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Abstract— Robots that work alongside us in our homes and
workplaces could extend the time an elderly person can live at
home, provide physical assistance to a worker on an assembly
line, or help with household chores. In order to assist us in
these ways, robots will need to successfully perform manipulation
tasks within human environments. Human environments present
special challenges for robot manipulation since they are complex,
dynamic, uncontrolled, and difficult to perceive reliably.

In this paper we present a behavior-based control system that
enables a humanoid robot, Domo, to help a person place objects
on a shelf. Domo is able to physically locate the shelf, socially
cue a person to hand it an object, grasp the object that has been
handed to it, transfer the object to the hand that is closest to the
shelf, and place the object on the shelf.

We use this behavior-based control system to illustrate three
themes that characterize our approach to manipulation in human
environments. The first theme,cooperative manipulation, refers to
the advantages that can be gained by having the robot work with
a person to cooperatively perform manipulation tasks. The second
theme, task relevant features, emphasizes the benefits of carefully
selecting the aspects of the world that are to be perceived and
acted upon during a manipulation task. The third theme, let the
body do the thinking, encompasses several ways in which a robot
can use its body to simplify manipulation tasks.1

I. I NTRODUCTION

Robots that work alongside us in our homes and workplaces
could extend the time an elderly person can live at home,
provide physical assistance to a worker on an assembly line,
or help with household chores. In order to assist us in these
ways, robots will need to successfully perform manipula-
tion tasks within human environments. Human environments
present special challenges for robot manipulation since they
are complex, dynamic, uncontrolled, and difficult to perceive
reliably.

Addressing these issues is a focus of several active projects.
The ARMAR project is investigating manipulation in human
environments and has shown results including the bimanual
opening of a jar [1]. Researchers working with the NASA
Robonaut [2] have demonstrated a cooperative manipulation
task where the robot employs a power drill to tighten lugnuts
under human direction. Work at Fraunhofer IPA with Care-O-
bot II has pursued fetch-and-carry tasks of everyday objects
[3]. In addition, many groups are pursuing research on au-
tonomous mobile manipulation in human environments [4],
[5], [6].

1This work was sponsored by Toyota Motor Corporation: Autonomous
Manipulation Capabilities for Partner Robots in the Home.

Fig. 1. The humanoid robot Domo used in this paper.

In this paper we present a behavior-based control system
that enables a humanoid robot, Domo, to help a person place
objects on a shelf. We describe the implementation of this
control system and present a quantitative evaluation of its
performance. We also use this behavior-based control system
to illustrate three themes that characterize our approach to
manipulation in human environments:

II. T HE TASK

We present a behavior-based control system implemented
on the humanoid robot Domo, pictured in Figure 1. For this
work, Domo uses29 DOF, a single camera, and Series Elastic
Actuators [7], [8]. As shown in Figure 2, Domo takes objects
that have been handed to it and places them on a shelf. Domo
is able to physically locate the shelf, socially cue a person to
hand it an object, grasp the object that has been handed to it,
transfer the object to the hand that is closest to the shelf, and
place the object on the shelf. By performing this task, the robot
effectively extends the person’s reach, allowing her to place
objects in locations that might be difficult or uncomfortable to
access without assistance. If this skill were combined with a
mobile base, the person’s effective reach could be dramatically
extended. For an individual with serious physical limitations,
this help might allow the person to maintain autonomy in



everyday activities that would otherwise require help from
another person. For example, an elderly person in a wheelchair
might use a robot with this ability to put away common
household objects, such as books and dishes.

III. T HREE THEMES FORDESIGN

Three themes characterize our approach to manipulation
in human environments. The first theme,cooperative ma-
nipulation, refers to the advantages that can be gained by
having the robot work with a person to cooperatively perform
manipulation tasks. The second theme,task relevant features,
emphasizes the benefits of carefully selecting the aspects of
the world that are to be perceived and acted upon during
a manipulation task. The third theme,let the body do the
thinking, encompasses several ways in which a robot can use
its body to simplify manipulation tasks.

