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significant amount 
of  specia l ized 
hardware has been 
developed for pro-

cessing deep neural 
networks (DNNs) in both academia and 
industry. This article aims to highlight 
the key concepts required to evaluate 
and compare these DNN processors. 
We discuss existing challenges, such 
as the flexibility and scalability need-
ed to support a wide range of neural 
networks, as well as design consider-
ations for both the DNN processors 
and the DNN models themselves. We 
also describe specific metrics that can 
be used to evaluate and compare ex-
isting solutions beyond the commonly 
used tera-operations per second per 
watt (TOPS/W). This article is based on 
the tutorial “How to Understand and 
Evaluate Deep Learning Processors” 
that was given at the 2020 Interna-

tional Solid-State Circuits Conference, 
as well as excerpts from the book, Ef-
ficient Processing of Deep Neural Net-
works [36].

Motivation and Background
Over the past few years, there has 
been a significant amount of research 
on enabling the efficient processing 
of DNNs. The challenge of efficient 
DNN processing depends on balanc-
ing multiple objectives:
■ high performance (including ac-

curacy) and efficiency (including 
cost)

■ enough flexibility to cater to a 
wide and rapidly changing range 
of workloads

■ good integration with existing 
software frameworks.
DNN computations are composed 

of several processing layers (Fig-
ure  1), where, for many layers, the 
main computation is a weighted sum; 
in other words, the main computa-
tion for DNN processing is often a 

multiply–accumulate (MAC) opera-
tion. The arrangement of the MAC 
operations within a layer is defined 
by the layer shape; for instance, 
Table 1 and Figure 2 highlight the 
shape parameters for layers used 
in convolutional neural networks 
(CNNs), a popular type of DNN. Be-
cause the shape parameters can vary 
across layers, DNNs come in a wide 
variety of shapes and sizes, depend-
ing on the application. (The DNN re-
search community often refers to the 
shape and size of a DNN as its net-
work architecture. However, to avoid 
confusion with the use of the word 
architecture by the hardware com-
munity, we talk about DNN models
and their shape and size in this ar-
ticle.) This variety is one of the mo-
tivations for flexibility, and it causes 
the objectives listed previously to be 
highly interrelated.

Figure 3 illustrates the hardware 
architecture of a typical DNN proces-
sor, which is composed of an array 
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of processing elements (PEs), where 
each PE contains MAC units to per-
form the computation (and, optional-
ly, some local storage) and an inter-PE 
communication network. The entire 
PE array is also connected via an on-
chip network to a large global buffer,  
which, in turn, is connected off chip 
to DRAM. DNN processor designs 
tend to vary in terms of the number 
of PEs, number of levels in the mem-
ory hierarchy, amount of storage 
at each level, and how the PEs and 
memory are connected through the 
on-chip network.

Given the combination of such 
hardware and the associated DNN 
models, it is important to discuss the 
key metrics that should be consid-
ered when comparing and evaluating 
the strengths and weaknesses of dif-
ferent designs. They also can be used 
to evaluate proposed techniques and 
should be incorporated into design 
considerations. While efficiency is 
often associated with only the number 
of operations per second per watt [e.g., 
floating-point operations per second 
per watt (FLOPS/W) or TOPS/W], it 
is actually composed of many more 
metrics, including accuracy, through-
put, latency, energy consumption, 
power consumption, cost, flexibility, 
and scalability. (Note that TOPS/W effi-
ciency is typically reported at, and often 
along with, the peak performance in 
TOPS, which gives the maximum effi-
ciency since it assumes maximum utili-
zation and thus maximum amortization 
of overhead. However, this does not tell 
the complete story because processors 
typically do not operate at their peak 
TOPS and their efficiency degrades at 
lower utilization. It is a well-known chal-
lenge to achieve energy-proportional 
computing, where the efficiency stays 
constant across performance [37].) Re-
porting a comprehensive set of these 
metrics is important to provide a com-
plete picture of the tradeoffs made by a 
proposed design or technique.

In this article, we 
 ■ discuss the importance of each of 

these metrics
 ■ break down the factors that affect 

each metric and, when feasible, 

TABLE 1. THE SHAPE PARAMETERS FOR THE LAYERS USED IN DNNS.

SHAPE 
PARAMETER DESCRIPTION 

N Batch size of 3D feature map 

M Number of 3D filters/number of channels of output feature 
map (output channels) 

C Number of channels of filter/input feature map (input 
channels) 

H/W Spatial height/width of input feature map

R/S Spatial height/width of filter 

P/Q Spatial height/width of output feature map 

Low-Level Features High-Level Features

Input:
Image

Output:
“Volvo XC90”

FIGURE 1: An example of image classification using a DNN. The DNN is composed of multiple 
layers, and the number of layers is referred to as the depth of the network. Note that the 
extracted features go from low level to high level as we go deeper into the network. (Source: 
Adapted from [1].) 
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FIGURE 2: The shape parameters of the layers used in CNNs.
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present equations that describe 
the relationship between the fac-
tors and the metrics

 ■ describe how these metrics can be 
incorporated into design consid-
erations for both the DNN hard-
ware and the DNN model

 ■ specify what should be reported 
for a given metric to enable proper 
evaluation. 
Finally, we highlight tools that can 

be used to evaluate some of these 
metrics early in the design process 
(to enable rapid design exploration) 
and provide a case study on how 
one might bring all of these metrics 
together for a holistic evaluation of 
a given approach. First, however, we 
discuss each of the metrics. 

Accuracy
Accuracy indicates the quality of the 
result for a given task. The fact that 

DNNs can achieve state-of-the-art ac-
curacy on a wide range of tasks is one 
of the key reasons driving their popu-
larity and wide use today. The units 
used to measure accuracy depend on 
the task. For instance, for image clas-
sification, accuracy is reported as the 
percentage of correctly classified 
images, while, for object detection, 
accuracy is reported as the mean aver-
age precision, which is related to the 
tradeoff between true positives, false 
positives, and false negatives.

