
WebBox: Supporting Decentralised and Privacy-respecting
Micro-sharing with Existing Web Standards

Daniel A. Smith1, Max Van Kleek1, Oshani Seneviratne2, mc schraefel1,
Alexandre Bertails2, Tim Berners-Lee2, Wendy Hall1, Nigel Shadbolt1

1Electronics and Computer Science
University of Southampton

Southampton, UK
{ds, emax, mc, wh, nrs}@ecs.soton.ac.uk

2CSAIL / W3C
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
{oshani, bertails, timbl}@csail.mit.edu

ABSTRACT
The popularity and plurality of social sharing and collabo-
ration platforms today demonstrates the demand for shar-
ing information at a wide variety of granularities and scale
— from public blogging of micro-data (e.g., microblogging
posts, page“Likes”, and place-“check-ins”) to specific, full-on
collaborative sharing of documents and projects. The cen-
tralised and fragmented nature of today’s sharing platforms,
however, creates several problems, among which include is-
sues of seamless access, ownership, and control. In this pa-
per, we present an alternative approach that puts the user
back in control over their data, and supports secure, private
sharing and collaboration in a distributed, user-centric man-
ner “out of the box”. This approach represents a novel con-
figuration of Web-standard, non-novel components, which
we demonstrate are sufficiently generic to support types of
sharing offered by the most popular sharing platforms to-
day. By offering a standards-compliant method of globally
sharing triples, with known semantics about how they are
received, our approach enables social applications to utilise
the Web as the distributed system it has always promised to
be. Beyond such sharing, we discuss what other capabilities
such a platform enables, and its implication for future Web
architectures and tools.

1. INTRODUCTION
From the outset, the Web has been designed as a decen-

tralised information-sharing medium in which anyone, any-
where, could share any information simply by creating a
document on a Web server[12]. In the two decades since
its creation, however, the ways that people use the Web to
share information has experienced at least two significant
changes. The first has been the rise of “micro-sharing” —
the propagation and dissemination of information smaller
than documents — including blog posts, Tweets (microblog
entries), status updates, comments/responses, and notifica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WWW2012 Lyon, France
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

tions, such as Foursquare “check-ins”1, or Facebook “Likes”
2. The second has been in how this information is shared;
instead of being disseminated in a purely decentralised way
as the Web was originally designed, much of this sharing is
done at a handful of massive, centralised, domain-and-app-
specific sharing sites, such as Twitter (for microblogging),
Facebook (for social network updates), and Delicious (for
social bookmarking). These two shifts are not unrelated; the
desire of share bits of information sparked apps like Twitter
and Delicious into existence; the ultimate desire to share this
kind of information drove the rise of many of these services.

Why should such centralisation be of concern? First, com-
petition and lack of integration among these services has
meant that we have to fragment our data into each of these
“silos” (or “walled gardens”[27]) to use them. In so doing,
we have to comply with the requirements of each service, in-
cluding re-shaping the data to fit each particular platform’s
representations, and agreeing to its terms of service. Once
our data has been handed over, we have little control over
how it is subsequently handled: e.g., how it is accessed and
visualised, how or where it is stored, and with whom it is
shared or disclosed.

The implications of centralisation extend beyond issues
of flexbility, ownership and control. Availability can poten-
tially suffer, as connectivity problems and “cloud outages”
can affect our ability to access our own, potentially vital
data. Privacy issues also abound: centralised services have
unprecedented views of our activities based on pattern(s) of
data access and content shared. For free cloud services, this
data is essentially capital that, through data mining and ad-
vertisement, generates the revenue necessary to sustain the
platform. While a viable business model, the lack of alter-
natives has meant that we essentially don’t have a choice:
we either use these services (and be “mined”) or give up the
social sharing of data altogether.

Despite these trade-offs, concerns around these limita-
tions have largely been secondary to the immediate bene-
fit received from social information sharing, a capability so
important and transformative that, despite occasional reac-
tions to Facebook privacy violations [28] we tend to overlook
the long term issues arising from the use of such services.

There are, without question, advantages to the user expe-
rience afforded by centralised social sharing platforms: since

1Foursquare — http://www.foursquare.com
2Facebook “Like” — https://developers.facebook.com/
docs/reference/plugins/like/

all content is displayed together new content is easily dis-
covered; moreover, it is simple to cross-reference multiple
streams. We propose, however, that the perception that one
must have a centralised service to deliver these user experi-
ences is an artificial one.

To demonstrate that a decentralised social data sharing
approach that is practical, straightforward and readily as-
sembled today from off-the-shelf protocols/components, we
present WebBox. WebBox is a platform that allows social,
collaborative applications to be built entirely using both
standard Web and Semantic Web protocols and components:
a standard RDF triple store, a SPARQL endpoint, HTTP
server, WebACL and WebID. With these components, Web-
Box supports secure sharing and collaboration over struc-
tured data objects in a schema-agnostic manner, enabling
applications spanning blogging, to lifelogging, datablogging,
and collaborative note-taking.

In the following sections, we describe how we derived the
requirements for WebBox by analysing the functionality of-
fered by the most popular sharing services. We then describe
the architecture of WebBox itself, including its components,
and ways that WebBox-compatible applications run, access
data, and communicate with other WebBoxes. We address
scalability considerations of the system, and techniques to
mitigate update traffic. Next, to demonstrate the simplicity
with which WebBox-based sharing applications can be built,
we walk through SocialBox, a WebBox application that pro-
vides sharing capabilities spanning blogging, microblogging,
Web page annotation, social news aggregation, note-taking,
and real-time collaborative authoring and revision. We con-
clude the paper with a discussion of current limitations, and
future work opportunities for this extensible platform.

