
...

EFFICIENT SPATIAL PROCESSING
ELEMENT CONTROL VIA TRIGGERED

INSTRUCTIONS
...

THE AUTHORS PRESENT TRIGGERED INSTRUCTIONS, A NOVEL CONTROL PARADIGM

FOR ARRAYS OF PROCESSING ELEMENTS (PES) AIMED AT EXPLOITING SPATIAL

PARALLELISM. TRIGGERED INSTRUCTIONS ELIMINATE THE PROGRAM COUNTER AND

ALLOW PROGRAMS TO TRANSITION CONCISELY BETWEEN STATES WITHOUT EXPLICIT

BRANCH INSTRUCTIONS. THE APPROACH ALSO ALLOWS EFFICIENT REACTIVITY TO

INTER-PE COMMUNICATION TRAFFIC AND PROVIDES A UNIFIED MECHANISM TO AVOID

OVERSERIALIZED EXECUTION.

......Recently, single-instruction, mul-
tiple-data (SIMD) and single-instruction,
multiple-thread (SIMT) accelerators such as
GPGPUs have been shown to be effective as
offload engines when paired with general-
purpose CPUs. This results in a complemen-
tary approach where the CPU is responsible
for running the operating system and irregu-
lar programs, and the accelerator executes
inner loops of uniform data-parallel code.
Unfortunately, not every workload exhibits
sufficiently uniform data parallelism to
exploit the efficiencies of this pairing. There
remain many important workloads whose
best-known implementation involves asyn-
chronous actors performing different tasks,
while frequently communicating with neigh-
boring actors. The computation and com-
munication characteristics of these workloads

cause them to map efficiently onto spatially
programmed architectures such as field-
programmable gate arrays (FPGAs). Further-
more, many important workload domains
exhibit such kernels, including signal process-
ing, media codecs, cryptography, compres-
sion, pattern matching, and sorting.

As such, one way to boost these workloads’
performance efficiency is to add a new spa-
tially programmed accelerator to the system,
complementing the existing SIMD/SIMT
accelerators. Although FPGAs are very general
in their ability to map a workload’s computa-
tion, control, and communication structure,
their datapaths based on lookup tables (LUTs)
are deficient in computational density com-
pared to a traditional microprocessor—much
less a SIMD engine. Furthermore, FPGAs suf-
fer from a low-level programming model

Angshuman Parashar

Michael Pellauer

Michael Adler

Bushra Ahsan

Neal Crago

Intel

Daniel Lustig

Princeton University

Vladimir Pavlov

Intel

Antonia Zhai

University of Minnesota

Mohit Gambhir

Aamer Jaleel

Randy Allmon

Rachid Rayess

Stephen Maresh

Joel Emer

Intel
...

120 Published by the IEEE Computer Society 0272-1732/14/$31.00�c 2014 IEEE

inherited from logic prototyping that includes
unacceptably long compilation times, no sup-
port for dynamic context switching, and often
inscrutable debugging features.

Tiled arrays of coarse-grained arithmetic
logic unit- (ALU)-style datapaths can achieve
higher computational density than FPGAs.1-3

Several prior works have proposed spatial
architectures with a network of ALU-based
processing elements (PEs) onto which opera-
tions are scheduled in systolic or dataflow
order, with limited or no autonomous control
at the PE level.4-6 Other approaches incorpo-
rate autonomous control at each PE using a
program counter (PC).7-9 Unfortunately, as
we will show, PC sequencing of ALU opera-
tions introduces several inefficiencies when
attempting to capture intra- and inter-ALU
control patterns of a frequently communicat-
ing spatially programmed fabric. (For more
information, see the “Related Work in
Instruction-Grained Spatial Architectures”
sidebar.)

In this article, we present triggered instruc-
tions, a novel control paradigm for ALU-style
datapaths for use in arrays of PEs aimed at
exploiting spatial parallelism. Triggered
instructions remove the program counter
completely, letting the PE transition between
states of one or more finite-state machines
(FSMs) without executing instructions in the
datapath to determine the next state. This
also lets the PE react quickly to incoming
messages on communication channels. In
addition, triggered instructions provide a
unified mechanism to avoid overserialized
execution, essentially achieving the effect of
techniques such as dynamic instruction reor-
dering and multithreading, which require
distinct hardware mechanisms in a traditional
sequential architecture.

We evaluate the triggered-instruction
approach by simulating a spatially pro-
grammed accelerator on several workloads
spanning a range of algorithm classes not
known to exhibit extensive uniform data
parallelism. Our analysis shows that such an
accelerator can achieve 8-times greater area-
normalized performance than a traditional
general-purpose processor on this set of
workloads. We provide further analysis of
the critical paths of workload programs
to illustrate how a triggered-instruction

architecture contributes to this performance
gain.

Background and motivation
To understand the benefits that triggered

instructions can provide to a spatially
programmed architecture, we must first
understand how spatially programmed archi-
tectures in general can play a role in the com-
putational landscape, and why traditional
program-counter-based approaches are lim-
ited in this context.

Spatial programming architectures
Spatial programming is a paradigm

whereby an algorithm’s dataflow graph is bro-
ken into regions connected by producer-
consumer relationships. Input data is then
streamed through this pipelined graph.
Ideally, the number of operations in each
stage is kept small, because performance is
usually determined by the rate-limiting step.

Just as vectorizable algorithms see large
efficiency boosts when run on a vector engine,
workloads that are naturally amenable to spa-
tial programming can see significant boosts
when run on an enabling architecture. A tra-
ditional processor would execute such pro-
grams serially over time, but this does not
result in any noticeable efficiency gain, and
could even be slower than other expressions
of the algorithm. A shared-memory multicore
can improve this by mapping different stages
onto different cores, but the small number of
cores available relative to the large number of
stages in the dataflow graph means that each
core must multiplex between several stages, so
the rate-limiting step generally remains large.

In contrast, a typical spatial-programming
architecture is a fabric of hundreds of small
PEs connected directly via an on-chip net-
work. Given enough PEs, an algorithm can
be taken to the extreme of mapping a single
operation in the kernel’s dataflow graph to
each PE, resulting in a very fine-grained pipe-
line. In practice, it is desirable to have a small
number of local operations in each PE, allow-
ing for a better balance between local control
decisions and pipeline parallelism.

To illustrate this, let’s explore how a well-
known workload can benefit from spatial
programming. Consider the simple spatially

...

MAY/JUNE 2014 121

..

Related Work in Instruction-Grained Spatial Architectures
We classify prior work on architectures for programmable acceler-

ators according to the taxonomy shown in Figure A (although some

have been proposed as stand-alone processors instead of accelerators

complementing a general-purpose CPU). Temporal architectures (class

0 in the taxonomy) are best suited for data-parallel workloads and are

outside of this article’s scope. Within the spatial domain (classes 1x),

the trade-offs between logic-grained architectures (class 10), such as

field-programmable gate arrays (FPGAs) and instruction-grained archi-

tectures (classes 11x), are well understood.1-3 In this sidebar, we

focus on prior work on instruction-grained spatial architectures with

centralized and distributed control paradigms.

Centralized processing element control schemes
In the centralized approach (class 110), a fabric of spatial process-

ing elements (PEs) is paired with a centralized control unit. This unit

maintains the overall program execution order, managing PE configu-

ration. The results of PE execution could influence the overall flow of

control, but in general, the PEs are not making autonomous decisions.

