
Ruby: Improving Hardware Efficiency for Tensor
Algebra Accelerators Through Imperfect

Factorization
Mark Horeni

Computer Science and Engineering
University of Notre Dame

Notre Dame, IN, USA

Angshuman Parashar
NVIDIA

Westford, MA, USA

Pooria Taheri
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

Joel Emer
MIT / NVIDIA

Cambridge, MA, USA

Po-An Tsai
NVIDIA

Westford, MA, USA

Siddharth Joshi
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN, USA

Abstract—Finding high-quality mappings of Deep Neural Net-
work (DNN) models onto tensor accelerators is critical for
efficiency. State-of-the-art mapping exploration tools use remain-
derless (i.e., perfect) factorization to allocate hardware resources,
through tiling the tensors, based on factors of tensor dimensions.
This limits the size of the search space, (i.e., mapspace), but can
lead to low resource utilization. We introduce a new mapspace,
Ruby, that adds remainders (i.e., imperfect factorization) to ex-
pand the mapspace with high-quality mappings for user-defined
architectures. This expansion allows us to allocate resources more
precisely by generating tile sizes that better conform to hardware
resources. However, this mapspace expansion also incurs an
increase in the number of unique mappings. Consequently, this
paper studies the trade-off between Ruby’s mapspace expansion
and mapping quality. We propose Ruby-S (Spatial) to only em-
ploy imperfect factorization towards improved parallelism. Ruby-
S incurs a moderate mapspace expansion while reducing energy-
delay product (EDP) up to 50% when implementing ResNet-50
on an Eyeriss-like architecture with an average improvement of
20%. For the most part, this improvement can be attributed to
higher compute utilization. EDP on a Simba-like architecture
improves up to 40% with an average of 10%. For DeepBench
workloads Ruby-S yields improvements of up to 45% with an
average improvement of 10% on an Eyeriss-like architecture.
Ruby-S is robust to accelerator configurations and improves EDP
by 20% on average, with a maximum improvement of 55% when
implementing ResNet-50 on different accelerator configurations.
Ruby-S mappings form a new Pareto frontier, improving the
performance of previous configurations by an average of 30%
and 20% for ResNet-50 and DeepBench workloads respectively.

I. INTRODUCTION

Tensor algebra (TA) computations are crucial to many
workloads that are deployed across computing platforms,
ranging from cloud services to constrained edge devices [1–
3]. Increasingly, high-performance computing applications like
weather modeling, fluid dynamics, and physics simulations
are being augmented by algorithms that also benefit from

MH, PT, and SJ were supported by Semiconductor Research Corporation
(SRC) as part of ASCENT, a JUMP center.

accelerating TA computations, including those employed in
machine learning (ML) and Deep Neural Network (DNN)
workloads [4–6]. Similarly, many tasks like video rendering,
image recognition, and speech processing are run on power
constrained mobile devices that also employ TA computa-
tions [7–9]. Given this prevalence of TA computations, the
design of domain-specific TA accelerators that can efficiently
execute different TA kernels [1] has become critical to the
next generation of energy-efficient computing platforms. The
specialization afforded by TA accelerators opens multiple
avenues for optimizations that include data orchestration [10]
and scheduling [11], optimizing dataflow and reuse [2, 12],
as well as optimizations that adapt the TA kernels to better
suit the underlying hardware [13, 14]. These different op-
timizations can improve the end-to-end performance of TA
accelerators, often by orders of magnitude [11, 12, 15–20].
Crucially, these dataflow optimizations can occur at different
levels of granularity, as an example optimizations like operator
fusion employed in vertical scheduling tools [11, 21] can
be used in conjunction with more fine-grained, per-operation
optimizations like loop-reordering. This paper, specifically
focuses on fine-grained optimizations to improve the efficiency
of mapping tensor operations on TA accelerators.

Consider a tensor operation in a convolutional neural net-
work (CNN), written as a loopnest as shown in Fig. 1. This
convolution can be broken down into its operand tensors:
input feature maps (IFMs), output feature maps (OFMs), and
filter parameters. Each such tensor can be represented as a
set of nested loops, where the loop bound is determined by
the dimension of this tensor. As an example, the number of
channels in the OFM (M) also determines the loop bound in
the loopnest in Fig. 1.

If we define a mapping as each unique allocation, in space
and time, of a tensor operation to the different processing
elements (PEs) and memories in the memory hierarchy. There
are multiple ways to map this loopnest on different TA



Fig. 1: Convolution operations employed in convolutional
neural networks as well as their equivalent loop nest consisting
of 7 nested loops.

accelerator architectures (e.g., [2, 3, 17, 22–24]). Different
mappings can radically alter the data reuse and access patterns
for different TA computations, in turn altering the impact
on energy and latency. The vast space of mappings together
with the complexity of their interaction with the underlying
hardware necessitates automatic mapping discovery. Auto-
matically discovered mappings have been shown to improve
accelerator efficiency by up to 20× [16] when compared
to naı̈ve mappings. However, automatic mapping generation
and discovery must contend with the enormous size of the
mapspace (the set of all mappings) which is typically large
enough to exclude an exhaustive search. While tools that
can rapidly and comprehensively evaluate mappings for fixed
architectures have shown great promise [19, 25], adopting
similar techniques for user-defined architectures remains chal-
lenging due to the large number of mapspaces possible for
user-defined architectures. Rapidly generating mapspaces that
deliver high-quality mappings for user-defined architectures is
critical for evaluating and developing future TA accelerators.

State-of-the-art (SoTA) mapping tools [15, 16, 26, 27]
address the challenge of generating and searching through a
mapspace for high-quality mappings by employing various
heuristics. As an example, Timeloop [16] decomposes the
tensor mapping problem into a set of independent subprob-
lems: (i) mapspace generation, (ii) mapspace search, and (iii)
architecture cost modeling. Alternative approaches may merge
these subproblems to achieve greater speed or accuracy in their
evaluation of a specific architecture [26], or improve a specific
subproblem such as search [18, 28, 29]. Indeed, GAMMA [28]
and Mind Mappings [29] improve the search in Timeloop-like
mapspaces, with Timeloop’s mapspace used as the training
set for the neural surrogate in [29]. Consequently, improved
mapspace quality, promises to be highly impactful to future
TA accelerator designs. This paper focuses on exactly such
improvement to Timeloop’s mapspace.

Timeloop constrains its mapspace by using index factor-
ization which decomposes a tensor into tiles of sizes de-
termined by the factors of that tensor’s shape along each

dimension. These decompositions, in turn, determine the loop
bounds in the loopnest of a TA computation. We refer to
such decompositions as perfect factorization and refer to the
mappings generated by mappers employing index factoriza-
tion as perfect-factorization mappings (PFMs). Generating
the mapspace through PFMs restricts the mapspace size by
limiting the possible tilings of the tensor [15, 16, 18, 28, 29].
However, PFM performance is only optimal when the hard-
ware resources (e.g., number of PEs, available memory) can
precisely match the tile size. As we will show, for a set of
benchmark workloads, the variety in tensor shapes across TA
workloads consistently results in a mismatch between PFM
generated tilings and hardware resources resulting in hardware
underutilization.