Factors that affect accuracy include 
the difficulty of the task and data 
set. (Ideally, robustness and fairness 
should be considered in conjunction 
with accuracy, as there is also an inter-
play between these factors; however, 
these are areas of ongoing research 
and beyond the scope of this article.) 
For instance, classification on the Ima-
geNet data set [2] is much more dif-

ficult than on the MNIST data set  [3] 
(Figure 4), and object detection is usu-
ally more difficult than classification. 
As a result, a DNN model that performs 
well on MNIST may not necessarily per-
form well on ImageNet. Achieving high 
accuracy on difficult tasks or data sets 
typically requires more complex DNN 
models (e.g., a larger number of MAC 
operations and more distinct weights, 
increased diversity in layer shapes, 
and so on), which can impact how ef-
ficiently the hardware can process the 
DNN model.

Accuracy should, therefore, be 
interpreted in the context of the dif-
ficulty of the task and data set. (As 
an analogy, getting nine out of 10 an-
swers correct on a high school exam 
is different than nine out of 10 an-
swers correct on a college-level exam. 
One must look beyond the score and 
consider the difficulty of the exam.) 
Evaluating hardware using well-stud-
ied, widely used DNN models, tasks, 
and data sets can allow one to better 
interpret the significance of the accu-
racy metric. 

Recently, motivated by the impact 
of the SPEC benchmarks for general 
purpose computing [4], several indus-
try and academic organizations have 
put together a broad suite of models, 
called MLPerf, to serve as a common 
set of well-studied DNN models to 
evaluate the performance and enable 
fair comparison of various software 
frameworks, hardware architectures, 
and cloud platforms for both training 
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FIGURE 3: The typical hardware architecture of a DNN processor.

(a) (b)

FIGURE 4: The (a) MNIST data set (10 classes, 60,000 training, and 10,000 testing) [3] versus the (b) ImageNet data set (1,000 classes,  
1.3 million training, and 100,000 testing) [2]. 
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and inference of DNNs [5]. (Earlier DNN 
benchmarking efforts, including Deep-
Bench [6] and Fathom [7], have now 
been subsumed by MLPerf.)  The suite 
comprises various types of DNNs (e.g., 
CNNs, recurrent neural networks, and 
so on) for a variety of tasks, including 
image classification, object identi-
fication, translation, speech to text, 
recommendation, sentiment analysis, 
and reinforcement learning.

Throughput and Latency
Throughput is used to indicate the 
amount of data that can be processed or 
the number of executions of a task that 
can be completed in a given time peri-
od. High throughput is often critical to 
an application. For instance, processing 
video at 30 frames/s is often necessary 
to deliver real-time performance. For 
data analytics, high throughput means 
that more data can be analyzed in a 
given amount of time. As the amount 
of visual data is growing exponentially, 
high-throughput big data analytics 
becomes increasingly important, par-
ticularly if an action needs to be taken 
based on the analysis (e.g., security or 
terrorist prevention, medical diagnosis, 
or drug discovery). Throughput is often 
generically reported as the number of 
operations per second. In the case of 
inference, throughput is reported as in-
ferences per second.

Latency measures the time between 
the input data’s arrival to a system and 
the generation of the result. Low laten-
cy is necessary for real-time interac-
tive applications, such as augmented 
reality, autonomous navigation, and 
robotics. Latency is typically reported 
in seconds per inference.

Throughput and latency are often 
assumed to be directly derivable from 
one another. However, they are actually 
quite distinct. A prime example of this 
is the well-known approach of batching 
input data (e.g., batching multiple im-
ages or frames together for processing) 
to increase throughput since batching  
amortizes overhead such as loading 
the weights; however, batching also 
increases latency (e.g., at 30 frames/s 
and a batch of 100 frames, some 
frames will experience at least a 3.3-s 

delay), which is not acceptable for real-
time applications such as high-speed 
navigation, where it would reduce the 
time available for course correction. 

Thus, achieving low latency and 
high throughput simultaneously can 
sometimes be at odds depending 
on the approach, and both metrics 
should be reported. The phenomenon 
described here can also be understood 
using Little’s law [8] from queuing 
theory, where the average throughput 
and average latency are related by the 
average number of tasks in flight, as 
defined by: 

.=throughput
latency

tasks-in-flight

A DNN-centric version of Little’s law 
would have throughput measured 
in inferences per second, latency 
measured in seconds, and infer-
ences in flight (as the tasks-in-flight 
equivalent) measured in terms of 
the number of images in a batch be-
ing processed simultaneously. This 
helps to explain why increasing the 
number of inferences in flight to 
increase throughput may be coun-
terproductive: some techniques 
that increase the number of infer-
ences in flight (e.g., batching) also 
increase latency.

Several factors affect throughput 
and latency. In terms of throughput, 
the number of inferences per second 
is affected by

 
second

inferences
second

operations

inference
operations

1 ,#

=

 (1)

where the number of operations per 
second is dictated by both the DNN 
hardware and DNN model, while the 
number of operations per inference 
is dictated by the DNN model.

When considering a system com-
prising multiple PEs, where a PE cor-
responds to a simple or primitive 
core that performs a single MAC op-
eration, the number of operations per 
second can be further decomposed 
as follows:

 

.

second
operations

operation
cycles

1
second
cycles

number of PEs

utilization of PEs

#

#

#

= f p 

(2)

The first term reflects the peak 
throughput of a single PE, the second 
term reflects the amount of parallel-
ism, and the last term reflects deg-
radation due to the inability of the 
architecture to effectively utilize the 
PEs. Since the main operation for pro-
cessing DNNs is a MAC operation, we 
use the terms number of operations 
and number of MAC operations inter-
changeably. 

One can increase the peak through-
put of a single PE by increasing the 
number of cycles per second, which 
corresponds to a higher clock frequen-
cy achieved by reducing the critical 
path at the circuit or microarchitec-
tural level; alternatively, one can also 
reduce  the number of cycles per op-
eration, which can be affected by the 
design of the MAC (e.g., a bit-serial, 
multicycle MAC would have more cy-
cles per operation).

While these approaches increase 
the throughput of a single PE, the 
overall throughput can be increased 
by increasing the number of PEs and, 
thus, the maximum number of MAC 
operations that can be performed in 
parallel. The number of PEs is dic-
tated by the area of the PE and the 
area cost of the system. If the area 
cost of the system is fixed, then in-
creasing the number of PEs requires 
either reducing the area per PE or 
trading off on-chip storage area for 
more PEs. Reducing on-chip storage, 
however, can affect the utilization of 
PEs, which we discuss next.