In the Transport-Triggered Architectures scheme, the system’s

functional units are exposed to the compiler, which then uses MOV

operations to explicitly route data through the transport network.4 A

global program counter maintains overall control flow. Operation exe-

cution is triggered by the arrival of data from the network, but no

other localized control exists.

Trips (Tera-op, Reliable, Intelligently adaptive Processing System)

is an explicit dataflow graph execution (EDGE) processor that uses

many small PEs to execute general-purpose applications.5 Trips

dynamically fetches and schedules very-large instruction word (VLIW)

blocks across the small PEs using centralized program-counter-based

control tiles. Although large reservation stations within each PE ena-

ble “when-ready” execution of instructions, only single-bit predication

is used within PEs to manage small amounts of control flow.

WaveScalar is a dataflow processor for general-purpose applica-

tions that doesn’t use a program counter.6 A PE consists of an arith-

metic logic unit (ALU), I/O network connections, and a small window

of eight instructions. Blocks of instructions called waves are mapped

onto the PEs, and additional WaveAdvance instructions are allocated

at the edges to help manage coarse-grained or loop-level control.

Conditionals are handled by converting control-flow instructions to

data flow, resulting in filtering instructions that conditionally pass val-

ues to the next part of the dataflow graph. In WaveScalar, there is no

local PE register state; when an instruction issues, the result must be

communicated to another PE across the network.

DySER (Dynamically Specialized Execution Resource) integrates a

circuit-switched network of ALUs inside the datapath of contemporary

processor pipeline.7 DySER maps a single instruction to each ALU and

doesn’t allow memory or complex control-flow operations within the

ALUs. TIA enables efficient control flow and spatial program mapping

across PEs, enabling high utilization of ALUs with PEs without the

need for an explicit control core. Other recent work such as Garp,2

Chimaera,8 and ADRES3 (Architecture for Dynamically Reconfigurable

Embedded System) similarly integrate lookup-table-based or coarse-

grained reconfigurable logic controlled by a host processor, either as

a coprocessor or within the processor’s datapath.

Matrix is an array of 8-bit function units with a configurable net-

work.1 With different configurations, Matrix can support VLIW, SIMD,

or Multiple-SIMD computations. The key feature of the Matrix archi-

tecture is its ability to deploy resources for control based on applica-

tion regularity, throughput requirements, and space available.

PipeRench is a coarse-grained reconfigurable logic system

designed for virtualization of hardware to support high-performance

custom computations through self-managed dynamic reconfiguration.9

It is constructed from 8-bit PEs. The functional unit in each PE contains

eight three-input lookup tables (LUTs) that are identically configured.

In the dataflow computing paradigm, instructions are dispatched

for execution when tokens associated with input sources are ready.

Each instruction’s execution results in the broadcast of new tokens to

dependent instructions. Classical dataflow architectures used this as

a centralized control mechanism for spatial fabrics.10,11 However,

other projects use token triggering to issue operations in the PEs,5,6

whereas the centralized control unit uses a more serialized approach.

In a dataflow-triggered PE, the microarchitecture manages the

token-ready bits associated with input sources. The triggered-instruction

approach, in contrast, replaces these bits with a vector of architecturally

visible predicate registers. By specifying triggers that span multiple pred-

icates, the programmer use these bits to indicate data readiness or for

other purposes, such as control flow decisions. In a classic dataflow

architecture, multiple pipeline stages are devoted to marshaling tokens,

Programmable accelerators

Spatially
programmed

Instruction grained

Temporally
programmed

Class 0: SIMT,
SIMD, MIMD

Logic grained

Class 10: FPGAs

Centralized control

Class 110: Dataflow,
WaveScalar, DySER

Distributed control

PC-controlled

Class 1110: RAW,
PicoChip, PC+RegQ

Non-PC-controlled

Class 1111: Triggered
instructions

Figure A. A taxonomy of programmable accelerators. Each

leaf node represents a distinguishable class of previously

proposed architectures.

..

TOP PICKS

..

122 IEEE MICRO

distributing tokens, and scoreboarding which instructions are ready. A

Wait-Match pipeline stage must dynamically pair incoming tokens of

dual-input instructions. In contrast, the set of predicates to be updated

by an instruction in the triggered-instruction approach is encoded in the

instruction itself. This reduces scheduler implementation cost and

removes the token-related pipeline stages.

Smith et al. extend the classic static dataflow model by allowing

each instruction to be gated on the arrival of a predicate of a desired

polarity.12 This approach adds some control-flow efficiency to the

dataflow model, providing for implicit disjunction of predicates by

allowing multiple predicate-generating instructions to target a single

destination instruction, and implicit conjunction by daisy-chaining

predicate operations. Although this makes conjunctions efficient, it

can lead to an overserialization of the possible execution orders inher-

ent in the original nonpredicated dataflow graph. In contrast, com-

pound conjunctions are explicitly supported in triggered instructions,

allowing for efficient mapping of state transitions that would require

multiple instructions in dataflow predication.

Distributed PE control schemes
In the distributed approach (classes 111x), a fabric of spatial PEs is

used without a central control unit. Instead, each PE makes localized

control decisions, and overall program-level coordination is estab-

lished using distributed software synchronization. Within this domain,

the PC-based control model (long established for controlling distrib-

uted temporal architectures—class 0) is a tempting choice, as demon-

strated by a rich body of prior work. By removing the program counter,

the triggered-instruction approach (class 1111) offers many opportuni-

ties to improve efficiency.

The Raw project is a coarse-grained computation fabric comprising

16 large cores with instruction and data caches that are directly con-

nected through a register-mapped and circuit-switched network.13

Although applications written for RAW are spatially mapped, program

counter management and serial execution of instructions reduces effi-

ciency and makes the cores on RAW sensitive to variable latencies,

which TIA overcomes using instruction triggers.

The Asynchronous Array of Simple Processors (AsAP) is a 36-PE

processor for DSP applications, with each PE executing independently

using instructions in a small instruction buffer and communicating

using register-mapped network ports.14 Although early research on

AsAP avoided the need to poll for ready data, later work extended the

original architecture to support 167 PEs and zero-overhead looping to

reduce control instructions.15 Triggered instructions not only reduce

the amount of control instructions but also enable data-driven instruc-

tion issue, overcoming the serialization of AsAP’s program-counter-

based PE.

Picochip is a commercially available 308-PE accelerator for DSP

applications.16 Each PE has a small instruction and data buffer, and

communication is performed with explicit put and get commands. One

strength of Picochip is its computational density, but the architecture

is limited to serial three-way LIW instruction issue using a program

counter. Triggered instructions enable control flow at low cost and

dynamic instruction issue that is dependent on data arrival, resulting

in less instruction overhead.

References
1. E. Mirsky and A. DeHon, “MATRIX: A Reconfigurable Com-

puting Architecture with Configurable Instruction Distribution

and Deployable Resources,” Proc. IEEE Symp. FPGAs for

Custom Computing Machines, 1996, pp. 157-166.

2. J. Hauser and J. Wawrzynek, “Garp: A MIPS Processor with

a Reconfigurable Coprocessor,” Proc. IEEE Symp. FPGAs for

Custom Computing Machines, 1997, pp. 12-21.

