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Abstract—In recent years, many accelerators have been pro-
posed to efficiently process sparse tensor algebra applications
(e.g., sparse neural networks). However, these proposals are
single points in a large and diverse design space. The lack of
systematic description and modeling support for these sparse
tensor accelerators impedes hardware designers from efficient
and effective design space exploration.

This paper first presents a unified taxonomy to systematically
describe the diverse sparse tensor accelerator design space.
Based on the proposed taxonomy, it then introduces Sparseloop,
the first fast, accurate, and flexible analytical modeling frame-
work to enable early-stage evaluation and exploration of sparse
tensor accelerators. Sparseloop comprehends a large set of
architecture specifications, including various dataflows and
sparse acceleration features (e.g., elimination of zero-based
compute). Using these specifications, Sparseloop evaluates a
design’s processing speed and energy efficiency while account-
ing for data movement and compute incurred by the employed
dataflow, including the savings and overhead introduced by the
sparse acceleration features using stochastic density models.

Across representative accelerator designs and workloads,
Sparseloop achieves over 2000× faster modeling speed than
cycle-level simulations, maintains relative performance trends,
and achieves 0.1% to 8% average error. The paper also presents
example use cases of Sparseloop in different accelerator design
flows to reveal important design insights.

Keywords-Tensor computation; Hardware Accelerator; Ana-
lytical modeling

I. INTRODUCTION

Sparse tensor algebra is widely used in many important
applications, such as scientific simulations [1], computer
graphics [2], graph algorithms [3], [4], and deep neural
networks (DNNs) [5], [6]. Depending on the sparsity char-
acteristics of the tensors (e.g., sparsity, distribution of zero
locations), sparse tensor algebra can introduce a significant
number of ineffectual computations, whose results can be
easily derived by applying the simple algebraic equalities of
X×0 = 0 and X+0 = X , without reading all the operands
or doing the computations [7], [8].

As a result, many performant and energy-efficient sparse
tensor algebra accelerators have been proposed to exploit
ineffectual computations to reduce data movement and com-
pute [9], [10], [11], [8], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21]. Based on the properties of its target
applications (e.g., convolution or matrix multiplication),

each accelerator design proposes its unique hardware sup-
port. Various accelerators can: propose different architecture
topology (e.g., number of storage levels); employ different
dataflows [9] (i.e., the rules for scheduling data movement
and compute in space and time); use different encoding to
compress sparse tensors (e.g., bitmask encoding); and design
different hardware to eliminate operations associated with
ineffectual computations (e.g., intersection units). The joint
design space for all these hardware mechanisms is therefore
large and diverse.

To characterize either a single specific design or many de-
signs as part of design space exploration, hardware designers
can benefit from a modeling framework that is:

• Flexible: is capable of modeling a diverse range of
potential designs with hardware support for different
dataflows, compression encodings, etc.

• Fast: produces simulation results quickly. This is par-
ticularly important because properly characterizing a
specific design requires finding the best schedule, i.e.,
mapping, for a given workload, which generally re-
quires a search of a large mapspace [22], [23], [24].

• Accurate: produces simulation results correctly in both
mapspace and design space exploration.

However, to the authors’ knowledge, none of the existing
modeling approaches for tensor accelerators provide the
desired capabilities (Table I). On the one hand, cycle-level
design-specific models [9], [10], [11], [8], [25], [12], [26],
[27], [13], [14], [15], [28] capture the detailed implementa-
tions for their target designs (e.g., memory control signals)
and thus are very accurate. However, such models impede
users from mapspace exploration due to their slow simula-
tion speed and design space exploration due to their limited
parameterization support. On the other hand, analytical
models perform mathematical computations to analyze the
important high-level characteristics of a class of accelerators
and are fast. However, the existing general analytical models
are only flexible for dense accelerator designs [24], [29],
[30], [31], [32], [33], [34], [35], [36], [37], i.e., they do not
reflect the impact of sparsity-aware acceleration techniques,
resulting in inaccurate modeling.

To address the limitations of existing work, we present



Accuracy Speed Flexibility Support
Sparsity?

Cycle-Level
Design-Specific Very High Slow Low Yes

General Analytical High Fast High No
Our Work High Fast High Yes

Table I: Comparison of existing tensor accelerator simulation
frameworks with our proposed Sparseloop framework.

Sparseloop1, the first analytical modeling framework for fast,
accurate, and flexible evaluations of sparse (and dense) ten-
sor accelerators, enabling early-stage exploration of the large
and diverse sparse tensor accelerator design space. Table I
compares Sparseloop to existing simulation frameworks.
This work makes the following key contributions:
(1) To systematically describe the large and diverse sparse
tensor accelerator design space, we propose a taxonomy to
classify the various sparsity-aware acceleration techniques
into three sparse acceleration features (SAFs): representa-
tion format, gating, and skipping.
(2) Based on the SAF classification, we propose Sparseloop,
an analytical modeling framework for tensor accelerators.