Reducing the area per PE can also 
be achieved by reducing the logic as-
sociated with delivering operands to a 
MAC. This can be achieved by control-
ling multiple MAC operations with a 
single piece of logic. This is analogous 
to the situation in instruction-based 
systems, such as CPUs and graphics 
processing units (GPUs), that reduce 
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instruction bookkeeping overhead 
by using large aggregate instructions 
(e.g., single-instruction, multiple-data 
(SIMD), vector instructions, single-in-
struction, multiple-threads (SIMT), or 
tensor instructions), where a single in-
struction can be used to initiate mul-
tiple operations.

The number of PEs and the peak 
throughput of a single PE indicate 
only the theoretical maximum 
throughput (i.e., peak performance) 
when all PEs are performing compu-
tation (100% utilization). In reality, 
the achievable throughput depends 
on the actual utilization of those PEs, 
which is affected by several factors 
as follows:

 

.

utilization of PEs

number of PEs
number of active PEs

utilization of active PEs#

=

 (3)

The first term reflects the abil-
ity to distribute the workload to PEs, 
while the second term reflects how 
efficiently those active PEs are pro-
cessing the workload. The number of 
active PEs is the number of PEs that 
receive work (the ratio of active PEs 
to the total number of PEs can be re-
ferred to as the active PE percentage); 
therefore, it is desirable to distribute 
the workload to as many PEs as possi-

ble. The ability to distribute the work-
load is determined by the flexibility 
of the architecture, for instance, the 
on-chip network, to support the dif-
ferent layer shapes in a DNN model as 
explored in [9] and [10].

Within the constraints of the on-
chip network, the number of active 
PEs is also determined by the specific 
allocation of work to PEs by the map-
ping process. The mapping process 
involves the placement and schedul-
ing in space and time of every MAC 
operation (including the delivery of 
the appropriate operands) onto the 
PEs. The mapper can be thought of 
as a compiler for the DNN processor 
[11]. The mapping process, on a layer-
by-layer basis, is explored in detail 
in [12]–[14]. Additional challenges re-
garding the flexibility of mapping are 
discussed in the “Energy Efficiency 
and Power Consumption” section.

The utilization of active PEs is 
largely dictated by the timely deliv-
ery of work to the PEs such that the 
active PEs do not become idle while 
waiting for the data to arrive. This 
can be affected by the bandwidth 
(BW) and latency of the (on-chip and 
off-chip) memory and network. The 
BW requirements can be affected by 
the amount of data reuse available 
in the DNN model and the amount 
of data reuse that can be exploited 

by the memory hierarchy and data-
flow. The dataflow determines the 
order of operations and where data 
are stored and reused. The amount 
of data reuse can also be increased 
using a larger batch size, which is 
one of the reasons that increasing 
batch size can increase throughput. 
The challenges of data delivery and 
memory BW are discussed in [14] and 
[15]. The utilization of active PEs can 
also be affected by the imbalance 
of work allocated across PEs, which 
may occur when exploiting sparsity 
(i.e., avoiding unnecessary work as-
sociated with multiplications by 
zero); PEs with less work become idle 
and, thus, have lower utilization.

There is also an interplay between 
the number of PEs and the utilization 
of PEs. For instance, one way to reduce 
the likelihood that a PE needs to wait 
for data is to store some data locally 
near or within the PE. However, this 
requires increasing the chip area 
allocated to on-chip storage, which, 
given a fixed chip area, would reduce 
the number of PEs. Therefore, a key 
design consideration is the area al-
location between compute (which 
increases the number of PEs) versus 
on-chip storage (which increases the 
utilization of PEs).

The impact of these factors can be 
captured using Eyexam, a systematic 
way of understanding the perfor-
mance limits for DNN processors as 
a function of specific characteristics 
of the DNN model and processor de-
sign. Eyexam includes and extends 
the well-known roofline model [16]. 
The roofline model, as illustrated in 
Figure 5, relates average BW demand 
and peak computational ability to 
performance.

The goal of Eyexam is to provide a 
fine-grained performance profile for 
a DNN processor. It is a sequential 
analysis process that involves seven 
major steps, as shown in Figure 6. The 
process starts with the assumption that 
the architecture has infinite processing 
parallelism, storage capacity, and data 
BW. Therefore, it has infinite perfor-
mance (as measured in MAC operations 
per cycle).
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FIGURE 5: The roofline model. The peak operations per second is indicated by the bold line; 
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workload.
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For each of the following steps, cer-
tain constraints are added to reflect 
changes in the assumptions on the 
DNN processor or workload. The asso-
ciated performance loss can, therefore, 
be attributed to that change, and the fi-
nal performance at one step becomes 
the upper bound for the next step.

 ■ Step 1 (layer shape and size): In 
this first step, we look at the im-
pact of the workload constraint so 
that there is all spatial (i.e., paral-
lel) processing and no temporal 
(i.e., serial) processing. Therefore, 
the performance upper bound is 
determined by the finite size of 
the workload (i.e., the number of 
MAC operations in the layer).

 ■ Step 2 (dataflow): In this step, we 
specify the dataflow, which deter-
mines the order of operations and 
where data are stored and reused, 
and examine the impact of this 
architectural constraint. Impos-
ing a dataflow forces a serializa-
tion of processing and reduces 
the performance upper bound, 
which is the maximum parallel-
ism of the dataflow.

 ■ Step 3 (number of PEs) : In this 
step, we restrict the system to a fi-
nite number of PEs and look at the 
impact of this architectural con-
straint. A finite number of PEs can 
degrade performance whenever 
there is more parallel work to do 
than that number of PEs. In addi-

tion, some of the PEs will be idle 
(i.e., reducing the number of active 
PEs) if the amount of work is not an 
integer multiple of the number of 
PEs (i.e., the work cannot be equal-
ly divided among the PEs).

 ■ Step 4 (physical dimensions of the 
PE array): In this step, we con-
sider the physical dimensions of 
the PE array and data delivery 
network (e.g., arranging 12 PEs as 
3 # 4, 2 # 6, 4 # 3, and so on). The 
spatial partitioning and associat-
ed on-chip network are often con-
strained per data type (e.g., input 
activation or filter weight), which 
can cause additional performance 
loss because the required data 
cannot be delivered to the PEs.

