
1943-0582/20©2020IEEE28 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

significant amount
of specia l ized
hardware has been
developed for pro-

cessing deep neural
networks (DNNs) in both academia and
industry. This article aims to highlight
the key concepts required to evaluate
and compare these DNN processors.
We discuss existing challenges, such
as the flexibility and scalability need-
ed to support a wide range of neural
networks, as well as design consider-
ations for both the DNN processors
and the DNN models themselves. We
also describe specific metrics that can
be used to evaluate and compare ex-
isting solutions beyond the commonly
used tera-operations per second per
watt (TOPS/W). This article is based on
the tutorial “How to Understand and
Evaluate Deep Learning Processors”
that was given at the 2020 Interna-

tional Solid-State Circuits Conference,
as well as excerpts from the book, Ef-
ficient Processing of Deep Neural Net-
works [36].

Motivation and Background
Over the past few years, there has
been a significant amount of research
on enabling the efficient processing
of DNNs. The challenge of efficient
DNN processing depends on balanc-
ing multiple objectives:
■ high performance (including ac-

curacy) and efficiency (including
cost)

■ enough flexibility to cater to a
wide and rapidly changing range
of workloads

■ good integration with existing
software frameworks.
DNN computations are composed

of several processing layers (Fig-
ure 1), where, for many layers, the
main computation is a weighted sum;
in other words, the main computa-
tion for DNN processing is often a

multiply–accumulate (MAC) opera-
tion. The arrangement of the MAC
operations within a layer is defined
by the layer shape; for instance,
Table 1 and Figure 2 highlight the
shape parameters for layers used
in convolutional neural networks
(CNNs), a popular type of DNN. Be-
cause the shape parameters can vary
across layers, DNNs come in a wide
variety of shapes and sizes, depend-
ing on the application. (The DNN re-
search community often refers to the
shape and size of a DNN as its net-
work architecture. However, to avoid
confusion with the use of the word
architecture by the hardware com-
munity, we talk about DNN models
and their shape and size in this ar-
ticle.) This variety is one of the mo-
tivations for flexibility, and it causes
the objectives listed previously to be
highly interrelated.

Figure 3 illustrates the hardware
architecture of a typical DNN proces-
sor, which is composed of an array

Digital Object Identifier 10.1109/MSSC.2020.3002140

Date of current version: 25 August 2020

A
TOPS/W (alone) Considered Harmful

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer

How to
Evaluate Deep Neural
Network Processors

ISSCC 2020 Tutorial

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 29

of processing elements (PEs), where
each PE contains MAC units to per-
form the computation (and, optional-
ly, some local storage) and an inter-PE
communication network. The entire
PE array is also connected via an on-
chip network to a large global buffer,
which, in turn, is connected off chip
to DRAM. DNN processor designs
tend to vary in terms of the number
of PEs, number of levels in the mem-
ory hierarchy, amount of storage
at each level, and how the PEs and
memory are connected through the
on-chip network.

Given the combination of such
hardware and the associated DNN
models, it is important to discuss the
key metrics that should be consid-
ered when comparing and evaluating
the strengths and weaknesses of dif-
ferent designs. They also can be used
to evaluate proposed techniques and
should be incorporated into design
considerations. While efficiency is
often associated with only the number
of operations per second per watt [e.g.,
floating-point operations per second
per watt (FLOPS/W) or TOPS/W], it
is actually composed of many more
metrics, including accuracy, through-
put, latency, energy consumption,
power consumption, cost, flexibility,
and scalability. (Note that TOPS/W effi-
ciency is typically reported at, and often
along with, the peak performance in
TOPS, which gives the maximum effi-
ciency since it assumes maximum utili-
zation and thus maximum amortization
of overhead. However, this does not tell
the complete story because processors
typically do not operate at their peak
TOPS and their efficiency degrades at
lower utilization. It is a well-known chal-
lenge to achieve energy-proportional
computing, where the efficiency stays
constant across performance [37].) Re-
porting a comprehensive set of these
metrics is important to provide a com-
plete picture of the tradeoffs made by a
proposed design or technique.

In this article, we
 ■ discuss the importance of each of

these metrics
 ■ break down the factors that affect

each metric and, when feasible,

TABLE 1. THE SHAPE PARAMETERS FOR THE LAYERS USED IN DNNS.

SHAPE
PARAMETER DESCRIPTION

N Batch size of 3D feature map

M Number of 3D filters/number of channels of output feature
map (output channels)

C Number of channels of filter/input feature map (input
channels)

H/W Spatial height/width of input feature map

R/S Spatial height/width of filter

P/Q Spatial height/width of output feature map

Low-Level Features High-Level Features

Input:
Image

Output:
“Volvo XC90”

FIGURE 1: An example of image classification using a DNN. The DNN is composed of multiple
layers, and the number of layers is referred to as the depth of the network. Note that the
extracted features go from low level to high level as we go deeper into the network. (Source:
Adapted from [1].)

R

R
H

H
P

M

C

C C

C

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..

.
..
.

..

.

S

S

W

W

Q

1 1 1

P

M ..
.

..
.

..
.

.
Q

N

Filters

Input
Feature Maps

Output
Feature Maps

..
.

..
...

. ..
.

..
.

..
.

M

N

FIGURE 2: The shape parameters of the layers used in CNNs.

30 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

present equations that describe
the relationship between the fac-
tors and the metrics

 ■ describe how these metrics can be
incorporated into design consid-
erations for both the DNN hard-
ware and the DNN model

 ■ specify what should be reported
for a given metric to enable proper
evaluation.
Finally, we highlight tools that can

be used to evaluate some of these
metrics early in the design process
(to enable rapid design exploration)
and provide a case study on how
one might bring all of these metrics
together for a holistic evaluation of
a given approach. First, however, we
discuss each of the metrics.

Accuracy
Accuracy indicates the quality of the
result for a given task. The fact that

DNNs can achieve state-of-the-art ac-
curacy on a wide range of tasks is one
of the key reasons driving their popu-
larity and wide use today. The units
used to measure accuracy depend on
the task. For instance, for image clas-
sification, accuracy is reported as the
percentage of correctly classified
images, while, for object detection,
accuracy is reported as the mean aver-
age precision, which is related to the
tradeoff between true positives, false
positives, and false negatives.

Factors that affect accuracy include
the difficulty of the task and data
set. (Ideally, robustness and fairness
should be considered in conjunction
with accuracy, as there is also an inter-
play between these factors; however,
these are areas of ongoing research
and beyond the scope of this article.)
For instance, classification on the Ima-
geNet data set [2] is much more dif-

ficult than on the MNIST data set [3]
(Figure 4), and object detection is usu-
ally more difficult than classification.
As a result, a DNN model that performs
well on MNIST may not necessarily per-
form well on ImageNet. Achieving high
accuracy on difficult tasks or data sets
typically requires more complex DNN
models (e.g., a larger number of MAC
operations and more distinct weights,
increased diversity in layer shapes,
and so on), which can impact how ef-
ficiently the hardware can process the
DNN model.

Accuracy should, therefore, be
interpreted in the context of the dif-
ficulty of the task and data set. (As
an analogy, getting nine out of 10 an-
swers correct on a high school exam
is different than nine out of 10 an-
swers correct on a college-level exam.
One must look beyond the score and
consider the difficulty of the exam.)
Evaluating hardware using well-stud-
ied, widely used DNN models, tasks,
and data sets can allow one to better
interpret the significance of the accu-
racy metric.

Recently, motivated by the impact
of the SPEC benchmarks for general
purpose computing [4], several indus-
try and academic organizations have
put together a broad suite of models,
called MLPerf, to serve as a common
set of well-studied DNN models to
evaluate the performance and enable
fair comparison of various software
frameworks, hardware architectures,
and cloud platforms for both training

D
R

A
M

G
lo

ba
l B

uf
fe

r

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

FIGURE 3: The typical hardware architecture of a DNN processor.

