grasp
The everyday environment includes the shelf, a person, as well as natural
lighting and a cluttered background. The edge motion (right) of the hand is ; — | GraspDetect
used to estimate the location of the contact surface (green). This estimate Yy
is then used to visually servo the contact surface in the scene. In addition, { Tranm—‘
the robot actively adapts its posture such that it can more easily view the
controlled features. vl GraspDetect

| Place

important for visual servoing. As shown in Figure 4, when the
robot transfers an object from one hand to another, it moves its
hands tQ a posture such that the contact S_urface of the hand l-clgr]S A high level description of the task implementation. The robot assists
be readily detected and servoed. From this posture, the conyg¥rson in placing objects on a shelf using four behavBheifTest, Collab-
region of the hand’s grip corresponds with a convex edge drativeGrasp, TransferandPlace In the behavior diagram, bold indicates the
the image. The robot also uses visual motion and active con Siault behavior. Transitions (arrows) occur contingent on perceptual feedback
. . . . bars). For a given behavior, the robot takes actions to increase the likelihood
of objects to simplify detection of task relevant features. F@hd robustness of a desired perceptual feature (diamond). Exceptions from
example, the motion of the robot’s hand simplifies detecti%he eXpectgd fe?'dbacrlf rfsult in afreset trakt)rrsitionf (dash]?dhﬁl’r@gTest
) etects and verifies the location of a useable surface. If the robot is not
of the hand's Conve?( contact surface. . .grasping an objectCollaborativeGrasputilizes natural social cues to gain
Domo also uses its body to reduce uncertainty by makim@man assistance in grasping an object. Depending on the shelf location,
contact with the world. The robot uses an exploratory behavigensfercan optionally allow the robot to pass the object to the other hand.
to physically locate the surface of the shelf after getting Fgawg'i;fttg‘%l:??ﬁ;'zg}gg'gﬁ’]"’t‘ﬁe"g‘hﬁ'”the hand nearest to the shizice
coarse visual estimate. The robot reaches above the shelf and

then moves its arm down compliantly until contact. This is

similar to what a person does when searching for a surfaceyifese hehaviors can be further decomposed into a shared set of

the dark. Through this behavior, the robot also finds an agRceptual and motor behaviors, as shown in Figures 6,7,8,and
posture that is likely to lead to success when placing the objecty,,, algorithm is as follows:

on the surface. This circumvents the need for planning an ar

m . . :
rajectory and target posture. 1) ShelfTes(Figure 6). Detect and verify the location of a

useable surface.

IV. | MPLEMENTATION a) Visually identify a candidate flat surface (through
. . fiducials).
A. Behavior Architecture ,
o . ) b) Reach out along a ray that is above the front edge
The robot’s control is implemented as a hierarchical set using visual servoing.
of perceptual and motor behaviors. The behaviors run in a c¢) Use compliant force control to move the hand
distributed, real-time architecture & — 100hz on al5 node down and make contact with the surface.
Linux cluster. We have adopted a layered approach similar d) Detect contact (or lack of) with the shelf.
to that of Brooks[27] and Connell[17]. We couple constant e) Store the posture, prior to descent, that led to
perceptual feedback to many simple behaviors in order to success, or try again.

increase the task robustness. For example, if a person remov
the object from the robot's grasp at anytime during task
execution, the active behavior will become inhibited and a
lower-level behavior may attempt to reacquire the object or
to smoothly bring the arm to a relaxed posture. If the arm
trajectory is disturbed during a visually guided motion, a
head behavior will automatically keep the hand in view. In
this section we first describe the overall algorithm and then
describe some of the behaviors in more detail.

eZS) CollaborativeGrasfFigure 7). Transfer the object from
a person to the robot.

a) Detect the person.

b) Reach to the person, cueing them to offer an object
at the appropriate place and orientation.

c) Detect the interaction forces created by the object
being placed in the hand.

d) Form a power grasp and detect its success.

e) If no success, relinquish control.

