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Abstract—Parallel programming has been widely used in
many scientific and technical areas to solve large problems.
While general-purpose processors have rich infrastructure to
support parallel programming on shared memory, such as coher-
ent caches and synchronization libraries, parallel programming
infrastructure for FPGAs is limited. Thus, development of FPGA-
based parallel algorithms remains difficult. In this work, we
seek to simplify parallel programming on FPGAs. We provide
a set of easy-to-use declarative primitives to maintain coherency
and consistency of accesses to shared memory resources. We
propose a shared-memory service that automatically manages
coherent caches on multiple FPGAs. Experimental results of
a 2-dimensional heat transfer equation show that the shared
memory service with our distributed coherent caches outperforms
a centralized cache by 2.6x. To handle synchronization, we
provide new lock and barrier primitives that leverage native
FPGA communication capabilities and outperform traditional
through-memory primitives by 1.8x.
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I. INTRODUCTION

Parallel programming is enormously popular in many fields
of science and engineering, including fluid dynamics, geometric
modeling, and image processing. This popularity is due, in part,
to the strong system-level support and powerful abstractions
for parallel programming provided by general-purpose architec-
tures. Threading libraries enable the light-weight partitioning
of programs, and the shared-memory programming model
provides these threads a single view of memory. In addition,
synchronization libraries help software programmers coordinate
computation among the threads.

Abundant parallelism and fast communication make FPGAs
attractive for accelerating algorithms that traditionally run on
general-purpose hardware, including parallel programs. Al-
though FPGAs have great potential, they have traditionally been
viewed as difficult to program. Recently, researchers have been
working on providing new programming primitives, such as
communication [1] [2] and memory abstractions [3], to shorten
the development time of FPGA programs and make FPGAs
easier to use. Recent advances in FPGA compilation techniques
allow FPGA programmers to easily partition designs across
multiple FPGAs [2]. Together these advances have enabled the
construction of large systems of FPGAs. Such systems have
traditionally been ideal targets for parallel programming.

Despite the potential of FPGAs, mapping parallel algorithms
to FPGAs remains difficult. Although FPGAs intrinsically
support parallel program descriptions, good libraries for shared
memory and synchronization are not available, especially
in the context of logic programming. As a result, FPGA

programmers usually adopt a distributed (non-shared) memory
model and explicitly handle all data sharing between processing
engines [4] [5]. This approach prolongs development time
because programmers are fully exposed to the complexity of
distributed coordination.

In this work, we seek to simplify FPGA-based parallel
programming by providing a set of easy-to-use declarative
primitives to maintain coherency and consistency of accesses to
shared memory resources. We propose the coherent scratchpad,
which manages memory coherency while presenting users with
a simple interface similar to FPGA on-die SRAM blocks.
Coherent scratchpads provide the illusion of unlimited virtual
storage, while automatically managing multiple coherent caches
and multiple coherence domains across multiple FPGAs. Since
coherency comes with a need for consistency, the coherent
scratchpad interface also provides non-blocking memory fences
that enable the support of various consistency models in the
FPGA. Our coherence scheme automatically scales across
FPGAs because it makes use of high-level communications
primitives for which sophisticated compilers are available.

Distributed coordination is fundamental in shared-memory
programs. In general-purpose processors, locks and barriers
are often handled through memory, since memory is usually
the only mechanism available for communication. In FPGAs,
other direct communication mechanisms are available. Thus,
it is more efficient on FPGAs to provide our lock and barrier
services outside of shared memory.

We evaluate the performance of our coherency and synchro-
nization primitives using multiple benchmarks which we map
to both single and multiple FPGAs. Our proposed primitives
enable the concise description of parallel algorithms: these
benchmarks require around 350 lines of codes and were
written in only a few hours, which we argue is a substantial
reduction in code complexity and development time. For our
2-dimensional heat transfer benchmark, coherent scratchpads
with coherent caches provide up to 3.8x speed-up over the
single-engine baseline and run 2.6x faster than a centralized-
cache implementation. The proposed synchronization service
outperforms the traditional through-memory primitives by 1.8x
in the shared-queue benchmark, and our barrier primitive also
achieves 340x higher throughput than that of an existing FPGA
barrier primitive.