A. Cooperative manipulation

For at least the near term, robots in human environments
will be dependent on people. Fortunately, people tend to be
present within human environments. As long as the robot’s
usefulness outweighs the efforts required to help it, robot
autonomy is unnecessary. Careful design can make robots intu-
itive to use, thereby reducing the effort required. For example,
the initial version of the commercially successful Roomba
relies on a person to occasionally prepare the environment,
rescue it when it is stuck, and direct it to spots for cleaning
and power. The robot and the person effectively vacuum the
floor as a team, although the person’s involvement is reduced
to a few infrequent tasks that are beyond the capabilities of
the robot.

By treating tasks that involve manipulation as a cooperative
process, people and robots can perform tasks that neither one
could perform as an individual. Researchers have looked at
techniques for cooperative manipulation that physically couple
the robot and the person, such as carrying an object together
[9], [10]. Fewer researchers have investigated the use of social
cues for cooperative manipulation [2].

For the task described in this paper, the person hands Domo
the object to be placed on the shelf. This cooperation avoids
the challenges involved with having a robot autonomously
select, locate, and grasp an object. Domo uses social cues to
simplify this cooperation. If Domo sees a person, it reaches out
toward the person with an open grasp, which communicates
to the person that Domo is prepared to place an object on the
shelf. Domo’s outstretched, open hand gives a clear indication
of where the person should place the object and biases the
person to place the object within Domo’s hand at a desirable
orientation.

B. Task relevant features

Donald Norman’s bookThe Design of Everyday Things
[11], indicates that objects found within human environments
are likely to have common structural features that simplify
their use (see Figure 3). By developing behaviors that are
matched to such structural features, we can simplify robot

Fig. 3. Donald Norman’s ”Coffeepot for Masochists”. Many objects in human
environments have been designed to match our physical and cognitive abilities.
The design of a traditional coffeepot, for example, has evolved such that the
pot and coffee can be easily controlled from the handle, the handle is matched
to a human-scale power grasp, and the spout is positioned to accommodate
perception and control of the spout during pouring. (Personal collection of D.
A. Norman. Photograph by Norman. Reproduced with permission).

manipulation in human environments. For example, we have
previously shown that the manipulation of a large set of human
tools can be specified in terms of the tool’s tip, such as the
tip of a screwdriver [12].

Many researchers treat robot manipulation as a planning
problem performed with respect to the global state of the world
[13], [14]. In contrast, our work is influenced by the work
of researchers such as Jagersand, Platt and Grupen, Connell,
and Brooks [15], [16], [17], [18], who make use of carefully
chosen aspects of the world’s state. Rather than attempting
to reconstruct the world in its entirety, we focus the robot’s
sensory resources on elements of the world that are relevant
to the current task, such as the contact surface of the hand, the
edge of the shelf, or the grasp of an object. Other researchers
have used task relevant features for manipulation, although
typically with fiducial markers or simplified environments
[19], [20]. Except for fiducial markers on the edge of the shelf,
we have not altered the world to accommodate perception.

We define tasks in terms of behaviors that perform closed-
loop control with respect to these features, so that at all times
the robot has rich feedback about its performance and the
ability to react to the unexpected. In particular, if one of
these constantly monitored aspects of the world violates the
requirements of the current behavior, the robot has fallback
behaviors to which it can resort. Since a human is present, the
robot can ask for help as a last resort.

C. Let the Body Do The Thinking

This theme bundles together a number of design strategies
that make use of the robot’s body to simplify manipulation.
Research on robot locomotion has convincingly demonstrated
the benefits of exploiting compliance and natural dynamics
for robot control when the robot is in contact with the world
[21], [22], [23]. Moreover, Williamson’s work [24] on robot
manipulation shows that similar strategies can be successfully
applied to robot manipulation.