 ■ Step 5 (storage capacity): In this 
step, we consider the impact of 
making the buffer storage have  fi-
nite capacity. Lack of storage can 
limit parallelism when there is 
insufficient storage to hold inter-
mediate results and, thus, degrade 
performance.

 ■ Step 6 (data BW): In this step, we 
consider the impact of a finite BW 
for delivering data across the differ-
ent levels of  the memory hierarchy. 
The amount of data that needs to be 
transferred between each level of 
the memory hierarchy for each step 
of computation and the available 
data BW determine whether the PEs 
can be kept busy.

 ■ Step 7 (varying data access pat-
terns): In this step, we consider the 
impact of BW varying across time 
due to the dynamically changing 
data access patterns (step 6 ad-
dresses only average BW). This 
includes ramp-up time to initially 
load values and ramp-down time 
to drain values after completion.  
Many common solutions are avail-
able to address this issue, includ-
ing using double buffering, but 
these can increase the area or re-
duce the amount of reuse.
Table 2 summarizes the con-

straints applied at each step of the 
Eyexam process.

Up until this point, we have dis-
cussed how hardware design decisions 
impact performance (i.e., through-
put and latency). We now consider 
how the choice of DNN model can 
also have an effect. Specifically, 
while the number of operations per 
inference in (1) depends on the DNN 
model, the number of operations per 
second depends on both the DNN 
model and the hardware. Thus, de-
signing DNN models with efficient 
layer shapes (also referred to as effi-
cient network architectures, such as 
MobileNet [17]) can reduce the num-
ber of MAC operations in the DNN 
model and, consequently, the number 
of operations per inference.  However, 
such DNN models can result in a wide 
range of layer shapes, some of which 
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FIGURE 6: The impact of the Eyexam steps on the roofline model.
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may have poor utilization of PEs, and 
thus reduce the overall operations 
per second, as shown in (2).

A deeper consideration of the oper-
ations per second is that all operations 
are not created equal, so cycles per 
operation may not be constant. For 
example, if we consider the fact that 
anything multiplied by zero is zero, 
some MAC operations are ineffectual 
(i.e., they do not change the accumu-
lated value). The number of ineffec-
tual operations is a function of both 
the weights in the DNN model and the 
input data. These ineffectual MAC op-
erations can require fewer cycles or 
no cycles at all. Conversely, we need 
to process only effectual (or nonzero) 
MAC operations, where both inputs 
are nonzero; this is referred to as ex-
ploiting sparsity. Various hardware 
architectures have been proposed to 
exploit sparsity [18]–[20].

Processing only effectual MAC 
operations can increase the (total) op-
erations per second by increasing the 
(total) operations per cycle. (By total 
operations, we mean both effectual 
and ineffectual operations.) Ideally, 
the hardware would skip all ineffectual 
operations; however, in practice, de-
signing hardware to skip all ineffectual 
operations can be challenging and re-
sult in increased hardware complexity 
and overhead. For instance, it might be 
easier to design hardware that recog-
nizes zeros in only one of the operands 
(e.g., weights) rather than both. There-

fore, the ineffectual operations can be 
further divided into those that are ex-
ploited by the hardware (i.e., skipped) 
and those that are unexploited by the 
hardware (i.e., not skipped). The num-
ber of operations actually performed 
by the hardware is, therefore, the ef-
fectual operations plus unexploited 
ineffectual operations.

Equation (4) at the bottom of the 
page shows how operations per cycle 
can be decomposed into

 ■ the number of effectual operations 
plus unexploited ineffectual op-
erations per cycle, which remains 
somewhat constant for a given 
hardware architecture design

 ■ the ratio of effectual operations 
over effectual operations plus un-
exploited ineffectual operations, 
which refers to the ability of the 
hardware to exploit ineffectual op-
erations (ideally, unexploited inef-
fectual operations should be zero, 
and this ratio should be one)

 ■ the number of effectual operations 
out of (total) operations, which is 
related to the amount of sparsity 
and depends on the DNN model.

As the amount of sparsity increases [i.e., 
the number of effectual operations 
out of (total) operations decreases], 
the operations per cycle increases, as 
shown in (4); this subsequently increases 
operations per second, as shown in (2): 

However, exploiting sparsity re-
quires additional hardware to identify 
when inputs to the MAC are zero to 
avoid performing unnecessary MAC 
operations. The additional hardware 
can increase the critical path, which 
decreases cycles per second, and can 
also increase the area of the PE, which 
reduces the number of PEs for a given 
area. Both of these factors can reduce 
the operations per second, as shown 
in (2). Therefore, the complexity of 
the additional hardware can result in 
a tradeoff between reducing the num-
ber of unexploited ineffectual opera-
tions and increasing the critical path 
or reducing the number of PEs.

Finally, designing hardware and 
DNN models that support reduced 
precision (i.e., fewer bits per operand 
and per operation) can also increase 
the number of operations per second. 
Fewer bits per operand means that 

TABLE 2. A SUMMARY OF THE STEPS IN EYEXAM. 

STEP CONSTRAINT TYPE NEW PERFORMANCE BOUND REASON FOR PERFORMANCE LOSS 

1 Layer size and shape Workload Maximum workload parallelism Finite workload size 

2 Dataflow loop nest Architectural Maximum dataflow parallelism Restricted dataflows defined by loop nest 

3 Number of PEs Architectural Maximum PE parallelism Additional restriction to mappings due to 
shape fragmentation 

4 Physical dimensions 
of PE array 

Architectural Number of active PEs Additional restriction to mappings due to 
shape fragmentation for each dimension 

5 Fixed storage 
capacity 

Architectural Number of active PEs Additional restriction to mappings due 
to storage of intermediate data (depends 
on dataflow) 

6 Fixed data BW Microarchitectural Maximum data BW to active PEs Insufficient average BW to active PEs 

7 Varying data access 
patterns 

Microarchitectural Actual measured performance Insufficient instant BW to active PEs 

.
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the memory BW required to support 
a given operation is reduced, which 
can increase the utilization of the ac-
tive PEs since they are less likely to 
be starved for data. In addition, the 
area of each PE can be reduced, which 
can increase the number of PEs for a 
given area. Both of these factors can 
increase the operations per second, 
as shown in (2). Note, however, that 
if multiple levels of precision need to 
be supported, additional hardware 
is required [21]; this can, once again, 
increase the critical path and also 
increase the area of the PE, both of 
which can reduce the operations per 
second, as shown in (2).