3. B. Mei et al., “ADRES: An Architecture with Tightly Coupled

VLIW Processor and Coarse-Grained Reconfigurable Matrix,”

Proc. 13th Int’l Conf. Field-Programmable Logic and Applica-

tions, 2003, pp. 61-70.

4. J. Hoogerbrugge and H. Corporaal, “Transport-Triggering vs.

Operation-Triggering,” Compiler Construction, LNCS 786,

Springer-Verlag, 1994, pp. 435-449.

5. D. Burger et al., “Scaling to the End of Silicon with EDGE

Architectures,” Computer, vol. 37, no. 7, 2004, pp. 44-55.

6. S. Swanson et al., “The WaveScalar Architecture,” ACM

Trans. Computer Systems, vol. 25, no. 2, 2007, pp. 4:1-4:54.

7. V. Govindaraju, C.-H. Ho, and K. Sankaralingam, “Dynamically

Specialized Datapaths for Energy Efficient Computing,” Proc.

17th Int’l Conf. High Performance Computer Architecture

(HPCA), 2011, pp. 503-514.

8. Z.-A. Ye et al., “CHIMAERA: A High-Performance Architec-

ture with a Tightly-Coupled Reconfigurable Functional

Unit,” Proc. 27th Int’l Symp. Computer Architecture, 2000,

pp. 225-235.

9. H. Schmit et al., “PipeRench: A Virtualized Programmable

Datapath in 0.18 Micron Technology,” Proc. IEEE Custom

Integrated Circuits Conf., 2002, pp. 63-66.

10. J.B. Dennis and D.P. Misunas, “A Preliminary Architecture

for a Basic Data-Flow Processor,” Proc. 2nd Ann. Symp.

Computer Architecture, 1975, pp. 126-132.

11. K. Arvind and R.S. Nikhil, “Executing a Program on the MIT

Tagged-Token Dataflow Architecture,” IEEE Trans. Com-

puters, vol. 39, no. 3, 1990, pp. 300-318.

12. A. Smith et al., “Dataflow Predication,” Proc. 39th Ann.

IEEE/ACM Int’l Symp. Microarchitecture, 2006, pp. 89-102.

13. M. Taylor et al., “The Raw Microprocessor: A Computational

Fabric for Software Circuits and General-Purpose Programs,”

IEEE Micro, vol. 22, no. 2, 2002, pp. 25-35.

14. Z. Yu et al., “An Asynchronous Array of Simple Processors

for DSP Applications,” Proc. Solid-State Circuits Conf., 2006,

pp. 1696-1705.

15. D. Truong et al., “A 167-Processor Computational Platform in

65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 4,

2009, pp. 1130-1144.

16. G. Panesar et al., “Deterministic Parallel Processing,” Int’l J.

Parallel Programming, vol. 34, no. 4, 2006, pp. 323-341.

...

MAY/JUNE 2014 123

mapped sorting program shown in Figure 1.
In this approach, the worker PEs communi-
cate in a straight pipeline. The unsorted array
is streamed in by the first PE. Each PE simply
compares the incoming element to the largest
element seen so far. The larger of the two val-
ues is kept, and the smaller is sent on. Thus,
after processing k elements, worker 0 will be
holding the largest element, and worker k � 1
the smallest. The sorted result can then be
streamed out to memory through the same
straightline communication network.

This example represents a limited toy
workload in many ways—it requires k PEs to
sort an array of size k, and worker 0 will do
k � 1 comparisons while worker k � 1 will

do only one (an insertion sort, with a total of
k2 comparisons). However, despite its naivet�e,
this workload demonstrates some remarkable
properties. First, the system’s peak utilization
is good—in the final step, all k datapaths can
simultaneously execute a comparison. Sec-
ond, the communication between PEs is local
and parallel—on a typical mesh fabric, it’s
easy to map this workload so that no network
contention will ever occur. Finally—and most
interestingly—this approach sorts an array of
size k with exactly k loads and k stores. The
loads and stores that a traditional CPU must
use to overcome its relatively small register file
are replaced by direct PE-to-PE communica-
tion. This reduction in memory operations is
critical in understanding the benefits of spatial
programming. We characterize the benefits as
follows:

� Direct communication uses roughly
20 times lower power than commu-
nication through a level-1 (L1) cache,
as the overheads of tag matching,
load-store queue search, and large
data array read are removed.

� Cache coherence overheads, includ-
ing network traffic and latency, are
likewise removed.

� Reduced memory traffic lowers cache
pressure, which in turn increases
effective memory bandwidth for the
remaining traffic.

Finally, it is straightforward to expand our
toy example into a realistic merge sort engine
that can sort a list of any size (see Figure 2).
First, we begin by programming a PE into a
small control FSM that handles breaking the
array into subarrays of size k and looping over
the subarrays. Second, we slightly change the
worker PEs’ programming so that they are
doing a merge of two distinct sorted sublists.
With these changes, our toy workload is
now a radix k merge sort capable of sorting
a list of size n in n� logk nð Þ loads. Because
k can be in the hundreds for a reconfigura-
ble fabric, the benefits can be quite large. In
our experiments, we observed 17 times
fewer memory operations compared to a
general-purpose CPU, and an area-normal-
ized performance improvement of 8.8
times, which is better than the current best-
known GPGPU performance.10

if (incoming > cur)
send(cur); cur := incoming;

else
send(incoming);

5 83 32

cur = 27

12 14

cur = 17 cur undef

PE PE PE

Figure 1. Example of a spatially programmed sort. Although a pedagogical

example, this workload demonstrates several interesting properties.

PE PE PE PE

for x = 1..NPASSES

if (listA > listB ||
(listA.finished && !listB.finished))
send (listB);

else if (!listA.finished)
send (listA);

for y = 1..k
// control loop

5 32 83 22

24 72
30

11

88
14

10

11
6

14

Figure 2. Expanding the example to a more realistic spatial merge sort

capable of sorting lists of any size. The large merge radix results in fewer

total loads and stores to sort the list, replacing them with more efficient

direct PE-to-PE communication.

..

TOP PICKS

..

124 IEEE MICRO

Limitations of PC-based control
The PC-based control model has histori-

cally been the best choice for stand-alone
CPUs that run arbitrary and irregular pro-
grams. Unfortunately, this model introduces
unacceptable inefficiencies in the context of
spatial programming. To understand these
inefficiencies, let us code the merge sort PE
shown in Figure 2. We must first address the
representation of the queues that pass the
sorted sublists between workers. In a multi-
core system, the typical approach is to use
shared memory for the queue buffering,
along with sophisticated polling mechanisms
such as memory monitors. In a spatially
programmed fabric, having hundreds of
PEs communicating using shared memory
would create unacceptable bandwidth bottle-
necks—in addition to increased overheads of
pointer chasing, address offset arithmetic,
and head and tail occupancy comparisons.
Thus, we don’t consider shared memory
communication queues in this article.