• To both faithfully reflect workload data’s impact on
accelerator performance and ensure simulation speed,
Sparseloop performs analysis based on statistical char-
acterizations of nonzero value locations in the tensors.

• To keep the modeling complexity tractable and
allow support for emerging workloads/designs,
Sparseloop splits its modeling process into discrete
steps, each of which focuses on evaluating a distinct
design aspect (e.g., dataflow, sparse acceleration
features). This decoupling allows modeling of both
dense and sparse designs in one infrastructure.

(3) With representative accelerator designs and workloads,
we show that Sparseloop is fast, accurate, and flexible:

• Sparseloop runs more than 2000× faster than a cycle-
level simulator.

• Sparseloop maintains relative performance trends and
achieves 0.1% to 8% average error across designs.

• Sparseloop allows comparison of designs with differ-
ent dataflows and sparse acceleration features, running
workloads with various sparsity characteristics.

• Sparseloop can reveal design insights during accel-
erator design flows. Our case studies demonstrate
Sparseloop’s flexibility to quickly compare and explore
diverse designs with different architectures, dataflows,
and SAFs running various workloads.

II. BACKGROUND AND MOTIVATION

In this section, we illustrate the complexity of describing
and evaluating the sparse tensor accelerator design space.

1Sparseloop is open-source and publicly available at [38].

A. Large and Unstructured Design Space

Sparse tensor accelerators often employ different
dataflows to exploit data reuse across multiple storage levels
and feature various sparsity-aware acceleration techniques
to eliminate data storage for zeros and ineffectual operations
(IneffOps), i.e., arithmetic operations and storage accesses
associated with ineffectual computations. The vast number
of potential design choices lead to a large and diverse
design space.

Nonetheless, there is little structure in the design space for
sparse tensor accelerators, as each prior design uses different
terminology to describe a point in the design space. We
present the design decisions made by representative designs
to show the lack of uniformity in their architecture proposals.

For example, Eyeriss [9] uses a row-stationary dataflow,
a RLC encoding for data stored in DRAM, and storage
and compute units that stay idle for IneffOps. With the
same dataflow, Eyeriss V2 [10] employs a compressed
sparse column encoding for both on-chip and DRAM data,
and avoids spending cycles for IneffOps by performing
intersections near the compute units. SCNN [11] also uses
a similar intersection-based acceleration, but features a
PlanarTiled-InputStationary-CartesianProduct dataflow and
compressed-sparse-block encoding. ExTensor [8] proposes a
hybrid dataflow and a hierarchical encoding. It introduces
the hierarchical-elimination acceleration technique, which
aggressively eliminates IneffOps at multiple storage levels
long before data reaches compute. Dual-side sparse tensor
core (DSTC) [21] uses an output-stationary dataflow and
two-level BitMap encoding. It designs an operand-collector
hardware unit tailored to its dataflow to provide enough
bandwidth after elimination of IneffOps.

Since different accelerators propose different sets of
implementation choices, often described in design-specific
naming conventions, it is challenging for designers to have
a systematic understanding of the proposed dataflow and
acceleration techniques in the design space, let alone a mod-
eling framework to compare these designs systematically.

B. Sparsity Impacts Design Behavior

Evaluating the complex design space of sparse tensor
accelerators is further complicated by the impact of the ten-
sor sparsity characteristics, which include the density (i.e.,
percentage of nonzero values in each tensor, 1−sparsity) and
the locations of nonzero values in each tensor.

To demonstrate this entanglement, we compare two de-
signs supporting different data representations. For simplic-
ity, both accelerators employ the same dataflow:
(1) Bitmask (Eyeriss-like): The first design supports bit-
mask encoding to represent sparse operand tensors. Bitmask
uses a single bit to encode whether each value is nonzero
or not. In each cycle, the design uses each bit to decide
whether its storage and compute units should stay idle to



Figure 1: Processing speed and energy efficiency of archi-
tectures with different data representation support running
sparse matrix multiplication workloads. Design behavior is
dependent on data representations and tensor densities.

save energy, but it does not improve processing speed.2

(2) Coordinate list (SCNN-like): The second design em-
ploys a coordinate list encoding [39], [40], which indicates
the location of each nonzero value via a list of its coordinates
(i.e., the indices in each dimension). Since the coordinate
information directly points to the next effectual computation,
the design only spends cycles on effectual operations, thus
saving both energy and time.