2. REQUIREMENTS ANALYSIS
In order to determine the set of capabilities needed of our

WebBox architecture, we performed a pre-study of the most
popular existing social sharing platforms to characterise the
basic data handling and sharing functionality these plat-
forms offer. We then derived functionality categories by an
open coding approach borrowed from social science [31]. We
first studied each site, and derived descriptions of each site,
either from direct experience in using the site, or based upon
a description obtained from the site or Wikipedia. Then we
listed each site’s basic capabilities. These capabilities were
then arranged by similarity, and those that were most sim-
ilar were combined. The result of this process yielded the
following eight sharing capabilities:

2.1 Pre-study: Identifying Common Capabil-
ities of Popular Sharing Sites

1. Hosting of Content/Resources - Support for shar-
ing by directly hosting content (text, blog entries, news
articles, images, audio/video, etc)

2. Comments/Annotation - Support for the creation
and sharing of comments or annotations (textual or
structured), either stand-alone or linked to a particular
resource

3. Link Sharing - Support for the sharing of links to
Web resources.

4. Re-Sharing/Re-Linking - Support for the re-presentation
of a resource hosted elsewhere with a new URI to serve
as a new local anchor point for annotations

5. Collaborative Editing - Allowing resources to be
updated after being created, specifically by more than
one user (potentially simultaneously).

6. Access Control - Support for restricting access of
shared resources to a 1) group 2) to individuals

7. Survey/Solicitation - Support for polls, forms and
other methods of soliciting information from others.

8. Data blogging/sharing - Support for the sharing
of data sets, such as those from automatically cap-
tured activities (e.g., location patterns, physical exer-
cise logs).

Table 1 illustrates each of the sharing platforms we exam-
ined and the capabilities they provide.

While this initial analysis allowed us to identify the spe-
cific functionality that people rely upon today, it also made
apparent each platform’s limitations. First, all services were
extremely specific about the kinds of data that could be
hosted and shared. For example, YouTube and Vimeo only
host for video content, while other sites host specific struc-
tured data, such as Foursquare’s“check-ins”, Delicious book-
marks, and textual “tweets” on Twitter. Even the “big” so-
cial networks restrict what kinds of content can be posted
— a fixed set of status update types comprising textual sta-
tus updates, photos, videos, generic Web links, and links to
specific external photos/video/audio content hosts. To sup-
port new applications, we relaxed this constraint so that, in
WebBox, hosted and shared resources could represent any
structured or unstructured data objects.

The second capability that distinguished these sites is the
ways in which they allowed users to control scope of sharing
— from the individual controls of Google Docs, to Diaspora’s
groups or aspects, to not having any controls at all, in the
case of various blogging platforms. Since different access
control schemes are appropriate in different situations, we
sought to support all such schemes.

The third significant limitation was manifest in the fact
that, with the exception of Google Docs and Etherpad, most
of the data hosted by such sites were ‘read-only’ once-posted.
Since collaborative authoring could be a useful feature re-
gardless of the artifact, we made this capability the third
basic requirement of WebBox.

Generalizing and relaxing the above constraints in the
ways mentioned resulted in the following three functional
capabilities we sought for WebBox:

• Content Hosting - The storing and hosting of arbi-
trary structured and unstructured data

• Access Control - Flexible access control, supporting
multiple granularities of scope (e.g., private, individu-
als, groups, public)

• Sharing and Collaborative Editing - (in conjunc-
tion with Content Hosting, enables multi-user edit-
ing, comments/annotation, link sharing, concurrent edit-
ing)

The following sections describe how these capabilities com-
pare with those provided by other frameworks, and detail
how they are realised in WebBox.

Table 1: Popular sharing platforms on the Web, and basic data handling and sharing capabilities they support.

3. RELATED WORK
Growing concerns about individual privacy and ownership

of personal information in the face of the ever-increasing
amount of information we share online has yielded number
of efforts to come up with solutions. The first concerns sys-
tems to facilitate the decentralised storage and keeping of
personal data under the user’s control. The ProjectVRM
group at Harvard 3 has studied the feasibility of such ap-
proaches from socio-technical and economic perspectives.
Their analysis and continued discussion [2] have shown that
the decentralisation of personal information, driven by cost-
incentives for corporations and need to comply with data
protection policy (such as with the EU Data Protection Di-
rective 94/95/96[18]) have indicated a significant shift to-
wards greater personal-ownership of data in the next decade.

Implementations of the VRM approach, however, are still
in early stages. Mydex [9], a Community Interest Company
of the UK government, has produced a proof-of-concept per-
sonal data store based on the Java platform called Higgins
[5]. Similar open source personal data storage containers in-
clude The Locker Project [22], data.fm [24], Owncloud [7],
and OpenStack [1], which each all provide various degrees of
easy-to-set-up “personal cloud” software that can be used to
store and host content on the user’s own server on the Web.

Although built with the same goal, these platforms ex-
hibit several differences. Higgins and Openstack are generic
schema-agnostic data containers that provide simple stor-
age and retrieval APIs for this data, typically via a REST-

3ProjectVRM — http://cyber.law.harvard.edu/
projectvrm/Main_Page

style API. The Locker Project, Owncloud, and Diaspora,
meanwhile are social-network inspired and centered around
a fixed set of simple data types, such as hosting files, status
messages, photos, files, and calendar events. The data.fm
project provides a platform to create linked data in a generic
read/write Web style. Opera Unite [6] released with Opera
10 in 2009 goes a step further by giving users access to a
‘Web server’ within their Web browser, which can be used
to share media with other users seamlessly.

While we considered basing WebBox on one of these plat-
forms, these platforms were either insufficiently schema-agnostic
to be an application platform (as in Diaspora or the other
social-network oriented platforms), or seemed not to address
needs concerning sharing i.e. pertaining to keeping sub-
scribers notified of changes. Access control was also done
in ad-hoc, non-standards compliant ways and there seem to
be some security lapses (as in Opera Unite where it exposes
the file system to outside apps).

Another desideratum for a Web sharing architecture is
that it provides seamless integration of data that is avail-
able in a decentralised setting. The Nepomuk Semantic
Desktop project [15] has created a group collaboration archi-
tecture using Semantic Web technologies and peer-to-peer
networks. Although Nepomuk is ontology-driven and sup-
ports group collaboration, it is geared towards the desktop
experience rather than a cloud-based Web experience. As
desktop applications are becoming increasingly obsolete, we
believe that the concept of WebBox is a step in the right
direction in providing a universal platform for collabora-
tion. PrPl [26] describes a decentralised social networking
infrastructure that allows users to share personal data in

Figure 1: WebBox Components and Data Flow.

a peer-to-peer network through intermediaries called ‘but-
lers’. While similar to our concept, PrPl requires applica-
tions to be written using a specialised language, whereas our
solution is language agnostic and only depend on open Web
standards.