This paper proposes a new mapspace, Ruby, to address
the underutilization and underperformance that arise when
tensor dimensions do not align with the underlying TA ac-
celerator hardware resources. Ruby achieves better alignment
by expanding the mapspace to allow for remainders (i.e.,
imperfect factorization) along any of the tensor dimensions,
producing higher quality mappings that better utilize the avail-
able hardware. Unfortunately, relaxing the constraint of per-
fect (i.e., remainderless) factorization expands the mapspace
tremendously, which we address through Ruby-S, limiting the
expansion based on the spatial attributes of the hardware.
Ruby-S is able to improve upon mapping quality over a
wide range of workloads while also keeping the mapspace
expansion manageable.

Our main contributions are:
• developing Ruby a new mapspace that addresses the

challenge of underutilization of resources seen in SoTA
mappers employing PFMs;

• analyzing the trade-off between mapspace expansion and
mapping quality and introducing Ruby-S to deliver high-
quality mappings with manageable mapspace expansion;

• using Ruby-S to analyze the impact of architectural de-
sign choices, such as number of PEs, on the performance
of various DNN-based tensor computation workloads.

II. BACKGROUND AND RELATED WORK

A. Related Work

Recently proposed tools that optimize the mapping of TA
computations onto accelerators build on several established
techniques. Some early techniques leveraged linear cost-
models and transforms to optimize for TA computations.
Wolf and Lam [30] create a linear, cache-aware model that
quantifies reuse and locality in TA computations. Building
on this model, they developed mutually independent loop-
transformations that could increase reuse or data locality.
Finally, they developed a means to analytically synthesize
compound loop transformations such that the effective space of
all possible transformations is pruned and easily searched. Al-
ternative approaches targeted specialized hardware, partition-
ing algorithms across large computational arrays using an early
version of index factorization [31]. Variations of these early



techniques are still employed by contemporary tools, e.g.,
tools targeting systolic arrays [32]. However, many commonly
proposed TA accelerators employ dataflow architectures, with
targeted mapspace generation and evaluation tools [2, 22].
Maestro describes the mapspace for a dataflow architecture as
being data-centric, formulating the mapspace in terms of the
computations allocated across PEs and the scheduling of those
computations over time [19]. More recently, TENET offers a
different formulation of the mapspace by explicitly encapsulat-
ing the dataflow and computation allocation using relations for
a more comprehensive notion of various mappings [27]. Alter-
native top-down techniques to evaluate and traverse different
mapspaces for user-defined architectures can offer greater
flexibility due to their more managable mapspaces. Timeloop
is a commonly known mapspace generation and evaluation
tool that uses PFMs to generate mapspaces [16]. Timeloop for-
mulated the architecture-kernel interaction as two intertwined
problems: (a) mapspace generation and mapping and (b) eval-
uating mappings on an architectural cost-model. dMazeRunner
employs PFMs with additional restrictions to the memory
hierarchy and prunes the mapspace using heuristics such as: (a)
PE utilization, (b) data access patterns in DRAM, and (c) local
data reuse [26]. ZigZag developed a memory-centric approach
that allows uneven tiling of tensors [15]. As a consequence
of this uneven tiling, different levels in different memory
hierarchy must accommodate tensor-specific tile sizes. Ruby
expands these tools by expanding the mapspace through im-
perfect factors similar to ZigZag’s expansion of the mapspace
with uneven mappings.

Complementing the mapspace generation tools described
above, other frameworks target better search techniques to
find high quality mappings more easily. COSA reformu-
lates Timeloop’s optimization as a mixed-integer-programming
problem for dramatically improved search times on Timeloop’s
mapspace [18]. Mindmappings builds upon Timeloop’s
mapspace to develop a differentiable surrogate space which
encapsulates the architectural performance cost-model [29].
This differentiable space can then be traversed through gradi-
ent descent and optimized mappings can be generated through
backwards propagation of gradients through the mapspace.
GAMMA builds upon Maestro’s framework and improves the
search by using a genetic algorithm that optimizes for mapping
quality [28]. Our proposed mapspace generation framework is
orthogonal to these search strategies and can leverage them
for improved performance.

B. Baseline Tensor Algebra Accelerator

To demonstrate the generality of our framework we show
results on both an Eyeriss-like [2] and Simba-like [3] archi-
tecture. However, for consistency with literature we consider
an Eyeriss-like TA accelerator with PEs organized in a 2D
grid as our baseline. Unless otherwise noted, we follow the
original specifications with each PE comprising input buffers
of depth 12, partial sum buffers of depth 16, weight buffers
of depth 224, and a 16-bit integer multiply accumulate unit
as shown in Fig. 2. Eyeriss specifies a PE array of 14 × 12

Fig. 2: Eyeriss-Like architecture consisting of Global Buffer
connected to an array of processing elements, containing
memory dedicated to each operand tensor.

Fig. 3: An example of a loop ordering broken down by
memory hierarchy. In this example, part of the feature map
is stored for reuse in a global buffer, while the the filters
are spatially allocated across a set of PE’s able to perform
computation.

and we test with a slightly larger shared global buffer (GLB)
of size 128 KiB. For simplicity, we do not model the effect
of Eyeriss’s run length encoding (RLE). In this architecture,
tensors are stored off-chip in DRAM and subsequently inputs
and outputs are moved on-chip into the GLB, and then to
their dedicated memories in the PE, while model parameters
are moved directly into their memories in each PE.

C. Problem Formulation

Consider the tensor operations pictured in Fig. 1. To run
such an operation efficiently on a given TA accelerator, entails
multiple operations and decision points. First, operands must
be fetched from memory to on-chip memories while keeping
to the constraints imposed by the memory hierarchy and
size. Next, operands must be assigned (or scheduled) to each
memory and computational element in the hierarchy, such that
they can implement the required computation.

A more comprehensive loop nest could describe the precise
hardware allocation of these tensor computations shown in
Fig. 1. Such a description would decompose each loop into
smaller components revealing the precise tensor allocation and
blocking implemented at each level of the memory hierarchy.
This results in a set of ordered loops, describing the tiling
sizes and access patterns incurred by a given architecture for a
given tensor operation. This breakdown is further exemplified
in the expanded loopnest shown in Fig. 3, where parts of
the feature maps are stored inside a large global buffer and



Fig. 4: A sample of the original perfect-factorization-based
mapspace. The highlighted example shows a temporal allo-
cation inside a global buffer and spatial allocation across 5
of 6 possible processing elements. Displayed is a depiction
of the mapspace and the example, a loopnest, and a tree-like
structure to visualize the tiling structure.

while the rows and columns of the filter are spatially allocated
computational units. In turn, these different mapping choices
affect the scheduling of computation, amount of access counts
from a buffer, storage coordination of different tensors, and
network traffic of tensors – impacting the energy and latency
of implementing TA computations for that architecture. A
convolution needs to use the inputs of a feature map mul-
tiple times given a single weight. Storing these inputs to be
reused multiple times in intermediate buffers can be helpful in
reducing traffic from off chip. Fig. 3 highlights the possibility
of parts of the feature map being stored in an intermediate
buffer enabling optimizations through reuse that could lower
both energy and latency. The complex landscape of trade-
offs resulting from these tensor assignment and architectural
paramterizations (e.g., buffer size) underlies the complexity of
the mapping problem.