1) Human Form: As we have discussed within [25] and
Norman has discussed in [11], human environments are well
matched to the human body. Domo’s human form allows
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Fig. 2. Domo assists a person in placing a bottle on a shelf. (A-D) Hypothesis testing. The shelf is rolled up to Domo. It is visually detected and a visually
guided reach in the direction of the shelf is performed. The arm compliantly lowers onto the shelf and its location is confirmed. The proprioceptive state of
the arm is used to represent the location of the shelf in the world. (E-H) Cooperative interaction. A person is detected by Domo. Domo reaches towards the
person, cueing her to place a bottle in its hand. In placing the bottle in Domo’s hand, the person intuitively offers it in an appropriate orientation. A grasp
reflex is triggered when contact forces are detected in the arm. A successful grasp is detected and the arm is lowered. (I-L) Transfer. The shelf is out of the
person’s reachable workspace but within the workspace of the robot’s left arm. The left arm performs a visual reach to the bottle, using hand motion to detect
and estimate the location of the hand’s contact surface in the image. The left arm compliantly lowers on to the right. Contact forces detected in the right arm
trigger a grasp reflex in the left hand. If both hands have a successful grasp, the right hand releases the bottle and the transfer is complete. (M-P)Placement.
Domo reaches to just above the shelf surface using its previously estimated location. The arm and wrist are place in a compliant force mode and the bottle
is lowered onto the shelf. The manipulator compliance and downward force allow the bottle to become aligned with the shelf. If successful shelf contact is
detected, the bottle is released and the arm retracted.

it to intuitively cue the person with whom it is working.
Domo’s eye gaze, arm gesture, and open hand are similar in
appearance to a human requesting an object. This can help
communicate Domo’s request and cue the appropriate response
more effectively than a wholly alien body. Also, Domo’s
eyes and arms are high off of the ground, which simplifies
perception and action relative to the shelf. In addition, Domo’s
hand is well suited to grasping everyday cylindrical objects,
since it is approximately the size of an adult’s hand and has
a compliant exterior.

2) Compliance:Domo is mechanically distinctive in that it
incorporates passive compliance and force sensing throughout
its body [7]. Domo’s22 Series Elastic Actuators lower the
mechanical impedance of the its arms, allowing for safe

physical interaction with a person [26]. In addition, the angle
of each joint can be controlled as a virtual spring, where the
resting setpoint of the spring and the stiffness can be specified
in real-time.

Compliance allows Domo to safely explore the world, such
as when it finds the shelf with its hand. Domo also uses
low stiffness control to take advantage of favorable natural
dynamics, such as the tendency of an object to stably align
itself with a flat surface. When transferring an object between
its hands, compliance helps Domo to achieve a good grasp on
the object without knocking the object out of its hands.

3) Active Perception:By taking action, the robot can make
task relevant perception easier. Domo selects postures in order
to more easily view task relevant features, which is especially



Fig. 4. The robot’s view as it transfers an object to its right hand to its left.
The everyday environment includes the shelf, a person, as well as natural
lighting and a cluttered background. The edge motion (right) of the hand is
used to estimate the location of the contact surface (green). This estimate
is then used to visually servo the contact surface in the scene. In addition,
the robot actively adapts its posture such that it can more easily view the
controlled features.

important for visual servoing. As shown in Figure 4, when the
robot transfers an object from one hand to another, it moves its
hands to a posture such that the contact surface of the hand can
be readily detected and servoed. From this posture, the convex
region of the hand’s grip corresponds with a convex edge in
the image. The robot also uses visual motion and active control
of objects to simplify detection of task relevant features. For
example, the motion of the robot’s hand simplifies detection
of the hand’s convex contact surface.

Domo also uses its body to reduce uncertainty by making
contact with the world. The robot uses an exploratory behavior
to physically locate the surface of the shelf after getting a
coarse visual estimate. The robot reaches above the shelf and
then moves its arm down compliantly until contact. This is
similar to what a person does when searching for a surface in
the dark. Through this behavior, the robot also finds an arm
posture that is likely to lead to success when placing the object
on the surface. This circumvents the need for planning an arm
trajectory and target posture.

IV. I MPLEMENTATION

A. Behavior Architecture

The robot’s control is implemented as a hierarchical set
of perceptual and motor behaviors. The behaviors run in a
distributed, real-time architecture at15− 100hz on a15 node
Linux cluster. We have adopted a layered approach similar
to that of Brooks[27] and Connell[17]. We couple constant
perceptual feedback to many simple behaviors in order to
increase the task robustness. For example, if a person removes
the object from the robot’s grasp at anytime during task
execution, the active behavior will become inhibited and a
lower-level behavior may attempt to reacquire the object or
to smoothly bring the arm to a relaxed posture. If the arm
trajectory is disturbed during a visually guided motion, a
head behavior will automatically keep the hand in view. In
this section we first describe the overall algorithm and then
describe some of the behaviors in more detail.