II. BACKGROUND

Our shared-memory programming primitives build upon
two prior declarative primitives for memory and communica-
tion within the FPGA: LEAP Scratchpads [3] and latency-
insensitive channels [2]. We leverage the primitives and



interface MEM_IFC#(type t_ADDR, type t_DATA);
method void readRequest(t_ADDR addr);
method t_DATA readResponse();
method void write(t_ADDR addr, t_DATA data);
// t_REQ r := {READ, WRITE, FULL}
method void fence(t_REQ r);
method Bool requestPending(t_REQ r);

endinterface

Fig. 1: A general memory interface for hardware designs. Our
extensions to this interface are highlighted.

compilation support provided in these works to simplify the
design of our new primitives.

LEAP Scratchpads provide a general, in-fabric memory
abstraction for FPGA programs. Programmers instantiate memo-
ries with the simple read-request, read-response, write interface,
shown in Figure 1. Each instantiated memory represents a
logically private address space, and a program may instantiate
as many memories as needed. Memories may have arbitrary
size, even if the target FPGA does not have sufficient physical
memory to cover the entire requested memory space.

At compile time, the compiler gathers the scratchpads in
the user program and instantiates a complex memory hierarchy
[3] with multiple levels of cache, as in Figure 2. Scratchpad
memories instantiated in the user program optionally receive a
local L1 cache. The board-level memory, typically an off-chip
SRAM or DRAM, is used as a shared L2 cache. The L1 caches
are connected to the L2 by way of a compiler-synthesized
interconnect network. The main memory of an attached host
processor backs the synthesized cache hierarchy. Like memory
hierarchies in general-purpose computers, scratchpads provide
the appearance of fast memory to programs with good locality,
while maintaining the abstraction of a large address space
through the virtual memory mechanisms of the host.

Our coherent distributed memory primitives export the same
memory network interface as the original scratchpads. Thus,
we can integrate our new coherent caches directly into the
scratchpad memory hierarchy.

Latency-insensitive channels are a recently proposed com-
munications primitive for RTLs [2]. Latency-insensitive chan-
nels have operational behavior similar to FIFOs, but may
have dynamically variable latency and buffering, allowing the
programmer to directly describe points in a program where
the compiler may choose to alter the timing behavior of the
system. For example, a compiler may automatically instantiate
a complex inter-chip network if the endpoints of a latency-
insensitive channel are on two different FPGA chips. Programs
framed in terms of latency-insensitive channels may be targeted
to any configuration of FPGAs, including a single FPGA,
without modifying the user source code.

In this work, we describe the implementation of all of
our shared memory primitives in terms of latency-insensitive
channels. We then leverage the compiler described in [2]
to partition designs using our primitives across different
configurations of FPGAs.

III. MEMORY COHERENCY AND CONSISTENCY

LEAP Scratchpads are a powerful abstraction for describing
private, independent memory spaces. However, scratchpads
are insufficient as a shared memory programming substrate
because programmers are responsible for managing all sharing.

For example, a user may instantiate a single large programmer-
multiplexed scratchpad that connects to multiple processing
engines. This kind of implementation is undesirable because
it scales poorly: a single memory forces the serialization of
requests. Moreover, if a processing engine is on a remote FPGA,
the inter-FPGA latency, which is at least an order of magnitude
longer than the intra-FPGA latency, increases the memory
access latency and may have great impact on performance.
In this work, we solve these performance issues by introducing
a distributed, coherent cache local to each accessor. We extend
the baseline scratchpad to manage a coherent cache and refer
it as a coherent scratchpad (CS). Henceforth, we refer to the
scratchpad design that provides only private memory as a private
scratchpad (PS).

Coherent scratchpads retain all the properties of private
scratchpads: arbitrary data size, virtualization, and a simple
user interface. Like the shared-memory abstraction in general-
purpose machines, the coherent scratchpads are largely trans-
parent to programmers, enabling programmers to focus on
designing parallel algorithms.