Automated tools that can efficiently traverse these vast
map spaces and deliver efficient mappings for a user-defined
accelerator play a crucial role in maximizing the accelerator
performance [17–19, 25, 26, 28, 29, 33]. Ultimately, an
ideal mapping tool aims to rapidly evaluate and deliver the
optimal schedule for a TA computation that would optimize
the energy, latency, or any combination of these attributes for
the accelerator.

D. Generating Mappings for an Architecture

Optimized mappings that are tailored to an architecture,
necessarily depend on both the hardware architecture and the
workload. Typically mappings are generated through loopnest
descriptions of the workload in a two-step process. The first

step modifies this loopnest description by generating tiled
tensors (i.e., memory blocking) for each level of the memory
hierarchy provided in the architectural description. Since the
initial mapspace only accounts for the memory hierarchy and
not other architectural parameters (e.g., memory size) it in-
cludes invalid mappings that are filtered out in the second step.
We first examine how the task of distributing 100 elements,
from a tensor stored in DRAM across different PEs through an
intermediate GLB, can be mapped on to the toy Eyeriss-like
architecture in Fig. 4. This architecture is configured with 6
PEs, without local storage, arranged in a 3×2 grid and a GLB
of size 1 KiB. Consider the highlighted mapping (1 · 20 · 5),
where 100 elements are stored in the GLB, followed by 20
iterations of distributing 5 elements over 5 PEs, with one
inactive PE. Note, that because each iteration distributes 5
elements across the PEs and we take 20 iterations to distribute
all the tensor elements, the GLB must contain all 100 elements.
Alternatively, the mapspace also includes a different mapping
which would not utilize the parallelism of mulitple PEs and
instead access the DRAM 100 times (100 · 1 · 1).

The loop bounds determined for tensors at each level of the
memory hierarchy correspond to the tiled tensor that will be
transferred across levels of memory hierarchy. Mapping tools
optimize these tile sizes at each level of the memory hierarchy
towards their objective such as minimizing energy, delay, or
another target objective. To extend our previous single di-
mensional example to the multiple dimensions encountered in
practical TA workloads, we treat each factor as a single dimen-
sion of a tiled multidimensional tensor, with tiling determined
for each level of the memory hierarchy. This formulation also
defines a logical memory hierarchy that is different from the
physical memory hierarchy, inclusive of both spatial levels and
temporal levels. Here, we define a spatial level in the memory
hierarchy to represent parallelism or vector operations, e.g.,
fanout between two physical memories or multiply-accumulate
(MAC) units — represented by a parFor. In our highlighted
example we have a spatial level of size 5 that represents a
fanout from the GLB to the PEs of size 5. A temporal level
corresponds to multiple accesses to a physical memory —
represented by a for. In our example the GLB has a temporal
level of 20, consequently we iterate over GLB 20 times, with
each such iteration accessing 5 tiled elements.

Further improvements can be derived from additional opti-
mizations employed by SoTA tools. One such is bypassing,
which allows tensors or some elements of tensors to skip
accessing levels of the memory hierarchy [15]. Similarly,
loopnests such as the ones in Fig. 1, can be reordered while
maintaining semantics, e.g., the ordering between input and
output channels can be swapped. The unique mappings cor-
responding to such loop reorderings express the access order
for these tensors. Permuting the access order impacts the reuse
seen by these different tensors, e.g., IFM or OFM memories
might see different reuse depending on input- or output-
stationary loop orderings. The complex landscape of available
optimizations and their myriad interactions with the underlying
hardware motivates the development of tools that can rapidly



generate these mapspaces (e.g., previously mentioned [15, 16,
19, 26, 27]) and efficiently search them [18, 28, 29]).

E. Perfect Factorization

Because all valid mappings are a subset of the initially gen-
erated mapspace, creating a mapspace rich with high quality
mappings is crucial to properly evaluate a tensor accelerator’s
performance on different workloads. We consider a SoTA
mapspace generation tool Timeloop [16] as our baseline PFM
generator and use Timeloop as the defacto PFM generator in
subsequent references. Timeloop employs index factorization
to generate the tiling loop bounds based on perfect factoriza-
tion of tensor dimension sizes. All valid mappings generated
by Timeloop, our baseline PFM, solve this recursive equation
per tensor dimension:

Ln = Ln+1Pn. (1)

This equation formulates the total number of tiles at the
current level of the memory hierarchy (Ln) as the product of
the total number of tiles at the level immediately higher in
the memory hierarchy (Ln+1) and number of sub-tiles created
at the current level (Pn), where n denotes the level of the
memory hierarchy. To elaborate, consider our example from
Fig. 4. If there are 20 tiles at the GLB (L1 = 20), and we
further divide each tile into 5 sub-tiles (P0 = 5) then the total
number of tiles that will need to be allocated to the PEs will be
100 i.e., L0 = 100. Since this is the lowest level of the memory
hierarchy, L0 must equal the size of the computation. We also
call Pn the tiling factor for that level of the memory hierarchy.
The recursion is initiated by setting Ln+1 = 1 for the highest
level of memory hierarchy. Under this formulation, Pn must
be the product of prime factors of the tensor dimension
being evaluated. This can be represented as a chain of products
as shown in the bottom of Fig. 4 and Fig. 6 (a), where the loop
bounds of each node are multiplied to get a final dimension
size D. An example mapping generated by such a PFM is
shown in Fig. 4, where the highlighted mapping represents
the following sequence of recursions: L3 = 1 (base case), this
is followed by choosing a Pn in the domain of eq (1), in this
example we choose P2 = 1, resulting in L2 = L3P2 = 1.
Next, we choose P1 = 20 resulting in L1 = L2P1 = 20.
Similarly, solving the entire recursion results in L0 = 100,
with our final tiling factor choice of P0 = 5.

III. THE RUBY FRAMEWORK

Reexamining Fig. 4, the mismatch between the number of
PEs (6) and the tensor dimension (100) leads to an underuti-
lization of PEs when employing PFMs (100 = 5× 5× 2× 2).
However, expanding this mapspace through imperfect factor-
ization can improve PE utilization, as shown by the imperfect
factorization based mappings in Fig. 5. From Fig. 5, consider
the highlighted mapping which ensures that all PEs are utilized
for 16 cycles and only 2 PEs are unutilized for the last cycle.
This saves 3 cycles when compared to the best mapping
generated using perfect factorization, which would utilize 5
PEs over 20 cycles.