(a) (b)

FIGURE 4: The (a) MNIST data set (10 classes, 60,000 training, and 10,000 testing) [3] versus the (b) ImageNet data set (1,000 classes,
1.3 million training, and 100,000 testing) [2].

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 31

and inference of DNNs [5]. (Earlier DNN
benchmarking efforts, including Deep-
Bench [6] and Fathom [7], have now
been subsumed by MLPerf.) The suite
comprises various types of DNNs (e.g.,
CNNs, recurrent neural networks, and
so on) for a variety of tasks, including
image classification, object identi-
fication, translation, speech to text,
recommendation, sentiment analysis,
and reinforcement learning.

Throughput and Latency
Throughput is used to indicate the
amount of data that can be processed or
the number of executions of a task that
can be completed in a given time peri-
od. High throughput is often critical to
an application. For instance, processing
video at 30 frames/s is often necessary
to deliver real-time performance. For
data analytics, high throughput means
that more data can be analyzed in a
given amount of time. As the amount
of visual data is growing exponentially,
high-throughput big data analytics
becomes increasingly important, par-
ticularly if an action needs to be taken
based on the analysis (e.g., security or
terrorist prevention, medical diagnosis,
or drug discovery). Throughput is often
generically reported as the number of
operations per second. In the case of
inference, throughput is reported as in-
ferences per second.

Latency measures the time between
the input data’s arrival to a system and
the generation of the result. Low laten-
cy is necessary for real-time interac-
tive applications, such as augmented
reality, autonomous navigation, and
robotics. Latency is typically reported
in seconds per inference.

Throughput and latency are often
assumed to be directly derivable from
one another. However, they are actually
quite distinct. A prime example of this
is the well-known approach of batching
input data (e.g., batching multiple im-
ages or frames together for processing)
to increase throughput since batching
amortizes overhead such as loading
the weights; however, batching also
increases latency (e.g., at 30 frames/s
and a batch of 100 frames, some
frames will experience at least a 3.3-s

delay), which is not acceptable for real-
time applications such as high-speed
navigation, where it would reduce the
time available for course correction.

Thus, achieving low latency and
high throughput simultaneously can
sometimes be at odds depending
on the approach, and both metrics
should be reported. The phenomenon
described here can also be understood
using Little’s law [8] from queuing
theory, where the average throughput
and average latency are related by the
average number of tasks in flight, as
defined by:

.=throughput
latency

tasks-in-flight

A DNN-centric version of Little’s law
would have throughput measured
in inferences per second, latency
measured in seconds, and infer-
ences in flight (as the tasks-in-flight
equivalent) measured in terms of
the number of images in a batch be-
ing processed simultaneously. This
helps to explain why increasing the
number of inferences in flight to
increase throughput may be coun-
terproductive: some techniques
that increase the number of infer-
ences in flight (e.g., batching) also
increase latency.

Several factors affect throughput
and latency. In terms of throughput,
the number of inferences per second
is affected by

second

inferences
second

operations

inference
operations

1 ,#

=

 (1)

where the number of operations per
second is dictated by both the DNN
hardware and DNN model, while the
number of operations per inference
is dictated by the DNN model.

When considering a system com-
prising multiple PEs, where a PE cor-
responds to a simple or primitive
core that performs a single MAC op-
eration, the number of operations per
second can be further decomposed
as follows:

.

second
operations

operation
cycles

1
second
cycles

number of PEs

utilization of PEs

#

#

#

= f p

(2)

The first term reflects the peak
throughput of a single PE, the second
term reflects the amount of parallel-
ism, and the last term reflects deg-
radation due to the inability of the
architecture to effectively utilize the
PEs. Since the main operation for pro-
cessing DNNs is a MAC operation, we
use the terms number of operations
and number of MAC operations inter-
changeably.

One can increase the peak through-
put of a single PE by increasing the
number of cycles per second, which
corresponds to a higher clock frequen-
cy achieved by reducing the critical
path at the circuit or microarchitec-
tural level; alternatively, one can also
reduce the number of cycles per op-
eration, which can be affected by the
design of the MAC (e.g., a bit-serial,
multicycle MAC would have more cy-
cles per operation).

While these approaches increase
the throughput of a single PE, the
overall throughput can be increased
by increasing the number of PEs and,
thus, the maximum number of MAC
operations that can be performed in
parallel. The number of PEs is dic-
tated by the area of the PE and the
area cost of the system. If the area
cost of the system is fixed, then in-
creasing the number of PEs requires
either reducing the area per PE or
trading off on-chip storage area for
more PEs. Reducing on-chip storage,
however, can affect the utilization of
PEs, which we discuss next.

Reducing the area per PE can also
be achieved by reducing the logic as-
sociated with delivering operands to a
MAC. This can be achieved by control-
ling multiple MAC operations with a
single piece of logic. This is analogous
to the situation in instruction-based
systems, such as CPUs and graphics
processing units (GPUs), that reduce

32 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

instruction bookkeeping overhead
by using large aggregate instructions
(e.g., single-instruction, multiple-data
(SIMD), vector instructions, single-in-
struction, multiple-threads (SIMT), or
tensor instructions), where a single in-
struction can be used to initiate mul-
tiple operations.

The number of PEs and the peak
throughput of a single PE indicate
only the theoretical maximum
throughput (i.e., peak performance)
when all PEs are performing compu-
tation (100% utilization). In reality,
the achievable throughput depends
on the actual utilization of those PEs,
which is affected by several factors
as follows:

.

utilization of PEs

number of PEs
number of active PEs

utilization of active PEs#

=

 (3)

The first term reflects the abil-
ity to distribute the workload to PEs,
while the second term reflects how
efficiently those active PEs are pro-
cessing the workload. The number of
active PEs is the number of PEs that
receive work (the ratio of active PEs
to the total number of PEs can be re-
ferred to as the active PE percentage);
therefore, it is desirable to distribute
the workload to as many PEs as possi-

ble. The ability to distribute the work-
load is determined by the flexibility
of the architecture, for instance, the
on-chip network, to support the dif-
ferent layer shapes in a DNN model as
explored in [9] and [10].

Within the constraints of the on-
chip network, the number of active
PEs is also determined by the specific
allocation of work to PEs by the map-
ping process. The mapping process
involves the placement and schedul-
ing in space and time of every MAC
operation (including the delivery of
the appropriate operands) onto the
PEs. The mapper can be thought of
as a compiler for the DNN processor
[11]. The mapping process, on a layer-
by-layer basis, is explored in detail
in [12]–[14]. Additional challenges re-
garding the flexibility of mapping are
discussed in the “Energy Efficiency
and Power Consumption” section.

The utilization of active PEs is
largely dictated by the timely deliv-
ery of work to the PEs such that the
active PEs do not become idle while
waiting for the data to arrive. This
can be affected by the bandwidth
(BW) and latency of the (on-chip and
off-chip) memory and network. The
BW requirements can be affected by
the amount of data reuse available
in the DNN model and the amount
of data reuse that can be exploited

by the memory hierarchy and data-
flow. The dataflow determines the
order of operations and where data
are stored and reused. The amount
of data reuse can also be increased
using a larger batch size, which is
one of the reasons that increasing
batch size can increase throughput.
The challenges of data delivery and
memory BW are discussed in [14] and
[15]. The utilization of active PEs can
also be affected by the imbalance
of work allocated across PEs, which
may occur when exploiting sparsity
(i.e., avoiding unnecessary work as-
sociated with multiplications by
zero); PEs with less work become idle
and, thus, have lower utilization.

There is also an interplay between
the number of PEs and the utilization
of PEs. For instance, one way to reduce
the likelihood that a PE needs to wait
for data is to store some data locally
near or within the PE. However, this
requires increasing the chip area
allocated to on-chip storage, which,
given a fixed chip area, would reduce
the number of PEs. Therefore, a key
design consideration is the area al-
location between compute (which
increases the number of PEs) versus
on-chip storage (which increases the
utilization of PEs).