In this section, we discussed mul-
tiple factors that affect the number of 
inferences per second. Table 3 classi-
fies whether the factors are dictated 
by the hardware, the DNN model, 
or both.

In summary, the number of MAC 
operations in the DNN model alone 
is not sufficient for evaluating the 
throughput and latency. While the 
DNN model can affect the number of 
MAC operations per inference based 
on the network architecture (i.e., layer 
shapes) and the sparsity of the weights 
and activations, the overall impact that 
the DNN model has on throughput and 
latency depends on the ability of the 
hardware to add support to recognize 
these approaches without significantly 
reducing the utilization of PEs, num-
ber of PEs, or cycles per second. This 
is why the number of MAC operations 
is not necessarily a good proxy for 
throughput and latency (see Figure 7), 

and it is often more effective to design 
efficient DNN models with hardware in 
the loop. Various works have proposed 
techniques for designing DNN models 
with hardware in the loop [22]–[25]. 

Similarly, the number of PEs in the 
hardware and their peak throughput 
are not sufficient for evaluating the 
throughput and latency. It is critical to 
report the actual runtime of the DNN 
models on the hardware to account 
for other effects, such as utilization of 
the PEs, as highlighted in (2). Ideally, 
this evaluation should be performed 
on clearly specified DNN models, for 
instance, those that are part of the ML-
Perf benchmarking suite. In addition, 
batch size should be reported in con-
junction with the throughput to evalu-
ate latency.

Energy Efficiency and 
 Power  Consumption
Energy efficiency indicates the 
amount of data that can be processed 
or the number of executions of a task 
that can be completed for a given 
unit of energy. High energy efficiency 
is important when processing DNNs 
at the edge in embedded devices with 
limited battery capacity (e.g., smart-
phones, smart sensors, robots, and 
wearables). Edge processing may be 
preferred over the cloud for certain 
applications due to latency, privacy, 
or communication BW limitations. 
Energy efficiency is often generically 
reported as the number of opera-
tions per joule. In the case of infer-
ence, energy efficiency is reported 
as inferences per joule and energy 

TABLE 3. THE CLASSIFICATION OF FACTORS THAT AFFECT INFERENCES PER SECOND.

FACTOR HARDWARE DNN MODEL INPUT DATA

Operations per inference ü

Operations per cycle ü

Cycles per second ü

Number of PEs ü

Number of active PEs ü ü

Utilization of active PEs ü ü

Effectual operations out of (total) operations ü ü

Effectual operations plus unexploited ineffectual operations per cycle ü

30

20

10

0
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y 
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s)

Similar Latency, 3× Range in Number of MACs

Similar Number of MACs,
2× Range in Latency

25 50 75 100 125 150 175
Number of MACs (Million)

FIGURE 7: The number of MAC operations in various DNN models versus latency measured 
on a Google Pixel phone. Clearly, the number of MAC operations is not a good predictor of 
latency. (Source: From [26].) 



36 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE 

consumption is reported as joules 
per inference.

Power consumption is used to indi-
cate the amount of energy consumed 
per unit time. Increased power con-
sumption results in increased heat 
dissipation; accordingly, the maxi-
mum power consumption is dictated 
by a design criterion typically called 
the thermal design power (TDP ), 
which is the power that the cooling 
system is designed to dissipate. Pow-
er consumption is important when 
processing DNNs in the cloud, as data 
centers have stringent power ceilings 
due to cooling costs; similarly, hand-
held and wearable devices also have 
tight power constraints since the user 
is often quite sensitive to heat and the 
form factor of the device limits the 
cooling mechanisms (e.g., no fans). 
Power consumption is typically re-
ported in watts or joules per second.

Power consumption in conjunc-
tion with energy efficiency limits the 
throughput as follows:

 
.

second
inferences Max second

joules

joule
inferences#

# c m
 

(5)

Therefore, if we can improve energy 
efficiency by increasing the number of 
inferences per joule, we can increase 
the number of inferences per second 
and, thus, the throughput of the sys-
tem. Several factors affect energy effi-
ciency. The number of inferences per 
joule can be decomposed into

 
joule

inferences
joule

operations

inference
operations

1 ,#

=

 (6)

where the number of operations per 
joule is dictated by both the hard-
ware and DNN model, while the 
number of operations per inference 
is dictated by the DNN model.

Various design considerations for 
the hardware will affect the energy 
per operation (i.e., joules per opera-
tion). The energy per operation can be 
broken down into the energy required 
to move the input and output data and 
the energy required to perform the 
MAC computation:

.Energy Energy Energytotal data MAC= +

 (7)

For each component, the joules 
per operation (here, an operation can 
be a MAC operation or a data move-
ment) is computed as

 operation
joules

,VC 2
DD# #a=  (8)

where C is the total switching capaci-
tance, VDD  is the supply voltage, and 
a  is the switching activity, which in-
dicates how often the capacitance 
is charged.

The energy consumption is dom-
inated by the data movement, as 
the capacitance for data movement 
tends to be much higher than the 
capacitance for arithmetic opera-
tions, such as a MAC (Figure 8). Fur-
thermore, the switching capacitance 
increases with the distance the data 
need to travel to reach the PE, which 
consists of the distance to get out 
of the memory where the data are 
stored and the distance to cross the 
network between the memory and 
the PE. Accordingly, larger memories 
and longer interconnects (e.g., off 
chip) tend to consume more energy 
than smaller and closer memories 
due to the capacitance of the long 
wires employed. To reduce the ener-
gy consumption of data movement, 
we can exploit data reuse, where the 
data are moved once from a distant 
large memory (e.g., off-chip DRAM) 
and reused for multiple operations 
from a local smaller memory (e.g., an 
on-chip buffer or scratchpad within 
the PE). Optimizing data movement is 
a major consideration in the design 
of DNN processors, as explored in 
[15] and [27]. In addition, advanced 
device and memory technologies 
can be used to reduce the switching 
capacitance between compute and 
memory, for instance, by enabling in-
memory computing [28], [29].