B. Algorithm 3) Transfer (Figure 8). Transfer the object from one hand

As shown in Figure 5, the task can be decomposed into four  to the other.
behaviorsShelfTest, CollaborativeGrasp, TransfandPlace a) Achieve a posture which brings both hands into the
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Fig. 6. ShelfTestThe robot detects and verifies the location of a useable P i
surface. See Figure 5 for the diagram notation. When the robot has not I—M"‘
yet detected a shelf, it engages in periodic visual search around the room v
(Search, increasing the likelihood of detecting a shelf. Wh8helfDetect HoldingA

finds a hypothesized shelf, the robot visually fixates the location and moves its
nearest hand to the surface into the ima@es@ until Visbleis true. The hand

is then visually servoedServq to a visual target just above the shelf edge.
The arm is also extended to a fixed depth along the camera’s optical axis. The
visual motion of its arm is used to detect the tip of the hand and improve tR&y. 8. Transfer The robot transfers an object between hands. See Figure 5
precision of the servoing procesEEstimatg. When the hand has achievedfor the diagram notation. If hand is not holding an objectEmptyA, hand

its target Aligned), the hand is lowered onto the shelf using compliant forc® is, and a shelf exists nearest hah@ShelfEstimate)) then the robot moves
control (Lower). If stable contact is detectedC¢ntactDeteqt the posture, its two arms to a stereotype podeoéd. The pose is selected such that both
prior to descent, that led to success is storgdef{fEstimate Otherwise, the the object and the contact surface of hadre visible Yisible). The contact
robot may try the process again. surface of Hand\ is then visually servoedSgrvoA to a fixed offset from hand

B (AlignA). The visual motion of its arm is used to detect the contact surface
and improve the precision of the servoing proceBpHstimateA HandA is
lowered onto hand® using compliant force contrglLowerA) The stiffness

Empty of arm B is also lowered, increasing the likelihood of detecting the contact
I between the two armsCpntactDetectR Finally, the behavior is successful if
handA executes a stable power grasp on the objécagpDetecthand hand

Cue B releases the object. Otherwise, the robot may try the process again.
=]
———{ comnen |
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A

) 4

| Holding Reach

Lower ‘
Fig. 7. CollaborativeGrasp The robot leverages natural social cues for ContactDetect
human assistance in grasping an object. See Figure 5 for the diagram

A 4
notation. When its hands are emptinipty, the robot engages in visual Release
search, increasing the likelihood that a person is detected in the scene. When )
PersonDetecsignals that a person is waving their hand, the robot cues the
person to hand it an object. For tkie behavior, the robot reaches towards
the person, its hand open, at an appropriate time, location, and orientation
such that_ the person intuitively read_s the_gesture as a request. The stiffnes,s]-é).fg_ Place The robot an object from its hand to a shelf. See Figure 5 for
the arm is also lowered. These actions increase the likelihood that a perggl giagram notation. If a shelf existSHelfEstimatenearest a grasping hand
will place an appropriately oriented object in the robot's hand and that th§o|ding), the robot reaches to the previously learned posture that places the
interaction forces of the placement can be sensed. When interaction forggsy just above the shelf. The object is then lowered onto the shelf using
are sensed at the han@qntactDeteqt the robot executes a power-grasp. Ifcompjiant force control Liowen). The passive and active compliance in the
GraspDetecignals a successful grasp, the robot remains irHibleling state \\yist and hand allow the object to naturally align into a stable pose. If contact
until GraspDetectis no longer true. Through continual perceptual feedbackii, the shelf is detectedContactDetedt the grasp is released and the arm
and by placing the person within the feedback loop, the robot is able to 9r3Retracted, leaving the object on the shelf.

objects in the environment.




visual field-of-view.

b) Visually servo the inner contact surface of the
empty hand to be just above the other hand.

c) Compliantly lower the empty hand through force
control until the other hand detects the interaction
forces.

d) Form a power grasp and detect its success.

e) If no success, back out and retry the servo.

f) If both hands are grasping, release the older grasp.