Fig. 5: A sample of the new mapspace with only spatial
factors and remainders along with a highlighted example
with temporal allocation inside the global buffer, and spatial
allocation using all of the PEs for the first set of cycles, and
fewer PEs for the last set. This saves 3 cycles in the toy
example.

We reexamine the PFMs in eq (1) and Fig. 4 to understand
how Ruby can automatically generate imperfect factorization
based mapspaces. The product of the tiling factors (Pn) at
each level should equal the dimension (D) of the given tensor
(e.g., input channel C in a CNN). In other words, D =

∏
Pi,

which is also represented graphically in Fig. 6 (a). Based on
the observation that a · b = (a−1) · b+ b, we can ammend the
previous equation to now include a remainder by substituting
Pn for a and the remaining product for b. In other words, we
can reformulate our equation as follows:

D =

n∏
i=0

Pi,

= (Pn − 1)

n−1∏
i=0

Pi + 1

n−1∏
i=0

Pi. (2)

This reformulation is also shown graphically in Fig. 6 (b),



Fig. 6: (a) A graphical representation of eq (1) where D is the dimension size. (b) A transition step to the new representation.
(c) The continuation of the recursion, equivalent to (a). (d) replacing the first leftmost leaf with Rn to add in the concept of
remainders which leads us to eq (5). Note that the final leaf doesn’t have a −1, seen in nodes containing R0 and P0.

where it is depicted as a branch on the tree. In this case the
two branches are constructed such that the sum of their tiling
factors equals D. Expanding upon the second term in eq (2)
and generalizing, we derive:

D = (Pn − 1)

n−1∏
i=0

Pi + (Pn−1 − 1)

n−2∏
i=0

Pi + . . .

+ (Pn−j − 1)

n−j−1∏
i=0

Pi + . . . (3)

+ (P0 − 1) + 1

−1∏
i=0

Pi.

In eq (3), the empty product
∏−1

i=0 reduces to 1, leading to
the more succinct:

D=1 +

n∑
j=0

(Pn−j − 1)

n−j−1∏
i=0

Pi. (4)

Since Pn−1, Pn−1−1, . . . are not prime factor of D, we refer
to them as the remainder terms in this formulation, denoted
by Rn (see Fig. 6). One example of this transformation with
remainders applied to our mapping example from earlier is
shown in Fig. 5. Each branch there corresponds to a split in
the evaluation of the number of tiles or subtiles for that spatial
or temporal level. Reexamining eq (1), we can apply the same
principles used to derive eq (4) to determine a new recursion
that allows the generation of imperfect factors:

Ln = Ln+1Pn +Rn − 1. (5)

The inclusion of the −1 above modifies the base case to be
Ln+1 = 0 meaning now Ln represents the total number of
tiles created at the nth level of the memory hierarchy in
all but the last iterations. Rn denotes the remainder term,
which represents the tiling allocated on the last iteration for
the nth level in the hierarchy. Setting Rn = Pn generates
mappings identical to those produced by eq (1). Thus, while
Ruby generates a superset of the PFM, the inclusion of a

remainder term also results in additional mappings, the quality
of which will be studied in this paper.

Similar to our previous example, Fig 5 shows mappings
produced using both perfect and imperfect factorization. As
the tree-like representation shows, there are distinct paths that
correspond to each level in the memory hierarchy. The first
path corresponds to the DRAM which has a tiling factor of 1
corresponding to a single tile which is transferred over to the
GLB. The reformulation from eq (5) results in the product of
the Pi in that branch being 0. The second branch, corresponds
to the different iterations resulting from imperfect factorization
at the GLB. Here, 17 tiles are created for further processing
at the PE level with the first 16 being allocated to 6 PEs and
the final being allocated to 4 PEs. The products along each
branch sum up to 100 which is the original dimension being
mapped.

This new example (Fig. 5) starts with the base case of L3 =
0, and is followed by choosing P2 still equal to 1, with R2 = 1
representing the single iteration accessing the tiled tensor in
DRAM. This results in L2 = 0 · 1 + 1 − 1 = 0. With the
choice of P1 = 17 and and R1 = 17, we can calculate L1 =
(17 · 0) + 17− 1, resulting in 16 iterations. Finally, at the PE
level L0 = (6 · 16)+ 4− 1 = 99, which together with the last
loop iteration (1), results in L0 + 1 = D = 100.

A. Evaluating Ruby’s Mapspace Expansion

As shown in Fig. 6, transitioning from the PFM (Fig. 6
(a)) to the imperfect factorization mapspace generated by
Ruby results in a much larger mapspace. However, simply
expanding the mapspace is not sufficient, since this can make
the search for a high-quality mapping intractable. Thus, it is
worth examining how the expanded mapspace fares in terms
of the density of high-quality mappings and investigate how
constraining Ruby might ease search for improved mappings.

Timeloop’s mapspace generator was modified to include all
possible remainder combinations for these limited problems.
The reduced problem size enables this exhaustive enumeration,
which would be intractable for TA computations of interest



Fig. 7: Comparison of all the mapspaces over evaluating the
first 10,000 mappings with different amounts of PEs and
different layer types.

evaluated on realistic architectures. We refer to the entirety
of the mapspace generated through imperfect factorization as
Ruby (unconstrained mapspace). We also consider two natural
constraints: a) imperfect factorization only at the spatial levels
i.e., Ruby-S (-S for Spatially constrained) and b) only expand-
ing the mapspace to include imperfect factorization on tem-
poral levels i.e., Ruby-T (-T for the Temporally constrained).

We compare the quality of mappings produced by the PFM
mapper in [16] against Ruby and its constrained variants for a
two-level memory hierarchy toy architecture with each linear-
PE allocated a 1 KiB scratchpad buffer. We study how different
architecture configurations impact the mapping quality. In this
study, we only evaluate the first 10, 000 generated mappings
over 100 runs to average out the effect of the stochastic
search algorithm (Timeloop’s Random Sampling). The figures
in Fig. 7, show the energy-delay product (EDP) achieved
for the best mapping evaluated so far against the number of
evaluated mappings. Because the problem size is constrained,
we were able to evaluate all the mappings generated by
Timeloop’s mapper, while this was not true for Ruby and its
variants. Despite that, the improvement to the schedule offered
through a limited exploration of Ruby’s mapspaces reaffirms
its higher quality mappings when compared to those generated
by PFM. Both scenarios with a mismatch between the problem
size and the underlying hardware highlight this improvement
for Ruby. When this mismatch is between the number of
PE’s and the problem size, Ruby-S’s heuristic to improve
utilization delivers improved mappings. Similarly, a mismatch
between memory capacity and problem size showcases Ruby-
T’s improved reuse, lowering energy consumption. Despite
the increase in mapspace size for Ruby and its variants, the
improved mapping quality delivers schedules with consistently
lower EDP (the targeted optimization metric).

