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Abstract

Single-ISA heterogeneous multi-core processors are typ-
ically composed of small (e.g., in-order) power-efficient
cores and big (e.g., out-of-order) high-performance cores.
The effectiveness of heterogeneous multi-cores depends on
how well a scheduler can map workloads onto the most ap-
propriate core type. In general, small cores can achieve
good performance if the workload inherently has high lev-
els of ILP. On the other hand, big cores provide good per-
formance if the workload exhibits high levels of MLP or
requires the ILP to be extracted dynamically.

This paper proposes Performance Impact Estimation
(PIE) as a mechanism to predict which workload-to-core
mapping is likely to provide the best performance. PIE col-
lects CPI stack, MLP and ILP profile information, and esti-
mates performance if the workload were to run on a differ-
ent core type. Dynamic PIE adjusts the scheduling at run-
time and thereby exploits fine-grained time-varying execu-
tion behavior. We show that PIE requires limited hardware
support and can improve system performance by an aver-
age of 5.5% over recent state-of-the-art scheduling propos-
als and by 8.7% over a sampling-based scheduling policy.

1 Introduction

Heterogeneous multi-cores can enable higher performance
and reduced energy consumption (within a given power
budget) by executing workloads on the most appropriate
core type. Recent work illustrates the potential of het-
erogeneous multi-cores to dramatically improve energy-
efficiency and power-efficiency [2, 3, 9, 17, 18, 19, 20, 21,
30]. Commercial offerings include CPU and GPU integra-
tion, e.g., Intel’s Sandy Bridge [12], AMD’s Fusion [1], and
NVidia’s Tegra [25]; or CPU plus accelerators, e.g., IBM’s
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Cell [16]. Other commercial products integrate different
CPU core types on a single chip, e.g., NVidia’s Kal-El [26]
which integrates four performance-tuned cores along with
one energy-tuned core, and ARM’s big.LITTLE chip [10],
which integrates a high-performance big core with a low-
energy small core on a single chip. The latter two ex-
amples are so-called single-ISA heterogeneous multi-cores,
which means that the different core types implement the
same instruction-set architecture (ISA); single-ISA hetero-
geneous multi-cores are the main focus of this paper.

A fundamental problem in the design space of single-
ISA heterogeneous multi-core processors is how best to
schedule workloads on the most appropriate core type.
Making wrong scheduling decisions can lead to suboptimal
performance and excess energy/power consumption. To ad-
dress this scheduling problem, recent proposals use work-
load memory intensity as an indicator to guide application
scheduling [2, 3, 9, 17, 22, 30]. Such proposals tend to
schedule memory-intensive workloads on a small core and
compute-intensive workloads on a big core. We show that
such an approach causes suboptimal scheduling when mem-
ory intensity alone is not a good indicator for workload-to-
core mapping.

In general, small (e.g., in-order) cores provide good per-
formance for compute-intensive workloads whose subse-
quent instructions in the dynamic instruction stream are
mostly independent (i.e., high levels of inherent ILP). On
the other hand, big (e.g., out-of-order) cores provide good
performance for workloads where the ILP must be extracted
dynamically or the workload exhibits a large amount of
MLP. Therefore, scheduling decisions on heterogeneous
multi-cores can be significantly improved by taking into ac-
count how well a small or big core can exploit the ILP and
MLP characteristics of a workload.

This paper proposes Performance Impact Estimation
(PIE) as a mechanism to select the appropriate workload-
to-core mapping in a heterogeneous multi-core processor.
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Figure 1. Normalized big-core CPI stacks (right axis) and small-core slowdown (left axis). Bench-

marks are sorted by their small-versus-big core slowdown.

The key idea of PIE is to estimate the expected performance
for each core type for a given workload. In particular, PIE
collects CPI stack, MLP and ILP profile information during
runtime on any one core type, and estimates performance if
the workload were to run on another core type. In essence,
PIE estimates how a core type affects exploitable MLP and
ILP, and uses the CPI stacks to estimate the impact on over-
all performance. Dynamic PIE scheduling collects profile
information on a per-interval basis (e.g., 2.5 ms) and dy-
namically adjusts the workload-to-core mapping, thereby
exploiting time-varying execution behavior. We show that
dynamically collecting profile information requires mini-
mal hardware support: five 10-bit counters and 64 bits of
storage.

We evaluate PIE scheduling using a large number of
multi-programmed SPEC CPU2006 workload mixes. For
a set of scheduling-sensitive workload mixes on a hetero-
geneous multi-core consisting of one big (out-of-order) and
one small (in-order) core, we report an average performance
improvement of 5.5% over recent state-of-the-art schedul-
ing proposals. We also evaluate PIE scheduling and demon-
strate its scalability across a range of heterogeneous multi-
core configurations, including private and shared last-level
caches (LLCs). Finally, we show that PIE outperforms a
sampling-based scheduling by an average of 8.7%.

2 Motivation

Efficient use of single-ISA heterogeneous multi-cores is de-
pendent on the underlying workload scheduling policy. A
number of recent proposals use memory intensity as an in-
dicator to guide workload scheduling [2, 3, 9, 17, 22, 30].
This policy is based on the intuition that compute-intensive
workloads benefit more from the high computational capa-
bilities of a big core while memory-intensive workloads ex-
ecute more energy-efficiently on a small core while waiting

for memory.

To correlate whether memory intensity is a good indi-
cator to guide workload scheduling, Figure 1 compares the
slowdown for SPEC CPU2006 workloads on a small core
relative to a big core (left y-axis), to the normalized CPI
stack [5] on a big core (right y-axis). The normalized CPI
stack indicates whether a workload is memory-intensive or
compute-intensive. If the normalized CPI stack is mem-
ory dominant, then the workload is memory-intensive (e.g.,
mcf), else the workload is compute-intensive (e.g., tonto).