4) Place (Figure 9). Transfer the object from the hand to
the shelf.

a) Achieve the previously learned posture that places
the hand just above the shelf.

b) Descend compliantly for a fixed durat.|on u‘?"nqoint—torques during force controlled movements. Contact is
force gontrol. Allow the object to self-align USINY jetected when the error exceeds a conservative threshold.
compliance. 6) TipEstimate: The position of a fixed point within the

¢) Release and retract. hand’s coordinate frame is estimated online through self-

C. Behaviors generated motion. The point is detected as the fastest moving

1) Lower: The arm is controlled by specifying a virtualCONVeX feature in the image. This typically corresponds with
force vector at the hand, lowering the arm until contact tbe distal end of the robot’s kinematic chain, allowing the robot

made. Virtual forces are converted into commanded torqu@sPredict the visual location of its finger, paim, or the tip of a
using the arm Jacobian, while compensating for gravit rasped object, even under perceptual uncertainty due to poor

induced torques. If a large hand displacement occurs (HBNd-€ye calibration and unknown objects [12].
contact), the behavior is inhibited. 7) Servo: The tip of the kinematic chain, as estimated by

2) PersonDetectVisual detections of faces [28], skin color, TIPEStimate, is servoed to a visual target within the 2D image
and foreground motion [12] are used to detect when a persorp{ane: Reaching in depth is achieved by kinematically servoing
present and waving their hand. A face detection and repeaffl tiP along the camera's optical axis. The visual motion
skin motion (waving) at an expected hand location is presum@gnerated by the servoing can be used to adapt TipEstimate
to be a cue for the robot. online. For example, when performing a transfer between

3) GraspDetect:The grasp aperture is used to estimate bof}ands, the robot's paim is visually servoed to the object.
the diameter and existence of a held object during a force-
controlled power grasp. The grasp aperture is difficult to esti-

mate analytically due to finger collisions, complex kinematics,,We tested'Domos performange on the task ol@rtrlals
w&h two subjects, where each trial lasted approximately one

and passive compliance of the robot skin. A map was learn X ) . .
between the four finger joint angles and the grasp apert nute. A trial consisted of the subject handing Domo a bottle,

using support vector regression (SVR) with a Gaussian Ré,}pmo transferring the_ bqttle to_its other hand and then plaging
kernel. The training data was gathered through robot povx}Ialon the shelf: One trial is depicted in Figure 2. Each S“F’JeCt
grasps on 5 cylindrical objects of known diameters betweé’r,"?rformEd3 trials on each Qf th_é; empty bottles shown in
25 and 75mm. The orientation of the object was varied bFlgure 10. The bottles vary in dlamete_zr frotd — 75mm am_j
+30 degrees and the proprioceptive resting state was recor _th from100—200mm. For eaCh_SUbJeCt’ the shelf remained
for a total of50 trials. Consistent power grasp apertures aboygationary and theSheIfTesIbehawor executed only once at
a threshold diameter are signaled as a stable grasp detectmﬁ. start Of_ th? experiment. We measured success using the
4) ShelfDetect: Fiducial markers attached to the Ieadiné0 owing criteria:
edge of the shelf are used for an initial detection of the shelf.1) CollaborativeGrasp Stable grasp after transfer of the
We expect to use a non-fiducial based approach in future work. ~ bottle from the person to the robot.
The position and location of the shelf surface is not assumed?2) Transfer Stable grasp after transfer of the bottle between
but is determined with th&helfTesbehavior. hands.
5) ContactDetect:We use two methods to detect when the 3) PlaceX Bottle X was left on the shelf.
hand makes contact with the world [29]. First, the wrist and 4) StandX Bottle X was left on the shelf standing upright.
arm are held motionless with zero joint stiffness and gravity As seen in Figure 11, Domo was largely successful at the
compensation. External interaction forces from a person or ttask for the given objects. One subject was experienced in
robot’s other arm are detected as non-zero accelerations atwloeking with the robot at this task and consequently achieved
hand. The second method does not assume zero acceleraidmgher success rate. Failures were typically a result of
and joint stiffness. A point-mass dynamic model is usedsecure grasps being formed during the object transfer phase.
to measure the error between the predicted and measuvldability in the subject’s placement of the object in the

Fig. 10. The three bottles used in our experiments.