In Fig. 1, we compare the processing speed and energy
efficiency of the two designs running sparse matrix multipli-
cation workloads of different densities. As shown in Fig. 1,
the best design choice is a function of the input density.
More specifically, since the bitmask-based design does not
improve processing speed, with low-density tensors, bitmask
always runs slower than coordinate list. However, since
coordinate list needs to encode the exact coordinates with
multiple bits, it incurs more significant encoding overhead
per nonzero value. As the tensors become denser, coordinate
list leads to lower energy efficiency and/or processing speed.
This trend has also been observed in Sigma [15].

Even just varying the input tensor density, we already see
non-trivial interactions between the benefits introduced by
eliminated IneffOps and compressed sparse tensors, and the
overhead introduced by extra encoding information. A more
involved case study in Sec. VII-A will further showcase the
complex interactions between dataflows, sparsity-aware ac-
celeration techniques, and workload sparsity characteristics,
illustrating the importance of co-designing various design
aspects. Thus, for hardware designers to efficiently explore
the trade-offs of various design decisions, there is a strong
need to have a fast modeling framework that, in addition
to evaluating various dataflows, recognizes the impact of
the different acceleration techniques and tensor sparsity
characteristics on processing speed and energy efficiency.
Our proposal: To address these two issues, we first in-
troduce a new classification of the various sparsity-aware
acceleration techniques (Sec. III), which unifies how to qual-
itatively describe these techniques in a systematic manner.

2Of course, there exist other designs that use bitmasks to save both energy
and time [17], [25]

Leveraging this taxonomy, we then propose an analytical
modeling framework, Sparseloop, which quantitatively eval-
uates the diverse sparse tensor accelerator designs (Sec. IV
to Sec. V-D). We show that Sparseloop is fast, accurate, and
flexible in Sec. VI-B, VI-C, and VII.

III. DESIGN SPACE CLASSIFICATION

The first step toward a systematic modeling framework is
to have a unified taxonomy to describe various sparse tensor
accelerators. We propose a new classification framework that
simplifies how to describe a specific design in the complex
design space. We then demonstrate how prior designs can
be described in a straightforward manner.

A. High-Level Sparse Acceleration Features

To systematically describe sparse tensor accelerators in
the design space, we classify common sparsity-aware ac-
celeration techniques into three orthogonal high-level cate-
gories:

• Representation format
• Gating IneffOps
• Skipping IneffOps

We call each category a sparse acceleration feature (SAF).
1) Representation Format: Representation format refers

to the choice of encoding the locations of nonzero val-
ues in the tensor. To describe a representation format, we
adopt a hierarchical expression that combines multiple per-
dimension formats, similar to [41], [39], [40].

As shown in Fig. 2, we introduce several commonly used
per-dimension formats with an example 1D tensor, i.e., a
vector. The most basic format is Uncompressed (U), which
represents the tensor with its exact values, thus directly
showing the locations of nonzero values. U is identical to
the original vector. However, to save storage space, and
thus implicitly save energy (and time) associated with zero
value accesses, sparse tensor accelerators tend to employ
compressed formats, which represent a tensor with only
nonzero values and some additional information about their
original locations or coordinate [41], [39], [40]. We call
this information metadata. We introduce four per-dimension
compressed formats3.

• Coordinate Payload (CP): the coordinates of each
nonzero value are encoded with multiple bits. The
payloads are either the nonzero value or a pointer to
another dimension. CP explicitly lists the coordinates
and the corresponding payloads.

• Bitmask (B): a single bit is used to encode whether each
coordinate is nonzero or not.

• Run Length Encoding (RLE): multiple bits are used to
encode the run length, which represents the number of

3Of course, many more per-dimension formats exist and can be incor-
porated modularly into Sparseloop.



Figure 2: Example representation formats of a vector A.
Purple vectors refer to metadata used to identify the original
locations of the nonzero values.

Example Classic
Representation Formats

Hierarchical
Description

Compressed Sparse Row (CSR) [42] UOP-CP
2D Coordinate List (COO) [43] CP2

3D Compressed Sparse Fibers (CSF) [44] CP-CP-CP

Table II: Example representation formats and their hierar-
chical description based on per-dimension formats.

zeros between nonzeros (e.g., an r-bit run length can
encode up to a 2r − 1 run of zeros).

• Uncompressed Offset Pairs (UOP): multiple bits are
used to encode the start (inclusive) and end (nonin-
clusive) positions of nonzero values.

As shown in Table II, full tensor representation formats
can be described by combing the per-dimension formats in a
hierarchical fashion. For example, CSR (compressed sparse
row) [42] can be described by UOP-CP: Top level UOP
encodes the start and end locations of the nonzeros in each
row; bottom level CP encodes the exact column coordinates
and its associated nonzeros. A format can also split and/or
flattened tensor dimensions (e.g., 2D COO flattens multiple
dimensions into one dimension represented by CP with
tuples as coordinates). We use a superscript to indicate the
number of flattened dimensions.