This inspired us to create a standards-based, appli-generic,
schema-agnostic secure platform for structured data sharing
with a focus on scalability and usability. The above is a
review of related work pertaining to our overall goal and ap-
proach; in the following sections we reference further related
work in context as it informs the specific related components.

4. ARCHITECTURE AND DESIGN
In this section, we provide a detailed specification of the

WebBox architecture, including its components, messaging,
authentication and access controls, and describe how appli-
cations can use standard protocols to interact with WebBox.
We subsequently describe how we implemented a prototype
WebBox using several popular open-source servers and tools.

4.1 Architectural Overview
Unlike the current infrastructure of the Web, where we

use browsers to access content served up by Web servers over
which we have little control, WebBox makes the assumption
that users will have our own WebBoxes, a data store and
HTTP server which serves to host and store their data, and
to receive data from collaborators. Their WebBox can live
on the user’s own device(s), or on a virtual host on some
hosting provider.

WebBox is made up of a number of software components,
as shown in Figure 1:

1. Data Space Knowledge base of all received messages
and the external linked data they reference. Maintains
lists of who is subscribed to the published entities.

2. ACL Maintains permissions for endpoints and pub-
lished entities.

3. SPARQL Endpoint Endpoint to publish new enti-
ties, and to modify existing ones. ACL determines

access, which will typically be to local users only. The
SPARQL endpoint also provides a knowledge base of
all published entities.

4. Hosted Linked Data RDF descriptions of entities
that have been created by users of the system. They
are retrievable using HTTP GET, read-only access,
and this access is determined by the ACL.

5. Spool Endpoint to allow messages to be sent to the
system. When they are received, they are put into the
local messaging knowledge base, as well as any external
linked data that has to be resolved.

6. Applications Local applications access the data via
the SPARQL endpoint, where they can be queried for
existing data, send data to remote endpoints, and pub-
lish new data.

7. Data User Agent (DUA) Takes messages from the
spool, analyses who put them there against their per-
missions in the ACL, and takes appropriate actions.
For example, revolving external data entities and stor-
ing them in the data space.

8. Data Transfer Agent (DTA) Responsible for noti-
fying subscribers to data when that data has changed,
or when new data has been published. Uses HTTP
PUT to add data to remote WebBox SPARQL Update
endpoints.

In the following section we detail the necessary components
that are important for the operation of the system outlined
above.

4.2 Messaging
When a user updates or creates a new entity in their

WebBox, WebBox takes care of propagating the notifica-
tion of this update to the WebBoxes of people that is has
been shared with. WebBox achieves this by using a publicly
writable URL that conforms to the SPARQL Update specifi-
cation. Therefore, anyone can PUT a new file of RDF there,
which is then processed by the user that owns the “inbox”,
or by software on their behalf.

The WebBox is used to send RDF metadata to a spe-
cific user. This mechanism can be used by any application
with any ontologies, and therefore provides a rich mecha-
nism to share structured semantic data with anybody. Users
can identify their WebBox using the predicate <webbox:

address> 4 to point to the URL of their WebBox. Users
can run their own WebBoxes, or use a service that will do it
for them (in a similar way to e-mail, some people run their
own, or more typically rely on organisations to do this for
them). The following section outlines the messages used in
our system:

1. Create Message: A local application sends an HTTP
PUT (corresponding to SPARQL 1.1 Graph Store HTTP
Protocol [23]), to upload an RDF file to the SPARQL
endpoint. The location and filename used in the PUT
request determine the location of the file when hosted
as linked data.

4In this section we refer to URIs using the webbox prefix,
which has the full namespace of http://webbox.ecs.soton.
ac.uk/ns#. Thus, webbox:address, for example, has the
URI: http://webbox.ecs.soton.ac.uk/ns#address

2. Modify Message: A local applications uses the SPARQL
Update 1.1 to“INSERT DATA”and“DELETE DATA”
in order to modify the data in the graph. These com-
mands are directed at the URI of the linked data itself.

3. Read Message: An HTTP GET with a “Content-
accept” header including “application/rdf+xml”, ac-
cording to RDF publishing best practices [13]. Ad-
ditionally WebBoxes offer a SPARQL query endpoint
over a graph of all publicly hosted linked data, in or-
der to allow for knowledge discovery against query pat-
terns (e.g., to discover all resources published of a par-
ticular rdf:type).

4. Share Message: In order to share a resource with
someone, a single triple is HTTP PUT to their Web-
Box (corresponding to SPARQL 1.1 Graph Store HTTP
Protocol [23]). The purpose of the triple is to identify
the resource that is being shared, and the user it is be-
ing shared with, using the predicate sioc:addressed_

to. For example, to share a blog post with a colleague
you might put the following triple to their WebBox:

<http://hip.cat/posts/34> sioc:addressed_to

<http://danielsmith.eu/#dan>

The triple is serialised into a single RDF file, which
has a GUID as the filename, and PUT to the Web-
Box. We suggest the use of a GUID to avoid clashes
with existing files, which would result in a failed up-
load. Alternatively SPARQL 1.1 Update can also be
used, using the “INSERT DATA” action to insert a
new graph of triples.

It is the the responsibility of the receiver to derefer-
ence and resolve the data of that URI, from its source,
if they wish. We suggest this method of minimal post-
ing in order to give the choice of whether to receive
the entity to the receiving user, and also to minimise
traffic sent to remote hosts, particularly when multiple
WebBoxes are being uploaded to. It is important to
also update the ACL to give them read access, and op-
tionally, write access to that item, if it is hosted locally.
This can be done by adding new metadata, using the
WebACL ontology, into the local sparql endpoint. For
an example, see Section 4.4.