A. Coherent Scratchpad Interface

Our coherent scratchpads support the private scratchpad
interface: readRequest, readResponse, and write. In
addition, we provide a new consistency interface. As in
processor shared memory, fences are necessary because the
coherent scratchpad implementation serves memory requests
out-of-order to improve performance. We provide three kinds of
fences: write, read, and full fences to support various consistency
models, allowing programmers to manage program ordering.
A full fence ensures that all read and write requests prior to
the fence will be processed before any request that comes
after the fence is processed. Similarly, a write fence enforces
the ordering of write requests issued before and after the
fence request, and a read fence enforces the ordering of read
requests. All memory requests, including reads, writes, and
fences, are pipelined, and users are allowed to issue read
or write requests after fence requests to maintain pipeline
parallelism. Since supporting fences adds additional logic and
latency to the scratchpad pipeline, we also provide a second,
coarser consistency mechanism: a requestPending signal
indicating whether there is an incomplete request.

While general-purpose processors usually assume a single
coherence domain in which all threads share a single global
memory, we take advantage of FPGA flexibility and allow FPGA
users to specify multiple coherence domains with independent
memory address spaces. Disjoint coherence domains do not
interact. The following example shows how to specify a coher-
ence domain and instantiate associated coherent scratchpads:

// Instantiate a coherent scratchpad controller
mkCohScratchController(domainID, addrSize, dataSize);
// Instantiate coherent scratchpad clients
let client1 <- mkCohScratchClient(domainID);
let client2 <- mkCohScratchClient(domainID);
let client3 <- mkCohScratchClient(domainID);

B. Coherence Protocol

LEAP Coherent Scratchpads specify an abstract shared
memory interface which can be backed by any coherence
protocol. Coherent scratchpads currently implement a snoopy
protocol. Unlike general-purpose processors that typically



support only one coherence domain across all cores, coherent
scratchpads support multiple coherence domains, separating
FPGA programs that touch different address spaces. In addition,
programs that do not require coherence can simply use private
scratchpads. This limits the number of clients of a memory
resource to the exact number of those who actually need to
share data and consequently limits the performance impact of
the snoopy protocol.

Coherent scratchpads in the same coherence domain are
connected via ring networks and use a global ordering point to
ensure that all coherent scratchpads see the coherence requests
in the same order [6]–[8]. Coherence requests are sent to the
global ordering point where they are activated. The ordering
point then broadcasts these activated requests on the ring. Each
coherent scratchpad and the backing, next-level memory snoop
the activated requests, taking actions depending on the local
coherence state of the target address.

We implement a MOSI protocol which is based on the
protocol specified in gem5 [9]. A cache line is in the M
(modified) state if the cache block is dirty and no other caches
have a valid data copy. A cache line is in the O (owned) state
if the cache is one of the several with a valid dirty copy of
the data block and it is the only one that owns the data. If the
cache line is in the M or O state, then it is the owner of the data
block and is responsible for writing back dirty data to memory
if the line gets evicted. In addition, the protocol supports data
forwarding, which means the block owner is responsible for
responding to other caches’ snoop requests. A cache line is in
the S (shared) state if it is one of the several containing a valid
copy of the data block, which may be either dirty or clean. A
cache line is in the I (invalid) state if the cache does not have a
valid copy of the line. To perform a write operation, the cache
line must be in the M state, while read can be performed if the
cache line is in the M, O, or S state. The next-level memory
keeps a directory that stores an owner-bit for each memory
address, indicating whether the data is owned by one of the
coherent caches or not. The directory, combined with the cache
ownership information, ensures that only the actual owner of the
data responds to a snoop request, without requiring fine-grained
coordination among the controller and caches.

To optimize read-modify-write and to simplify the controller,
I state is automatically upgraded to M state on a first read to
the next-level memory. In this way, the subsequent write can be
performed directly without notifying other caches. However, this
means the new M state (and the O state that is transited from the
new M state) may contain clean data. To eliminate unnecessary
data write-backs, each cache line has an additional dirty bit
to support clean write-back, in which only the ownership
information is written back to the controller. Our M state can
be seen as a combination of the M state and the E (exclusive)
state in the standard MOESI protocol.