This raises the issue of the ap-
propriate scope over which energy 
efficiency and power consumption 
should be reported. Including the 
entire system (out to the fans and 
power supplies) is beyond the scope 
of this article. Conversely, ignoring 
off-chip memory accesses, which can 
vary greatly among chip designs, can 

Operation: Energy (pJ) 

8-b Add 0.03

16-b Add 0.05

32-b Add 0.1

16-b Floating Point Add 0.4

32-b Floating Point Add 0.9

8-b Multiply 0.2

32-b Multiply 3.1

16-b Floating Point Multiply 1.1

32-b Floating Point Multiply 3.7

32-b SRAM Read (8 kB) 5

32-b DRAM Read 640

Relative Energy Cost

1 10 102 103 104

FIGURE 8: The energy consumption for various arithmetic operations and memory accesses 
in a 45-nm process. The relative energy cost (computed relative to the 8-b add) is shown on a 
log scale. The energy consumption of data movement (red) is significantly higher than arith-
metic operations (blue). SRAM: static random-access memory. (Source: Adapted from [30].)
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easily result in a misleading percep-
tion of the efficiency of the system. 
Therefore, it is critical to report not 
only the energy efficiency and power 
consumption of the chip but also the 
energy efficiency and power con-
sumption of the off-chip memory 
(e.g., DRAM) or the amount of off-
chip accesses (e.g., DRAM accesses) 
if no specific memory technology is 
specified; for the latter, it can be re-
ported in terms of the total amount 
of data that is read and written off 
chip per inference.

Reducing the joules per MAC oper-
ation can be achieved by reducing the 
switching activity and/or capacitance 
at the circuit or microarchitecture 
level. This can also be achieved by 
reducing precision (e.g., reducing 
the bit width of the MAC operation), 
as shown in Figure 8. Note that the 
impact of reducing precision on accu-
racy must also be considered.

For instruction-based systems, such 
as CPUs and GPUs, this can also be 
achieved by reducing instruction book-
keeping overhead. For example, using 
large aggregate instructions (e.g., SIMD, 
vector instructions, SIMT, or tensor 
instructions), a single instruction can 
be used to initiate multiple operations.

Similar to the throughput metric 
discussed in the “Throughput and 
Latency” section, the number of op-
erations per inference depends on the 
DNN model; however, the operations 
per joules may be a function of the abil-
ity of the hardware to exploit sparsity 
to avoid performing ineffectual MAC 
operations. Equation (9) at the bottom 
of the page shows how operations per 
joule can be decomposed into

 ■ the number of effectual operations 
plus unexploited ineffectual op-
erations per joule, which remains 
somewhat constant for a given hard-
ware architecture design

 ■ the ratio of effectual operations 
over effectual operations plus un-
exploited ineffectual operations, 
which refers to the ability of the 
hardware to exploit ineffectual op-
erations (ideally, unexploited in-
effectual operations should be 
zero, and this ratio should be one)

 ■ the number of effectual opera-
tions out of (total) operations , 
which is related to the amount 
of sparsity and depends on the 
DNN model.
For hardware that can exploit 

sparsity, increasing the amount of 
sparsity [i.e., decreasing the number 
of effectual operations out of (total) 
operations] can increase the num-
ber of operations per joule, which, 
subsequently, increases inferences 
per joule, as shown in (6). While ex-
ploiting sparsity has the potential 
of increasing the number of (total) 
operations per joule, the additional 
hardware will decrease the effectual 
operations plus unexploited ineffec-
tual operations per joule. To achieve 
a net benefit, the decrease in ef-
fectual operations plus unexploited 
ineffectual operations per joule 
must be more than offset by the de-
crease of effectual operations out of 
(total) operations.

In summary, we want to emphasize 
that the number of MAC operations 
and weights in the DNN model are 
not sufficient for evaluating energy 
efficiency. From an energy perspec-
tive, all MAC operations or weights 
are not created equal. This is be-
cause the number of MAC operations 
and weights do not reflect where the 
data are accessed and how much the 
data are reused, both of which have a 
significant impact on the operations 
per joule. Therefore, the number of 
MAC operations and weights are not 
necessarily a good proxy for energy 
consumption, and it is often more ef-
fective to design efficient DNN mod-
els with hardware in the loop.

To evaluate the energy efficiency 
and power consumption of the en-
tire system, it is critical to report 
not only the energy efficiency and 

power consumption of the chip but 
also the energy efficiency and power 
consumption of the off-chip memory 
(e.g., DRAM) or the amount of off-chip 
accesses (e.g., DRAM accesses) if no 
specific memory technology is speci-
fied; for the latter, it can be reported 
in terms of the total amount of data 
that is read and written off-chip per 
inference. As with throughput and 
latency, the evaluation should be 
performed on clearly specified and, 
ideally, widely used DNN models. 
Various tools can be used to help 
with energy estimation, as shown 
in Figure 9.

Hardware Cost
To evaluate the desirability of a given 
architecture or technique, it is also 
important to consider the hardware 
cost of the design. Hardware cost is 
used to indicate the monetary cost to 
build a system.

There is also the cost associated 
with operating a system, such as the 
electricity bill and the cooling cost, 
which are primarily dictated by the 
energy efficiency and power consump-
tion, respectively. In addition, there is 
the cost associated with designing the 
system. The operating cost is covered 
by the “Energy Efficiency and Power 
Consumption” section, and we limited 
our coverage of the design cost to the 
fact that custom DNN processors have 
a higher design cost (after amortiza-
tion) than off-the-shelf CPUs and GPUs. 
We consider anything beyond this, e.g., 
the economics of the semiconductor 
business, including how to price plat-
forms, to be outside the scope of this 
article. Considering the hardware cost 
of the design is important from both 
an industry and a research perspec-
tive as it dictates whether a system is 
financially viable.