5. Subscribe Message: When an entity is updated, re-
mote parties with whom the entity is shared may need
to be kept informed – for example, so that other users
will see changes to notes, annotations, etc. The afore-
mentioned SPARQL-update based “messaging mech-
anism” described above for notifying remote parties
about newly shared entities is also used to announce
when updates have occurred to entities, so that remote
clients can re-request the entity as necessary.

To subscribe to the updates of a URI, a user adds a
triple to the public WebBox endpoint, and authenti-
cates with their WebID in order to confirm that they
are subscribing themselves and not a third-party. Once
authenticated, they can PUT a single triple (using
the mechanism described above), using the webbox:

subscribe_to predicate, for example, to subscribe to
updates to the above blog post:

<http://danielsmith.eu/#dan> webbox:subscribe_to

<http://hip.cat/posts/34>

This triple tells the data space to add the user with
that URI to subscriber list for the item being sub-
scribed to, and to re-send the ”sioc:addressed_to”
triple to their WebBox whenever there is an update to
the resource (e.g., if the blog post is modified).

6. Unsubscribe Message: To unsubscribe, the process
is the same as the subscription process, except that
the webbox:unsubscribe_from predicate is used, for
example:

<http://danielsmith.eu/#dan> webbox:unsubscribe_

from <http://hip.cat/posts/34>

Upon receipt the WebBox removes the user from the
subscriber list of that resource.

7. Query Message: When a resource has been shared
with the WebBox, it is resolved, and stored in a named
graph in the local triplestore. By default we sug-
gest using the webbox:ReceivedGraph URI for the
named graph, although users could reconfigure this if
required.

In addition to peer-to-peer messaging, and to support
large-scale distribution and sharing of content, WebBoxes
can also act as publishing endpoints for organisations, groups
and other collectives of common interest; for example, link
aggregation “social news” sites like Reddit, Digg, Slashdot
and Hacker News can be created by anyone and hosted on
any suitable Web-accessible machine. We discuss this, in the
context of a Message Relay Application that uses WebBox,
in Section 4.5.

4.3 Authentication
Though the data is stored on many machines in a decen-

tralised manner, requiring users to have separate accounts
for each server that they edit data would become cumber-
some, and will not scale. Therefore, each WebBox that cor-
responds to a data space will use the WebID protocol [29]
to authenticate the users when the triples are pushed to the
subscription WebBoxes. The Web browser extension or any
client that supports the WebBox architecture will prove the
possession of or access to a private key, whose corresponding
public key is tightly bound to the WebID (i.e., a FOAF docu-
ment) that is being authenticated. The private key is usually
associated with an X.509 certificate on the user’s computer,
while the public key can be typically found on the FOAF
profile. A Web server that receives the user request can ver-
ify that the user has write access to that URL, thus properly
identifying the originator of the triples in to the data space.
The WebID contains a triple, using a webbox:address predi-
cate, which identifies the SPARQL Update endpoint that the
can receive triples via the method described by an ‘update’
message in Section 4.2. In all triples the user is identified by
the URI of their WebID, which is dereferenced in order to
find the address of their WebBox. Thus, is is possible for a
user to change the URI of their WebBox while retaining the
same WebID.

4.4 Access Control
When a user publishes a new entity (e.g., a blog post or an

annotation), WebBox supports full access control over who
can access that entity; if the resource is to be shared, Web-
Box sets appropriate access controls. These access control

can be set for individual users, or set of users that are identi-
fied as a foaf:Group (e.g. “My Jogging Friends Group”). The
WebBoxes allow authorised users; typically the owner of the
WebBox to set these permissions. This is accomplished us-
ing the SPARQL Update protocols as described in [21]. The
access control file for a particular resource on a Web server
is discovered by either querying the SPARQL endpoint, or
by issuing an HTTP GET request against the URI given by
the HTTP link header, sent by the WebBox after the user
is authenticated. Access control metadata in this file will
be stored in a per file/resource basis by default. It is very
easy to change this to set the ACLs to be on per document
or even per resource basis. We use the Web Access Control
Ontology [4] to specify the permissions. The following is an
example access control rule:
@prefix acl: <http://www.w3.org/ns/auth/acl#>.

<named rule> acl:accessTo <Resource that access is

granted to, i.e. a webbox>;

acl:agent <WebID of authenticated user or agent>;

acl:mode acl:Read, acl:Write, acl:Control .

Read and Write modes control access to normal files, whereas
the Control mode enables a user to change the ACL meta-
data for that file. Optionally, the user may set
acl:defaultForNew that defines the default access control
rules for new documents in a directory.

When triples are sent to the WebBox, the access control
metadata file is checked for the necessary permissions so that
the triples can be updated in the data space.

4.5 Applications
In the WebBox model, what used to be “server side” ap-

plications under the control of a single person or company
providing the service (e.g., Facebook, Twitter and Flickr),
can instead run on the user’s own devices (i.e., their com-
puter), just as current desktop or mobile applications do
today. (This does not, however, preclude applications from
being hosted on remote servers, as explained below.)

WebBox does not dictate how these apps must be written
or distributed — existing App Markets and software distri-
bution networks, such as the Mac App Store, and Ubuntu’s
APT repositories, for example, could be used to distribute
WebBox compatible apps. Other approaches, such as main-
taining indexes of apps, such as VersionTracker.com are
also possible. Indeed, we imagine that one might be able
both to search for applications or to request applications be
developed against a functional/data-oriented specification.
For instance, one might query for applications that either
use the same ontology or has been mapped to the same on-
tology as an application the person is currently using for, say,
health and fitness. Likewise they may suggest they would
like a service that supports blending data sets for different
views, if one does not exist.

A benefit of WebBox’s approach is that it does not pre-
scribe a new language or access protocol — applications
communicate to the WebBox server via WebBox’s SPARQL
endpoint, inserting and updating structured messages — ei-
ther generic/application specific messages (i.e., using ontolo-
gies specific to their application), or WebBox specific mes-
sages, such as those concerning Sharing and ACL behaviours
(i.e., using the SPARQL Endpoint to read and update triples
that use the WebACL and WebBox ontologies), as described

in Section 4.2.
In our examples so far we have referred to applications

that users interact with directly, however, it is not neces-
sary for a WebBox application to provide a user interface.
While some applications do provide user interfaces, (e.g. an
application to send and receive messages among friends),
some do not. For example, a basic application for WebBox
is a message relay which receives data and automatically for-
wards it to subscribers, thus functioning in a similar manner
to e-mail mailing lists.