C. Coherent Scratchpad Architecture

Figure 2 shows the coherent scratchpad architecture, which
is integrated into the existing private scratchpad memory
hierarchy. In this example, there is one coherence domain
that contains three coherent scratchpad clients and one coherent
scratchpad controller. A private scratchpad client is also
included in the figure for comparison. The coherent scratchpad
controller serves as a global ordering point as well as the
interface to the next-level memory. To prevent deadlocks,
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Fig. 2: Coherent scratchpad architecture

coherent scratchpad clients and the controller within the same
coherence domain are connected via three rings: the unactivated
request ring, the activated request ring, and the response ring.
As mentioned in Section III-B, the next-level memory must
store both data and the owner-bit for each memory address. To
simplify the design, these stores are themselves implemented
as private scratchpads. This gives coherent scratchpads high
scalability in terms of address space size, since we can leverage
the existing memory hierarchy and its virtual memory support
to store coherence ownership. Since owner-bit access usually
has high temporal locality, utilizing the private scratchpad cache
hierarchy makes the coherent memory system more efficient.

D. Client Microarchitecture

As shown in Figure 2, a coherent scratchpad client contains
a marshaller, a coherent cache, and a router. The line size of the
coherent cache is parameterized, and the client request size is
constrained to be smaller than that of a cache line. If the request
size is smaller than the line size, a marshaller is instantiated to
handle partial reads and writes using masks.

Figure 3 shows the microarchitecture of the direct-mapped
coherent cache and router. The cache is designed to serve
multiple local requests from the client and network requests
from remote caches. A completion table is added in the router to
store the metadata of network requests that need to be snooped.
The size of the completion table controls the number of snoop
requests allowed to enter the cache pipeline. Each component
in the cache is pipelined to achieve high throughput, and we
allow requests to different memory addresses to be served
out-of-order.

To improve throughput, coherence network transactions
are split-phase. Decoupling requests and responses increases
the complexity of handling cache misses, since there might
be multiple outstanding requests targeting the same address.
Transient states must be handled during the transition from one
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steady state to another. We let the cache store the coherence
steady states and allocate a 32-entry 2-way miss status handling
register (MSHR) table to handle the transient states for cache
misses and write-backs. The MSHR maintains a forwarding
list to optimize the case where the cache receives a snoop
request with the same address as a pending local write request
that is still waiting for the data response. The MSHR records
the snoop request in the forwarding list, allowing subsequent
requests to be served. The recorded requests can be served as
soon as the local write is completed.

E. Controller Microarchitecture

The coherence controller shown in Figure 4 serves as the
ordering point and the interface to the next-level memory.
The controller snoops every coherent request and responds
to the request if the line is not owned by one of the cache
clients. The controller uses two private scratchpads: one is the
data scratchpad, which serves as the interface to the next-level
memory hierarchy; the other is the owner-bit scratchpad, which
stores the ownership information per memory address.

To reduce the bit-width of the request channel, we separate
data and ownership messages for write-backs. The controller
contains a write-back status handling register (WSHR) table to
track incomplete dirty write-back requests, allowing non-atomic
dirty write-backs. As with the MSHRs at the client, the WSHR
maintains forwarding lists. If there is a read miss request from
one of the caches requesting the same address as an incomplete
write-back, the WSHR records the read request and responds
to the requester after the write-back data arrives.

F. Deadlock Freedom

Deadlocks are a classic problem of coherence protocols.
We assume that gem5’s MOSI protocol is deadlock free. To
ensure deadlock-freedom in our implementation, we need to first

guarantee that coherent caches do not stall due to insufficient
buffer space in the network. To achieve this, our implementation
requires that the cache reserve request buffer slots inside
its local router before it begins processing a local request.
Similarly, an entry is reserved in the router’s completion table
for each activated request from the network before the request
is processed. These reservation mechanisms guarantee that
coherent caches can always consume incoming packets from
the network. Since the coherent cache is never stalled, a response
received from the network can always be consumed and hence
does not block the messages from the response channel. At
the network level, each message class is transmitted on an
independent ring. No messages traverse the same channel twice,
avoiding deadlocks in the logical network.

Coherent scratchpads’ logical network is implemented
with latency-insensitive channels. We rely on a compiler to
implement a physical network for these channels, especially for
the channels that cross FPGA boundaries [2]. The network
implementation produced by the compiler allocates virtual
channels in a manner that gurantees deadlock freedom.