The figure illustrates workloads grouped into three cate-
gories on the x-axis: workloads that have reasonable slow-
down (< 1.75x) on the small core (type-I workloads), work-
loads that have significant slowdown (>2.25 x) on the small
core (type-III), and the remaining workloads are labeled as
type-1I. Making correct scheduling decisions in the pres-
ence of type-I and III workloads is most critical: making
an incorrect scheduling decision, i.e., executing a type-III
workload on a small core instead of a type-I workload, leads
to poor overall performance, hence we label type-I and III
as scheduling-sensitive workloads.

The figure shows that while memory intensity alone can
provide a good indicator for scheduling some memory-
intensive workloads (e.g., mcf) onto a small core, such prac-
tice can significantly slowdown other memory-intensive
workloads (e.g., soplex). Similarly, some compute-
intensive workloads (e.g., astar.r) observe a significant
slowdown on a small core while other compute-intensive
workloads (e.g., calculix) have reasonable slowdown when
executing on a small core. This behavior illustrates that
memory intensity (or compute intensity) alone is not a good
indicator to guide application scheduling on heterogeneous
multi-cores.

The performance behavior of workloads on small and
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Figure 2. Correlating small-core slowdown to the MLP ratio for memory-intensive workloads (right-
hand side in the graph) and to the ILP ratio for the compute-intensive workloads (lefthand side in the
graph). Workloads are sorted by their normalized memory CPl component (bottom graph).

big cores (Figure 1) can be explained by the design char-
acteristics of each core. Big cores are particularly suitable
for workloads that require ILP to be extracted dynamically
or have a large amount of MLP. On the other hand, small
cores are suitable for workloads that have a large amount
of inherent ILP. This implies that performance on differ-
ent core types can be directly correlated to the amount
of MLP and ILP prevalent in the workload. For exam-
ple, consider a memory-intensive workload that has a large
amount of MLP. Executing such a memory-intensive work-
load on a small core can result in significant slowdown if
the small core does not expose the MLP. On the other hand,
a compute-intensive workload with large amounts of ILP
may have a reasonable slowdown on a small core and need
not require the big core.

To quantify this, Figure 2 illustrates slowdown and the
loss in MLP (or ILP) when scheduling a workload on a
small core instead of a big core. The workloads are sorted
left-to-right based on memory intensity (inferred from the
normalized CPI stack). We use MLP ratio to quantify MLP
loss and ILP ratio to quantify ILP loss. MLP and ILP ratios
are defined as follows:

MLPratio = MLPbig/MLPsmall (1)

ILPratio = CPIbase,big/CPIbase,small (2)

with M LP defined as the average number of outstanding
memory requests if at least one is outstanding [4], and
CPlyyse as the base (non-miss) component of the CPI

stack. The key observation from Figure 2 is that MLP ra-
tio correlates with slowdown for memory-intensive appli-
cations (righthand side of the graph). Similarly, ILP ratio
correlates with slowdown for compute-intensive workloads
(lefthand side of the graph).

In summary, Figures 1 and 2 indicate that memory in-
tensity alone is not a good indicator for scheduling work-
loads on a heterogeneous multi-core. Instead, scheduling
policies on heterogeneous multi-cores must take into ac-
count the amount of MLP and ILP that can be exploited
by the different core types. Furthermore, the slowdowns (or
speedups) when moving between different core types can
directly be correlated to the amount of MLP and ILP real-
ized on a target core. This suggests that the performance on
a target core type can be estimated by predicting the MLP
and ILP on that core.

3 Performance Impact Estimation (PIE)

A direct approach to determine the best scheduling policy
on a heterogeneous multi-core is to apply sampling-based
scheduling [2, 18, 19, 33]. Sampling-based scheduling
dynamically samples different workload-to-core mappings
at runtime and then selects the best performing mapping.
While such an approach can perform well, it introduces per-
formance overhead due to periodically migrating workloads
between different core types. Furthermore, these overheads
increase with the number of cores (and core types). To ad-
dress these drawbacks, we propose Performance Impact Es-
timation (PIE).

The key idea behind PIE is to estimate (not sample)
workload performance on a different core type. PIE accom-



H memory component

M base component

CPI

running on big ——> predicted small
predicted big <------- running on small

Figure 3. lllustration of the PIE model.

plishes this by using CPI stacks. We concentrate on two
major components in the CPI stack: the base component
and the memory component; the former lumps together all
non-memory related components:

CPI = CPlpgse + CPlyem. 3)

Figure 2 illustrated that MLP and ILP ratios provide good
indicators on the performance difference between big and
small cores. Therefore, we use MLP, ILP, and CPI stack in-
formation to develop our PIE model (see Figure 3). Specif-
ically, we estimate the performance on a small core while
executing on a big core in the following manner:

CPIsmall = C/’—\P/Ibase,small + C/(—F\_)/Imem,small

= C/’_\P/Ibase,small + CPIme'm,big X MLPT'atio~
4)

Similarly, we estimate the performance on a big core while
executing on a small core as follows:

CPIbig = 6\ZBj’base,big + C%nLem,big

= Ep?base,big + CPImem,small/MLPratim
)

In the above formulas, C/’F\_’jf base_big refers to the base CPI
component on the big core estimated from the execution
on the small core; CPI base_small 1S defined similarly. The
memory CPI component on the big (small) core is com-
puted by dividing (multiplying) the memory CPI compo-
nent measured on the small (big) core with the MLP ratio.
The remainder of this section details on how we predict the
base CPI components as well as the MLP ratio, followed
by an evaluation of the PIE model. Section 4 then presents
dynamic PIE scheduling, including how we collect the in-
puts to the PIE model during runtime by introducing perfor-
mance counters.