A mailing list application would work by creating a new
resource, and subscribing to changes to it. It would then
watch for subscription requests to this data URI and main-
tain its own list of subscribers. New subscribers then be
granted write access to the URI, and when new resources
are posted to this URI (using SPARQL Update 1.1 using a
‘modify’ message as described in Section 4.2), it would be
relayed to all subscribers. The application is free to impose
its own moderation on the list, for example to require mod-
erators to approve new subscribers, or to grant read-only
access to some subscribers.

Another useful and basic app for WebBox is one that al-
lows user to view everything that has been shared with them,
and filter it using meaningful criteria. For example, it may
be useful to find all resources (i.e., meeting requests, annota-
tions and bookmarks) that related to a particular project, or
that were sent by a particular person. Thus, if resources are
properly marked up with primary topics, dates, and authors,
it is straightforward to use existing SPARQL exploration
interfaces to filter down on the contents of the WebBox’s
knowledge base.

In fact, ensuring that new content is well marked up is
a key concept, because it falls outside the requirements of
WebBox, but the usefulness of a WebBox is greatly increased
when resources include useful information, such as related
projects, authors and creation dates. Thus, another im-
portant application is one which keeps track of concepts
that can be useful as primary topics of applications, in or-
der to use them as a form of “Semantic tagging” [10]. One
method is to have an application which keeps track of all
foaf:primaryTopic and foaf:primaryTopicOf assertions,
and provides a user with a searchable list of these topics.
Similarly, users may find it useful to establish a new primary
topic, and share it with their collaborators (for example if
they are attending a conference, and the canonical URI to
annotate with is being established). This can be achieved
by sharing information about that entity to the WebBoxes
of collaborators, and sharing some other resource, which has
the foaf:primaryTopic of the topic’s URI. Other users of
the primary topic tracking application would then have this
topic URI added to their index.

Another type of application is one that could analyse pri-
vate data (i.e., non-shared data), and automatically respond
to requests based on that private information. For example,
a common issue when working across-organisations is de-
termining shared availability for scheduling meeting times.
Services such as meet-o-matic5 and doodle6 provide pages
where each person can list their availability for different time
and date periods. However, it would be simpler if users
could simply share their calendars. For reasons of privacy,

5Meet-o-matic: http://www.meetomatic.com/
6Doodle: http://doodle.com/

users shouldn’t have to do this. Thus, a way around this
is to have an agent watch for meeting requests (e.g., if a
new resource using the RDF Calendar ontology [14] is sent
to their WebBox with this user as an attendee), and to au-
tomatically post back a “busy” assertion to the originator’s
WebBox if they are busy at that time. This method means
that the user does not need to reveal any other information
about their calendar, merely that the requested time will
not work. The originator could then try a different time
(either automatically, or manually) or alternatively content
the person directly.

In summary, the WebBox approach enables application
developers to turn their applications decentralised using ex-
isting SPARQL querying libraries and servers, and thus our
approach stands on the shoulders of the existing mature Se-
mantic Web application, tool and library stack.

4.6 Application Permissions
Up to this point, our examples have been locally-running

trusted applications that are relatively trustworthy. How-
ever, the Web has showed us that applications that run re-
motely are the modern norm, for a number of reasons, both
operational (i.e., to do big data integration) and commer-
cial (i.e., not to risk any leaking of your application’s code
logic through distribution). Therefore it is important that
any distributed data system like WebBox can support that
style of application. A key difference, however, when us-
ing remote applications, is that they have the potential to
“leak” private data out to companies and the greater Web.
Therefore, we must ensure that users can select the specific
information and granularity of information that applications
have access to, rather than giving carte blanche global access
to all information. For this purpose, we are planning to in-
tegrate a distributed authorisation method (such as DAuth
[25]) into the platform to enable rich permissions to be set
on a per-application basis, as future work.

4.7 Implementation
Given that WebBox uses existing protocols, a WebBox

can be implemented using already readily available com-
ponents. Specifically, we implemented our prototype us-
ing the open source triplestore “4store”[20], which provides
SPARQL querying and SPARQL Update 1.1 functionality;
ReadWriteWeb 7, which provides SPARQL Updates 1.1 sup-
port for hosting linked data; and mod authn webid for
FOAF+SSL[30] authentication.

To tie these components together and implement the Web-
Box sharing semantics, we wrote a controller layer in Python,
in order to:

1. Proxy SPARQL requests from the WebBox to the rel-
evant store. Specifically, when new data is received, it
is stored in both ReadWriteWeb, and in 4store. When
linked data is read, it is read from ReadWriteWeb, and
when SPARQL queries are received, they are routed to
4store.

2. Maintain and enforce the ACL permissions and poli-
cies.

3. Ensure that FOAF+SSL authentication credentials from

7ReadWriteWeb: https://dvcs.w3.org/hg/
read-write-web/

mod authn webid are passed to the ACL handling mod-
ule.

4. Fire update messages (i.e., as the DTA) when entities
are updated.

5. Act as the DUA - i.e., de-spool messages arriving and
dereferencing remotely updated resources, storing up-
dated resources into the WebBox webbox:ReceivedGraph

named graph.

5. PERFORMANCE AND SCALABILITY
As described previously, WebBox provides sharing capa-

bilities much like those offered by the large-scale centralised
sharing platforms, Facebook and Google+, except in a de-
centralised manner. One of the key challenges faced by
large-scale sharing services is that of scale and performance
– specifically, ensuring that when millions of users use the
site simultaneously, they will experience responsive, undi-
minished performance.

In the case of WebBox, since applications run locally to
a user’s computer and is primarily responsible for only han-
dling the resources shared by the user, there is simply less
data for WebBox to manage. As a result, the challenge of
dealing with billions of messages per second simply does not
exist, because only those messages that the user receives are
stored, not those that related only to other users.