B. Algorithm

As shown in Figure 5, the task can be decomposed into four
behaviors:ShelfTest, CollaborativeGrasp, Transfer, andPlace.

Collaborative
Grasp

ShelfTest

Transfer

Place

ContactDetect

Start

GraspDetect

GraspDetect

Fig. 5. A high level description of the task implementation. The robot assists
a person in placing objects on a shelf using four behaviors:ShelfTest, Collab-
orativeGrasp, Transfer, andPlace. In the behavior diagram, bold indicates the
default behavior. Transitions (arrows) occur contingent on perceptual feedback
(bars). For a given behavior, the robot takes actions to increase the likelihood
and robustness of a desired perceptual feature (diamond). Exceptions from
the expected feedback result in a reset transition (dashed line).ShelfTest
detects and verifies the location of a useable surface. If the robot is not
grasping an object,CollaborativeGrasputilizes natural social cues to gain
human assistance in grasping an object. Depending on the shelf location,
Transfercan optionally allow the robot to pass the object to the other hand.
Finally, if the robot is holding an object in the hand nearest to the shelf,Place
allows it to put the object on the shelf.

These behaviors can be further decomposed into a shared set of
perceptual and motor behaviors, as shown in Figures 6,7,8,and
9. Our algorithm is as follows:

1) ShelfTest(Figure 6). Detect and verify the location of a
useable surface.

a) Visually identify a candidate flat surface (through
fiducials).

b) Reach out along a ray that is above the front edge
using visual servoing.

c) Use compliant force control to move the hand
down and make contact with the surface.

d) Detect contact (or lack of) with the shelf.
e) Store the posture, prior to descent, that led to

success, or try again.

2) CollaborativeGrasp(Figure 7). Transfer the object from
a person to the robot.

a) Detect the person.
b) Reach to the person, cueing them to offer an object

at the appropriate place and orientation.
c) Detect the interaction forces created by the object

being placed in the hand.
d) Form a power grasp and detect its success.
e) If no success, relinquish control.

3) Transfer (Figure 8). Transfer the object from one hand
to the other.

a) Achieve a posture which brings both hands into the
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Fig. 6. ShelfTest. The robot detects and verifies the location of a useable
surface. See Figure 5 for the diagram notation. When the robot has not
yet detected a shelf, it engages in periodic visual search around the room
(Search), increasing the likelihood of detecting a shelf. WhenShelfDetect
finds a hypothesized shelf, the robot visually fixates the location and moves its
nearest hand to the surface into the image (Pose) until Visbleis true. The hand
is then visually servoed (Servo) to a visual target just above the shelf edge.
The arm is also extended to a fixed depth along the camera’s optical axis. The
visual motion of its arm is used to detect the tip of the hand and improve the
precision of the servoing process (TipEstimate). When the hand has achieved
its target (Aligned), the hand is lowered onto the shelf using compliant force
control (Lower). If stable contact is detected (ContactDetect), the posture,
prior to descent, that led to success is stored (ShelfEstimate). Otherwise, the
robot may try the process again.
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Fig. 7. CollaborativeGrasp. The robot leverages natural social cues for
human assistance in grasping an object. See Figure 5 for the diagram
notation. When its hands are empty (Empty), the robot engages in visual
search, increasing the likelihood that a person is detected in the scene. When
PersonDetectsignals that a person is waving their hand, the robot cues the
person to hand it an object. For theCuebehavior, the robot reaches towards
the person, its hand open, at an appropriate time, location, and orientation
such that the person intuitively reads the gesture as a request. The stiffness of
the arm is also lowered. These actions increase the likelihood that a person
will place an appropriately oriented object in the robot’s hand and that the
interaction forces of the placement can be sensed. When interaction forces
are sensed at the hand (ContactDetect), the robot executes a power-grasp. If
GraspDetectsignals a successful grasp, the robot remains in theHolding state
until GraspDetectis no longer true. Through continual perceptual feedback
and by placing the person within the feedback loop, the robot is able to grasp
objects in the environment.
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Fig. 8. Transfer. The robot transfers an object between hands. See Figure 5
for the diagram notation. If handA is not holding an object (EmptyA), hand
B is, and a shelf exists nearest handA (ShelfEstimateA), then the robot moves
its two arms to a stereotype pose (Pose). The pose is selected such that both
the object and the contact surface of handA are visible (Visible).The contact
surface of HandA is then visually servoed (ServoA) to a fixed offset from hand
B (AlignA). The visual motion of its arm is used to detect the contact surface
and improve the precision of the servoing process (TipEstimateA). HandA is
lowered onto handB using compliant force control(LowerA). The stiffness
of arm B is also lowered, increasing the likelihood of detecting the contact
between the two arms (ContactDetectB). Finally, the behavior is successful if
handA executes a stable power grasp on the object (GraspDetectA) and hand
B releases the object. Otherwise, the robot may try the process again.
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Fig. 9. Place. The robot an object from its hand to a shelf. See Figure 5 for
the diagram notation. If a shelf exists (ShelfEstimate) nearest a grasping hand
(Holding), the robot reaches to the previously learned posture that places the
hand just above the shelf. The object is then lowered onto the shelf using
compliant force control (Lower). The passive and active compliance in the
wrist and hand allow the object to naturally align into a stable pose. If contact
with the shelf is detected (ContactDetect), the grasp is released and the arm
is retracted, leaving the object on the shelf.