IV. SYNCHRONIZATION

In addition to memory coherency and consistency manage-
ment, parallel programming in shared memory systems also
requires synchronization. Locks and barriers are common syn-
chronization primitives. Locks limit access to shared resources,
ensuring that no two accessors can enter a critical section at the
same time. Only the accessor that obtains a lock has access to
the associated shared resource. Barriers pause accessors until
all accessors arrive at the barrier.

In general-purpose processors, inter-processor communica-
tion typically occurs through memory, and synchronization prim-
itives are usually implemented using atomic memory operations.
However, handling synchronization primitives through shared
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memory introduces coherence traffic, which is inherently expen-
sive. Since FPGAs offer many communication mechanisms, we
have more choices for the implementation of synchronization
primitives. LEAP implements lock and barrier services outside
of the coherent scratchpad framework. For hardware-based
applications, having separated lock and barrier services reduces
design area and improves performance.

A. Lock Service

Our lock service supports multiple lock groups that are
instantiated using namespaces, similar to the definition of
coherence domains. Locks may be shared among any number
of clients and multiple locks may be defined within a lock
group. Although lock nodes have equal priority, we opt for a
master-slave architecture to simplify the initialization of lock
state at reset. Each lock group requires a master node. In the
following example, four lock nodes that share a single lock are
instantiated:

// Instantiate four lock nodes (LOCK_NUM == 1)
LOCK_IFC#(LOCK_NUM) n0 <- mkLockNode(groupID, MASTER);
LOCK_IFC#(LOCK_NUM) n1 <- mkLockNode(groupID, SLAVE);
LOCK_IFC#(LOCK_NUM) n2 <- mkLockNode(groupID, SLAVE);
LOCK_IFC#(LOCK_NUM) n3 <- mkLockNode(groupID, SLAVE);

The lock service provides an interface as follows:

interface LOCK_IFC#(type t_LOCK_ID);
method void acquireLockReq(t_LOCK_ID id);
method t_LOCK_ID lockResp();
method void releaseLock(t_LOCK_ID id);

endinterface

A client calls acquireLockReq to attempt acquiring a
lock. lockResp grants the client control of the lock. The
client calls releaseLock when finishing the access.

Inside each lock group, lock nodes are connected via rings,
and the master node of the group initially owns all the locks.
Each lock node has a lock table that records a 2-bit lock state
per lock. To improve performance, lock nodes also record lock
forwarding information. Figure 5 walks through an example to
demonstrate how the distributed lock service works.

B. Barrier Service

Programmers use barriers to synchronize multiple concur-
rent tasks. Similar to lock groups, multiple barrier groups can be
instantiated using namespaces. Our barrier service is centralized:
each group of barrier nodes requires a master node. The master
node is responsible for collecting barrier status from the slave

nodes and broadcasting a completion signal. The following
example shows how to instantiate two barrier nodes sharing
one barrier:

// Instantiate two barrier nodes
BARRIER_IFC n0 <- mkBarrierNode(groupID, MASTER);
BARRIER_IFC n1 <- mkBarrierNode(groupID, SLAVE);

The barrier service provides the following interface:

interface BARRIER_IFC;
method Bool initialized();
method void setBarrier(t_BARRIER barrier);
method void barrierReached();
method void waitForSync();

endinterface

During initialization, the master node sets the synchroniza-
tion condition (setBarrier), specifying which nodes must
reach the barrier point before the barrier is completed. Then,
the master broadcasts an initialization signal to inform all
slave nodes that they can start performing their tasks. When a
slave node finishes (barrierReached), it sends a message
to the master and waits for the barrier completion signal
(waitForSync). The master node updates its barrier state
upon receiving messages from slave nodes. When the barrier
is completed, the master node broadcasts a completion signal,
notifying the slave nodes that they can start their next step.

Our barrier implementation resembles the lock service
implementation. The nodes that need to be synchronized are
connected via rings to form a barrier group. The master node
maintains a table tracking barrier states.

V. EVALUATION

To evaluate the performance of our coherent scratchpads
and synchronization primitives, we target a set of benchmarks
to both single and dual FPGA configurations. We use Xilinx
VC707 FPGA boards as our evaluation platform. For dual FPGA
configurations, we network the two boards using the high-speed
SERDES provided by the FPGA fabric. If not specified, we use
the following configuration to run the experiments: (1) each
private scratchpad (PS) has a 1024-entry 64-bit direct-mapped
cache; (2) each coherent scratchpad (CS) has a 1024-entry
64-bit direct-mapped cache and a 32-entry 2-way MSHR; (3)
only one next-level cache is used in the dual FPGA tests.