The impact of these factors can be
captured using Eyexam, a systematic
way of understanding the perfor-
mance limits for DNN processors as
a function of specific characteristics
of the DNN model and processor de-
sign. Eyexam includes and extends
the well-known roofline model [16].
The roofline model, as illustrated in
Figure 5, relates average BW demand
and peak computational ability to
performance.

The goal of Eyexam is to provide a
fine-grained performance profile for
a DNN processor. It is a sequential
analysis process that involves seven
major steps, as shown in Figure 6. The
process starts with the assumption that
the architecture has infinite processing
parallelism, storage capacity, and data
BW. Therefore, it has infinite perfor-
mance (as measured in MAC operations
per cycle).

P
er

fo
rm

an
ce

 (
O

pe
ra

tio
ns

/s
)

Operational Intensity
(Operations/Byte)

Inflection Point

Slope = BW

Peak
Performance

Optimal
Operational

Intensity

Computation
Limited

BW
Limited

FIGURE 5: The roofline model. The peak operations per second is indicated by the bold line;
when the operation intensity (dictated by the amount of compute per byte of data) is low,
the operations per second is limited by the data delivery. The design goal is to operate as
closely as possible to the peak operations per second for the operation intensity of a given
workload.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 33

For each of the following steps, cer-
tain constraints are added to reflect
changes in the assumptions on the
DNN processor or workload. The asso-
ciated performance loss can, therefore,
be attributed to that change, and the fi-
nal performance at one step becomes
the upper bound for the next step.

 ■ Step 1 (layer shape and size): In
this first step, we look at the im-
pact of the workload constraint so
that there is all spatial (i.e., paral-
lel) processing and no temporal
(i.e., serial) processing. Therefore,
the performance upper bound is
determined by the finite size of
the workload (i.e., the number of
MAC operations in the layer).

 ■ Step 2 (dataflow): In this step, we
specify the dataflow, which deter-
mines the order of operations and
where data are stored and reused,
and examine the impact of this
architectural constraint. Impos-
ing a dataflow forces a serializa-
tion of processing and reduces
the performance upper bound,
which is the maximum parallel-
ism of the dataflow.

 ■ Step 3 (number of PEs) : In this
step, we restrict the system to a fi-
nite number of PEs and look at the
impact of this architectural con-
straint. A finite number of PEs can
degrade performance whenever
there is more parallel work to do
than that number of PEs. In addi-

tion, some of the PEs will be idle
(i.e., reducing the number of active
PEs) if the amount of work is not an
integer multiple of the number of
PEs (i.e., the work cannot be equal-
ly divided among the PEs).

 ■ Step 4 (physical dimensions of the
PE array): In this step, we con-
sider the physical dimensions of
the PE array and data delivery
network (e.g., arranging 12 PEs as
3 # 4, 2 # 6, 4 # 3, and so on). The
spatial partitioning and associat-
ed on-chip network are often con-
strained per data type (e.g., input
activation or filter weight), which
can cause additional performance
loss because the required data
cannot be delivered to the PEs.

 ■ Step 5 (storage capacity): In this
step, we consider the impact of
making the buffer storage have fi-
nite capacity. Lack of storage can
limit parallelism when there is
insufficient storage to hold inter-
mediate results and, thus, degrade
performance.

 ■ Step 6 (data BW): In this step, we
consider the impact of a finite BW
for delivering data across the differ-
ent levels of the memory hierarchy.
The amount of data that needs to be
transferred between each level of
the memory hierarchy for each step
of computation and the available
data BW determine whether the PEs
can be kept busy.

 ■ Step 7 (varying data access pat-
terns): In this step, we consider the
impact of BW varying across time
due to the dynamically changing
data access patterns (step 6 ad-
dresses only average BW). This
includes ramp-up time to initially
load values and ramp-down time
to drain values after completion.
Many common solutions are avail-
able to address this issue, includ-
ing using double buffering, but
these can increase the area or re-
duce the amount of reuse.
Table 2 summarizes the con-

straints applied at each step of the
Eyexam process.

Up until this point, we have dis-
cussed how hardware design decisions
impact performance (i.e., through-
put and latency). We now consider
how the choice of DNN model can
also have an effect. Specifically,
while the number of operations per
inference in (1) depends on the DNN
model, the number of operations per
second depends on both the DNN
model and the hardware. Thus, de-
signing DNN models with efficient
layer shapes (also referred to as effi-
cient network architectures, such as
MobileNet [17]) can reduce the num-
ber of MAC operations in the DNN
model and, consequently, the number
of operations per inference. However,
such DNN models can result in a wide
range of layer shapes, some of which

(MAC/Cycle)

(MAC/Data)

Step 1: Maximum Workload Parallelism

Step 2: Maximum Dataflow Parallelism

Step 3: Number of Active PEs Under a Finite PE Array Size

Number of PEs

Step 4: Number of Active PEs Under Fixed PE Array Dimensions

P
ea

k
P

er
fo

rm
an

ce

Step 5: Number of Active PEs Under Fixed Storage Capacity

Workload
Operational Intensity

Step 6: Lower Active PE Utilization Due to Insufficient Average BW

Step 7: Lower Active PE Utilization Due to Insufficient Instantaneous BW

Slope = BW to Only Active PE

FIGURE 6: The impact of the Eyexam steps on the roofline model.

34 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

may have poor utilization of PEs, and
thus reduce the overall operations
per second, as shown in (2).

A deeper consideration of the oper-
ations per second is that all operations
are not created equal, so cycles per
operation may not be constant. For
example, if we consider the fact that
anything multiplied by zero is zero,
some MAC operations are ineffectual
(i.e., they do not change the accumu-
lated value). The number of ineffec-
tual operations is a function of both
the weights in the DNN model and the
input data. These ineffectual MAC op-
erations can require fewer cycles or
no cycles at all. Conversely, we need
to process only effectual (or nonzero)
MAC operations, where both inputs
are nonzero; this is referred to as ex-
ploiting sparsity. Various hardware
architectures have been proposed to
exploit sparsity [18]–[20].

Processing only effectual MAC
operations can increase the (total) op-
erations per second by increasing the
(total) operations per cycle. (By total
operations, we mean both effectual
and ineffectual operations.) Ideally,
the hardware would skip all ineffectual
operations; however, in practice, de-
signing hardware to skip all ineffectual
operations can be challenging and re-
sult in increased hardware complexity
and overhead. For instance, it might be
easier to design hardware that recog-
nizes zeros in only one of the operands
(e.g., weights) rather than both. There-

fore, the ineffectual operations can be
further divided into those that are ex-
ploited by the hardware (i.e., skipped)
and those that are unexploited by the
hardware (i.e., not skipped). The num-
ber of operations actually performed
by the hardware is, therefore, the ef-
fectual operations plus unexploited
ineffectual operations.

Equation (4) at the bottom of the
page shows how operations per cycle
can be decomposed into

 ■ the number of effectual operations
plus unexploited ineffectual op-
erations per cycle, which remains
somewhat constant for a given
hardware architecture design

 ■ the ratio of effectual operations
over effectual operations plus un-
exploited ineffectual operations,
which refers to the ability of the
hardware to exploit ineffectual op-
erations (ideally, unexploited inef-
fectual operations should be zero,
and this ratio should be one)

 ■ the number of effectual operations
out of (total) operations, which is
related to the amount of sparsity
and depends on the DNN model.