In Fig. 7 (a) we examine how PFM compares to Ruby

and its variants for a matrix multiplication problem over two
tensors of size 100× 100 for a design with 5 PEs. Due to the
simplicity of this mapspace, fewer than 10, 000 PFM mappings
exist and the entire mapspace is evaluated. Similarly, Ruby-S
also generates fewer than 10, 000 mappings and converges to
the results generated by the PFM. However, Ruby and Ruby-
T incur a dramatic expansion of the mapspace, exceeding the
10, 000 limit. At the same time, results indicate that the larger
unconstrained mapspace of Ruby can deliver better mappings
if all the mappings can be evaluated as evidenced by the cross-
over point between Ruby and the PFM (see inset).

Next, we introduce a mismatch between the tensor dimen-
sions and the hardware resources by increasing the number
of PEs to 16. Fig. 7 (b) shows the mappings generated for
the same matrix-multiplication workload for this new config-
uration. Ruby-generated mappings outperform alternatives by
better exploiting the mismatch between the tensor dimensions
and hardware resources. The temporal reuse employed by
Ruby and Ruby-T proves to be more impactful than the spatial
utilization improvements through Ruby-S.

To investigate our proposed mapspace on a more com-
plex problem, we examine how to map the convolution of
a 3 × 3 × 64 filter with a 28 × 28 × 64 image onto the
same toy architecture configured with 8 PEs. We impose an
additional constraint that only C and M be mapped onto the
PEs. The resulting mapspace (Fig. 7 (c)) shows that the PFM
delivers high quality mappings due to the alignment between
the hardware resources and the tensor dimension, bolstered
by the PFMs limited mapspace. Ruby-S is able to approach
this result due to its more constrained mapspace while Ruby
and Ruby-T are uncompetitive. We examine the mapping
quality under misalignment between hardware resources and
the tensor dimension. Again, we modify the design to now
have a misalignment between the hardware resources (15 PEs)
and the tensor dimension to examine the mapping quality. The
results in Fig. 7 (d), show that Ruby-S’s moderate mapspace
can take advantage of the mismatch between resources and the
tensor dimensions to outperform PFMs while simultaneously
easing search compared to the other examined imperfect
factorization mapspaces.

While our previous results demonstrated that Ruby produces
high quality mappings, just mapping quality is insufficient.
So, we also evaluate how the different mapspaces scale
with workloads to study the tractability of search in these
mapspaces. Table I summarizes these results for mapping a
tensor of rank 1 onto the previous architecture with 9 PEs.
For the different tensor sizes, ranging from 3 – 4096, we
generate the possible PFM combinations using eq (1) and
further select only those mappings which are valid. For Ruby
we employ eq (5), however the large mapspace renders further
filtering unfeasible. However, the spatial constraints imposed
on Ruby-S, prune mapspace branches that exceed a spatial
factor of 9 at the PE level (e.g., as seen in Fig. 5) resulting in
a more manageable mapspace. Mapspaces generated by Ruby
and Ruby-T grow dramatically with increasing tensor size due
to fewer constraints on them. Ruby-S offers a favorable trade-



TABLE I: Table of evaluating a single dimensional tensor over
2 levels of memory hierarchy, and a spatial fanout of 9 between
these two levels.

Dimension Size 3 64 100 1000 4096

PFM (9) 3 22 24 52 43
Ruby-S (9) 7 50 61 117 83

Ruby-T 7 157 247 2392 10040
Ruby 11 414 690 5713 30612

Fig. 8: Sweeping over different dimension sizes on a toy
architecture (lower is better)

off between improved mappings and the mapspace expansion.

B. Evaluating Ruby-S

Since Ruby-S improves mappings through higher paral-
lelism, we explore alternative strategies that can improve PFM
performance. We compare Ruby-S to one such commonly em-
ployed strategy which pads tensor dimensions to better align
the tensor dimension with the available hardware resources.
The results of this comparison, normalized to Ruby-S, are
shown in Fig. 8. We generate mappings for allocation of a
single tensor, across 16 PEs in a linear array in our toy archi-
tecture. The padding strategy employed, pads the tensor up to
the nearest number divisible by 16 (the size of the PE array).
We do not use any datapath gating or skip memory reads to
benefit from the sparsity, consequently performing ineffectual
calculations due to the padding. On architectures that could
effectively exploit single-operand, fine-grained sparsity, with
negligible overhead, padding can deliver mappings that per-
form comparably with those generated by Ruby-S. Varying the
problem size highlights the misalignment problem for PFMs,
where at size D = 127 — a prime number, the computations
cannot be parallelized beyond one of the available 16 PEs. This
results in multiple fetches from main memory, leading to a
worse EDP. However, padding by a single element changes the
problem size to 128, which can easily be parallelized across
16 PEs over 8 cycles. This only incurs a minor cost due to the
single ineffectual computation. At other problem sizes though,
padding proves to be suboptimal, e.g., for D = 113, Ruby
is able to maximize utilization while padding still incurs a
20% overhead in EDP since ≈ 12% of the computations and
memory accesses are due to zeroes introduced by padding.

C. Hardware Overhead of Using Ruby

Unlike conventional architectures which provide a hard-
ware interface through an instruction set architecture (ISA),
TA accelerators often expose unique configurable hardware
settings. Among them, loop bounds and strides are typically
implemented through pattern generators implemented as finite
state machines. A minor augmentation to such a state machine
can accommodate the requirement for a different final loop.
This static configuration adds no extra penalty in terms of
complexity, energy, or cycles in our performance evaluation.

IV. RUBY-S MAPPING PEFORMANCE

A. Evaluation Setup

We expand on our previous results, to show that Ruby-
S also outperforms PFM mapspace generation on realistic
architectures, such as our baseline [2]. This baseline and other
evaluated models are based on the designs provided in the
Timeloop+Accelergy Exercises repository1. This includes files
for modeling both an Eyeriss-like and Simba-like architecture.
For our baseline Eyeriss-like architecture we, constrain the
mapspace to generate mappings that conform to the data access
patterns amenable to row-stationary dataflows. Additionally,
in subsequent simulations, we direct the mapping evaluation
to optimize for EDP and use the same Timeloop+Accelergy
framework employed by previous work [18, 29, 34]. While
Timeloop can evaluate for other optimization functions such as
energy or delay separately, EDP encapsulates the benefits and
drawbacks of improved PE utilization, balancing the latency
reduction with the increased energy. We employ the same
evaluation methodology as prior work [18, 29, 34], energy
is evaluated using Accelergy through plugins that evaluate
access counts generated from Timeloop to obtain energy for
large memories through Cacti [35] and smaller components
such as address generators and register files using numbers
included in Aladdin [36]. Delay is represented in terms of
cycles, normalized to the delay incurred for a MAC. To
disentangle mapspace generation from the search heuristics
we only employ Timeloop’s random sampling based search
across all our tests. We specify the terminating conditions for
the search to be 3000 consecutive valid mappings that do not
improve EDP across 24 threads.