A. Coherent Memory Service

1) Synthetic Benchmarks: To understand the overhead intro-
duced by coherency management, we first measure the latency
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(Figure 6) and throughput (Figure 7) of systems with various
number of coherent scratchpads using synthetic benchmarks.
Coherent scratchpads have the same local cache hit latency as
private scratchpads, but their hit latency to the next-level cache
is longer. This overhead results from the controller checking
the ownership information of the requested data block and
then forwarding the request to the private scratchpad ring (see
Figure 2). In the dual FPGA configuration (Figure 6b), the
measured remote cache latency is higher than the next-level
cache latency, because in this case the coherence protocol
requires more traversals of the slow inter-FPGA link when data
is cached remotely.

Figure 7 shows the throughput of various configurations of
coherent caches. In the throughput tests, coherent scratchpads
access different regions in the shared address space, eliminating
coherency traffic. The coherent scratchpad’s write throughput
is much lower than the private scratchpad’s write throughput
because coherent caches must first obtain data ownership before
writes can be processed, which requires an extra transaction.
The read throughput is similar to that of private scratchpads,
because the overhead of snooping is small.

2) Heat Transfer Equation: We evaluate the performance
of coherent scratchpads using a 2-dimensional heat transfer
equation, which is a simple example of stencil computation. In
stencil computations, each grid point is repeatedly updated with
a function of its neighboring points in both time and space.
Stencil programs have regular spatial locality and abundant
parallelism; therefore, they are often used as benchmarks to
evaluate on-chip parallelism and the performance of memory
subsystems. Furthermore, stencil applications are trivial to
parallelize if shared memory abstractions are available.

Figure 8 shows how the single-engine baseline performs
the serialized 2-dimensional heat transfer computation. Since
the pixel values at time t only depend on the values at time
t-1, we allocate two frame buffers in memory: one to hold
the current timestep and another to hold the previous timestep.
To take advantage of locality and make the program cache-
efficient, we interleave the two frame buffers and store them in
row-major order. In addition, we decouple memory reads from
pixel computation and memory updates, exploiting pipeline
parallelism to overlap the memory access latency.

To parallelize the heat transfer computation, the frame is
divided into blocks. Each block is assigned to a processing
engine, and the grid points at the borders of blocks are shared

for t = 0 to T-1
for y = 1 to N
for x = 1 to M
U[t+1,x,y] = C0·U[t,x,y]+Cx·(U[t,x-1,y]+U[t,

x+1,y])+Cy·(U[t,x,y-1]+U[t,x,y+1])
end

end
end

Fig. 8: A simple nested loop that performs the 2-dimensional heat
transfer from time 0 to time T on the MxN grid. C0, Cx, Cy are
constants related to thermal diffusivity.
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Fig. 9: Heat transfer results. The execution time is normalized to the
single-engine implementation using a private scratchpad.

between engines. Each engine includes a coherent scratchpad
memory interface to the frame buffers. During an iteration,
each engine sweeps through the assigned block, computes, and
updates new values until it reaches the barrier point. Then it
waits for the barrier signal, which indicates that all engines have
completed the current time step, before it starts the iteration of
the next time step.

To illustrate the value of coherent caching, we implement a
second, uncached configuration where the coherent caches are
replaced with an implementation that forwards clients’ requests
to a centralized, shared scratchpad. We measure the execution
time of running the heat transfer equation on a 512-by-512 grid
of points for 128 time steps using coherent scratchpads and the
shared scratchpad on both single and dual Xilinx VC707 boards.
In these experiments, each cache line can fit up to 8 grid points.