visual field-of-view.
b) Visually servo the inner contact surface of the

empty hand to be just above the other hand.
c) Compliantly lower the empty hand through force

control until the other hand detects the interaction
forces.

d) Form a power grasp and detect its success.
e) If no success, back out and retry the servo.
f) If both hands are grasping, release the older grasp.

4) Place (Figure 9). Transfer the object from the hand to
the shelf.

a) Achieve the previously learned posture that places
the hand just above the shelf.

b) Descend compliantly for a fixed duration using
force control. Allow the object to self-align using
compliance.

c) Release and retract.

C. Behaviors

1) Lower: The arm is controlled by specifying a virtual
force vector at the hand, lowering the arm until contact is
made. Virtual forces are converted into commanded torques
using the arm Jacobian, while compensating for gravity-
induced torques. If a large hand displacement occurs (no
contact), the behavior is inhibited.

2) PersonDetect:Visual detections of faces [28], skin color,
and foreground motion [12] are used to detect when a person is
present and waving their hand. A face detection and repeated
skin motion (waving) at an expected hand location is presumed
to be a cue for the robot.

3) GraspDetect:The grasp aperture is used to estimate both
the diameter and existence of a held object during a force-
controlled power grasp. The grasp aperture is difficult to esti-
mate analytically due to finger collisions, complex kinematics,
and passive compliance of the robot skin. A map was learned
between the four finger joint angles and the grasp aperture
using support vector regression (SVR) with a Gaussian RBF
kernel. The training data was gathered through robot power
grasps on 5 cylindrical objects of known diameters between
25 and 75mm. The orientation of the object was varied by
±30 degrees and the proprioceptive resting state was recorded
for a total of50 trials. Consistent power grasp apertures above
a threshold diameter are signaled as a stable grasp detection.

4) ShelfDetect:Fiducial markers attached to the leading
edge of the shelf are used for an initial detection of the shelf.
We expect to use a non-fiducial based approach in future work.
The position and location of the shelf surface is not assumed,
but is determined with theShelfTestbehavior.

5) ContactDetect:We use two methods to detect when the
hand makes contact with the world [29]. First, the wrist and
arm are held motionless with zero joint stiffness and gravity
compensation. External interaction forces from a person or the
robot’s other arm are detected as non-zero accelerations at the
hand. The second method does not assume zero acceleration
and joint stiffness. A point-mass dynamic model is used
to measure the error between the predicted and measured

A B C

Fig. 10. The three bottles used in our experiments.

joint-torques during force controlled movements. Contact is
detected when the error exceeds a conservative threshold.