Instead, the main concern pertains to the number of HTTP
/ HTTPS connections made, since a connection to each re-
ceiver’s server must be made with each update. A conse-
quence of this is that each receiver will then respond by
requesting the updated resource from the WebBox. Thus,
an entity with N subscribers requires N outgoing change-
notification messages (of message type No. 4 from Section
4.2 — ‘share’ message), which result in N incoming requests
(‘read’ message). As N increases, the server load in dealing
with the incoming requests increases, and thus a mitigation
strategy is desirable in order to support very large values of
N .

A simple strategy to reduce the overhead of sending noti-
fication messages is to use the HTTP upgrade mechanism to
establish a WebSocket[19] if connections to a particular host
are being made frequently. This technique can provide sub-
stantial computational savings particularly since establish-
ing HTTPS connections repeatedly can be expensive. This
approach is taken by pubsubhubbub hubs in order to miti-
gate the overhead of polling RSS feeds [3].

A secondary strategy, if a WebBox becomes overwhelmed,
is to stagger the updates to subscribers, so that their incom-
ing requests are likewise staggered. The delay between up-
dates could be increased based on the load of the server on
which the WebBox is running. This method works because
we assume that the WebBox that received the message will
instantly update its data. If this is not the case, this method
may not be as effective.

An inherent benefit of our approach is that continuous
polling is avoided, because updates are pushed to peers.
This is similar to the benefit of using pubsubhubbub [3] in-
stead of RSS, where a single hub polled an RSS feed and
pushed updates to subscribers, thereby taking the load off
server hosting the originating RSS feed, as well as preventing
the need for the subscribers to continuously poll.

A more complex approach is to alter the way that up-
dates propagate. For example, instead of sending an up-

date to each individual subscriber, a “gossip” protocol can
be used where the updates are propagated between peers,
rather than all directly from the originator [16]. The key
benefit to this approach is that the load is spread between
peers, rather than from a central point. WebBox’s ability for
applications to relay messages (as described in Section 4.5)
means that relay hubs could be set up, in order to form gos-
sip networks. Methodologies already exist to set up overlays
over distributed semantic data, in order to achieve greater
scalability in data distribution, which use gossip protocols
to distribute data [8].

In practice, however, typical users do not have that many
friends (Facebook users have 130 friends on average 8, and
thus the number of incoming and outgoing messages is small
scale.

6. CASE STUDY: BUILDING SOCIALBOX
In this section, we walk through the implementation of So-

cialBox, a WebBox application that encompasses microblog-
ging, social news aggregation and bookmarking, “tumble-
logging”(a form of blogging that affords one-click re-blogging
of media content), life/datablogging with social feedback, as
found in current social data applications described in Table
1. Unlike most current sharing platforms that constrain the
kinds of data that can be shared the data added to a Social-
Box can be any structured data objects. Examples of such
structured data objects a user might share include vCards
of contacts gleaned from an RDFa-encoded Web page, an
HTML-encoded table of data (such as a recipe on epicuri-
ous9), or an annotated jogging log posted from a person’s
personal fitness logger. Moreover, because it is built on the
WebBox platform, such shared items can be public, private,
or shared selectively – in a secure and verified manner.

We first describe the steps required to implement mi-
croblogging/tumblelogging for SocialBox, comprised of 3 steps:
(1) creating and sharing a microblog entry, (2) aggregating
others’ entries into a unified visualisation, and (3) support-
ing commenting/re-sharing. All these steps involve messages
described in Section 4.2.

6.1 Creating a Simple Shared Resource: A Mi-
croblog Entry

To create a resource SocialBox makes an HTTP PUT call
to create a resource (‘create’ message). To determine how
this entry should be shared, SocialBox needs to prompt the
user for the friend(s) and group(s) he or she wants to share
the new resource with. To do this, SocialBox needs profiles
for all known groups, friends, and followers. A user’s friend
list is represented in the WebBox as a FOAF profile, and is
queried using an HTTP GET to retrieve the FOAF file as
Linked Data (‘read’ message).

Adding friends or groups corresponds to performing an
appropriate SPARQL Update on the FOAF profile to add
the additional foaf:knows assertions (using SPARQL Up-
date 1.1 with a ‘modify’ message).

After friends and groups have been selected, SocialBox
invokes a ‘share’ message, which effectively sets up change
notification policies in the DTM and updates access control
policies using WebACL as described in Section 4.4.

8Facebook statistics: https://www.facebook.com/press/
info.php?statistics
9Epicurious: http://www.epicurious.com/

6.2 Building a View of a Shared Resources
To present the user with a list of most-recent resources

people have shared with each other, such as a Twitter feed
or Facebook news feed, SocialBox simply makes a SPARQL
query (‘query’ message) to identify the most recent items
that have been added.

6.3 Adding Annotations
As described earlier, annotations are any resource (struc-

tured or unstructured) that is linked to its topic, (usually
with the foaf:primaryTopic property, although the Web-
Box is agnostic to such choices). As such, adding support for
creating comments and other kinds of annotations involves
simply creating a new resource representing the annotation
(as described in Feature 6.1) with this appropriate property.
Retrieving all annotations involves performing a SPARQL
query (as described in Feature 6.2) for all objects that are
linked to a particular resource.

6.4 Adding a Social News Feed View
To cope with the fact that looking at a raw microblog

stream (such as a raw Twitter stream) can be overwhelm-
ing, people often prefer to filter incoming items based upon
popularity/number of votes, such as those provided by so-
cial news aggregation sites like Digg or Reddit. To provide
such a view in SocialBox, we change only one aspect of the
query used to retrieve resources from WebBox: the order
of returned results is ordered by number of votes instead of
recency. To ensure freshness of resources a clause can be
added to filter for only recently created resources.