V. RESULTS



CollaborativeGrasp Transfer| PlaceA | StandA | PlaceB| StandB| PlaceC| StandC
Subject 1 9/9 9/9 3/3 3/3 3/3 3/3 3/3 2/3
Subject 2 9/9 8/9 2/3 2/3 3/3 2/3 2/3 1/3

Fig. 11.

robot’s hand tended to be amplified by the transfer operations]
In the future, we hope to improve robustness through active
perception of the grasped object during the transfer, as well

more active control when the object is lowered onto the shelr.

VI. DISCUSSION 5]

Placing objects on flat surfaces is an important component
for a variety of everyday tasks for which people desire helps]
Human environments are dominated by flat surfaces upon
which people place objects. Stocking goods, setting the tablﬁ]
arranging a product display, placing a part onto a conveyor
belt, and putting dishes away are all examples of tasks

that typically involve placing objects on a flat surface. Our[8

Task results fot8 trials with two subjects.

B. Graf, M. Hans, and R. D. Schrft, “Development of a next generation

robotic home assistantAutonomous Robagtwol. 16, no. 2, pp. 193—
05, 2004.

O. Khatib, B. O. C. K. Yokoi, K., and A. Casal, “Robots in human

environments: Basic autonomous capabilitigaefernational Journal of
Robotics Researctvol. 18, no. 684, 1999.

S. Caselli, E. Fantini, F. Monica, P. Occhi, and M. Reggiani, “Toward

a mobile manipulator service robot for human assistance.” [Online].

Available: citeseer.ist.psu.edu/caselli03toward.html

Y. Yang and O. B. E. Roadmaps, “Globally task-consistent motion for

autonomous mobile manipulation,” Proceedings of Robotics: Science

and System<sPhiladephia, USA, August, 2006.

A. Edsinger-Gonzales and J. Weber, “Domo: A Force Sensing Humanoid

Robot for Manipulation Research,” iRroceedings of the 2004 IEEE
International Conference on Humanoid RobotsSanta Monica, Los
Angeles, CA, USA.: IEEE Press, 2004.

G. A. Pratt and M. M. Williamson, “Series elastic actuators,” in

approach takes steps towards performing these more general proceedings of the IEEE/RSJ International Conference on Intelligent

tasks in a cooperative way.

Motion planning systems have achieved impressive resuILS,]
performing sophisticated manipulation tasks in simulation
that assume full knowledge of the state of the world and
the robot. Unfortunately, for now and the foreseeable fu-

d . : 0]
ture, sensor and actuation technologies will force a robot IS
perform tasks using uncertain, piecemeal views of its body
and the world. Methods must be developed that help robots
overcome these uncertainties and the unexpected events
result. Within the domain of robot navigation, researchers have
addressed similar issues by explicitly modeling uncertainty
with statistical methods, [30], typically with respect to Stat§3]
representations in the form of 3d maps and the robot’s pose:
Related statistical methods will almost certainly play a role
in addressing the challenges of manipulation in human enl#4l
ronments, but they are only one piece to the puzzle. Without
appropriate high-level design, explicit models of uncertainfys)
will be ineffective or unnecessarily complex.

The themes we highlight in this paper, and the behaviﬁr6]
based building blocks we used to achieve the cooperative
manipulation task, should be applicable to new manipulation
tasks in human environments. So far, we have only used!a
statistical learning technique to improve our grasp detect?lrs]
We are currently seeking to integrate learning and statistical
representations of uncertainty into other parts of our systd#l

in order to further improve robustness and autonomy. [20]
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