.
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From an industry perspective, the 
cost constraints are related to volume 
and market; for instance, embedded 
processors have much more strin-
gent cost limitations than processors 
in the cloud. One of the key factors 
that affects cost is the chip area (e.g., 
square millimeters) in conjunction 
with the process technology (e.g., 
45-nm CMOS), which constrains the 
amount of on-chip storage as well as 
amount of compute (e.g., the number 
of PEs for DNN processors, the num-
ber of cores for CPUs and GPUs, the 
number of digital signal processing 
(DSP) engines for field-programma-
ble gate arrays (FPGAs), and so on). 
To report information related to area 
without specifying a specific pro-
cess technology, one can report the 
amount of on-chip memory (e.g., the 
storage capacity of the global buffer) 
and compute (e.g., the number of PEs) 
as a proxy for area.

Another important factor is the 
amount of off-chip BW, which dic-
tates the cost and complexity of the 
packaging and printed circuit board 
(PCB) design [e.g., High Bandwidth 
Memory (HBM) [31] to connect to off-
chip DRAM, NVLink [38] to connect 
to other GPUs, and so on] as well as 
whether additional chip area is re-
quired for a transceiver to handle 

signal integrity at high speeds. The 
off-chip BW, which is typically re-
ported in gigabits per second and 
the number of ports, can be used as 
a proxy for packaging and PCB cost.

There is also an interplay between 
the costs attributable to the chip 
area and off-chip BW. For instance, 
increasing on-chip storage, which in-
creases chip area, can reduce off-chip 
BW. Accordingly, both metrics should 
be reported to provide perspective on 
the total cost of the system.

Of course, reducing cost alone is 
not the only objective. The design 
objective is, invariably, to maximize 
the throughput or energy efficiency 
for a given cost, specifically to maxi-
mize inferences per second per cost 
(e.g., U.S. dollars) and/or inferences 
per joule per cost. This is closely relat-
ed to the previously discussed prop-
erty of utilization; to be cost efficient, 
the design should aim to utilize every 
PE to increase inferences per second, 
since each PE increases the area and, 
thus, the cost of the chip; similarly, 
the design should aim to effectively 
utilize all of the on-chip storage to 
reduce off-chip BW or increase op-
erations per off-chip memory access 
as expressed by the roofline model 
(see Figure 5), as each byte of on-chip 
memory also increases cost.

Flexibility
The merit of a DNN processor is also 
a function of its flexibility, which 
refers to the range of DNN models 
that can be supported on the DNN 
processor and the ability of the soft-
ware environment (e.g., the mapper) 
to maximally exploit the capabilities 
of the hardware for any desired DNN 
model. Given the fast-moving pace 
of DNN research and deployment, it 
is increasingly important that DNN 
processors  support a wide range of 
DNN models and tasks.

We can define support in two tiers. 
The first tier requires only that the 
hardware needs to be able to func-
tionally support different DNN mod-
els (i.e., the DNN model can run on the 
hardware). The second tier requires 
that the hardware also maintain ef-
ficiency (i.e., high throughput and 
energy efficiency) across different 
DNN models.

To maintain efficiency, the hard-
ware should not rely on certain prop-
erties of the DNN models to achieve 
efficiency, as the properties of DNN 
models are diverse and evolving 
rapidly. For instance, a DNN proces-
sor that can efficiently support the 
case where the entire DNN model 
(i.e., all of the weights) fits on chip 
may perform extremely poorly when 
the DNN model grows larger, which 
is likely, given that the size of DNN 
models continues to increase over 
time; a more flexible processor would 
be able to efficiently handle a wide 
range of DNN models, even those that 
exceed on-chip memory.

The degree of flexibility provided 
by a DNN processor presents a com-
plex tradeoff with processor cost. 
Specifically, additional hardware 
usually needs to be added to flexibly 
support a wider range of workloads 
and/or improve their throughput 
and energy efficiency. Thus, the 
design objective is to reduce the 
overhead (e.g., area cost and energy 
consumption) of supporting flex-
ibility while maintaining efficiency 
across the wide range of DNN mod-
els. Therefore, evaluating flexibility 
would entail ensuring that the extra 

Problem
Specification/Shape

(DNN Model)

Architecture 
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Implementation
Description

Timeloop
(DNN Mapping Tool:
Map Space Creation,

Search, Performance Model)

Accelergy
(Energy Estimator Tool)

Energy
Estimation
Plug-In 0

Energy
Estimation
Plug-In 1

. . .

Energy
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FIGURE 9: Timeloop [13] with the integration of Accelergy [34] as an energy estimation 
model. Timeloop sends projected action counts for a mapping to Accelergy and receives an 
energy estimation to guide its search. Accelergy plug-ins allow for the customization of com-
ponent energy estimation. These tools are available at http://accelergy.mit.edu/tutorial.html. 
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hardware is a net benefit across mul-
tiple workloads.

Flexibility has become increas-
ingly important when we factor in 
the many techniques being applied 
to the DNN models with the promise 
to make them more efficient, since 
they increase the diversity of work-
loads that need to be supported. 
These techniques include DNNs with 
different network architectures (i.e., 
different layer shapes, which impact 
the amount of required storage and 
compute and the available data reuse 
that can be exploited), different lev-
els of precision (i.e., different num-
bers of bits across layers and data 
types), and different degrees of spar-
sity (i.e., the number of zeros in the 
data).  There are also different types 
of DNN layers and computations be-
yond MAC operations (e.g., activation 
functions) that need to be supported.

Actually getting a performance or 
efficiency benefit from these tech-
niques invariably requires additional 
hardware. Again, it is important that 
the overhead of the additional hard-
ware does not exceed the benefits 
of these techniques. This encourag-
es a hardware and DNN model code-
sign approach.

To date, exploiting the flexibility 
of DNN hardware has relied on map-
ping processes that act like static 
per-layer compilers. As the field moves 
to DNN models that change dynami-
cally, mapping processes will need 
to dynamically adapt at runtime to 
changes in the DNN model or input 
data while still maximally exploiting 
the flexibility of the hardware to im-
prove efficiency.

In summary, to assess the flex-
ibility of DNN processors, their ef-
ficiency (e.g., inferences per second, 
inferences per joule) should be evalu-
ated on a wide range of DNN models. 
The MLPerf benchmarking workloads 
are a good start; however, additional 
workloads may be needed to repre-
sent efficient techniques, such as ef-
ficient network architectures, as well 
as reduced precision and sparsity. 
The workloads should match the de-
sired application. Ideally, since there 

can be many possible combinations, 
it would also be beneficial to define 
the range and limits of DNN models 
that can be efficiently supported on 
a given platform (e.g., the maximum 
number of weights per filter or DNN 
model; minimum amount of sparsity; 
required structure of the sparsity; 
levels of precision, such as 8, 4, 2, 
or 1 b; types of layers and activation 
functions; and so on).