As the amount of sparsity increases [i.e.,
the number of effectual operations
out of (total) operations decreases],
the operations per cycle increases, as
shown in (4); this subsequently increases
operations per second, as shown in (2):

However, exploiting sparsity re-
quires additional hardware to identify
when inputs to the MAC are zero to
avoid performing unnecessary MAC
operations. The additional hardware
can increase the critical path, which
decreases cycles per second, and can
also increase the area of the PE, which
reduces the number of PEs for a given
area. Both of these factors can reduce
the operations per second, as shown
in (2). Therefore, the complexity of
the additional hardware can result in
a tradeoff between reducing the num-
ber of unexploited ineffectual opera-
tions and increasing the critical path
or reducing the number of PEs.

Finally, designing hardware and
DNN models that support reduced
precision (i.e., fewer bits per operand
and per operation) can also increase
the number of operations per second.
Fewer bits per operand means that

TABLE 2. A SUMMARY OF THE STEPS IN EYEXAM.

STEP CONSTRAINT TYPE NEW PERFORMANCE BOUND REASON FOR PERFORMANCE LOSS

1 Layer size and shape Workload Maximum workload parallelism Finite workload size

2 Dataflow loop nest Architectural Maximum dataflow parallelism Restricted dataflows defined by loop nest

3 Number of PEs Architectural Maximum PE parallelism Additional restriction to mappings due to
shape fragmentation

4 Physical dimensions
of PE array

Architectural Number of active PEs Additional restriction to mappings due to
shape fragmentation for each dimension

5 Fixed storage
capacity

Architectural Number of active PEs Additional restriction to mappings due
to storage of intermediate data (depends
on dataflow)

6 Fixed data BW Microarchitectural Maximum data BW to active PEs Insufficient average BW to active PEs

7 Varying data access
patterns

Microarchitectural Actual measured performance Insufficient instant BW to active PEs

.

cycle
operations

cycle
effectual operations unexploited ineffectual operations

effectual operations unexploited ineffectual operations
effectual operations

operations
effectual operations

1

#

#

=
+

+

(4)

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 35

the memory BW required to support
a given operation is reduced, which
can increase the utilization of the ac-
tive PEs since they are less likely to
be starved for data. In addition, the
area of each PE can be reduced, which
can increase the number of PEs for a
given area. Both of these factors can
increase the operations per second,
as shown in (2). Note, however, that
if multiple levels of precision need to
be supported, additional hardware
is required [21]; this can, once again,
increase the critical path and also
increase the area of the PE, both of
which can reduce the operations per
second, as shown in (2).

In this section, we discussed mul-
tiple factors that affect the number of
inferences per second. Table 3 classi-
fies whether the factors are dictated
by the hardware, the DNN model,
or both.

In summary, the number of MAC
operations in the DNN model alone
is not sufficient for evaluating the
throughput and latency. While the
DNN model can affect the number of
MAC operations per inference based
on the network architecture (i.e., layer
shapes) and the sparsity of the weights
and activations, the overall impact that
the DNN model has on throughput and
latency depends on the ability of the
hardware to add support to recognize
these approaches without significantly
reducing the utilization of PEs, num-
ber of PEs, or cycles per second. This
is why the number of MAC operations
is not necessarily a good proxy for
throughput and latency (see Figure 7),

and it is often more effective to design
efficient DNN models with hardware in
the loop. Various works have proposed
techniques for designing DNN models
with hardware in the loop [22]–[25].

Similarly, the number of PEs in the
hardware and their peak throughput
are not sufficient for evaluating the
throughput and latency. It is critical to
report the actual runtime of the DNN
models on the hardware to account
for other effects, such as utilization of
the PEs, as highlighted in (2). Ideally,
this evaluation should be performed
on clearly specified DNN models, for
instance, those that are part of the ML-
Perf benchmarking suite. In addition,
batch size should be reported in con-
junction with the throughput to evalu-
ate latency.

Energy Efficiency and
 Power Consumption
Energy efficiency indicates the
amount of data that can be processed
or the number of executions of a task
that can be completed for a given
unit of energy. High energy efficiency
is important when processing DNNs
at the edge in embedded devices with
limited battery capacity (e.g., smart-
phones, smart sensors, robots, and
wearables). Edge processing may be
preferred over the cloud for certain
applications due to latency, privacy,
or communication BW limitations.
Energy efficiency is often generically
reported as the number of opera-
tions per joule. In the case of infer-
ence, energy efficiency is reported
as inferences per joule and energy

TABLE 3. THE CLASSIFICATION OF FACTORS THAT AFFECT INFERENCES PER SECOND.

FACTOR HARDWARE DNN MODEL INPUT DATA

Operations per inference ü

Operations per cycle ü

Cycles per second ü

Number of PEs ü

Number of active PEs ü ü

Utilization of active PEs ü ü

Effectual operations out of (total) operations ü ü

Effectual operations plus unexploited ineffectual operations per cycle ü

30

20

10

0

La
te

nc
y

(m
s)

Similar Latency, 3× Range in Number of MACs

Similar Number of MACs,
2× Range in Latency

25 50 75 100 125 150 175
Number of MACs (Million)

FIGURE 7: The number of MAC operations in various DNN models versus latency measured
on a Google Pixel phone. Clearly, the number of MAC operations is not a good predictor of
latency. (Source: From [26].)

36 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

consumption is reported as joules
per inference.

Power consumption is used to indi-
cate the amount of energy consumed
per unit time. Increased power con-
sumption results in increased heat
dissipation; accordingly, the maxi-
mum power consumption is dictated
by a design criterion typically called
the thermal design power (TDP),
which is the power that the cooling
system is designed to dissipate. Pow-
er consumption is important when
processing DNNs in the cloud, as data
centers have stringent power ceilings
due to cooling costs; similarly, hand-
held and wearable devices also have
tight power constraints since the user
is often quite sensitive to heat and the
form factor of the device limits the
cooling mechanisms (e.g., no fans).
Power consumption is typically re-
ported in watts or joules per second.

Power consumption in conjunc-
tion with energy efficiency limits the
throughput as follows:

.

second
inferences Max second

joules

joule
inferences#

c m

(5)

Therefore, if we can improve energy
efficiency by increasing the number of
inferences per joule, we can increase
the number of inferences per second
and, thus, the throughput of the sys-
tem. Several factors affect energy effi-
ciency. The number of inferences per
joule can be decomposed into

joule

inferences
joule

operations

inference
operations

1 ,#

=

 (6)

where the number of operations per
joule is dictated by both the hard-
ware and DNN model, while the
number of operations per inference
is dictated by the DNN model.

Various design considerations for
the hardware will affect the energy
per operation (i.e., joules per opera-
tion). The energy per operation can be
broken down into the energy required
to move the input and output data and
the energy required to perform the
MAC computation:

.Energy Energy Energytotal data MAC= +

 (7)

For each component, the joules
per operation (here, an operation can
be a MAC operation or a data move-
ment) is computed as

 operation
joules

,VC 2
DD# #a= (8)

where C is the total switching capaci-
tance, VDD is the supply voltage, and
a is the switching activity, which in-
dicates how often the capacitance
is charged.

The energy consumption is dom-
inated by the data movement, as
the capacitance for data movement
tends to be much higher than the
capacitance for arithmetic opera-
tions, such as a MAC (Figure 8). Fur-
thermore, the switching capacitance
increases with the distance the data
need to travel to reach the PE, which
consists of the distance to get out
of the memory where the data are
stored and the distance to cross the
network between the memory and
the PE. Accordingly, larger memories
and longer interconnects (e.g., off
chip) tend to consume more energy
than smaller and closer memories
due to the capacitance of the long
wires employed. To reduce the ener-
gy consumption of data movement,
we can exploit data reuse, where the
data are moved once from a distant
large memory (e.g., off-chip DRAM)
and reused for multiple operations
from a local smaller memory (e.g., an
on-chip buffer or scratchpad within
the PE). Optimizing data movement is
a major consideration in the design
of DNN processors, as explored in
[15] and [27]. In addition, advanced
device and memory technologies
can be used to reduce the switching
capacitance between compute and
memory, for instance, by enabling in-
memory computing [28], [29].