B. Evaluating Ruby-S against Handcrafted Mappings

Although PFMs can be used to generate and evaluate a vast
mapspace, generally outperforming humans there are still edge
cases where handcrafted mapspaces exceed PFM quality. One
such case occurs for layer 2 of AlexNet (IFM: 27 × 27 × 48
and weights: 5 × 5 × 96), where the Strip Mining algorithm
as described in [2] outperforms PFMs. Consequently, we
evaluate whether the improved mapspace generated by Ruby-S
outperforms these known cases where hand-crafted mapping
quality for this edge case. The handcrafted mapping shown
in Fig. 9 (a) maps an entire row (Q) of the OFM to the PE
array, completely evaluating the row before proceeding with

1https://github.com/Accelergy-Project/timeloop-accelergy-exercises



(a) Hand-Crafted (1 Q iteration) (b) PFM (9 Q Iterations)

(c) Ruby-S (Q Iterations 1-3) (d) Ruby-S (Q Iteration 4)

Fig. 9: Comparison of different mappings for layer two of
AlexNet on our baseline architecture.

the computations required for the next row. Computing the
next row incurs accesses that fetch new inputs and parameters
from the GLB. The PFM, shown in Fig. 9 (b), factors the
OFM dimension (Q D = 27) into 3 and 9 to generate its
mapping. This splits Q into 9 groups of size 3, replicated
4× over the output channel dimension (M). This incurs 9
accesses to each row of Q to complete the partial sum.
These mappings generated by PFMs underutilize the PEs.
While the handcrafted mapping achieves 85% utilization, the
PFM only achieves 71% utilization, increasing the latency and
consequently the EDP to evaluate that layer. Ruby-S generates
a new mapping that creates 4 groups along the Q dimension
in two phases shown in Fig. 9 (c) and (d). Ruby-S replicates
groups from Q of size 7, 2× over the M dimension. However,
on the final iteration, Ruby-S only requires a group of size 6
(Fig. 9 (d)), necessitating a net 4 accesses to each row along
Q. This new mapping maintains the same PE utilization as the
handcrafted mapping (85%) with a 16% decrease in EDP and
a 10% decrease in energy. Examining the mappings suggests
that these energy savings are primarily due to fewer accesses
to the GLB.

C. Evaluating Ruby-S on Different Architectures

Figure 10 summarizes the results from mapping ResNet-
50 [38] using Ruby-S on our baseline architecture. These
results include EDP, energy, and cycle count for each layer-
type, normalized to the PFM mapspace. The final column
summarizes the results obtained from implementing ResNet-
50 in its entirety, with Ruby-S delivering a 14% improvement
in EDP owing to a 17% reduction in cycles despite a 2%
increase in energy due to the increased utilization. These
improvements are primarily due to better mappings generated
for pointwise and dense layers, whose dimensions are typically
misaligned with the 14 × 12 array. For these layers, the
mappings generated by Ruby-S benefit from a higher degree
of parallelism obtained through weight replication.

Fig. 10: Comparing Ruby-S to the PFM mapspace over
different ResNet-50 layers on an Eyeriss-like architecture [2].

We also demonstrate the general applicability of Ruby-S by
comparing it against PFMs for the Renet-50 workload on a
Simba-like architecture [3]. This architecture differs from our
previous baseline as its PE contains a vector MAC along with
a shared local weight, input, and accumulation buffer. The
data access pattern supported by this architecture allows for
PE-level parallelism across the input channel (C) and output
channel (M) dimensions. We choose a configuration with 15
PEs to better understand the performance gains that might
be derived from Ruby-S. We retain Simba’s PE-level data
access patterns with the architecture configured to four, 4-
wide vector MACs and dedicated memory banks. Our results
in Fig. 12 show Ruby-S delivering a 10% net improvement
in EDP over the mappings generated by PFMs for ResNet-
50. Several layers see an improvement of up to 25% in EDP,
however the complexity of the architecture also results in
some suboptimal mappings as seen in layer 1 in this figure.
For a configuration of 9 PEs, each with three, 3-wide vector
MACs, Ruby-S delivers a 45% improvement in EDP over PFM
mappings for ResNet-50.

D. Evaluating Ruby-S for DeepBench

We evaluate Ruby-S’s performance using the DeepBench
suite [37] to better encapsulate how spatially-constrained im-
perfect factorization might map different tensors to our base-
line accelerator. Deepbench includes a wide variety of com-
mon workloads such as vision, speech, and facial recognition
tasks using convolutional and dense layers. The diversity of
tensor sizes across these tasks ensures that hardware resources
cannot be tailored to the tensor sizes. The original 14× 12 of
PE array of Eyeriss was designed due to the common division
of 7 in the activation size of 224 × 224 in Imagenet work-
loads [39]. While this architecture can support an arbitrary
sized convolutional layer for Imagenet, PFMs cannot optimally
find a high quality mapping when the activation size and array
size are misaligned.

The results, shown in Fig. 11 demonstrate a dramatic
improvement across different benchmark tasks. Since the
baseline architecture targeted CNNs, Ruby-S’s performance



Fig. 11: Comparison between mappings generated by Ruby-S, normalized to PFM over a selection of workloads from
DeepBench optimized for EDP [37].

Fig. 12: Comparing Ruby-S to the PFM mapspace over
different ResNet-50 Layers on a Simba-like architecture [3].
The channel size of 3 allows the PFM to map this tensor across
the 15 PEs. However, Ruby-S’s mapspace grows untenably
complex due to Simba’s architecture, impacting search.

almost always matches that of the PFM on most of the vision
layers. However, on workloads where the filter and feature
map sizes do not map well onto the 14× 12 PE array, Ruby-
S is able to deliver mappings that are up to 33% lower
in EDP. Ruby-S performance is comparable to the PFM on
vision workloads due to the prominence of benchmarks using
Imagenet. PFM is able to factorize feature maps based on the
factor 7 occurring in both the feature map dimensions and
the PE array size (14 × 12). However, across other domains
such as face recognition, speaker identification, and speech-
to-text, the variety in tensor sizes (e.g., DeepSpeech layer
1 IFM is 341 × 79 × 32 and a filter is 5 × 10 × 32.)
yields greater opportunities for Ruby-S to exploit. Across
these workloads, Ruby-S prioritizes mappings that improve the
utilization. Mappings generated by Ruby-S decrease the EDP
by an average of 10% across the entire benchmark suite. When
targeting latency instead of EDP, Ruby-S generates mappings
that reduce the latency 14% compared to PFMs.