Instead, let us assume that the instruction-
set architecture (ISA) directly exposes data
registers and status bits corresponding to direct
communication channels between PEs. The
ISA must contain a mechanism to query if the
input channels are not empty and output
channels are not full, to read the first element,
and to enqueue and dequeue. Furthermore,
we add an architecturally visible tag to the
channel that merge sort uses to indicate that
the end of a sorted sublist has been reached
(EOL). Figure 3 shows an example of the
merge sort in this theoretical assembly lan-
guage. Several inefficiencies are immediately
noticeable. First, the worker uses active polling
to test the queue status—an obvious power
waste. Second, it falls victim to overserializa-
tion. For example, if new data on listA
arrives before that on listB, there is no
opportunity to begin processing the listA-
specific part of the code. Finally, the code is
branch heavy when compared to that typically
found on a traditional core, and some of these
branches are hard to predict.

To be fair to this PC-based ISA, we must
try to improve the architecture somehow.
Table 1 summarizes the techniques that we
explore.

One idea to improve queue accesses is to
allow destructive reads of input channels. In

such an ISA, the instruction’s source fields are
supplemented with a bit indicating whether a
dequeue is desired. This is an important
improvement because it reduces both static and
dynamic instruction count. Merge sort’s imple-
mentation on this architecture can remove
three instructions compared to Figure 3.

The next idea is to replace the active poll-
ing with a select—an indirect jump based on
queue status bits. This is a marginal improve-
ment in instruction count but does not help
power efficiency. A better idea is to add
implicit stalling to the ISA. In this case,
queue registers such as %in0 would be
treated specially—any instruction that
attempts to read or write them would require
the issue logic to test the empty or full bits
and delay issue until the status becomes cor-
rect. Merge sort’s implementation on this
architecture is the same as in Figure 3, but
removes the first three instructions entirely.

check_a: beqz %in0.notEmpty, check_a // listA

check_b: beqz %in1.notEmpty, check_b // listB

check_o: beqz %out0.notFull, check_o // outList

 beq %in0.tag, EOL, a_done

 beq %in1.tag, EOL send_a

 cmp.lt %r0, %in0.first,%in1.first

 bnez %r0, send_a

send_b: enq %out0, %in1.first

 deq %in1

 jump check_a

send_a: enq %out0, %in0.first

 deq %in0

 jump check_a

a_done: beq %in1.first, EOL, done

 jump send_b

done: deq %in0

 deq %in1

 return;

Static instructions: 18

Average instructions per iteration: 10

Average branches per iteration: 7

Figure 3. PCþRegQueue instruction-set architecture (ISA) merge sort

worker representation using register-mapped queues. First, queue status is

tested, then the end-of-list (EOL) condition is evaluated. Finally, the actual

data comparison results in either a swap or pass. This results in a poor ratio

of control decisions to useful work.

...

MAY/JUNE 2014 125

Of course, the downside of this is that the
ALU will not be used when the PE is stalled.
Therefore, the next logical extension is to
consider a limited form of multithreading. In
this ISA, any read or write of a queue would
make the thread eligible to be switched out
and replaced with a ready one. This is a
promising approach, but we believe that the
overheads associated with it—duplication of
state resources, additional multiplexing logic,
and scheduling fairness—run counter to the

fundamental spatial-architecture principle of
replicating simple PEs. In other words, the
cost-to-benefit ratio of multithreading is
unattractive. We reject out-of-order issue for
similar reasons.

The final ISA extension we consider is
predication. We define a variant of our ISA
that can test and set a dedicated set of Boolean
predicate registers. Figure 4 shows a reimple-
mentation of the merge sort worker in a lan-
guage with predication, implicit stalling, and
destructive reads, which we name PC+Aug-
mented. Note how little predication improves
the control flow of the example. This is
because of several limitations:

� Instructions can’t read multiple pred-
icate registers at once (inefficient
conjunction).

� Composing multiple predicates into
more complex Boolean expressions
(such as disjunctions) must be done
using the ALU itself.

� Jumping between regions requires
that the predicate expectations be set
correctly. (Note that the branch from
a finished is forced to use p2
with a positive polarity.)

� Predicated false instructions intro-
duce bubbles into the pipeline.

Taken together, these inefficiencies mean
that conditional branching remains the most
efficient way to express the majority of the
code in Figure 4. Although we could con-
tinue to try to add features to PC-based
schemes in order to improve efficiency, in the
rest of this article we demonstrate that taking

Table 1. Adding features to a PC-based ISA to improve efficiency for spatial programming.

Feature Description Notes

PC (baseline) PEs use program counters and communicate using shared-

memory queues

High latency, bottlenecks

þRegQueue Expose register-mapped queues to ISA and test via active polling Poor power efficiency

þFusedDeq Destructive read of queue registers without separate instructions Good improvement

þRegQSelect Allow indirect jump based on register-queue status bits Minimal improvement

þRegQStall Issue stalls on queue I/O registers without special instructions Bubbles, overserialization

þQMultiThread Stalling on empty or full queue yields thread Significant additional hardware

þPredication Predicate registers that can be set using queue status bits Boolean expressions don’t compose

þAugmented ISA augmented with all of the above features exceptþQMultiThread Used in our evaluations

start: beq %in0.tag, EOL, a_done

 beq %in1.tag, EOL, send_a

 cmp.ge p2, in0.first, in1.first

send_b:(p2) enq %out0, %in1.first (deq %in1)

send_a:(!p2)enq %out0, in0.first (deq %in0)

 jump start

a_done: cmp.ne p2, %in1.first, EOL

 (p2) jump send_b

 nop (deq %in0, deq %in1)

 return;

Static instructions: 9

Average instructions per iteration (Issued): 6

Average instructions per iteration (committed): 5

Average branches per iteration: 3

Speedup versus PC+RegQueue (see Figure 3): 1.4 times

Figure 4. PCþAugmented ISA merge sort worker takes advantage of the

following features: implicit stalls on queue enqueue and dequeue,

destructive queue reads, and classical predication. Together, these features

reduce the overhead of the program counter, but the ratio of branches to

useful work remains high.

..

TOP PICKS

..

126 IEEE MICRO

a different approach altogether can efficiently
address these issues while simultaneously
removing overserialization and providing the
benefits of multithreading.

Triggered instructions
A large degree of the inefficiency we have

discussed here stems from the issue of effi-
ciently composing Boolean control-flow
decisions. To overcome this, we draw inspira-
tion from the historical computing paradigm
of guarded actions, a field that has a rich tech-
nical heritage including Dijkstra’s language of
guarded commands,11 Chandy and Misra’s
Unity,12 and the Bluespec hardware descrip-
tion language.13

Computation in a traditional guarded-
action system is described using rules com-
posed of actions (state transitions) and guards
(Boolean expressions that describe when a
certain action is legal to apply). A scheduler is
responsible for evaluating the guards of the
actions in the system and posting ready

actions for execution, taking into account
both inter-action parallelism and available
execution resources. Figure 5 illustrates our
merge sort worker in traditional guarded-
action form. This paradigm naturally sepa-
rates the representation of data transforma-
tion (via actions) from the representation of
control flow (via guards). Additionally, the
inherent side-effect-free nature of the guards
means that they are a good candidate for par-
allel evaluation by a hardware scheduler.