This raises the issue of the ap-
propriate scope over which energy
efficiency and power consumption
should be reported. Including the
entire system (out to the fans and
power supplies) is beyond the scope
of this article. Conversely, ignoring
off-chip memory accesses, which can
vary greatly among chip designs, can

Operation: Energy (pJ)

8-b Add 0.03

16-b Add 0.05

32-b Add 0.1

16-b Floating Point Add 0.4

32-b Floating Point Add 0.9

8-b Multiply 0.2

32-b Multiply 3.1

16-b Floating Point Multiply 1.1

32-b Floating Point Multiply 3.7

32-b SRAM Read (8 kB) 5

32-b DRAM Read 640

Relative Energy Cost

1 10 102 103 104

FIGURE 8: The energy consumption for various arithmetic operations and memory accesses
in a 45-nm process. The relative energy cost (computed relative to the 8-b add) is shown on a
log scale. The energy consumption of data movement (red) is significantly higher than arith-
metic operations (blue). SRAM: static random-access memory. (Source: Adapted from [30].)

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 37

easily result in a misleading percep-
tion of the efficiency of the system.
Therefore, it is critical to report not
only the energy efficiency and power
consumption of the chip but also the
energy efficiency and power con-
sumption of the off-chip memory
(e.g., DRAM) or the amount of off-
chip accesses (e.g., DRAM accesses)
if no specific memory technology is
specified; for the latter, it can be re-
ported in terms of the total amount
of data that is read and written off
chip per inference.

Reducing the joules per MAC oper-
ation can be achieved by reducing the
switching activity and/or capacitance
at the circuit or microarchitecture
level. This can also be achieved by
reducing precision (e.g., reducing
the bit width of the MAC operation),
as shown in Figure 8. Note that the
impact of reducing precision on accu-
racy must also be considered.

For instruction-based systems, such
as CPUs and GPUs, this can also be
achieved by reducing instruction book-
keeping overhead. For example, using
large aggregate instructions (e.g., SIMD,
vector instructions, SIMT, or tensor
instructions), a single instruction can
be used to initiate multiple operations.

Similar to the throughput metric
discussed in the “Throughput and
Latency” section, the number of op-
erations per inference depends on the
DNN model; however, the operations
per joules may be a function of the abil-
ity of the hardware to exploit sparsity
to avoid performing ineffectual MAC
operations. Equation (9) at the bottom
of the page shows how operations per
joule can be decomposed into

 ■ the number of effectual operations
plus unexploited ineffectual op-
erations per joule, which remains
somewhat constant for a given hard-
ware architecture design

 ■ the ratio of effectual operations
over effectual operations plus un-
exploited ineffectual operations,
which refers to the ability of the
hardware to exploit ineffectual op-
erations (ideally, unexploited in-
effectual operations should be
zero, and this ratio should be one)

 ■ the number of effectual opera-
tions out of (total) operations ,
which is related to the amount
of sparsity and depends on the
DNN model.
For hardware that can exploit

sparsity, increasing the amount of
sparsity [i.e., decreasing the number
of effectual operations out of (total)
operations] can increase the num-
ber of operations per joule, which,
subsequently, increases inferences
per joule, as shown in (6). While ex-
ploiting sparsity has the potential
of increasing the number of (total)
operations per joule, the additional
hardware will decrease the effectual
operations plus unexploited ineffec-
tual operations per joule. To achieve
a net benefit, the decrease in ef-
fectual operations plus unexploited
ineffectual operations per joule
must be more than offset by the de-
crease of effectual operations out of
(total) operations.

In summary, we want to emphasize
that the number of MAC operations
and weights in the DNN model are
not sufficient for evaluating energy
efficiency. From an energy perspec-
tive, all MAC operations or weights
are not created equal. This is be-
cause the number of MAC operations
and weights do not reflect where the
data are accessed and how much the
data are reused, both of which have a
significant impact on the operations
per joule. Therefore, the number of
MAC operations and weights are not
necessarily a good proxy for energy
consumption, and it is often more ef-
fective to design efficient DNN mod-
els with hardware in the loop.

To evaluate the energy efficiency
and power consumption of the en-
tire system, it is critical to report
not only the energy efficiency and

power consumption of the chip but
also the energy efficiency and power
consumption of the off-chip memory
(e.g., DRAM) or the amount of off-chip
accesses (e.g., DRAM accesses) if no
specific memory technology is speci-
fied; for the latter, it can be reported
in terms of the total amount of data
that is read and written off-chip per
inference. As with throughput and
latency, the evaluation should be
performed on clearly specified and,
ideally, widely used DNN models.
Various tools can be used to help
with energy estimation, as shown
in Figure 9.

Hardware Cost
To evaluate the desirability of a given
architecture or technique, it is also
important to consider the hardware
cost of the design. Hardware cost is
used to indicate the monetary cost to
build a system.

There is also the cost associated
with operating a system, such as the
electricity bill and the cooling cost,
which are primarily dictated by the
energy efficiency and power consump-
tion, respectively. In addition, there is
the cost associated with designing the
system. The operating cost is covered
by the “Energy Efficiency and Power
Consumption” section, and we limited
our coverage of the design cost to the
fact that custom DNN processors have
a higher design cost (after amortiza-
tion) than off-the-shelf CPUs and GPUs.
We consider anything beyond this, e.g.,
the economics of the semiconductor
business, including how to price plat-
forms, to be outside the scope of this
article. Considering the hardware cost
of the design is important from both
an industry and a research perspec-
tive as it dictates whether a system is
financially viable.

.

joule
operations

joule
effectual operations unexploited ineffectual operations

effectual operations unexploited ineffectual operations
effectual operations

operations
effectual operations

1

#

#

=
+

+

(9)

38 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

From an industry perspective, the
cost constraints are related to volume
and market; for instance, embedded
processors have much more strin-
gent cost limitations than processors
in the cloud. One of the key factors
that affects cost is the chip area (e.g.,
square millimeters) in conjunction
with the process technology (e.g.,
45-nm CMOS), which constrains the
amount of on-chip storage as well as
amount of compute (e.g., the number
of PEs for DNN processors, the num-
ber of cores for CPUs and GPUs, the
number of digital signal processing
(DSP) engines for field-programma-
ble gate arrays (FPGAs), and so on).
To report information related to area
without specifying a specific pro-
cess technology, one can report the
amount of on-chip memory (e.g., the
storage capacity of the global buffer)
and compute (e.g., the number of PEs)
as a proxy for area.

Another important factor is the
amount of off-chip BW, which dic-
tates the cost and complexity of the
packaging and printed circuit board
(PCB) design [e.g., High Bandwidth
Memory (HBM) [31] to connect to off-
chip DRAM, NVLink [38] to connect
to other GPUs, and so on] as well as
whether additional chip area is re-
quired for a transceiver to handle

signal integrity at high speeds. The
off-chip BW, which is typically re-
ported in gigabits per second and
the number of ports, can be used as
a proxy for packaging and PCB cost.

There is also an interplay between
the costs attributable to the chip
area and off-chip BW. For instance,
increasing on-chip storage, which in-
creases chip area, can reduce off-chip
BW. Accordingly, both metrics should
be reported to provide perspective on
the total cost of the system.

Of course, reducing cost alone is
not the only objective. The design
objective is, invariably, to maximize
the throughput or energy efficiency
for a given cost, specifically to maxi-
mize inferences per second per cost
(e.g., U.S. dollars) and/or inferences
per joule per cost. This is closely relat-
ed to the previously discussed prop-
erty of utilization; to be cost efficient,
the design should aim to utilize every
PE to increase inferences per second,
since each PE increases the area and,
thus, the cost of the chip; similarly,
the design should aim to effectively
utilize all of the on-chip storage to
reduce off-chip BW or increase op-
erations per off-chip memory access
as expressed by the roofline model
(see Figure 5), as each byte of on-chip
memory also increases cost.