Scalability
Scalability has become increasingly 
important due to the wide use cases 
for DNNs. This is demonstrated by 
emerging technologies employed 
not just for scaling up the size of the 
chip but also for building systems 
with multiple chips (often referred 
to as chiplets) [32] or even wafer-
scale chips [33]. Scalability refers to 
how well a design can be scaled up 
to achieve higher performance 
(i.e., latency and throughput) and 
energy efficiency when increasing 
the amount of resources (e.g., the 
number of PEs and on-chip storage). 
This evaluation is done under the 
assumption that the system does 
not have to be significantly rede-
signed (e.g., the design only needs 
to be replicated), since major design 
changes can be expensive in terms 
of time and cost. Ideally, a scalable 
design can be used for low-cost em-
bedded devices and high-perfor-
mance devices in the cloud simply 
by scaling up the resources.

Ideally, the performance would 
scale linearly and proportionally with 
the number of PEs. When the prob-
lem size (e.g., the batch size) is held 
constant, this is referred to as strong 
scaling and is the more challenging 
type of scaling. On the other hand, 
scaling performance while allowing 
the problem size to increase (e.g., by 
increasing batch size) is called weak 
scaling and is also an important ob-
jective in some situations.

Similarly, the energy efficiency 
would also improve with more on-
chip storage; however, this would 
likely be nonlinear (e.g., increasing 
the on-chip storage such that the en-

tire DNN model fits on chip would 
result in an abrupt improvement in 
energy efficiency). In practice, this is 
often challenging due to factors, such 
as the reduced utilization of PEs and 
the increased cost of data movement 
due to long-distance interconnects.

Scalability can be connected with 
cost efficiency by considering how 
inferences per second per cost and 
inferences per joule per cost change 
with scale. For instance, if through-
put increases linearly with the num-
ber of PEs (with proportional scaling 
of all storage), then the inferences per 
second per cost could be constant. It 
is also possible for the inferences per 
second per cost to improve superlin-
early with an increasing number of 
PEs due to increased sharing of data 
across PEs. On the other hand, infer-
ences per joule per cost might re-
main constant or even improve as a 
consequence of more sharing of data 
by multiple PEs.

In summary, to understand the 
scalability of a DNN processor de-
sign, it is important to report its per-
formance and efficiency metrics as 
the number of PEs and storage capac-
ity increase. This may include how 
well the design might handle tech-
nologies used for scaling up, such as 
interchip interconnect.

Interplay Among  
Different Metrics
It is important that all metrics be 
accounted for to fairly evaluate the 
design tradeoffs. For instance, with-
out the accuracy given for a specific 
data set and task, one could run a 
simple DNN model and easily claim 
low power, high throughput, and low 
cost—however, the processor might 
not be usable for a meaningful task. 
Alternatively, without reporting 
the off-chip BW, one could build a 
processor with only MACs and eas-
ily claim low cost, high throughput, 
high accuracy, and low chip power—
however, when evaluating system 
power, the off-chip memory access 
would be substantial. Finally, the 
test setup should also be reported, 
including whether the results are 
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measured or obtained from simu-
lation and how many images were 
tested. If obtained from simulation, 
it should be clarified whether it was 
after synthesis or place-and-route 
and which library corner (e.g., pro-
cess corner, supply voltage, temper-
ature) was used.

Clearly, there are many important 
metrics to consider when designing 
DNN processors. At the same time, 
the design space for DNN processors 
is very large. As a result, it would 
be helpful to have the ability to rap-
idly explore the design space early 
in the design process and accurately 
estimate the various metrics for the 
proposed designs. An accurate esti-
mation requires proper consideration 
of how the properties of the hard-
ware, such as mapping, and proper-
ties of the workload, such as DNN 
model shape, precision, and sparsity, 
impact metrics, such as throughput 
and energy efficiency. One example 
toolset that allows one to perform 
rapid exploration and evaluation is 
the combination of Timeloop [13] and 
Accelergy [34], as depicted in Figure 9. 
Both tools accept a template-based 
specification of a proposed archi-
tecture, and, given a DNN model de-
scription, Timeloop searches for an 
optimal mapping using an analytical 
performance model and generates ac-
tivity counts that allow Accelergy to 
generate architecture-level energy es-
timates (all before a detailed register-
transfer-level (RTL) description of the 
design is available). Accelergy also ac-
cepts component energy costs, which 
is especially useful for understanding 
the impact of new technologies [35].

Summary
In this article, we presented the 
various key metrics for evaluating 
DNN processors, discussed the im-
portance of each metric and their 
interrelationships, and, where ap-
propriate, included equations that 
can be used to tease apart the factors 
that contribute to those metrics. We 
also showed how those metrics are 
related to both the hardware design 
and the DNN models and highlight-

ed why hardware/model codesign 
is important. Finally, given those 
metrics, the evaluation process for 
whether a DNN system is a viable so-
lution for a given application might 
go as follows.

 ■ The accuracy determines if the 
system can perform the given task.

 ■ The latency and throughput de-
termine whether it can run fast 
enough and in real time.

 ■ The energy and power consump-
tion primarily dictate the form 
factor of the device where the 
processing can operate.

 ■ The cost, which is primarily dic-
tated by the chip area and external 
memory BW requirements, deter-
mines how much one would pay 
for the solution.

 ■ The flexibility determines the range 
of tasks it can support.

 ■ The scalability determines wheth-
er the same design effort can be 
amortized for deployment in mul-
tiple domains (e.g., in the cloud 
and at the edge) and if the sys-
tem can efficiently be scaled with 
DNN model size.
Portions of this article are based 

on our book, Efficient Processing of 
Deep Neural Network [36]. This ex-
cerpt has described various metrics 
that are important for evaluating 
DNN processors. The remainder of 
the book expands on how to design 
DNN processors and DNN models 
that optimize for these metrics.
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