3.1 Predicting MLP

The memory CPI component essentially consists of three
contributors: the number of misses, the latency per (iso-
lated) miss, and the number of simultaneously outstanding
misses (MLP). In this paper, we assume that the big and
small cores have the same cache hierarchy, i.e., the same
number of cache levels and the same cache sizes at each
level. In other words, we assume that the number of misses
and the latency per miss is constant across core types'.
However, MLP varies across core types as big cores and
small cores vary in the amount of MLP that they can ex-
ploit. We now describe how we estimate MLP on the big
core while running on the small core; and vice versa, we es-
timate MLP on the small core while running on the big core.
Combining these MLP estimates with measured MLP num-
bers on the current core type enables predicting the MLP
ratio using Formula 1, which in its turn enables estimating
the memory CPI components on the other core type, using
Formulas 4 and 5.

3.1.1 Predicting big-core MLP on small core

Big out-of-order cores implement a reorder buffer, non-
blocking caches, MSHRs, etc., which enables issuing in-
dependent memory accesses in parallel. The maximum
MLP that a big core can exploit is bound by the reorder
buffer size, i.e., a necessary condition for independent long-
latency load misses to be issued to memory simultaneously
is that they reside in the reorder buffer at the same time.
We therefore estimate the big-core MLP as the average
number of memory accesses in the big-core reorder buffer.
Quantitatively, we do so by calculating the average number
of LLC misses per instruction observed on the small core
(M P1I,,4;;) multiplied by the big-core reorder buffer size:

MLPyy; = MPIpa1 x ROB_size. 6)

Note that the above estimate does not make a distinction be-
tween independent versus dependent LLC misses; we count
all LLC misses. A more accurate estimate would be to count
independent LLC misses only, however, in order to simplify
the design, we simply count all LLC misses.

3.1.2 Predicting small-core MLP on big core

Small in-order cores exploit less MLP than big cores. A
stall-on-miss core stalls on a cache miss, and hence, it does
not exploit MLP at all — MLP equals one. A stall-on-use
core can exploit some level of MLP: independent loads be-
tween a long-latency load and its first consumer can be is-
sued to memory simultaneously. MLP for a stall-on-use
core thus equals the average number of memory accesses
between a long-latency load and its consumer. Hence, we

UIf the cache hierarchy is different, then techniques described in [14]
can be used to estimate misses for a different cache size.



estimate the MLP of a stall-on-use core as the average num-
ber of LLC misses per instruction on the big core multiplied
by the average dependency distance D between an LLC
miss and its consumer. (Dependency distance is defined as
the number of dynamically executed instructions between a
producer and its consumer.)

MLP,pqq = MPI;, x D. 7)

Again, in order to simplify the design, we approximate D as
the dependency distance between any producer (not just an
LLC miss) and its consumer. We describe how we measure
the dependency distance D in Section 4.3.

3.2 Predicting ILP

The second CPI component predicted by the PIE model is
the base CPI component.

3.2.1 Predicting big-core ILP on small core

We estimate the base CPI component for the big core as one
over the issue width W, of the big core:

C/T\P/Ibase,big = 1/‘/Vbig- (8)

A balanced big (out-of-order) core should be able to dis-
patch approximately Wj;, instructions per cycle in the ab-
sence of miss events. A balanced core design can be
achieved by making the reorder buffer and related structures
such as issue queues, rename register file, etc., sufficiently
large to enable the core to issue instructions at a rate near
the designed width [7].

3.2.2 Predicting small-core ILP on big core

Estimating the base CPI component for a small (in-order)
core while running on a big core is more complicated. For
ease of reasoning, we estimate the average IPC and take the
reciprocal of the estimated IPC to yield the estimated CPI.
We estimate the average base IPC on the small core with
width W, as follows:

Wesmati
IPCbase,small = Z 7 X P[IPC = Z] (9)
=1

We use simple probability theory to estimate the probability
of executing ¢ instructions in a given cycle. The probability
of executing only one instruction in a given cycle equals
the probability that an instruction produces a value that is
consumed by the next instruction in the dynamic instruction
stream (dependency distance of one):

P[IPC =1] = P[D =1]. (10)

Likewise, the probability of executing two instructions in a
a given cycle equals the probability that the second instruc-
tion does not depend on the first, and the third depends on
either the first or the second:

P[IPC =2]=(1-P[D=1]) x

(PID=1+PD=2).

This generalizes to three instructions per cycle as well:

PlIPC=3]=(1—PID =

(1-P[D=1]- P[D = 2)) x

(P[D =1]+ P[D =2] + P[D = 3)]).
(12)

Finally, assuming a 4-wide in-order core, the probability of
executing four instructions per cycle equals the probability
that none of the instructions depend on a previous instruc-
tion in a group of four instructions:

PlIPC = 4] =(1 - P[D =1]) x
(1— P[D=1]— P[D =2]) x
(1-P[D=1]—-P[D=2] - P[D = 3))

(13)

Note that the above formulas do not take non-unit instruc-
tion execution latencies into account. Again, we used this
approximation to simplify the design, and we found this ap-
proximation to be accurate enough for our purpose.

3.3 Evaluating the PIE Model

Figure 4 evaluates the accuracy of our PIE model. This is
done in two ways: we estimate big-core performance while
executing the workload on a small core, and vice versa, we
estimate small-core performance while executing the work-
load on a big core. We compare both of these to the ac-
tual slowdown. (We will describe the experimental setup
in Section 5.) The figure shows that we achieve an average
absolute prediction error of 9% and a maximum error of
35% when predicting speedup (predicting big-core perfor-
mance on the small core). The average absolute prediction
error for the slowdown (predicting small-core performance
on the big core) equals 13% with a maximum error of 47%.
More importantly, PIE accurately predicts the relative per-
formance differences between the big and small cores. This
is in line with our goal of using PIE for driving runtime
scheduling decisions.