6.5 Re-sharing
Sites like Tumblr allow resources that one user has shared

to be easily re-shared on the person’s own tumbleblog, with
links back to the original post. Unlike plain link re-sharing,
users can typically comment on this particular re-share with-
out these comments being propagated to any other re-shares.
To support this behaviour, SocialBox simply creates a re-
source representing the re-share, linking back to the original
post. Annotations can then be made relative to the re-share
(à la Tumblr), or, alternatively, relative to the original re-
source.

6.6 Shared Editing
Few social network platforms support shared resource edit-

ing; on Facebook and Google+, for example, all resources
added to the timeline (e.g., status updates, comments, links
and so on) cannot be edited — only deleted — once posted.
In many situations, however, being able to have multiple
parties editing a resource, such as shared notes (e.g., Ether-
pad) or documents (e.g., Google Docs) is essential for ef-
fective collaboration. Since WebBox handles propagation of
updates to resources automatically with subscriptions (using
a ‘subscribe’ Message), making a shared resource editable by
multiple parties simply amounts to setting the ACL policy
on it to permit others to make updates. Updates are made
using a ‘modify’ message.

6.7 Polls and Surveys
Doodle polls and Google Forms are often used to resolve

scheduling issues and other matters of logistics requiring in-
put from everyone in a group. To implement similar func-
tionality using WebBox, SocialBox uses a structured re-

source type called a Survey which it renders as an HTML
form. SocialBox provides a form-builder interface for speci-
fying the structured contents of the form, which asserts an
RDF class declaration to represent the structure of form re-
sponses. When this class resource is shared with others,
SocialBox turns it into its HTML form to be displayed. The
form definition specifies the assertions that will be made
based on the form answers. Each form section is associated
with a subject URI, and each input element is associated
with a predicate. For example, a list of foods, with a“rating”
from 1–5 for each food. The output of the form is a graph of
assertions about the food. The resulting RDF graph is then
shared to the WebBox of the survey owner (using a ‘share’
message), where is it processed by SocialBox.

SocialBox demonstrates that it is possible to replicate and
to integrate social data sharing services in a decentralised,
secure way. SocialBox also enables users to share resources
without the constraints imposed by centralised services such
that arbitrary data types can be added to the SocialBox,
and also editing/revision of these sources is enabled: full
data control is part of the WebBox platform and is utilised
in the SocialBox application.

7. DISCUSSION AND FUTURE WORK
In this section we discuss topics where implementations

of WebBoxes can offer additional capabilities and features
that are not core to the basic requirements of a WebBox.
We also describe future work in the area of distributed data
sharing on the Web.

One of the most used analogs to a WebBox is e-mail, which
enables users to share information directly, albeit in a way
that is not machine-readable. E-mail is a good analog be-
cause users can choose to use e-mail entirely online (i.e.,
with a Web browser), or use a local client which downloads
copies of all of their mail. In our examples we have assumed
that a user has their data locally, although in reality their
local computer is unlikely to be connected to the same open
internet connection 24 hours a day. Instead, like e-mail a
WebBox is more likely to exist on an internet server (so it
can receive data without interruption), with a synchronisa-
tion process to a user’s local computer (or mobile devices,
as with e-mail on smart phones), so that applications can be
run locally, as discussed in our examples. However, unlike in
email where anybody can send any message to an inbox, re-
sulting in spam, WebBoxes can prevent unauthorised users
from authentication against a WebBox.

One assumption throughout is that connections to Web-
Boxes and between WebBoxes use TLS [17], so that they
are fully encrypted at a protocol level, to prevent man-in-
the-middle attacks. However, if a untrusted party (such as
a commercial service provider) is used to host the WebBox,
then users may wish for their data to be encrypted. As in
FOAF+SSL [30], linked data can share public keys of users,
so that an entirely machine-readable public key infrastruc-
ture can be used to encrypt data between users. That data
can then remain encrypted while at the remote WebBox,
and decrypted when downloaded.

One limitation of the WebBox approach is that for appli-
cations where users are collaborating and modifying shared
resources, version control of the entities is desirable. We
have not included version control within our definitions of
a WebBox because there is not a standard protocol that
could be used “out of the box” for keeping track of versions.

However, we acknowledge that a distributed version control
service such as Git or Mercurial could be used to keep track
of revisions to files as they are updated between users. Thus,
the addition of a version control system is future work.

We propose two approaches for deploying apps using Web-
Boxes. (1) Have organisations host WebBoxes for its mem-
bers for external apps to be deployed on, or (2) Group of
people share an app that will create the WebBoxes for the
users of that app. The first approach is similar to the ex-
isting email architecture on the Internet, where ISPs and
companies host mail servers for users to store their messages
on. The second approach is geared towards novice users who
may only want to use a specific app (for e.g. an app such
as ‘getfit.mit.edu’ where people log their workout progress
and share with their friends). Of course, these users should
be able to use their WebBox for another app. Advanced
users can host their own WebBox and deploy apps of their
preference on their WebBoxes.

For WebBoxes to offer effective privacy, there is a need
for intuitive user interfaces that will enable sharing of some
parts of the data, and specifying subsets of users to share
those pieces of data with. There is also a need for user
interfaces for authoring of share and access control policies.

8. CONCLUSIONS
In this paper we have presented WebBox, an architecture

that facilitates user-determined, decentralised social data
services on the Web that exhibits the following key features:

1. Fully-Decentralised Every person runs their own Web-
Box, obviating the need for central servers.

2. Flexible Data Representation Shared data can rep-
resent any structured data, including yet-to-be-defined
data schemata of future applications.

3. Granular Sharing Data can be arbitrarily small or
large — from a single statement to an entire graph.
Furthermore, resources can be shared with specific in-
dividuals, or arbitrary-sized groups.

4. Security Secure authentication via WebIDs ensures
that the person with whom we think we are sharing
our data is actually that person; TLS/SSL (HTTPS)
transport ensures that only the person(s)/entities with
whom you are sharing can decrypt the data.

5. Maintains Personal Privacy As individuals, we are
able to control where data is stored and with whom it
is shared.

6. Web-Based Critically, WebBox uses standard Web
protocols to make it easy to integrate with existing
environments and software.