TABLE I: SHARED QUEUE TEST RUNTIME RESULT

Primitive Runtime (Cycles)
Global Arbiter 62043
Hardware Lock 74719

Through-Memory Software Lock 135867

To make a fair comparison, we scale the cache size of the shared
scratchpad as the number of engines increases. In this way,
the total cache size of the coherent scratchpad configuration
is the same as the shared scratchpad’s cache size. Figure 9
shows the runtime comparison. The execution time of each
test is normalized to the execution time of the single-engine
baseline implemented with a single private scratchpad. Coherent
caches are successful in exploiting temporal and spatial locality,
providing up to 3.8x speed-up when there are more processing
engines, while the shared scratchpad configuration only gives a
1.4x speed-up. The execution time of coherent scratchpads on
dual FPGAs is slower than coherent scratchpads on a single
FPGA, because inter-FPGA latency causes a higher miss penalty.
In particular, the dual FPGA configuration is much slower when
there are only two processing engines, because two engines do
not generate enough pipelined traffic to cover the inter-FPGA
latency.

B. Synchronization Service

To evaluate the efficiency of our synchronization services,
we compare the performance of a shared queue test that uses our
lock and barrier primitives with two alternate implementations.
One configuration implements locks and barriers using accesses
to a set of coherent scratchpads. To support through-memory
software locks and barriers we extend the interface in Figure 1
to include an atomic testAndSet operation. The other config-
uration uses a wire-based global arbiter to coordinate exclusive
accesses and synchronization. Because this implementation
does not communicate through latency-insensitive channels, it
is limited to a single FPGA.

We test our three implementations using a simple shared
queue benchmark. In this test, a single queue is shared
among several producers and consumers, which contend for the
ownership of the tail and head of the queue. Upon obtaining the
producer/consumer lock, the producer/consumer performs one
operation and releases the lock. Table I shows the runtime of a
64-entry shared queue with two producers and two consumers.
Each producer has 1024 items to insert. Compared to the wire-
based implementation, our lock and barrier services introduce
20% overhead, while the implementation with through-memory
software locks and barriers is much slower due to extra
coherency transactions.

In addition to the shared queue test benchmark, we also
compare the throughput of our barrier service with a through-
memory barrier implementation and an existing FPGA-based
barrier system, which is implemented using mutexes in coherent
soft processors [10]. The three barrier systems are evaluated
with 1000 iterations on 8 threads. The through-memory barrier
implementation runs at 110 MHz clock frequency, and the other
two run at 125 MHz. Table II shows the barrier throughput
comparison. The throughput of our hardware barrier primitive is
86x higher than that of the through-memory software barrier and
340x higher than that of the existing work. This demonstrates
that it is much more efficient to build barriers outside of shared

TABLE II: THROUGHPUT COMPARISON OF BARRIER SERVICES

System Barriers per Second
Our Barrier Service 7352076

Barrier via Coherent Scratchpad 85088
Spin-Lock Mutex-Enabled Cache [10] 21510

memory on FPGA. In addition, the through-memory barrier
system using coherent scratchpads achieves 4x throughput
advantage compared to the existing system. The throughput
difference may come from the overhead of running instructions
on soft processors and the performance differences between
the two coherent cache systems.

C. Implementation Area

Table IIIa lists the maximum place-and-route frequencies
and implementation areas of our shared-memory primitives. The
synchronization primitives require minimal area to implement.
The coherent scratchpad client uses approximately three times
the slice LUTs of the baseline private scratchpad. This size
increase is not a surprise: coherence protocols are complicated.
In addition to the extra slice resources, the coherent scratchpad
client uses more BRAMs as compared to the baseline client.
The extra BRAM usage comes from the need to store coherence
status bits in addition to the baseline cache metadata.

Our coherent scratchpad clients as well as controllers are
highly parametric. Table IIIb explores the effect of cache
parameters on physical implementation. Since most of the miss
handling logic is constant regardless of cache size, increasing
the cache size has very little impact on the area usage of the
cache. Interestingly, BRAM usage does not scale linearly with
cache size. This is because increasing the cache size decreases
the cache metadata size such that entire cache lines can fit in
a single BRAM word.

VI. RELATED WORK

Distributed memory management and synchronization have
been examined in several previous researches. Unlike our work,
which is intended to support general FPGA programming, all
previous works of which we are aware target coherence and
synchronization among soft cores [11] [12] implemented on the
FPGA. Most implementations of coherent soft processors make
use of snoopy protocols, though a directory-based protocol has
been examined [13]. In contrast to our scalable, network-based
implementation, all of these implementations appear to rely on
crossbars to communicate between caches in relatively small,
single coherence domains. These structures are neither scalable
nor can they be easily partitioned among multiple FPGAs.
Moreover, since existing coherence work targets multi-core
processors, existing coherence implementations assume fixed
coherence domains among the processors, rather than granting
the programmer freedom to describe free-form coherence
domains. Although we have not yet attempted to use our work
in the context of soft processors, we believe that our cache
interface could be used to support a distributed soft multi-core
architecture using the testAndSet atomic operation.