Flexibility
The merit of a DNN processor is also
a function of its flexibility, which
refers to the range of DNN models
that can be supported on the DNN
processor and the ability of the soft-
ware environment (e.g., the mapper)
to maximally exploit the capabilities
of the hardware for any desired DNN
model. Given the fast-moving pace
of DNN research and deployment, it
is increasingly important that DNN
processors support a wide range of
DNN models and tasks.

We can define support in two tiers.
The first tier requires only that the
hardware needs to be able to func-
tionally support different DNN mod-
els (i.e., the DNN model can run on the
hardware). The second tier requires
that the hardware also maintain ef-
ficiency (i.e., high throughput and
energy efficiency) across different
DNN models.

To maintain efficiency, the hard-
ware should not rely on certain prop-
erties of the DNN models to achieve
efficiency, as the properties of DNN
models are diverse and evolving
rapidly. For instance, a DNN proces-
sor that can efficiently support the
case where the entire DNN model
(i.e., all of the weights) fits on chip
may perform extremely poorly when
the DNN model grows larger, which
is likely, given that the size of DNN
models continues to increase over
time; a more flexible processor would
be able to efficiently handle a wide
range of DNN models, even those that
exceed on-chip memory.

The degree of flexibility provided
by a DNN processor presents a com-
plex tradeoff with processor cost.
Specifically, additional hardware
usually needs to be added to flexibly
support a wider range of workloads
and/or improve their throughput
and energy efficiency. Thus, the
design objective is to reduce the
overhead (e.g., area cost and energy
consumption) of supporting flex-
ibility while maintaining efficiency
across the wide range of DNN mod-
els. Therefore, evaluating flexibility
would entail ensuring that the extra

Problem
Specification/Shape

(DNN Model)

Architecture
and

Implementation
Description

Timeloop
(DNN Mapping Tool:
Map Space Creation,

Search, Performance Model)

Accelergy
(Energy Estimator Tool)

Energy
Estimation
Plug-In 0

Energy
Estimation
Plug-In 1

. . .

Energy
Estimation

Action
Counts

FIGURE 9: Timeloop [13] with the integration of Accelergy [34] as an energy estimation
model. Timeloop sends projected action counts for a mapping to Accelergy and receives an
energy estimation to guide its search. Accelergy plug-ins allow for the customization of com-
ponent energy estimation. These tools are available at http://accelergy.mit.edu/tutorial.html.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 39

hardware is a net benefit across mul-
tiple workloads.

Flexibility has become increas-
ingly important when we factor in
the many techniques being applied
to the DNN models with the promise
to make them more efficient, since
they increase the diversity of work-
loads that need to be supported.
These techniques include DNNs with
different network architectures (i.e.,
different layer shapes, which impact
the amount of required storage and
compute and the available data reuse
that can be exploited), different lev-
els of precision (i.e., different num-
bers of bits across layers and data
types), and different degrees of spar-
sity (i.e., the number of zeros in the
data). There are also different types
of DNN layers and computations be-
yond MAC operations (e.g., activation
functions) that need to be supported.

Actually getting a performance or
efficiency benefit from these tech-
niques invariably requires additional
hardware. Again, it is important that
the overhead of the additional hard-
ware does not exceed the benefits
of these techniques. This encourag-
es a hardware and DNN model code-
sign approach.

To date, exploiting the flexibility
of DNN hardware has relied on map-
ping processes that act like static
per-layer compilers. As the field moves
to DNN models that change dynami-
cally, mapping processes will need
to dynamically adapt at runtime to
changes in the DNN model or input
data while still maximally exploiting
the flexibility of the hardware to im-
prove efficiency.

In summary, to assess the flex-
ibility of DNN processors, their ef-
ficiency (e.g., inferences per second,
inferences per joule) should be evalu-
ated on a wide range of DNN models.
The MLPerf benchmarking workloads
are a good start; however, additional
workloads may be needed to repre-
sent efficient techniques, such as ef-
ficient network architectures, as well
as reduced precision and sparsity.
The workloads should match the de-
sired application. Ideally, since there

can be many possible combinations,
it would also be beneficial to define
the range and limits of DNN models
that can be efficiently supported on
a given platform (e.g., the maximum
number of weights per filter or DNN
model; minimum amount of sparsity;
required structure of the sparsity;
levels of precision, such as 8, 4, 2,
or 1 b; types of layers and activation
functions; and so on).

Scalability
Scalability has become increasingly
important due to the wide use cases
for DNNs. This is demonstrated by
emerging technologies employed
not just for scaling up the size of the
chip but also for building systems
with multiple chips (often referred
to as chiplets) [32] or even wafer-
scale chips [33]. Scalability refers to
how well a design can be scaled up
to achieve higher performance
(i.e., latency and throughput) and
energy efficiency when increasing
the amount of resources (e.g., the
number of PEs and on-chip storage).
This evaluation is done under the
assumption that the system does
not have to be significantly rede-
signed (e.g., the design only needs
to be replicated), since major design
changes can be expensive in terms
of time and cost. Ideally, a scalable
design can be used for low-cost em-
bedded devices and high-perfor-
mance devices in the cloud simply
by scaling up the resources.

Ideally, the performance would
scale linearly and proportionally with
the number of PEs. When the prob-
lem size (e.g., the batch size) is held
constant, this is referred to as strong
scaling and is the more challenging
type of scaling. On the other hand,
scaling performance while allowing
the problem size to increase (e.g., by
increasing batch size) is called weak
scaling and is also an important ob-
jective in some situations.

Similarly, the energy efficiency
would also improve with more on-
chip storage; however, this would
likely be nonlinear (e.g., increasing
the on-chip storage such that the en-

tire DNN model fits on chip would
result in an abrupt improvement in
energy efficiency). In practice, this is
often challenging due to factors, such
as the reduced utilization of PEs and
the increased cost of data movement
due to long-distance interconnects.

Scalability can be connected with
cost efficiency by considering how
inferences per second per cost and
inferences per joule per cost change
with scale. For instance, if through-
put increases linearly with the num-
ber of PEs (with proportional scaling
of all storage), then the inferences per
second per cost could be constant. It
is also possible for the inferences per
second per cost to improve superlin-
early with an increasing number of
PEs due to increased sharing of data
across PEs. On the other hand, infer-
ences per joule per cost might re-
main constant or even improve as a
consequence of more sharing of data
by multiple PEs.

In summary, to understand the
scalability of a DNN processor de-
sign, it is important to report its per-
formance and efficiency metrics as
the number of PEs and storage capac-
ity increase. This may include how
well the design might handle tech-
nologies used for scaling up, such as
interchip interconnect.

Interplay Among
Different Metrics
It is important that all metrics be
accounted for to fairly evaluate the
design tradeoffs. For instance, with-
out the accuracy given for a specific
data set and task, one could run a
simple DNN model and easily claim
low power, high throughput, and low
cost—however, the processor might
not be usable for a meaningful task.
Alternatively, without reporting
the off-chip BW, one could build a
processor with only MACs and eas-
ily claim low cost, high throughput,
high accuracy, and low chip power—
however, when evaluating system
power, the off-chip memory access
would be substantial. Finally, the
test setup should also be reported,
including whether the results are

40 SUMMER 2020 IEEE SOLID-STATE CIRCUITS MAGAZINE

measured or obtained from simu-
lation and how many images were
tested. If obtained from simulation,
it should be clarified whether it was
after synthesis or place-and-route
and which library corner (e.g., pro-
cess corner, supply voltage, temper-
ature) was used.