As a second step in evaluating our PIE model, we con-
sider a heterogeneous multi-core and use PIE to deter-
mine the workload-to-core mapping. We consider all pos-
sible two-core multi-programmed workload mixes of SPEC
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Figure 4. Evaluating the accuracy of the PIE model.
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Figure 5. Comparing scheduling policies on a
two-core heterogeneous multi-core.

CPU2006 applications and a two-core system with one big
core and one small core and private LLCs. Further, bench-
marks are scheduled on a given core and stay there for the
remainder of the execution (static scheduling).

Figure 5 reports performance (system throughput or
weighted speedup) relative to worst-case scheduling for
all workload mixes; we compare PIE scheduling against
random and memory-dominance (memdom) scheduling.
Memory-dominance scheduling refers to the conventional
practice of always scheduling memory-intensive workloads
on the small core.

PIE scheduling chooses the workload-to-core mapping
by selecting the schedule that yields the highest (estimated)
system throughput across both cores. PIE scheduling out-
performs both random and memory-dominance scheduling
over the entire range of workload mixes. Figure 6 provides
more detailed results for workload mixes with type-I and
type-III workloads. PIE outperforms worst-case schedul-
ing by 14.2%, compared to random (8.5%) and memory-
dominance scheduling (9.2%). Put differently, PIE schedul-
ing achieves 84% of optimal scheduling, compared to 54%
for memory-dominance and 50% for random scheduling.

The PIE model takes into account both ILP and MLP. We
also evaluated a version of PIE that only takes MLP into ac-
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Figure 6. Comparing different scheduling
algorithms for type-l and type-lll workload

mixes assuming a static setup.

count, i.e., ILP is not accounted for and is assumed to be
the same on the big and small cores. We refer to this as
MLP-ratio scheduling. Figures 5 and 6 illustrate the impor-
tance of taking both MLP and ILP into account. MLP-ratio
scheduling improves worst-case scheduling by 12.7% for
type-I and III workloads, compared to 14.2% for PIE. This
illustrates that accounting for MLP is more important than
ILP in PIE.

So far, we evaluated PIE for a heterogeneous multi-core
with one big and one small core (e.g., ARM’s big.LITTLE
design [10]). We now evaluate PIE scheduling for hetero-
geneous multi-cores with one big core and multiple small
cores, as well as several big cores and one small core (e.g.,
NVidia’s Kal-El [26]); we assume all cores are active all
the time. Figure 7 shows that PIE outperforms memory-
dominance scheduling by a bigger margin even for these
heterogeneous multi-core design points than for the one-
big, one-small multi-core system.

4 Dynamic Scheduling

So far, PIE scheduling was evaluated in a static setting, i.e.,
a workload is scheduled on a given core for its entire execu-
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libquantum.

tion. There is opportunity to further improve PIE schedul-
ing by dynamically adapting to workload phase behavior.
To illustrate this, Figure 8 shows big-core and small-core
CPI and MLP as a function of time for libquantum from
SPEC CPU2006. The key observation here is that, although
the average slowdown is high for the small core compared
to the big core, the small core achieves comparable per-
formance to the big core for some execution phases. For
libguantum, approximately 10% of the instructions can be
executed on the small core without significantly affecting
overall performance. However, the time-scale granularity is
relatively fine-grained (few milliseconds) and much smaller
than a typical OS time slice (e.g., 10 ms). This suggests that
dynamic hardware scheduling might be beneficial provided
that rescheduling (i.e., migration) overhead is low.

4.1 Quantifying migration overhead

Dynamic scheduling incurs overhead for migrating work-
loads between different cores. Not only does migration in-
cur a context switch, it also incurs overhead for warming
hardware state, especially the cache hierarchy. A context
switch incurs a fixed cost for restoring architecture state. To
better understand the overhead due to cache warming, we
consider a number of scenarios to gain insight on cache hi-
erarchy designs for low migration overheads at fine-grained
dynamic scheduling.
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Figure 9. Migration overhead for a shared
LLC.

Shared LLC. Figure 9 quantifies the performance over-
head of migrating a workload every x milliseconds, with x
varying from 1 ms to 50 ms. Migration overhead is mea-
sured by configuring two identical cores to share a 4MB
LLC. Workloads are rescheduled to a different core every
x ms. Interestingly, for a 2.5 ms migration frequency, the
performance overhead due to migration is small, less than
0.6% for all benchmarks. The (small) performance over-
head are due to (private) L1 and L2 cache warmup effects.

Private powered-off LL.Cs. The situation is very differ-
ent in case of a private LLC that is powered off when mi-
grating a workload. Powering off a private LLC makes
sense in case one wants to power down an entire core and
its private cache hierarchy in order to conserve power. If the
migration frequency is high (e.g., 2.5 ms), Figure 10 reports
severe performance overhead for some workloads when the
private cache hierarchy is powered off upon migration. The
huge performance overheads are because the cache looses
its data when powered off, and hence the new core must
re-fetch the data from main memory.

Private powered-on LLCs. Instead of turning off private
LLCs, an alternative is to keep the private LLCs powered
on and retain the data in the cache. In doing so, Figure 11
shows that performance overhead from frequent migrations
is much smaller and in fact even leads to substantial perfor-
mance benefits for a significant fraction of the benchmarks.
The performance benefit comes from having a larger effec-
tive LLC: upon a miss in the new core’s private LLC, the
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Figure 10. Migration overhead for private
powered-off LLCs.

data is likely to be found in the old core’s private LLC, and
hence the data can be obtained more quickly from the old
core’s LLC through cache coherency than by fetching the
data from main memory.