Triggered-instruction architecture
A triggered-instruction architecture (TIA)

applies this concept directly to controlling the
scheduling of operations on a PE’s datapath at
an instruction-level granularity. In the histori-
cal guarded-action programming paradigm,
arbitrary Boolean expressions are allowed
in the guard, and arbitrary data transforma-
tions can be described in the action. To
adapt this concept into an implementable
ISA, both must be bounded in complexity.

rule sendA

when listA.first() != EOL && listB.first() != EOL && listA.data < listB.data do

 outList.send(listA.first()); listA.deq();

end rule

rule sendB

when listA.first() != EOL && listB.first() != EOL && listA.data >= listB.data do

 outList.send(listB.first()); listB.deq();

end rule

rule drainA

when listA.first() != EOL && listB.first() == EOL do

 outList.send(listA.first()); listA.deq();

end rule

rule drainB

when listA.first() == EOL && listB.first() != EOL do

 outList.send(listB.first()); listB.deq();

end rule

rule bothDone

when listA.first() == EOL && listB.first() == EOL do

 listA.deq(); listB.deq();

end rule

Figure 5. Traditional guarded-action merge sort worker algorithm. This paradigm naturally

separates the representation of data transformation (via actions) from the representation of

control flow (via guards). This results in a higher level of code readability, because the control

decisions related to each action are naturally grouped and isolated.

...

MAY/JUNE 2014 127

Furthermore, the scheduler must have the
potential for efficient implementation in
hardware. To this end, we define a limited set
of operations and state updates that can be
performed by the datapath (instructions) and
a limited language of Boolean expressions
(triggers) built from several possible queries
on a PE’s architectural state.

The architectural state of our proposed
TIA PE is composed of four elements:

� A set of data registers (read/write)
� A set of predicate registers (read/

write)
� A set of input-channel head elements

(read only)
� A set of output-channel tail elements

(write only)

Each channel has three components: data,
a tag, and a status predicate that reflects
whether an input channel is empty or an out-
put channel is full. Tags do not have any spe-
cial semantic meaning—the programmer can
use them in many ways.

A trigger is a programmer-specified Boo-
lean expression formed from the logical con-
junction of a set of queries on the PE’s
architectural state. (Although the architecture
natively allows only conjunctions in trigger
expressions, disjunctions can be emulated by
creating a separate triggered instruction for
each disjunctive term.) A hardware scheduler
evaluates triggers. The set of allowable trigger
query functions is carefully chosen to main-
tain scheduler efficiency while allowing for
much generality in the useful expressions.
The query functions include the following:

� Predicate register values (optionally
negated): A trigger can specify a
requirement for one or more predi-
cate registers to be either true or false
(for example, p0 && !p1 && p7).

� I/O channel status (implicit): The sched-
uler implicitly adds the empty status
bits for each operand input channel to
the trigger for an instruction. Similarly,
a not-full check is implicitly added to
each output channel that an instruction
attempts to write. The programmer
doesn’t have to worry about these
conditions, but must understand
while writing code that the hardware
will check them. This facilitates

convenient, fine-grained, producer/
consumer interaction.

� Tag comparisons against input chan-
nels: A trigger might specify a value
that an input channel’s tag must
match (such as in0.tag ¼¼ EOL).

An instruction represents a set of data
and predicate computations on operands
drawn from the architectural state. Instruc-
tions selected by the scheduler are executed
on the PE’s datapath. An instruction has
the following read, computation, and write
capabilities:

� An instruction can read a number of
operands, each of which can be data
at the head of an input channel, a
data register, or the vector of predi-
cate registers.

� An instruction can perform a data
computation using one of the standard
functions provided by the datapath’s
ALU. It can also generate one or more
predicate values that are either con-
stants (true/false) or derived from the
ALU result via a limited set of data-
path-supported functions, such as
reduction AND, OR, and XOR oper-
ations, bit extractions, and ALU flags
such as overflow.

� An instruction can write the data
result and the derived predicate result
into a set of destinations within the
PE’s architectural state. Data results
can be written into the tail of an out-
put channel, a data register, or the
vector of predicate registers. Predicate
results can be written into one or
more predicate registers.

Figure 6 shows our merge sort expressed
using triggered instructions. Note the density
of the trigger control decisions—each trigger
reads at least two explicit Boolean predicates.
Additionally, conditions for the queues being
notEmpty or notFull are recognized implicitly.
Only the comparison between the actual
multibit queue data values is done using
the ALU datapath, as represented by the
doCheck instruction. Predicate p0 indi-
cates that the check has been performed,
whereas p1 holds the result of the compari-
son. Note also the lack of overserialization.

..

TOP PICKS

..

128 IEEE MICRO

Only the explicitly programmer-managed
sequencing using p0 is present.

Figure 7 shows an example TIA PE. The
PE is preconfigured with a static set of
instructions. The triggers for these instruc-
tions are then continuously evaluated by a
dedicated hardware scheduler that dispatches
legal instructions to the datapath for execu-
tion. At any given scheduling step, the trigger
for zero, one, or more instructions can evalu-
ate to true. The guarded-action model—and
by extension, our triggered-instruction
model—allows all such instructions to fire in
parallel subject to datapath resource con-
straints and conflicts.

Figure 8 shows the TIA hardware schedu-
ler’s high-level microarchitecture. The sched-
uler uses standard combinatorial logic to
evaluate the programmer-specified query
functions for each trigger on the basis of val-
ues in the architectural state elements. This
yields a set of instructions that are eligible for
execution, among which the scheduler selects
one or more depending on the datapath
resources available. The example in this fig-
ure illustrates a scalar datapath that can only
fire one instruction per cycle; therefore, the
scheduler selects one out of the available set
of ready-to-fire instructions using a priority
encoder.

Observations about the triggered model
Having defined the basic structure of

a TIA, we can now make some key
observations.

A TIA PE doesn’t have a program counter
or any notion of a static sequence of instruc-
tions. Instead, there is a limited pool of trig-
gered instructions that are constantly bidding
for execution on the datapath. This fits very
naturally into a spatial programming model
where each PE is statically configured with a
small pool of instructions instead of stream-
ing in a sequence of instructions from an
instruction cache.

There are no branch or jump instructions
in the triggered ISA—every instruction in the
pool is eligible for execution if its trigger con-
ditions are met. Thus, every triggered
instruction can be viewed as a multiway
branch into a few possible states in an FSM.

With clever use of predicate registers, a
TIA can be made to emulate the behavior of

other control paradigms. For example, a
sequential architecture can be emulated by
setting up a vector of predicate registers to
represent the current state in a sequence—
essentially, a program counter. Predicate
registers can also be used to emulate classic
predication modes, branch delay slots, and
speculative execution. Triggered instruction
is a superset of many traditional control para-
digms. The costs of this generality are sched-
uler area and timing complexity, which
impose a restriction on the number of trig-
gers (and thus, the number of instructions)
that the hardware can monitor at all times.
Although this restriction would be crippling
for a temporally programmed architecture, it

doCheck:

 when (!p0 && %in0.tag != EOL

 && %in1.tag != EOL) do

 cmp.ge p1, %in0.data, %in1.data (p0 := 1)

sendA:

 when (p0 && p1) do

 enq %out0, %in0.data (deq %in0, p0 := 0)

sendB:

 when (p0 && !p1) do

 enq %out0, %in1.data (deq %in1, p0 := 0)

drainA:

 when (%in0.tag != EOL && %in1.tag == EOL) do

 enq %out0, %in0.data (deq %in0)

drainB:

 when (%in0.tag == EOL && %in1.tag != EOL) do

 enq %out0, %in1.data (deq %in1)

bothDone:

 when (%in0.tag == EOL && %in1.tag == EOL) do

 nop (deq %in0, deq %in1)

Static instructions: 6

Average instructions per iteration: 2

Speedup versus PC+RegQueue (see Figure 3): 5 times

Speedup versus PC+Augmented (see Figure 4): 3 times

Figure 6. The triggered instruction merge sort worker retains the clean

separation of control and data transformation of the generalized guarded

action version shown in Figure 5. The restriction is that the control decisions

must be stored in single-bit predicate registers, and the action is limited to

the granularity of one instruction. As a result, the sendA and sendB rules

are refactored such that the comparison takes place in the earlier doCheck

rule, which sets up predicate register p1 with the result of the comparison.