Clearly, there are many important
metrics to consider when designing
DNN processors. At the same time,
the design space for DNN processors
is very large. As a result, it would
be helpful to have the ability to rap-
idly explore the design space early
in the design process and accurately
estimate the various metrics for the
proposed designs. An accurate esti-
mation requires proper consideration
of how the properties of the hard-
ware, such as mapping, and proper-
ties of the workload, such as DNN
model shape, precision, and sparsity,
impact metrics, such as throughput
and energy efficiency. One example
toolset that allows one to perform
rapid exploration and evaluation is
the combination of Timeloop [13] and
Accelergy [34], as depicted in Figure 9.
Both tools accept a template-based
specification of a proposed archi-
tecture, and, given a DNN model de-
scription, Timeloop searches for an
optimal mapping using an analytical
performance model and generates ac-
tivity counts that allow Accelergy to
generate architecture-level energy es-
timates (all before a detailed register-
transfer-level (RTL) description of the
design is available). Accelergy also ac-
cepts component energy costs, which
is especially useful for understanding
the impact of new technologies [35].

Summary
In this article, we presented the
various key metrics for evaluating
DNN processors, discussed the im-
portance of each metric and their
interrelationships, and, where ap-
propriate, included equations that
can be used to tease apart the factors
that contribute to those metrics. We
also showed how those metrics are
related to both the hardware design
and the DNN models and highlight-

ed why hardware/model codesign
is important. Finally, given those
metrics, the evaluation process for
whether a DNN system is a viable so-
lution for a given application might
go as follows.

 ■ The accuracy determines if the
system can perform the given task.

 ■ The latency and throughput de-
termine whether it can run fast
enough and in real time.

 ■ The energy and power consump-
tion primarily dictate the form
factor of the device where the
processing can operate.

 ■ The cost, which is primarily dic-
tated by the chip area and external
memory BW requirements, deter-
mines how much one would pay
for the solution.

 ■ The flexibility determines the range
of tasks it can support.

 ■ The scalability determines wheth-
er the same design effort can be
amortized for deployment in mul-
tiple domains (e.g., in the cloud
and at the edge) and if the sys-
tem can efficiently be scaled with
DNN model size.
Portions of this article are based

on our book, Efficient Processing of
Deep Neural Network [36]. This ex-
cerpt has described various metrics
that are important for evaluating
DNN processors. The remainder of
the book expands on how to design
DNN processors and DNN models
that optimize for these metrics.

Acknowledgments
This work was funded in part by
DARPA YFA, DARPA contract HR0011-
18-3-0007, the MIT Center for Inte-
grated Circuits and Systems (CICS),
the MIT-IBM Watson AI Lab, the MIT
Quest for Intelligence, NSF E2CDA
1639921, and gifts/faculty awards
from Nvidia, Facebook, Google, In-
tel, and Qualcomm.

References
[1] H. Lee, R. Grosse, R. Ranganath, and A. Y.

Ng, “Unsupervised learning of hierarchi-
cal representations with convolutional
deep belief networks,” Commun. ACM,
vol. 54, no. 10, pp. 95–103, 2011. doi:
10.1145/2001269.2001295.

[2] O. Russakovsky et al., “ImageNet large
scale visual recognition challenge,” Int. J.

Comput. Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015. doi: 10.1007/s11263-015-
0816-y.

[3] Y. LeCun, C. Cortes, and C. J. C. Burges,
“The MNIST database of handwritten
digits.” Accessed on: July 2020. [Online].
Available: http://yann.lecun.com/exdb/
mnist/

[4] Standard Performance Evaluation Corpo-
ration (SPEC). Accessed on: July 2020. [On-
line]. Available: https://www.spec.org/

[5] MLPref. Accessed on: July 2020. [Online].
Available: https://mlperf.org/

[6] “DeepBench,” GitHub. [Online]. Accessed
on: July 2020. Available: https://github
.com/baidu-research/DeepBench

[7] R. Adolf, S. Rama, B. Reagen, G.-Y. Wei,
and D. Brooks, “Fathom: Reference work-
loads for modern deep learning meth-
ods,” in Proc. Int. Symp. Workload Char-
acterization (IISWC), 2016. doi: 10.1109/
IISWC.2016.7581275.

[8] J. D. Little, “A proof for the queuing formula:
L = m w,” Oper. Res., vol. 9, no. 3, pp. 383–387,
1961. doi: 10.1287/opre.9.3.383.

[9] Y.-H. Chen, T.-J. Yang, J. Emer, and V. Sze,
“Eyeriss v2: A flexible accelerator for
emerging deep neural networks on mo-
bile devices,” IEEE J. Emerg. Sel. Topics Cir-
cuits Syst., vol. 9, no. 2, pp. 292–308, 2019.
doi: 10.1109/JETCAS.2019.2910232.

[10] H. Kwon, A. Samajdar, and T. Krishna,
“MAERI: Enabling flexible dataflow map-
ping over DNN accelerators via recon-
figurable interconnects,” in Proc. Archi-
tectural Support Programming Languages
and Operating Systems (ASPLOS), 2018, pp.
461–475. doi: 10.1145/3173162.3173176.

[11] Y.-H. Chen, J. Emer, and V. Sze, “Using
dataflow to optimize energy efficiency of
deep neural network accelerators,” IEEE
Micro., vol. 37, no. 3, pp. 12–21, May–June
2017. doi: 10.1109/MM.2017.54.

[12] Y.-H. Chen, T. Krishna, J. Emer, and V. Sze,
“Eyeriss: An energy-efficient reconfigu-
rable accelerator for deep convolutional
neural networks,” IEEE J. Solid-State Cir-
cuits, vol. 51, no. 1, pp. 127–138, 2017. doi:
10.1109/JSSC.2016.2616357.

[13] A. Parashar et al., “Timeloop: A systematic
approach to DNN accelerator evaluation,”
in Proc. Int. Symp. Performance Analysis
Systems and Software (ISPASS), 2019, pp.
304–315. doi: 10.1109/ISPASS.2019.00042.

[14] H. Kwon, P. Chatarasi, M. Pellauer, A. Para-
shar, V. Sarkar, and T. Krishna, “Under-
standing reuse, performance, and hard-
ware cost of DNN dataflow: A data-centric
approach,” in Proc. Int. Symp. Microarchi-
tecture (MICRO), 2019, pp. 754–768. doi:
10.1145/3352460.3358252.

[15] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss:
A spatial architecture for energy-efficient
dataflow for convolutional neural net-
works,” in Proc. Int. Symp. Computer Ar-
chitecture (ISCA), 2016, pp. 367–379. doi:
10.1109/ISCA.2016.40.

[16] S. Williams, A. Waterman, and D. Pat-
terson, “Roofline: An insightful visual
performance model for multicore ar-
chitectures,” Commun. ACM, vol. 52, no.
4, pp. 65–76, Apr. 2009. doi: 10.1145/
1498765.1498785.

[17] A. G. Howard et al., Mobilenets: Efficient
convolutional neural networks for mobile
vision applications. 2017. [Online]. Avail-
able: arXiv:1704.04861

[18] J. Albericio, P. Judd, T. Hetherington, T.
Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-neuron-free deep
neural network computing,” in Proc. Int.
Symp. Computer Architecture (ISCA), 2016,
pp. 1–13. doi: 10.1109/ISCA.2016.11.

 IEEE SOLID-STATE CIRCUITS MAGAZINE SUMMER 2020 41

[19] S. Han et al., “EIE: Efficient inference
engine on compressed deep neural net-
work,” in Proc. Int. Symp. Computer Archi-
tecture (ISCA), 2016. doi: 10.1145/3007787.
3001163.

[20] A. Parashar et al., “SCNN: An accelera-
tor for compressed-sparse convolutional
neural networks,” in Proc. Int. Symp. Com-
puter Architecture (ISCA), 2017, pp. 27–40.
doi: 10.1145/3079856.3080254.

[21] V. Camus, L. Mei, C. Enz, and M. Verhelst,
“Review and benchmarking of precision-
scalable multiply-accumulate unit archi-
tectures for embedded neural-network
processing,” IEEE J. Emerg. Select. Topics
Circuits Syst., vol. 9, no. 4, pp. 697–711,
2019. doi: 10.1109/JETCAS.2019.2950386.