4.2 Dynamic PIE Scheduling

Having described the PIE model, we now describe Dynamic
PIE scheduling. PIE scheduling is applicable to any num-
ber of cores of any core type. However, to simplify the
discussion, we assume one core of each type. We assume as
many workloads as there are cores, and that workloads are
initially randomly scheduled onto each core. Furthermore,
we assume that workload scheduling decisions can be made
every x milliseconds.

To strive towards an optimal schedule, PIE scheduling
requires hardware support for collecting CPI stacks on each
core, the number of misses, the number of dynamically ex-
ecuted instructions, and finally the inter-instruction depen-
dency distance distribution on the big core. We discuss the
necessary hardware support in the next section.

During every time interval of x milliseconds, for each
workload in the system, PIE uses the hardware support to
compute CPI stacks, MLP and ILP on the current core type,
and also predicts the MLP and ILP for the same work-
load on the other core type. These predictions are then
fed into the PIE model to estimate the performance of each
workload on the other core type. For a given performance
metric, PIE scheduling uses these estimates to determine
whether another scheduling decision would potentially im-
prove overall system performance as compared to the cur-
rent schedule. If so, workloads are rescheduled to the pre-
dicted core type. If not, the workload schedule remains in-
tact and the process is repeated the next time interval.

Note that PIE scheduling can be done both in hardware
and software. If the time interval of scheduling workloads
to cores coincides with a time slice, then PIE scheduling
can be applied in software, i.e., the hardware would collect
the event counts and the software (e.g., OS or hypervisor)
would make scheduling decisions. If scheduling decisions
would need to be made at smaller time scale granularities,
hardware can also make the scheduling decisions, transpar-
ent to the software [10].
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Figure 11. Migration overhead for private

powered-on LLCs.

4.3 Hardware support

PIE scheduling requires hardware support for collecting
CPI stacks. Collecting CPI stacks on in-order cores is
fairly straightforward and is implemented in commercial
systems, see for example Intel Atom [11]. Collecting CPI
stacks on out-of-order cores is more complicated because
of various overlap effects between miss events, e.g., a long-
latency load may hide the latency of another independent
long-latency load miss or mispredicted branch, etc. Recent
commercial processors such as IBM Power5 [23] and Intel
Sandy Bridge [12] however provide support for computing
memory stall components. PIE scheduling also requires the
number of LLC misses and the number of dynamically ex-
ecuted instructions, which can be measured using existing
hardware performance counters. In other words, most of the
profile information needed by PIE can be readily measured
on existing hardware.

PIE scheduling requires some profile information that
cannot be collected on existing hardware. For example,
while running on a big core, PIE requires the ability to mea-
sure the inter-instruction dependency distance distribution
for estimating small-core MLP and ILP. The PIE model re-
quires the dependency distance distribution for a maximum
dependency distance of W4 only (Where W, 411 is the
width of the small core). For a 4-wide core, this involves
four plus one counters: four counters for computing the de-
pendency distance distribution up to four instructions, and
one counter for computing the average distance.

The PIE model requires that the average dependency dis-
tance D be computed over the dynamic instruction stream.
This can be done by requiring a table with as many rows
as there are architectural registers. The table keeps track
of which instruction last wrote to an architectural register.
The delta in dynamic instruction count between a register
write and subsequent read then is the dependency distance.
Note that the table counters do not need to be wide, because
the dependency distance tends to be short [8]; e.g., four bits
per counter can capture 90% of the distances correctly. In
summary, the total hardware cost to track the dependency
distance distribution is roughly 15 bytes of storage: 4 bits
times the number of architectural registers (64 bits for x86-
64), plus five 10-bit counters.



S Experimental Setup

We use CMPS$im [13] to conduct the simulation experi-
ments in this paper. We configure our simulator to model
heterogeneous multi-core processors with big and small
cores. The big core is a 4-wide out-of-order processor core;
the small core is a 4-wide (stall-on-use) in-order processor
core’. We assume both cores run at a 2 GHz clock fre-
quency. Further, we assume a cache hierarchy consisting
of three levels of cache, separate 32 KB L1 instruction and
data caches, a 256 KB L2 cache and a 4 MB last-level L3
cache (LLC). We assume the L1 and L2 caches to be private
per core for all the configurations evaluated in this paper.
We evaluate both shared and private LLC configurations.
We consider the LRU replacement policy in all of the caches
unless mentioned otherwise; we also consider a state-of-
the-art RRIP shared cache replacement policy [15]. Finally,
we assume an aggressive stream-based hardware prefetcher;
we experimentally evaluated that hardware prefetching im-
proves performance by 47% and 25% on average for the
small and big cores, respectively.

We further assume that the time interval for dynamic
scheduling is 2.5 ms; this is small enough to benefit from
fine-grained exploitation of time-varying execution behav-
ior while keeping migration overhead small. The overhead
for migrating a workload from one core to another (storing
and restoring the architecture state) is set to 300 cycles; in
addition, we do account for the migration overhead due to
cache effects.

We consider all 26 SPEC CPU2006 programs and all
of their reference inputs, leading to 54 benchmarks in to-
tal. We select representative simulation points of 500 mil-
lion instructions each using PinPoints [27]. When simu-
lating a multi-program workload we stop the simulation
when the slowest workload has executed 500 million in-
structions. Faster running workloads are reiterated from
the beginning of the simulation point when they reach the
end. We report system throughput (STP) [6] (also called
weighted speedup [31]) which quantifies system-level per-
formance or aggregate throughput achieved by the system.