E. Architectural Design Space Exploration

Next, we examine the interaction between different archi-
tectural configurations and the mapspace, when optimizing for
EDP. Accurately evaluating this interaction can provide insight

(a) ResNet-50

(b) Subselection of DeepBench Workloads

Fig. 13: Sweeping different configurations of an Eyeriss-like
from an array size of 2×7 to 16×16 over ResNet-50 (a) and
DeepBench (b). Ruby-S forms a Pareto curve improving the
EDP of previous designs.

into architectural design choices and enable co-design. We
evaluate Ruby-S against Timeloop’s PFM with and without
padding over various PE array sizes ranging from 2 × 7 to
16×16 and evaluate the resulting EDP for various workloads.
As seen from Figs. 13a and 13b, mappings generated by
Ruby-S form the Pareto frontier when examining the trade-
off between accelerator area and EDP for ResNet-50 and the
DeepBench suite respectively. Ruby-S consistently improves
upon the alternative mapping strategies. For ResNet-50 some
architectural configurations see performance improvements
of 60%, with those on the Pareto frontier seeing improve-



(a) ResNet-50

(b) Subselection of DeepBench workloads

Fig. 14: Evaluating different PE configurations for an Eyeriss-
like architecture (2 × 7 to 16 × 16) for ResNet-50 (a) and
DeepBench (b). Ruby-S improves performance while forming
a new Pareto frontier.

ments of 50%–55% (see Fig. 14a). Across all architectural
configuration, we observe an average improvement of 24%.
Investigating similar trade-offs for a subset of the DeepBench
suite, shows that Ruby-S improves upon the PFM results by
up to 55%, with those on the Pareto frontier improving by an
average of 20% as shown in Fig. 14b.

V. CONCLUSION

We develop a new mapspace (Ruby) that uses imperfect
factorization to generate high quality mappings on user-defined
architectures. We analyze the trade-off between mapspace
expansion and the quality of mappings generated and develop
a subset of Ruby, Ruby-S. Ruby-S expands the mapspace
using spatial constraints to balance mapping quality with
mapspace expansion. On an Eyeriss-like architecture Ruby-
S reduces EDP by up to 50% for ResNet-50 and up to 40%
on an NVDLA-like architecture. Furthermore, Ruby-S yields
improvements of up to 45% with an average improvement
of 10% on DeepBench. Ruby-S also is robust to accelerator
configurations and improves EDP by 20% on average, with a
maximum improvement of 55% when implementing ResNet-
50 on different designs. Ruby-S expands the Pareto-frontier
of these achieved by these designs by an average of 30% and
20% for ResNet-50 and DeepBench respectively.

We plan to release the modifications to Timeloop publicly.
We are currently working to migrate our code to be fully
integrated in future releases of Timeloop 2.

REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson,
G. Agrawal, R. Bajwa, S. Bates, S. Bhatia, N. Boden,
A. Borchers, R. Boyle, P. luc Cantin, C. Chao, C. Clark,
J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V.
Ghaemmaghami, R. Gottipati, W. Gulland, R. Hagmann,
C. R. Ho, D. Hogberg, J. Hu, R. Hundt, D. Hurt, J. Ibarz,
A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan, A. Koch,
N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le, C. Leary,
Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami,
R. Ni, K. Nix, T. Norrie, M. Omernick, N. Penukonda,
A. Phelps, J. Ross, M. Ross, A. Salek, E. Samadiani,
C. Severn, G. Sizikov, M. Snelham, J. Souter, D. Stein-
berg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma,
E. Tuttle, V. Vasudevan, R. Walter, W. Wang, E. Wilcox,
and D. H. Yoon, “In-datacenter performance analysis of
a tensor processing unit,” 2017.

[2] Chen, Yu-Hsin and Krishna, Tushar and Emer, Joel
and Sze, Vivienne, “Eyeriss: An Energy-Efficient Re-
configurable Accelerator for Deep Convolutional Neural
Networks,” in IEEE International Solid-State Circuits
Conference, ISSCC 2016, Digest of Technical Papers,
2016, pp. 262–263.

[3] Y. S. Shao, J. Clemons, R. Venkatesan, B. Zimmer,
M. Fojtik, N. Jiang, B. Keller, A. Klinefelter,
N. Pinckney, P. Raina, S. G. Tell, Y. Zhang,
W. J. Dally, J. Emer, C. T. Gray, B. Khailany,
and S. W. Keckler, “Simba: Scaling deep-learning
inference with multi-chip-module-based architecture,”
in Proceedings of the 52nd Annual IEEE/ACM
International Symposium on Microarchitecture, ser.
MICRO ’52. New York, NY, USA: Association
for Computing Machinery, 2019, p. 14–27. [Online].
Available: https://doi.org/10.1145/3352460.3358302

[4] J. N. Kutz, “Deep learning in fluid dynamics,” Journal
of Fluid Mechanics, vol. 814, pp. 1–4, 2017.

[5] J. Behler, “Perspective: Machine learning potentials for
atomistic simulations,” The Journal of chemical physics,
vol. 145, no. 17, p. 170901, 2016.

[6] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Fig-
urnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates,
A. Žı́dek, A. Potapenko et al., “Highly accurate protein
structure prediction with alphafold,” Nature, vol. 596, no.
7873, pp. 583–589, 2021.

[7] V. Sitzmann, J. Thies, F. Heide, M. Nießner, G. Wet-
zstein, and M. Zollhofer, “Deepvoxels: Learning per-
sistent 3d feature embeddings,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019, pp. 2437–2446.

2Currently available as a test branch at https://github.com/NVlabs/timeloop



[8] O. Kuchaiev, J. Li, H. Nguyen, O. Hrinchuk, R. Leary,
B. Ginsburg, S. Kriman, S. Beliaev, V. Lavrukhin,
J. Cook, P. Castonguay, M. Popova, J. Huang, and J. M.
Cohen, “Nemo: a toolkit for building ai applications
using neural modules,” 2019.

[9] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov,
and L. Chen, “Inverted residuals and linear bottlenecks:
Mobile networks for classification, detection and
segmentation,” CoRR, vol. abs/1801.04381, 2018.
[Online]. Available: http://arxiv.org/abs/1801.04381

[10] M. Pellauer, Y. S. Shao, J. Clemons, N. Crago,
K. Hegde, R. Venkatesan, S. W. Keckler, C. W.
Fletcher, and J. Emer, “Buffets: An efficient and
composable storage idiom for explicit decoupled data
orchestration,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for
Programming Languages and Operating Systems, ser.
ASPLOS ’19. New York, NY, USA: Association for
Computing Machinery, 2019, p. 137–151. [Online].
Available: https://doi.org/10.1145/3297858.3304025

[11] T. Chen, T. Moreau, Z. Jiang, L. Zheng,
E. Yan, H. Shen, M. Cowan, L. Wang, Y. Hu,
L. Ceze, C. Guestrin, and A. Krishnamurthy,
“TVM: An automated end-to-end optimizing compiler
for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 18). Carlsbad, CA: USENIX Association,
Oct. 2018, pp. 578–594. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/chen

[12] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to
optimize energy efficiency of deep neural network accel-
erators,” IEEE Micro, vol. 37, no. 3, pp. 12–21, 2017.