...

MAY/JUNE 2014 129

is reasonable in a spatially programmed
framework because of the low number of
instructions typically mapped to a pipeline
stage in a spatial workload.

The hardware scheduler is built from
combinatorial logic—it is simply a tree of
AND gates. Thus, only the state equations
that require reevaluation will cause the corre-
sponding wires in the scheduler logic to
swing and consume dynamic power. In the
absence of channel activity or internal state
changes, the scheduler doesn’t consume any
dynamic power whatsoever. The same con-
trol equations would have been evaluated
using a chain of branches in a PC-based
architecture.

Evaluation of workloads
In this section, we quantitatively demon-

strate both the applicability of the spatial-

programming approach to a set of workloads,
and the efficiency that a triggered-instruction
architecture provides within the spatial
domain.

Approach
Our evaluation fabric is a scalable spatial

architecture built from an array of TIA PEs
organized into blocks, which form the granu-
larity of replication of the fabric. Each block
contains a grid of interconnected PEs, a set of
scratchpad slices distributed across the block,
a private L1 cache, and a slice of a shared L2
cache that scales with the number of blocks
on the fabric. Figure 9 provides an illustra-
tion of a block and the parameters used in
our evaluation. Each PE has the following
architectural parameters:

� Datapath: 32 bits
� Sources per instruction: 2

Input links

Input channels

Instruction
triggers

Instruction

ALU

Data
update

Instructions

Channel empty/full

Scheduler

P0 P1 P3

Predicate update

Output channels
Tag Data Tag Data Tag Data

Input switch

Output links

Output switch

Tag Data

P2

Channel ta
gs

Channel e
mpty/

full

Tag Data DataTag DataTag DataTag

Reg 3Reg 2Reg 1Reg 0

Operand select Operand select

Figure 7. A PE based on our triggered-instruction architecture (TIA). The PE is preconfigured with a static set of instructions.

..

TOP PICKS

..

130 IEEE MICRO

� Registers: 8
� Predicates: 8
� Maximum triggered instructions: 16

We obtained area estimates of each PE via
the implementation feasibility analysis dis-
cussed in detail in our paper for the 2013
International Symposium on Computer
Architecture.14 Area estimates for the caches,
register files, multipliers, and on-chip net-
work were added using existing industry
results. As a reference, 12 blocks (each
including PEs, caches, and so on) are about
the same size as a single core of an Intel Core

i7-2600 processor (including L1 and L2
caches), normalized to the same technology
node.

We developed a detailed cycle-accurate
performance model of our spatial accelerator
using Asim, an established performance
modeling infrastructure.15 We model the
detailed microarchitecture of each TIA PE in
the array, the mesh interconnection network,
the L1 and L2 caches, and the DRAM.

We evaluate our spatial fabric on applica-
tion kernels from several domains. We do this
under the assumption that the workload’s
computationally intensive portions will be

Trigger Instruction

Triggered instruction

Execute

Datapath

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Priority encoder

Instruction ready

P P

P

P

P

P

Predicate
registers

Predicate updates

Trigger
resolution

Channel status Tags

P

P

P

P

PP

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Trigger

Figure 8. Microarchitecture of a TIA scheduler. The Trigger Resolution stage is implemented as combinational logic. This is a

low-power approach because only local state updates and I/O channel activity consume dynamic power.

...

MAY/JUNE 2014 131

offloaded from the main processor, which will
handle peripheral tasks like setting up the
memory and handling rare, but slow, cases.

Our quantitative evaluation has two
objectives:

� to demonstrate the effectiveness of a
TIA-based spatial architecture com-
pared to a traditional high-perform-
ance sequential architecture, and

� to demonstrate the benefits of using
TIA-based PEs in a spatial architecture
compared to PC-based PEs using the
PCþRegQueue and PCþAugmented
architectures.

For the first objective, we present per-
formance numbers area-normalized against a
typical host processor—namely, a single 3.4-
GHz out-of-order superscalar Intel Core i7-
2600 core. As a baseline, we used sequential
software implementations running on the
host processor. When possible, we chose
existing optimized workload implementa-
tions. In other cases, we auto-vectorized the
workload using the Intel C/Cþþ compiler
(icc) version 13.0, enabling processor-
specific ISA extensions.

For the second objective, we analyze
how much of the overall speedup benefit is

attributable to triggered instructions (as op-
posed to spatial programming in general) using
the same framework described earlier. We dem-
onstrate this by examining the critical loops
that form the rate-limiting steps in the spatial
pipeline of our workloads. We implemented
the loops on spatial accelerators using the tra-
ditional program-counter-based approaches.
This analysis demonstrates how frequently the
triggered-instruction control idiom advantage
translates to practical improvements.

For our analysis, we chose workloads
spanning data parallelism, pipeline parallel-
ism, and graph parallelism. Table 2 presents
an overview of the chosen kernels.

We implemented the triggered instruction
versions of these kernels directly in our PE’s
assembly language and hand-mapped them
spatially across our fabric. (In the future, we
expect this to be done by automated tools
from higher-level source code.)

Performance results
Figure 10 demonstrates the magnitude of

performance improvement that can be
achieved using a spatially programmed accel-
erator. Across our workloads, we observe
area-normalized speedup ratios ranging from
3 times (fast Fourier transform) to about 22
times (SHA-256) compared to the traditional
core’s performance, with a geometric mean of
8 times.

Now let’s analyze how much of this bene-
fit is attributable to the use of triggered
instructions by comparing the rate-limiting
inner loops of our workloads to implementa-
tions on spatial architectures using the
PCþRegQueue and PCþAugmented con-
trol schemes.

Table 3 shows the average frequency of
branches in the dynamic instruction stream
for the PC-based spatial architectures. The
branch frequency ranges from 8 to 70 per-
cent, with an average of 50 percent. These
inner loops are all branchy and dynamic—far
more than traditional sequential code.

This dynamism manifests itself as addi-
tional control cycles for both PC-based archi-
tectures. Figure 11 shows the dynamic
execution cycles for all architectures broken
down into cycles spent on operations in rele-
vant categories. The cycle counts are all nor-
malized to the number of data computation

Scratchpad
slices

PE PE

PE PE

PE PE

PE

PE PE

PE PE

PE PE

PE PE PE

PE PE

PE PE

PE PE

PE

PE PE

PE PE

PE PE

PE PE PE

L1 cache

L2 cache slice

(a)

(b)

PEs: 32

Network: Mesh (one-cycle link latency)

Scratchpad: 8 Kbytes (distributed)

L1 cache: 4 Kbytes (four banks, 1 Kbyte per bank)

L2 cache: 24-Kbyte shared slice

DRAM: 200-cycle latency

Estimated clock rate: 2 GHz

Figure 9. Data used in our evaluation. Block illustration (a) and parameters

(b). Each block contains a grid of interconnected PEs, a set of scratchpad

slices distributed across the block, a private L1 cache, and a slice of a shared

L2 cache that scales with the number of blocks on the fabric.