6 Results and Analysis

We evaluate dynamic PIE scheduling on private and shared
LLCs with LRU, and a shared LLC with RRIP replace-
ment. We compare PIE scheduling to a sampling-based
strategy [2, 18, 19, 33] that assumes running a workload for
one time interval on one core and for the next time interval
on the other core. The workload-core schedule that yields

2We also ran experiments with a 2-wide in-order processor and found
the performance for the 2-wide in-order processor to be within 10% of
the 4-wide in-order processor, which is a very small compared to the
200%+ performance difference between in-order versus out-of-order pro-
cessor performance. Hence, we believe that our conclusions hold true irre-
spective of the width of the in-order processor.
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Figure 12. Relative performance (STP) delta
over random scheduling for sampling-based,
memory-dominance and PIE scheduling, as-
suming private LLCs.

the highest performance is then maintained for the next 10
time intervals, after which the sampling phase is reinitiated.

6.1 Private LLCs

We first assume that each core has its private LLC. Figure 12
quantifies the relative performance over random scheduling
for sampling-based, memory-dominance and PIE schedul-
ing. PIE scheduling clearly outperforms the other schedul-
ing strategies by a significant margin. Across the type-I and
IIT workload mixes, we report an average 5.5% and 8.7%
improvement in performance over memory-dominance and
sampling-based scheduling, respectively. The improve-
ment over memory-dominance scheduling comes from two
sources: PIE is able to more accurately determine the
better workload-to-core mapping, and in addition, PIE
can exploit fine-grain phase behavior, unlike memory-
dominance scheduling. PIE also improves upon sampling-
based scheduling, because PIE does not incur any overhead
from sampling because it (accurately) estimates the perfor-
mance impact of a workload reschedule, and hence, it can
more quickly and better adapt to fine-grain phase behavior.

6.2 Shared LLC

With shared LLCs, Figure 13 shows similar conclusions to
private LLCs: PIE outperforms random, sampling-based
and memory-dominance scheduling. For the type-I and
IIT workload mixes, we obtain an average 3.7% and 6.4%
improvement in performance over memory-dominance and
sampling-based scheduling, respectively. The performance
improvement is slightly lower for private LLCs though. The
reason is that none of the scheduling strategies anticipate
conflict behavior in the shared LLC, and, as a result, some
of the scheduling decisions may be partly offset by negative
conflict behavior in the shared LLC. Further, in the case
of sampling-based scheduling, LLC performance changes
when switching between core types (as a result of sampling)
because the access patterns change, which in turn changes
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Figure 13. Relative performance (STP) delta
over random scheduling for sampling-based,
memory-dominance and PIE scheduling, as-
suming an LRU-managed shared LLC.

overall performance; in other words, sampling is particu-
larly ineffective in case of a shared LLC.

6.3 RRIP-managed shared LLC

So far, we assumed an LRU cache replacement policy.
However, it has been shown that LRU is not the most ef-
fective shared cache management policy; a state-of-the-art
shared cache replacement policy is RRIP [15] which sig-
nificantly improves LLC performance by predicting the re-
reference behavior of cache blocks. The results for PIE
scheduling applied to an RRIP-managed LLC are shown
in Figure 14. For the type-I and III workload mixes,
PIE scheduling improves performance by 2.4% and 7.8%
over memory-dominance and sampling-based scheduling,
respectively.

An interesting observation to make from Figure 14 is
that an intelligent shared cache management policy such as
RRIP is able to reduce the performance hit observed for
some of the workloads due to scheduling. A large frac-
tion of the workloads observe a significant performance
hit under sampling-based scheduling (and a handful work-
loads under memory-dominance scheduling) for an LRU-
managed shared LLC, see bottom left in Figure 13; these
performance hits are removed through RRIP, see Figure 14.
In other words, a scheduling policy can benefit from an in-
telligent cache replacement policy: incorrect decisions by
the scheduling policy can be alleviated (to some extent) by
the cache management policy.

7 Related Work

Heterogeneous multi-cores desings vary from single-ISA
cores only varying in clock frequency, to single-ISA cores
differing in microarchitecture, to cores with non-identical
ISAs. Since we focus on single-ISA heterogeneous multi-
cores, we only discuss this class of heterogeneity.

Kumar et al. [18] made the case for heterogeneous
single-ISA multi-core processors when running a single ap-
plication: they demonstrate that scheduling an application
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Figure 14. Relative performance (STP) delta
over random scheduling for sampling-based,
memory-dominance and PIE scheduling, as-
suming an RRIP-managed shared LLC.

across core types based on its time-varying execution be-
havior can yield substantial energy savings. They evaluate
both static and dynamic scheduling policies. In their follow-
on work, Kumar et al. [19] study scheduling on heteroge-
neous multi-cores while running multi-program workloads.
The dynamic scheduling policies explored in these studies
use sampling to gauge the most energy-efficient core. Bec-
chi and Crowley [2] also explore sample-based scheduling.
Unfortunately, sample-based scheduling, in contrast to PIE,
does not scale well with increasing core count: an infre-
quent core type (e.g., a big core in a one-big, multiple-small
core configuration) quickly becomes a bottleneck.

Bias scheduling [17] is very similar to memory-
dominance scheduling. It schedules programs that exhibit
frequent memory and other resource stalls on the small core,
and programs that are dominated by execution cycles (and
hence low fraction of stalls) on the big core. Thresholds
are used to determine a program’s bias towards a big versus
small core based on these stall counts.