[22] T.-J. Yang, Y.-H. Chen, and V. Sze, “Design-
ing energy-efficient convolutional neural
networks using energy-aware pruning,” in
Proc. Conf. Computer Vision and Pattern
Recognition (CVPR), 2017, pp. 6071–6079.
doi: 10.1109/CVPR.2017.643.

[23] T.-J. Yang et al., “NetAdapt: Platform-aware
neural network adaptation for mobile ap-
plications,” in Proc. European Conf. Com-
puter Vision (ECCV), 2018, pp. 289–304.
doi: 10.1007/978-3-030-01249-6_18.

[24] M. Tan et al., “MnasNet: Platform-aware
neural architecture search for mobile,” in
Proc. Conf. Computer Vision and Pattern
Recognition (CVPR), 2019, pp. 2815–2823.
doi: 10.1109/CVPR.2019.00293.

[25] T.-J. Yang and V. Sze, “Design consider-
ations for efficient deep neural networks
on processing-in-memory accelerators,”
in Proc. Int. Electron Devices Meeting
(IEDM), 2019, pp. 22.1–22.4. doi: 10.1109/
IEDM19573.2019.8993662.

[26] B. Chen and J. M. Gilbert, “Introducing the
CVPR 2018 On-device Visual Intelligence
Challenge Google AI blog,” Apr. 20, 2018.
[Online]. Available: https://ai.googleblog
.com/2018/04/introducing-cvpr-2018-on-
device-visual.html

[27] M. Gao, J. Pu, X. Yang, M. Horowitz, and
C. Kozyrakis, “TETRIS: Scalable and ef-
ficient neural network acceleration with
3D memory,” in Proc. Architectural Sup-
port Programming Languages and Operat-
ing Systems (ASPLOS), 2017. doi: 10.1145/
3037697.3037702.

[28] S. Yu, “Neuro-inspired computing with
emerging nonvolatile memory,” Proc.
IEEE, vol. 106, no. 2, pp. 260–285, 2018.
doi: 10.1109/JPROC.2018.2790840.

[29] N. Verma et al., “In-memory computing:
Advances and prospects,” IEEE Solid State
Circuits Mag., vol. 11, no. 3, pp. 43–55,
2019. doi: 10.1109/MSSC.2019.2922889.

[30] M. Horowitz, “Computing’s energy prob-
lem (and what we can do about it),” in Proc.
Int. Solid-State Circuits Conf. (ISSCC), 2014,
pp. 1–4. doi: 10.1109/ISSCC.2014.6757323.

[31] High Bandwidth Memory (HBM) DRAM,
JESD235, 2013.

[32] Y. S. Shao et al., “Simba: Scaling deep-learn-
ing inference with multi-chip-module-
based architecture,” in Proc. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), 2019,
pp. 14–27. doi: 10.1145/3352460.3358302.

[33] S. Lie, “Wafer scale deep learning,” in
Proc. IEEE Hot Chips 31 Symp. (HCS), 2019.

[34] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy:
An architecture-level energy estimation
methodology for accelerator designs,” in
Proc. IEEE/ACM Int. Conf. Computer Aided
Design (ICCAD), 2019, pp. 1–8. doi: 10.1109/
ICCAD45719.2019.8942149.

[35] Y. N. Wu, V. Sze, and J. S. Emer, “An ar-
chitecture-level energy and area estima-
tor for processing-in-memory accelerator
designs,” in Proc. Int. Symp. Performance

Analysis Systems and Software (ISPASS),
2020.

[36] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S.
Emer, Efficient Processing of Deep Neural
Networks (Synthesis Lectures in Comput-
er Architecture series). San Rafael, CA:
Morgan & Claypool, 2020.

[37] L. A. Barroso and U. Hölzle. “The case for
energy-proportional computing,” Comput-
er, vol. 40, no. 12, pp. 33–37, Dec. 2007,
doi: 10.1109/MC.2007.443.

[38] “NVIDIA NVLink: High-speed GPU intercon-
nect,” NVIDIA, Santa Clara, CA. [Online].
Available: https://www.nvidia.com/en-us/
design-visualization/nvlink-bridges/

About the Authors
Vivienne Sze (sze@mit.edu) is an
associate professor in the Electrical
Engineering and Computer Science
Department, Massachusetts Insti-
tute of Technology. She is a recipient
or corecipient of various awards, in-
cluding the AFOSR and DARPA Young
Faculty Award; the Edgerton Faculty
Award; faculty awards from Google,
Facebook, and Qualcomm; the Sym-
posium on VLSI Circuits Best Student
Paper Award; the IEEE Custom Inte-
grated Circuits Conference Outstand-
ing Invited Paper Award; and the IEEE
Micro Top Picks Award. Her research
interests include computing systems
that enable energy-efficient machine
learning, computer vision, and video
compression/processing for a wide
range of applications, including auton-
omous navigation, digital health, and
the internet of things. She is a Senior
Member of the IEEE.

Yu-Hsin Chen (allenhsin@alum
.mit.edu) received his B.S. degree in
electrical engineering from National
Taiwan University, Taipei, in 2009 and
his M.S. and Ph.D. degrees in electri-
cal engineering and computer science
from the Massachusetts Institute of
Technology (MIT), Cambridge, in 2013
and 2018, respectively. He is currently
a research scientist at Facebook, focus-
ing on hardware/software codesign to
enable on-device artificial intelligence
for augmented/virtual reality sys-
tems. Previously, he was a research
scientist in Nvidia’s Architecture Re-
search Group. He was the recipient
of the 2018 Jin-Au Kong Outstanding
Doctoral Thesis Prize in Electrical En-
gineering at MIT, 2015 Nvidia Gradu-
ate Fellowship, 2015 ADI Outstanding
Student Designer Award, and 2017 IEEE

SSCS Predoctoral Achievement Award.
His work on the dataflows for CNN ac-
celerators was selected as one of the
Top Picks in Computer Architecture in
2016. He is a Member of the IEEE.

Tien-Ju Yang (tjy@mit.edu) received
his B.S. degree in electrical engineer-
ing in 2010 and his M.S. degree in
electronics engineering in 2012 from
National Taiwan University. He is cur-
rently a Ph.D. degree candidate in
electrical engineering and computer
science at the Massachusetts Institute
of Technology, working on efficient
deep neural network design. His re-
search interests include the areas of
deep learning, computer vision, ma-
chine learning, image/video process-
ing, and very-large-scale integration
system design. He won first place in
the 2011 National Taiwan University
Innovation Contest. He also cotaught
a tutorial, Efficient Image Processing
With Deep Neural Networks, at the
2019 IEEE International Conference
on Image Processing. He is a Student
Member of the IEEE.

Joel S. Emer (jsemer@mit.edu) is a
senior distinguished research scientist
with Nvidia’s Architecture Research
Group and a Professor of the Prac-
tice at the Massachusetts Institute of
Technology. He was with Intel, where
he was an Intel fellow and the director
of microarchitecture research. At In-
tel, he led the VSSAD Group, of which
he had previously been a member at
Compaq and Digital Equipment Cor-
poration. He has made architectural
contributions to a number of VAX, Al-
pha, and X86 processors and has con-
tributed to the quantitative approach
to processor performance evaluation,
simultaneous multithreading tech-
nology, processor reliability analysis,
cache organization, and spatial ar-
chitectures for deep learning. He is a
Fellow of ACM and member of the Na-
tional Academy of Engineering. He re-
ceived the Eckert–Mauchly Award and
ECE alumni awards from Purdue Uni-
versity and the University of Illinois.
He has had six papers selected for the
IEEE Micro’s Top Picks in Computer Ar-
chitecture. He is a Fellow of the IEEE.