6) TipEstimate: The position of a fixed point within the
hand’s coordinate frame is estimated online through self-
generated motion. The point is detected as the fastest moving
convex feature in the image. This typically corresponds with
the distal end of the robot’s kinematic chain, allowing the robot
to predict the visual location of its finger, palm, or the tip of a
grasped object, even under perceptual uncertainty due to poor
hand-eye calibration and unknown objects [12].

7) Servo: The tip of the kinematic chain, as estimated by
TipEstimate, is servoed to a visual target within the 2D image
plane. Reaching in depth is achieved by kinematically servoing
the tip along the camera’s optical axis. The visual motion
generated by the servoing can be used to adapt TipEstimate
online. For example, when performing a transfer between
hands, the robot’s palm is visually servoed to the object.

V. RESULTS

We tested Domo’s performance on the task over18 trials
with two subjects, where each trial lasted approximately one
minute. A trial consisted of the subject handing Domo a bottle,
Domo transferring the bottle to its other hand and then placing
it on the shelf. One trial is depicted in Figure 2. Each subject
performed3 trials on each of the3 empty bottles shown in
Figure 10. The bottles vary in diameter from40− 75mm and
length from100−200mm. For each subject, the shelf remained
stationary and theShelfTestbehavior executed only once at
the start of the experiment. We measured success using the
following criteria:

1) CollaborativeGrasp: Stable grasp after transfer of the
bottle from the person to the robot.

2) Transfer: Stable grasp after transfer of the bottle between
hands.

3) PlaceX: Bottle X was left on the shelf.
4) StandX: Bottle X was left on the shelf standing upright.

As seen in Figure 11, Domo was largely successful at the
task for the given objects. One subject was experienced in
working with the robot at this task and consequently achieved
a higher success rate. Failures were typically a result of
insecure grasps being formed during the object transfer phase.
Variability in the subject’s placement of the object in the



CollaborativeGrasp Transfer PlaceA StandA PlaceB StandB PlaceC StandC
Subject 1 9/9 9/9 3/3 3/3 3/3 3/3 3/3 2/3
Subject 2 9/9 8/9 2/3 2/3 3/3 2/3 2/3 1/3

Fig. 11. Task results for18 trials with two subjects.

robot’s hand tended to be amplified by the transfer operation.
In the future, we hope to improve robustness through active
perception of the grasped object during the transfer, as well as
more active control when the object is lowered onto the shelf.

VI. D ISCUSSION

Placing objects on flat surfaces is an important component
for a variety of everyday tasks for which people desire help.
Human environments are dominated by flat surfaces upon
which people place objects. Stocking goods, setting the table,
arranging a product display, placing a part onto a conveyor
belt, and putting dishes away are all examples of tasks
that typically involve placing objects on a flat surface. Our
approach takes steps towards performing these more general
tasks in a cooperative way.

Motion planning systems have achieved impressive results
performing sophisticated manipulation tasks in simulations
that assume full knowledge of the state of the world and
the robot. Unfortunately, for now and the foreseeable fu-
ture, sensor and actuation technologies will force a robot to
perform tasks using uncertain, piecemeal views of its body
and the world. Methods must be developed that help robots
overcome these uncertainties and the unexpected events that
result. Within the domain of robot navigation, researchers have
addressed similar issues by explicitly modeling uncertainty
with statistical methods, [30], typically with respect to state
representations in the form of 3d maps and the robot’s pose.
Related statistical methods will almost certainly play a role
in addressing the challenges of manipulation in human envi-
ronments, but they are only one piece to the puzzle. Without
appropriate high-level design, explicit models of uncertainty
will be ineffective or unnecessarily complex.

The themes we highlight in this paper, and the behavior
based building blocks we used to achieve the cooperative
manipulation task, should be applicable to new manipulation
tasks in human environments. So far, we have only used a
statistical learning technique to improve our grasp detector.
We are currently seeking to integrate learning and statistical
representations of uncertainty into other parts of our system
in order to further improve robustness and autonomy.
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