WebBox extends the role of the web server from a doc-
ument publishing platform to one that fundamentally sup-
ports distributed collaboration on data artefacts, specifically
RDF resources. We demonstrated the feasibility of this ap-
proach, the ease with which applications can be written
for this platform, and how existing standards and protocols
enable this approach without the need for major reinven-
tion. Critically, WebBox represents an implementation of
Socially-Aware Cloud Storage [11] in which social-sharing
Web applications access a user-controlled data space which

is used for private storage and shared resources, and remains
entirely under the user’s control. Thus unlike existing cen-
tralised sharing platforms where data and applications are
inextricably tied, data can be used by multiple applications
and services and shared directly between peers. From a
user’s perspective, their data can be managed in a single lo-
cation, rather than multiple disparate locations, which leads
to easier management, and reduces fragmentation and re-
dundancy across sites and services. Moreover, this ensures
that their personal data can be maintained independently
of applications, ensuring its longevity and sustainability.

9. REFERENCES
[1] Open source software for building public and private

clouds. www. openstack. org .

[2] VRM Blog. blogs. law. harvard. edu/ vrm .

[3] A web-hook based pub-sub protocol.
http: // code. google. com/ p/ pubsubhubbub .

[4] Basic Access Control Ontology. W3C
http: // www. w3. org/ ns/ auth/ acl# , 2004.

[5] Higgins Personal Data Services. Eclipse wiki
eclipse. org/ higgins , 2009.

[6] Opera Unite reinvents the Web. http:
// pl. opera. com/ press/ releases/ 2009/ 06/ 16/ ,
2009.

[7] Web services under your control. OwnCloud
owncloud. org , 2010.

[8] K. Aberer, P. Cudré-Mauroux, M. Hauswirth, and
T. Van Pelt. Gridvine: Building internet-scale
semantic overlay networks. The Semantic Web–ISWC
2004, pages 107–121, 2004.

[9] D. Alexander, A. Mitchell, and W. Heath. Mydex
Community Prototype Launch Press Release. 2010.

[10] D. Beckett. Semantics through the tag. In Proceedings
of the XTech Conference, Amsterdam, The
Netherlands, 2006.

[11] T. Berners-Lee. Socially Aware Cloud Storage. W3C
Design Note http:

// www. w3. org/ DesignIssues/ CloudStorage. html ,
2009.

[12] T. J. Berners-Lee. Information management: a
proposal. oai:cds.cern.ch:369245. Technical Report
CERN-DD-89-001-OC, CERN, Geneva, Mar 1989.

[13] D. Berrueta and J. Phipps. Best practice recipes for
publishing rdf vocabularies. W3C Working Group
Note, 28 August 2008
http: // www. w3. org/ TR/ swbp-vocab-pub/ , 2008.

[14] D. Connolly and L. Miller. Rdf calendar - an
application of the resource description framework to
icalendar data. W3C Interest Group Note, 29
September 2005 http: // www. w3. org/ TR/ rdfcal/ ,
2005.

[15] S. Decker and M. Frank. The Social Semantic Web.
DERI Technical Report http: // www. deri. ie/
fileadmin/ documents/ DERI-TR-2004-05-02. pdf ,
2004.

[16] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the sixth annual ACM
Symposium on Principles of distributed computing,
pages 1–12. ACM, 1987.

[17] T. Dierks and E. Rescorla. The Transport Layer
Security (TLS) Protocol Version 1.2. IETF RFC
http: // wiki. tools. ietf. org/ html/ rfc5246 ,
2008.

[18] C. European Parliament. Directive 95/46/EC of the
European Parliament.
http: // eur-lex. europa. eu/ LexUriServ/

LexUriServ. do? uri= CELEX: 31995L0046: EN: NOT ,
1996.

[19] I. Fette and A. Melnikov. The WebSocket Protocol,
IETF HyBi Working Group. 2011.

[20] S. Harris, N. Lamb, and N. Shadbolt. 4store: The
design and implementation of a clustered rdf store. In
5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), pages 94–109,
2009.

[21] J. Hollenbach, J. Presbrey, and T. Berners-Lee. Using
RDF Metadata To Enable Access Control on the
Social Semantic Web. CEUR Workshop Proceedings,
2009.

[22] J. Miller, S. Murtha-Smith, and Team. The Locker
Project. lockerproject. org , 2010.

[23] C. Ogbuji. Sparql 1.1 graph store http protocol. W3C
Working Draft, 12 May 2011 http:

// www. w3. org/ TR/ sparql11-http-rdf-update/ ,
2011.

[24] J. Presbrey. Read Write Linked Data Space. data.fm
data. fm , 2010.

[25] J. Schiffman, X. Zhang, and S. Gibbs. Dauth:
Fine-grained authorization delegation for distributed
web application consumers. In Policies for Distributed
Systems and Networks (POLICY), 2010 IEEE
International Symposium on, pages 95 –102, july 2010.

[26] S.-W. Seong, J. Seo, M. Nasielski, D. Sengupta,
S. Hangal, S. K. Teh, R. Chu, B. Dodson, and M. S.
Lam. PrPl: A Decentralized Social Networking
Infrastructure. ACM Workshop on Mobile Cloud
Computing and Services: Social Networks and Beyond
(MCS), 2010.

[27] D. Simonds. Online Social Networks: Everywhere and
Nowhere. The Economist print edition, 2008.

[28] R. Singel. Facebook Debuts Simplified Privacy
Settings. Wired Magazine, 2010.

[29] M. Sporny, T. Inkster, H. Story, B. Harbulot, and
R. Bachmann-Gmur. Web Identification and
Discovery. W3C Editor’s Draft http:
// www. w3. org/ 2005/ Incubator/ webid/ spec/ ,
2011.

[30] H. Story, B. Harbulot, I. Jacobi, and M. Jones. Foaf+
ssl: Restful authentication for the social web. In
Proceedings of the First Workshop on Trust and
Privacy on the Social and Semantic Web
(SPOT2009). Citeseer, 2009.

[31] D. R. Thomas. A General Inductive Approach for
Analyzing Qualitative Evaluation Data. American
Journal of Evaluation, 27(2):237–246, 2006.