HASS [30] is a static scheduling policy, the key motiva-
tion being scalability. Chen and John [3] leverage offline
program profiling. An obvious limitation of static/offline
scheduling is that it does not enable exploiting time-varying
execution behavior. PIE on the other hand is a dynamic
scheduling algorithm that, in addition, is scalable.

Several studies [9, 30, 32] explore scheduling in hetero-
geneous systems by changing clock frequency across cores;
the core microarchitecture does not change though. Such
studies do not face the difficulty of having to deal with
differences in MLP and ILP across core types. Hence,
memory-dominance based scheduling is likely to work well
for such architectures.

Age-based scheduling [20] predicts the remaining execu-
tion time of a thread in a multi-threaded program and sched-
ules the oldest thread on the big core. Li et al. [21] evaluate
the idea of scheduling programs on the big core first, before
scheduling programs on the small cores, in order to make
sure the big power-hungry core is fully utilized.



Chou et al. [4] explored how microarchitecture tech-
niques affect MLP. They found that out-of-order proces-
sors can better exploit MLP compared to in-order proces-
sors. We show that MLP and ILP are important criteria to
take into account when scheduling on heterogeneous multi-
cores, and we propose the PIE method for doing so.

Patsilaras et al. [28, 29] study how to best integrate an
MLP technique (such as runahead execution [24]) into an
asymmetric multi-core processor, i.e., should one integrate
the MLP technique into the small or big core, or both? They
found that if the small core runs at a higher frequency and
implements an MLP technique, the small core might be-
come more beneficial for exploiting MLP-intensive work-
loads. Further, they propose a hardware mechanism to
dynamically schedule threads to core types based on the
amount of MLP in the dynamic instruction stream, which
they estimate by counting the number of LLC misses in the
last 10K instructions interval. No currently shipping com-
mercial processor employs runahead execution; also, run-
ning the small core at a high frequency might not be pos-
sible given current power concerns. We therefore take a
different approach: we consider a heterogeneous multi-core
system as a given — we do not propose changing the ar-
chitecture nor the frequency of either core type — and we
schedule tasks onto the most appropriate core type to im-
prove overall performance while taking both MLP and ILP
into account as a criterion for scheduling.

8 Conclusions

Single-ISA heterogeneous multi-cores are typically com-
posed of small (e.g., in-order) cores and big (e.g., out-of-
order) cores. Using different core types on a single die has
the potential to improve energy-effiency without sacrificing
significant performance. However, the success of hetero-
geneous multi-cores is directly dependent on how well a
scheduling policy maps workloads to the best core type (big
or small). Incorrect scheduling decisions can unnecessarily
degrade performance and waste energy/power. With this in
mind, this paper makes the following contributions:

e We show that using memory intensity alone as an in-
dictator to guide workload scheduling decisions can
lead to suboptimal performance. Instead, scheduling
policies must take into account how a core type can
exploit the ILP and MLP characteristics of a workload.

e We propose the Performance Impact Estimation (PIE)
model to guide workload scheduling. The PIE model
uses CPI stack, ILP and MLP information of a work-
load on a given core type to estimate the performance
on a different core type. We propose PIE models for
both small (in-order) and big (out-of-order) cores.

e Using the PIE model, we propose dynamic PIE
scheduling. Dynamic PIE collects CPI stack, ILP

and MLP information at run time to guide workload
scheduling decisions.

e We show that the use of shared LLCs can enable high
frequency, low-overhead, fine-grained scheduling to
exploit time-varying execution behavior. We also show
that the use of private LLCs can provide similar ca-
pability as long as the caches are not flushed on core
migrations.

We evaluate PIE for a variety of systems with varying
core counts and cache configurations. Across a large num-
ber of scheduling-sensitive workloads, we show that PIE
scheduling is scalable to any core count and outperforms
prior work by a significant margin.

In this paper, we focused on using PIE scheduling to
improve the weighted speedup metric for a heterogeneous
multi-core system. The evaluations were primarily done for
multi-programmed workload mixes. However, PIE schedul-
ing can also be applied to improve multi-threaded workload
performance. Furthermore, when multiple workloads con-
tend for the same core type, PIE scheduling can be extended
to optimize for fairness. Exploring these extensions is part
of our on-going work.

Acknowledgements

We thank David Albonesi, the VSSAD group, Socrates
Demetriades, Krishna Rangan, and the anonymous review-
ers for their constructive and insightful feedback. Kenzo
Van Craeynest is supported through a doctoral fellowship
by the Agency for Innovation by Science and Technology
(IWT). Additional support is provided by the FWO projects
G.0255.08 and G.0179.10, and the European Research
Council under the European Community’s Seventh Frame-
work Programme (FP7/2007-2013) / ERC Grant agreement
no. 259295.

References
[1] AMD. The future is fusion: The industry-
changing impact of accelerated computing.

http://sites.amd.com/us/Documents/ AMD_fusion_
Whitepaper.pdf, 2008.

[2] M. Becchi and P. Crowley. Dynamic thread assignment
on heterogeneous multiprocessor architectures. Journal of
Instruction-Level Parallelism (JILP), 10:1-26, June 2008.

[3] J. Chen and L. K. John. Efficient program scheduling for
heterogeneous multi-core processors. In Proceedings of the
46th Design Automation Conference (DAC), pages 927-930,
July 2009.

[4] Y. Chou, B. Fahs, and S. Abraham. Microarchitecture opti-
mizations for exploiting memory-level parallelism. In Pro-
ceedings of ISCA, pages 76-87, June 2004.

[5] P. G. Emma. Understanding some simple processor-
performance limits. IBM Journal of Research and Devel-
opment, 41(3):215-232, May 1997.



(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

S. Eyerman and L. Eeckhout. System-level perfor-
mance metrics for multi-program workloads. /IEEE Micro,

28(3):42-53, May/June 2008.