[13] T.-J. Yang, A. Howard, B. Chen, X. Zhang, A. Go,
M. Sandler, V. Sze, and H. Adam, “Netadapt: Platform-
aware neural network adaptation for mobile applica-
tions,” 2018.

[14] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models
and faster training,” 2021.

[15] L. Mei, P. Houshmand, V. Jain, S. Giraldo, and M. Ver-
helst, “Zigzag: Enlarging joint architecture-mapping de-
sign space exploration for dnn accelerators,” IEEE Trans-
actions on Computers, vol. 70, no. 8, pp. 1160–1174,
2021.

[16] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying,
A. Mukkara, R. Venkatesan, B. Khailany, S. W. Keckler,
and J. Emer, “Timeloop: A systematic approach to dnn
accelerator evaluation,” in 2019 IEEE International Sym-
posium on Performance Analysis of Systems and Software
(ISPASS), 2019, pp. 304–315.

[17] M. Gao, X. Yang, J. Pu, M. Horowitz, and
C. Kozyrakis, “Tangram: Optimized coarse-grained
dataflow for scalable nn accelerators,” in Proceedings
of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’19. New
York, NY, USA: Association for Computing

Machinery, 2019, p. 807–820. [Online]. Available:
https://doi.org/10.1145/3297858.3304014

[18] Q. Huang, M. Kang, G. Dinh, T. Norell, A. Kalaiah,
J. Demmel, J. Wawrzynek, and Y. S. Shao,
“Cosa: Scheduling by constrained optimization for
spatial accelerators,” CoRR, vol. abs/2105.01898, 2021.
[Online]. Available: https://arxiv.org/abs/2105.01898

[19] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar,
V. Sarkar, and T. Krishna, “Understanding reuse,
performance, and hardware cost of dnn dataflow:
A data-centric approach,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO ’52. New York, NY,
USA: Association for Computing Machinery, 2019,
p. 754–768. [Online]. Available: https://doi.org/10.1145/
3352460.3358252

[20] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak,
S. Bell, K. Cao, H. Ha, P. Raina, C. Kozyrakis,
and M. Horowitz, “Interstellar: Using halide’s
scheduling language to analyze dnn accelerators,”
in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS ’20.
New York, NY, USA: Association for Computing
Machinery, 2020, p. 369–383. [Online]. Available:
https://doi.org/10.1145/3373376.3378514

[21] R. Frostig, M. Johnson, and C. Leary, “Compiling
machine learning programs via high-level tracing,”
2018. [Online]. Available: https://mlsys.org/Conferences/
doc/2018/146.pdf

[22] Y. Chen, J. S. Emer, and V. Sze, “Eyeriss v2: A flexible
and high-performance accelerator for emerging deep
neural networks,” CoRR, vol. abs/1807.07928, 2018.
[Online]. Available: http://arxiv.org/abs/1807.07928

[23] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis,
“Tetris: Scalable and efficient neural network accel-
eration with 3d memory,” SIGARCH Comput. Archit.
News, vol. 45, no. 1, p. 751–764, Apr. 2017. [Online].
Available: https://doi.org/10.1145/3093337.3037702

[24] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen,
and O. Temam, “Diannao: A small-footprint high-
throughput accelerator for ubiquitous machine-learning,”
in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’14. New York,
NY, USA: Association for Computing Machinery, 2014,
p. 269–284. [Online]. Available: https://doi.org/10.1145/
2541940.2541967

[25] P. Chatarasi, H. Kwon, N. Raina, S. Malik,
V. Haridas, T. Krishna, and V. Sarkar, “MARVEL:
A decoupled model-driven approach for efficiently
mapping convolutions on spatial DNN accelerators,”
CoRR, vol. abs/2002.07752, 2020. [Online]. Available:
https://arxiv.org/abs/2002.07752

[26] S. Dave, Y. Kim, S. Avancha, K. Lee, and A. Shrivastava,
“Dmazerunner: Executing perfectly nested loops on



dataflow accelerators,” ACM Trans. Embed. Comput.
Syst., vol. 18, no. 5s, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3358198

[27] L. Lu, N. Guan, Y. Wang, L. Jia, Z. Luo, J. Yin, J. Cong,
and Y. Liang, “Tenet: A framework for modeling
tensor dataflow based on relation-centric notation,”
in Proceedings of the 48th Annual International
Symposium on Computer Architecture, ser. ISCA ’21.
IEEE Press, 2021, p. 720–733. [Online]. Available:
https://doi.org/10.1109/ISCA52012.2021.00062

[28] S.-C. Kao and T. Krishna, “Gamma: Automating the
hw mapping of dnn models on accelerators via genetic
algorithm,” in 2020 IEEE/ACM International Conference
On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[29] K. Hegde, P.-A. Tsai, S. Huang, V. Chandra, A. Parashar,
and C. W. Fletcher, “Mind mappings: Enabling
efficient algorithm-accelerator mapping space search,” in
Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS 2021. New York,
NY, USA: Association for Computing Machinery, 2021,
p. 943–958. [Online]. Available: https://doi.org/10.1145/
3445814.3446762

[30] M. E. Wolf and M. S. Lam, “A data locality optimizing
algorithm,” in Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and imple-
mentation, 1991, pp. 30–44.

[31] D. I. Moldovan and J. A. B. Fortes, “Partitioning and
mapping algorithms into fixed size systolic arrays,” IEEE
transactions on computers, vol. 35, no. 01, pp. 1–12,
1986.

[32] J. Wang and J. Cong, “Search for optimal systolic arrays:
A comprehensive automated exploration framework and
lessons learned,” 2021.

[33] B. Reagen, J. M. Hernández-Lobato, R. Adolf, M. Gel-
bart, P. Whatmough, G.-Y. Wei, and D. Brooks, “A
case for efficient accelerator design space exploration
via bayesian optimization,” in 2017 IEEE/ACM Interna-
tional Symposium on Low Power Electronics and Design
(ISLPED), 2017, pp. 1–6.

[34] Y. N. Wu, J. S. Emer, and V. Sze, “Accelergy: An
Architecture-Level Energy Estimation Methodology for
Accelerator Designs,” in IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), 2019.

[35] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-p: Architecture-level modeling for sram-
based structures with advanced leakage reduction tech-
niques,” in Proceedings of the International Conference
on Computer-Aided Design, ser. ICCAD ’11. IEEE
Press, 2011, p. 694–701.

[36] Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks,
“Aladdin: A pre-rtl, power-performance accelerator sim-
ulator enabling large design space exploration of cus-
tomized architectures,” in Proceeding of the 41st Annual
International Symposium on Computer Architecuture, ser.
ISCA ’14. IEEE Press, 2014, p. 97–108.

[37] DeepBench, “http://www.github.com/baidu-
research/deepbench.”

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep
residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015. [Online]. Available: http://arxiv.
org/abs/1512.03385

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “Imagenet: A large-scale hierarchical image
database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 2009, pp. 248–255.