..

TOP PICKS

..

132 IEEE MICRO

operations (D.ops) executed by PCþReg-
Queue. We augment this data with Figures
12 and 13, which respectively show the static
and dynamic (average) instructions in the
inner loops of rate-limiting steps for each
workload. The data in these figures demon-
strates that the triggered-instruction ap-
proach has measurable benefits over program
counters in real-world kernels.

First, TIA demonstrates a significant
reduction in dynamic instructions executed
compared to both PCþRegQueue (64 per-
cent) and PCþAugmented (28 percent) on
average, and an average performance im-
provement of 2.0 times versus PCþReg-
Queue and 1.3 times versus PCþAugmented
in the critical loops. A large part of the per-
formance gained by PCþAugmented over
PCþRegQueue is from the reduction of
Queue Management operations. TIA bene-
fits from this, too, but gets a further perform-
ance boost over PCþAugmented from a
reduction in Control operations and Predi-
cated-False operations.

Second, an additional benefit of TIA over
PCþAugmented comes from a reduction
in wait cycles. This is most evident in the
k-means (50 percent), Graph500 (100
percent), and SHA-256 (40 percent) work-
loads. This is because of the ability of trig-
gered instructions to avoid unnecessary

serialization. Because these are critical rate-
limiting loops in the spatial pipeline, there
are fewer opportunities for multiplexing
unrelated work onto shared PEs. Despite
this, the workloads show benefits from avoid-
ing overserialization.

Third, the workload that sees the largest
benefit from triggered instructions is Merge
Sort. Merge Sort has the highest dynamic

0

AES
DMM

Flo
w cl

as
sif

ier FF
T

Gra
ph5

00

k-m
ea

ns

KMP se
ar

ch

Mer
ge s

or
t

SHA-2
56

Mea
n

5

10

15

20

25

P
er

fo
rm

an
c

e
ra

ti
o

Figure 10. Area-normalized performance ratio of a TIA-based spatial

accelerator compared to a high-performance out-of-order core. Area-

normalized speedup ratios range from 3 times to about 22 times compared

to the traditional core’s performance.

Table 2. Target workloads for evaluation.

Workload Berkeley Dwarf16 Domain

Comparison software

implementations

Advanced Encryption Standard with

cypher-block chaining (AES-CBC)

Combinational logic Cryptography Intel reference using AES-ISA extensions

Knuth-Morris-Pratt

(KMP) string search

Finite state machines Various Nonpublic optimized implementation

Dense matrix multiply (DMM) Dense linear algebra Scientific computing Intel Math Kernel Library (MKL)

implementation17

Fast Fourier transform (FFT) Spectral methods Signal processing FFT-W with auto-vectorization

Graph500-BFS Graph traversal Supercomputing Nonpublic optimized implementation

k-means clustering Dense linear algebra Data mining MineBench implementation with

auto-vectorization

Merge sort Map/reduce Databases Nonpublic optimized implementation

Flow classifier Finite state machines Networking Nonpublic optimized implementation

SHA-256 Combinational logic Cryptography Intel reference (x86 assembly)

...

MAY/JUNE 2014 133

branch rate (70 percent) of all workloads on
the PCþRegQueue architecture. It also
spends several cycles polling queues.
PCþAugmented eliminates all the queue-
polling cycles, resulting in 1.6-times per-
formance improvement in the rate-limiting
step. TIA further cuts down a large number
of control cycles, leading to a further 2.3-
times performance improvement versus
PCþAugmented and a cumulative 3.7-times
performance benefit over PCþRegQueue.

Fourth, on the average, PCþAugmented
does not see a significant benefit from predi-
cated execution for these spatially pro-
grammed workloads.

Finally, triggered instructions use a sub-
stantially smaller static instruction footprint.
The reduction in footprint compared to
PCþRegQueue is particularly significant—
62 percent on average. PCþAugmented’s
enhancements help reduce footprint, but

Table 3. Percentage of dynamic instructions that are branches in rate-limiting step inner loop.

Control

scheme

AES

(%)

DMM

(%)

FFT

(%)

Flow

(%)

Classifier

(%)

Graph-500

(%)

k-means

(%)

KMP

(%)

Search

(%)

Merge

sort (%)

PCþRegQ 58 50 36 50 50 69 8 70 63 50

PCþAug 6 33 11 50 40 29 14 50 22 28

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

AES DMM FFT
Flow

classifier
Graph500 k-means KMP search Merge sort SHA-256 Mean

D
yn

am
ic

 c
yc

le
s

Q.ops
F.ops
C.ops
Wait
D.ops

Figure 11. Breakdown of dynamic execution cycles in rate-limiting inner loops normalized to data computation operations

(D.ops) executed by PCþRegQueue. This demonstrates the ability of triggered instructions to reduce queuing, control and

predicated-false operations, and wait cycles arising from over-serialization.

0

AES
DMM FF

T

Flo
w cl

as
sif

ier

Gra
ph-

50
0

k-m
ea

ns

KMP se
ar

ch

Mer
ge s

or
t

SHA-2
56

Mea
n

5

10

15

20

25

30

35

40

45

S
ta

ti
c

 in
st

ru
c

ti
o

n
s

PC+RegQ
PC+Augmented
TIA

Figure 12. Static instruction counts for rate-limiting inner loops. See our

previous work14 for an analysis of why triggered instructions can never

result in an increase in instruction count compared to PC-based approaches.

..

TOP PICKS

..

134 IEEE MICRO

TIA still has 30 percent fewer static instruc-
tions on average.

The static code footprint of these rate-
limiting inner loops is, in general, fairly small
across all architectures. This observation,
along with the real-world performance bene-
fits we observed versus traditional high-
performance architectures, provides strong
evidence of the viability and effectiveness of
the spatial programming model with small,
tight loops arranged in a pipelined graph.

O ur results provide a solid foundation
of evidence for the merit of a trig-

gered-instruction-based spatial architecture.
The ultimate success of this paradigm will be
premised on overcoming several challenges,
including providing a tractable memory
model, dealing with the finite size of the spa-
tial array, and providing a high-level pro-
gramming and debugging environment. Our
ongoing work makes us optimistic that these
challenges are surmountable. MICRO

..
References
1. E. Mirsky and A. DeHon, “MATRIX: A

Reconfigurable Computing Architecture

with Configurable Instruction Distribution

and Deployable Resources,” Proc. IEEE

Symp. FPGAs for Custom Computing

Machines, 1996, pp. 157-166.

2. J. Hauser and J. Wawrzynek, “Garp: A MIPS

Processor with a Reconfigurable Cop-

rocessor,” Proc. IEEE Symp. FPGAs for Cus-

tom Computing Machines, 1997, pp. 12-21.

3. B. Mei et al., “ADRES: An Architecture with

Tightly Coupled VLIW Processor and

Coarse-Grained Reconfigurable Matrix,”

Proc. 13th Int’l Conf. Field-Programmable

Logic and Applications, 2003, pp. 61-70.