S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith.
A mechanistic performance model for superscalar out-of-
order processors. ACM Transactions on Computer Systems
(TOCS), 27(2), May 2009.

M. Franklin and G. S. Sohi. Register traffic analysis for
streamlining inter-operation communication in fine-grain
parallel processors. In Proceedings of MICRO, pages 236—
245, Dec. 1992.

S. Ghiasi, T. Keller, and F. Rawson. Scheduling for het-
erogeneous processors in server systems. In Proceedings of
the Second Conference on Computing Frontiers (CF), pages
199-210, May 2005.

P. Greenhalgh. Big.LITTLE processing with ARM
Cortex-Al15 & Cortex-AT7: Improving energy ef-
ficiency in  high-performance  mobile platforms.
http://www.arm.com/files/downloads/big_LITTLE_Final -
Final.pdf, Sept. 2011.

T. R. Halfhill. Intel’s tiny Atom. Microprocessor Report,
22:1-13, Apr. 2008.

Intel. 2nd generation Intel Core vPro processor family.
http://www.intel.com/content/dam/doc/white-paper/core-
vpro-2nd-generation-core-vpro-processor-family-paper.pdf,
2008.

A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. CMP$im: A
Pin-based on-the-fly multi-core cache simulator. In Proceed-
ings of the Fourth Annual Workshop on Modeling, Bench-
marking and Simulation (MoBS), held in conjunction with
ISCA, June 2008.

A. Jaleel, H. H. Najaf-abadi, S. Subramaniam,
S. C. Steely Jr, and J. Emer. CRUISE: Cache Re-
placement and Utility-aware Scheduling. In Proceedings of
ASPLOS, pages 6071, March 2011.

A. Jaleel, K. Theobald, S. C. Steely Jr., and J. Emer. High
performance cache replacement using re-reference interval
prediction (RRIP). In Proceedings of ISCA, pages 60-71,
June 2010.

J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R.
Maeurer, and D. Shippy. Introduction to the Cell multipro-
cessor. IBM Journal of Research and Development, 49:589—

604, July 2005.

D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Proceedings of
the European Conference on Computer Systems (EuroSys),
pages 125-138, Apr. 2010.

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core archi-
tectures: The potential for processor power reduction. In
Proceedings of MICRO, pages 81-92, Dec. 2003.

R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and
K. I. Farkas. Single-ISA heterogeneous multi-core architec-
tures for multithreaded workload performance. In Proceed-
ings of ISCA, pages 6475, June 2004.

N. B. Lakshminarayana, J. Lee, and H. Kim. Age based
scheduling for asymmetric multiprocessors. In Proceedings
of Supercomputing: the Conference on High Performance
Computing Networking, Storage and Analysis (SC), Nov.
2009.

[21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn. Efficient
operating system scheduling for performance-asymmetric
multi-core architectures. In Proceedings of Supercomput-
ing: the Conference on High Performance Computing Net-
working, Storage and Analysis (SC), Nov. 2007.

T. Li, P. Brett, R. Knauerhase, D. Koufaty, D. Reddy, and
S. Hahn. Operating system support for overlapping-ISA
heterogeneous multi-core architectures. In Proceedings of
HPCA, pages 1-12, Jan. 2010.

A. Mericas. Performance monitoring on the POWERS mi-
croprocessor. In L. K. John and L. Eeckhout, editors, Perfor-
mance Evaluation and Benchmarking, pages 247-266. CRC
Press, 2006.

O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
execution: An alternative to very large instruction windows
for out-of-order processors. In Proceedings of HPCA, pages
129-140, Feb. 2003.

NVidia. The benefits of multi-
ple CPU cores in mobile devices.
http://www.nvidia.com/content/PDF/tegra_white_papers/
Benefits-of-Multi-core-CPUs-in-Mobile-
Devices_Verl.2.pdf, 2010.

NVidia. Variable SMP - a multi-core CPU ar-
chitecture for low power and high performance.
http://www.nvidia.com/content/PDF/tegra_white_papers/
Variable-SMP-A-Multi-Core-CPU-Architecture-for-Low-
Power-and-High-Performance-v1.1.pdf, 2011.

H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large
Intel Itanium programs with dynamic instrumentation. In
Proceedings of MICRO, pages 81-93, Dec. 2004.

G. Patsilaras, N. K. Choudhary, and J. Tuck. Design trade-
offs for memory-level parallelism on a asymmetric multi-
core system. In Proceedings of the Third Workshop on Par-
allel Execution of Sequential Programs on Multi-core Ar-
chitectures (PESPMA), held in conjunction with ISCA, June
2010.

G. Patsilaras, N. K. Choudhary, and J. Tuck. Efficiently ex-
ploiting memory level parallelism on asymmetric coupled
cores in the dark silicon era. ACM Transactions on Archi-
tecture and Code Optimization (TACO), 8, Jan. 2012.

D. Shelepov, J. C. S. Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar. HASS:
A scheduler for heterogeneous multicore systems. Operat-
ing Systems Review, 43:66-75, Apr. 2009.

A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for
simultaneous multithreading processor. In Proceedings of
ASPLOS, pages 234-244, Nov. 2000.

S. Srinivasan, L. Zhao, R. Illikal and R. Iyer. Efficient Inter-
action between OS and Architecture in Heterogeneous Plat-
forms. In ACM SIGOPS Operating Systems Review, Vol 45,
Issue 1, Jan. 2011.

J. A. Winter, D. H. Albonesi, and C. A. Shoemaker. Scalable
thread scheduling and global power management for hetero-
geneous many-core architectures. In Proceedings of PACT,
pages 29—-40, Nov. 2010.