Like coherence, most efforts at implementing synchro-
nization in FPGAs have occurred in the context of soft-
cores, either to provide synchronization mechanisms among
the cores [10] [14] or between the cores and hardware



TABLE III: FPGA RESOURCE UTILIZATION AND MAXIMUM FREQUENCY FOR OUR PRIMITIVES

(a) VARIOUS PRIMITIVES*

Primitive Slice
Registers

Slice
LUTS

18K-bit
BRAM

P&R fmax

(MHz)
Lock Master 122 202 0 255
Lock Slave 81 176 0 383

Barrier Master 122 185 0 333
Barrier Slave 77 129 0 491
CS Controller 3721 5252 9 112

CS Client 2985 5721 7 113
PS Client 1660 2010 4 162

* Memory primitives target 64-bit data words with a 14-bit word address
(an 8KB cache of a 128KB memory space). For comparison, the area of
a private LEAP Scratchpad addressing a similar region is also shown.

(b) VARIOUS CACHE PARAMETERS**

Parameter Slice
Registers

Slice
LUTS

18K-bit
BRAM

P&R
fmax

512-entry Cache 1.00 0.98 0.86 1.05
2048-entry Cache 1.00 1.11 1.57 1.11
4096-entry Cache 1.00 1.17 2.71 1.03
13-bit Addressing 1.00 0.99 1.00 1.19
15-bit Addressing 1.01 0.97 1.14 1.06

32-bit Data 1.00 1.00 1.00 1.00
128-bit Data*** 1.41 1.55 1.71 1.11

** Results are normalized to the CS client baseline in Table IIIa.
*** The CS client’s cache line size is changed to 128-bit.

accelerators [15]. Some of these implementations are bus-
based [16] [17] [15], limiting scalability within an FPGA and
preventing expansion to multiple FPGAs. Since the existing
implementations are processor-specialized, their interfaces typ-
ically involve memory addresses which are used to denote
mutexes. As a result, these implementations may require more
area to implement than our logic-integrated locks (as much
as 3x in the case of [10].) Existing implementations provide
only lock/mutex management, mostly for the implementation of
soft-processor atomic operations. Barriers must be implemented
in software on top of mutexes, which may limit performance.

A second set of work focuses on building a cache coherent
interface between an accelerator FPGA and host processors.
The most recent of these works is a product from Intel,
the QPI-based QuickAssist interface [18] [19]. QuickAssist
manages both a coherence interface to an attached processor
and the FPGA-local DRAM in-fabric, presenting a single
processor-coherent memory interface to the FPGA. Unlike
our memory interface, which is designed to allow multiple
distributed memory interfaces, QuickAssist supports only a
single coherence interface and does not admit of further scaling,
due to the difficulty of meeting coherence-protocol-level timing
in the FPGA. If these timing issues could be resolved, our
coherence interface could be used to bridge the QuickAssist
infrastructure and multiple FPGAs, providing processor-FPGA
coherence across a network of FPGAs.

VII. CONCLUSION

FPGAs have become interesting computational platforms.
However, the infrastructure for programming FPGAs is still
lacking, especially in the realm of shared memory parallel
programing. In this paper, we provide memory coherency
and synchronization primitives to support designing parallel
algorithms on FPGAs. We propose the coherent scratchpad,
which provides a simple SRAM-like interface and automatically
manages coherent caches. We also provide lock and barrier
primitives, which leverage the native communications primitives
of the FPGA rather than relying on shared memory. Because our
primitives are framed in terms of high-level latency-insensitive
channels, they may be automatically partitioned across any
configuration of FPGAs that the programmer requires.

This paper describes our coherent memory interface and the
first implementation of coherent scratchpads. Because of this
abstraction, other coherence protocols and further performance
optimizations can be applied in the future and will be transparent
to the programs using coherent scratchpads.
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