4. D. Burger et al., “Scaling to the End of Sili-

con with EDGE Architectures,” Computer,

vol. 37, no. 7, 2004, pp. 44-55.

5. V. Govindaraju, C.-H. Ho, and K. Sankaralin-

gam, “Dynamically Specialized Datapaths

for Energy Efficient Computing,” Proc. 17th

Int’l Conf. High Performance Computer

Architecture (HPCA), 2011, pp. 503-514.

6. S. Swanson et al., “The WaveScalar

Architecture,” ACM Trans. Computer Sys-

tems, vol. 25, no. 2, 2007, pp. 4:1-4:54.

7. M. Taylor et al., “The Raw Microprocessor:

A Computational Fabric for Software Cir-

cuits and General-Purpose Programs,” IEEE

Micro, vol. 22, no. 2, 2002, pp. 25-35.

8. Z. Yu et al., “An Asynchronous Array of Sim-

ple Processors for DSP Applications,” Proc.

Solid-State Circuits Conf., 2006, pp. 1696-

1705.

9. G. Panesar et al., “Deterministic Parallel

Processing,” Int’l J. Parallel Programming,

vol. 34, no. 4, 2006, pp. 323-341.

0

5

10

15

20

25

30

35

40

45
P

C
+

R
eg

Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

P
C

+
R

eg
Q

P
C

+
A

ug TI
A

AES DMM FFT
Flow

classifier
Graph-500 k-means KMP search Merge sort SHA-256 Mean

A
ve

ra
g

e
in

st
ru

c
ti

o
n

s
p

er
 it

er
at

io
n

Non-control
Control

Figure 13. Average dynamic instruction counts for rate-limiting inner loops. In this context, removal of instructions can directly

translate into workload speedup.

...

MAY/JUNE 2014 135

10. D.G. Merrill and A.S. Grimshaw, “Revisiting

Sorting for GPGPU Stream Architectures,”

Proc. 19th Int’l Conf. Parallel Architec-

tures and Compilation Techniques, 2010,

pp. 545-546.

11. E.W. Dijkstra, “Guarded Commands, Non-

determinacy and Formal Derivation of Pro-

grams,” Comm. ACM, vol. 18, no. 8, 1975,

pp. 453-457.

12. K.M. Chandy and J. Misra, Parallel Program

Design: A Foundation, Addison-Wesley,

1988.

13. Bluespec, Bluespec SystemVerilog Refer-

ence Guide, 2007.

14. A. Parashar et al., “Triggered Instructions: A

Control Paradigm for Spatially-Programmed

Architectures,” Proc. Int’l Symp. Computer

Architecture, 2013, pp. 142-153.

15. J. Emer et al., “Asim: A Performance Model

Framework,” Computer, vol. 35, no. 2,

2002, pp. 68-76.

16. K. Asanovic et al., The Landscape of Parallel

Computing Research: A View from Berke-

ley, tech. report UCB/EECS-2006-183, Elec-

trical Eng. and Computer Science Dept.,

Univ. California, Berkeley, Dec. 2006.

17. R.A. van de Geijin and J. Watts, SUMMA:

Scalable Universal Matrix Multiplication

Algorithm, tech. report, TR-95-13, Dept. of

Computer Sciences, Univ. of Texas at

Austin, 1995.

Angshuman Parashar is an architecture
research engineer in the VSSAD group at
Intel. His research interests include spatial
architectures, hardware/software interfaces,
and quantitative evaluation of computer sys-
tems. Parashar has a PhD in computer sci-
ence and engineering from the Pennsylvania
State University.

Michael Pellauer is an architecture research
engineer in the VSSAD group at Intel. His
research interests include spatial architec-
tures and high-level hardware description
languages. Pellauer has a PhD in computer
science from the Massachusetts Institute of
Technology.

Michael Adler is a principal engineer in the
VSSAD group at Intel. His research interests

include building flexible microarchitecture
timing models of large systems using FPGAs
and building OS-like services to simplify
FPGA programming. Adler has a BA in phi-
losophy from the University of Pennsylvania.

Bushra Ahsan is a component design engi-
neer at Intel. Her research focuses on memory
systems architecture design and workloads for
spatial architectures. Ahsan has a PhD in elec-
trical and computer engineering from the City
University of New York.

Neal Crago is an architecture research engi-
neer in the VSSAD group at Intel. His
research interests include spatial and energy-
efficient architectures. Crago has a PhD in
computer engineering from the University
of Illinois at Urbana-Champaign.

Daniel Lustig is a PhD candidate in the
Department of Electrical Engineering at
Princeton University. His research focuses
on the design and verification of memory
systems for heterogeneous computing plat-
forms. Lustig has an MA in electrical engi-
neering from Princeton University.

Vladimir Pavlov is a senior software engi-
neer at Intel. His research focuses on pro-
gramming and exploration tools for novel
programmable accelerators, such as applica-
tion-specific instruction set processors and
spatial architectures. Pavlov has an MS from
the State University of Aerospace Instru-
mentation, Saint Petersburg, Russia.

Antonia Zhai is an associate professor in
the Department of Computer Science and
Engineering at the University of Minnesota.
Her research focuses on developing novel
compiler optimizations and architecture fea-
tures to improve both performance and
nonperformance features, such as pro-
grammability, security, testability, and reli-
ability. Zhai has a PhD in computer science
from Carnegie Mellon University.

Mohit Gambhir is an architecture model-
ing engineer in the VSSAD group at Intel.
His research interests include modeling and
simulation, performance analysis, and SoC
architectures. Gambhir has an MS in

..

TOP PICKS

..

136 IEEE MICRO

computer science from the North Carolina
State University.

Aamer Jaleel is a principal engineer in the
VSSAD group at Intel. His research interests
include memory system optimizations, appli-
cation scheduling, and performance modeling.
Jaleel has a PhD in electrical engineering from
the University of Maryland, College Park.

Randy Allmon is a senior principal engi-
neer in the VSSAD group at Intel. His
research interests include low-power, high-
performance circuit and layout design and
soft-error mitigation research. Allmon has a
BS in electrical engineering from the Uni-
versity of Cincinnati.

Rachid Rayess is a silicon architecture engi-
neer in the MMDC group at Intel. His
research focuses on memory architecture
and memory design automation. Rayess has
an MS in electrical engineering from North
Carolina State University.

Stephen Maresh is a performance modeling
engineer at Intel. His research focuses on
fabrics, spatial architectures, cache circuit
design, and microprocessor design integra-
tion. Maresh has an MS in electrical and
computer engineering from Northeastern
University.

Joel Emer is an Intel Fellow and director of
microarchitecture research at Intel, where he
leads the VSSAD group. He is also a profes-
sor of the practice at the Massachusetts
Institute of Technology. His research inter-
ests include spatial architectures, perform-
ance modeling, and memory hierarchies.
Emer has a PhD in electrical engineering
from the University of Illinois. He is a Fel-
low of IEEE.

Direct questions and comments about this
article to Michael Pellauer, Intel, 77 Reed
Road, MS HD2-330, Hudson, MA 01749;
michael.i.pellauer@intel.com.

...

MAY/JUNE 2014 137

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