2) Gating: Gating exploits the existence of IneffOps by
letting the storage and compute units stay idle during the
corresponding cycles. As a result, it saves energy but does
not change processing speed. Gating can be applied to both
compute and storage units in the architecture.

We use the dot-product workload in Fig. 3a to illustrate
the impact of gating. Each row of Fig. 3b corresponds to a
specific SAF implementation, each column is a processing
step, and each cell lists the operations happening at the step.
The first row presents the baseline processing without any
SAFs applied, so it performs all IneffOps and takes six steps
to complete.

The second row in Fig. 3b shows the result of applying
gating to compute units, Gate Compute. The compute unit
checks whether operands are zeros and stays power-gated if
at least one operand is zero.

When gating is applied to storage units, it can be based
on one of two approaches:
(1) Leader-follower intersection checks one operand, and if
this operand is zero, it avoids accessing the other operand.
We call the checked operand the leader and the operand

with gated access the follower. In our classification, gating
based on leader-follower intersection is represented by an
arrow that points from the leader to the follower, i.e.,
Gate Follower ← Leader. The third row in Fig. 3b
shows Gate B ← A. Note that this approach may not
eliminate all IneffOps (e.g., step three in the example),
and the savings introduced depend on the leader operand’s
sparsity characteristics.
(2) Double-sided intersection checks both operands (usually
just via their associated metadata), and if either of them
is zero, it does not access either operands’ data. Double-
sided intersection is represented with a double-sided arrow
that points to both operands, i.e., Operand0↔ Operand1.
Double-sided intersection eliminates all IneffOps but may
require more complex hardware.

In addition to reducing storage accesses, gating applied to
a storage unit also leads to implicit gating of the compute
unit connected to it (e.g., step one in the third row of
Fig. 3b), as the compute unit can now use the check for
the storage unit to power-gate itself.

3) Skipping: Skipping refers to exploiting IneffOps by
not spending the corresponding cycles. Since skipping di-
rectly skips to the next effectual computation, it saves both
energy and time. Similar to gating, skipping can be applied
to both the compute and storage units.

When skipping is applied to compute units, the compute
units directly look for the next pair of operands until it
finds effective computations to perform. When skipping is
applied to storage units, it can also be based on leader-
follower intersection or double-sided intersection. However,
instead of letting the storage stay idle, with skipping applied,
cycles are only spent on effectual accesses. The last row
in Fig. 3b shows an example implementation of skipping
B reads based on A’s values (Skip B ← A). Similar to
gating, a leader-follower implementation of skipping can still
introduce some IneffOps, and skipping at storage can lead
to implicit skipping at the compute units. Since skipping
needs to quickly locate the next effectual operation to skip
to, it usually requires more complex hardware than gating
does (e.g., ExTensor’s intersection unit implements smart
look-ahead optimizations to locate effectual operations in
time [8]). Inefficient implementations can lead to more
overhead than savings in time and energy.

B. Dataflow is Orthogonal to Sparsity-Aware Acceleration

In addition to the SAFs, dataflow choice is another impor-
tant decision made by various accelerators [45]. A taxonomy
of dataflows for various tensor algebra workloads has already
been well studied in existing work (e.g., for DNNs [45], [40],
and matrix multiplications [16], [13], [14]).

We make the observation that the dataflow choice is or-
thogonal to the chosen SAFs. Dataflows define the schedul-
ing of data movement and compute in time and space, and
SAFs define the actual amount of data that is moved or



(a) (b)

Figure 3: (a) Sparse dot product workload. (b) Example ways of processing the example workload. 1st row: baseline
processing without SAFs; 2nd row: Gating applied to compute; 3rd row: Gating applied to B reads based on A’s values; 4th
row: Skipping applied to B reads based on A’s values.

Design Workload Format4 Gating/Skipping

Eyeriss [9] DNN offchip: I/O: B-RLE W:U
onchip: I: UB O/W:U Innermost Storage : Gate W ← I , Gate O ← I

Eyeriss V2 [10] DNN I/W: B-UOP-CP O:U Innermost Storage : Skip W ← I , Skip O ← I &W ; Gate Compute

SCNN [11] DNN I/W: B-UOP-RLE O: U Innermost Storage : Skip W ← I , Skip O ← I &W ; Gate Compute

ExTensor [8] MM A/B: UOP-CP×5 Z: U All Storage : Skip A↔ B, Skip Z ← A&B

DSTC [21] MM A/B: B-B Z: U 2nd-to-innermost & Innermost Storage : Skip A↔ B, Skip Z ← A&B

Table III: Summary of representative sparse tensor accelerators described with the proposed SAFs based on tensors from
example target workloads. For DNN: I: input activation, W: Weights, O: output activation. For Matrix Multiplication (MM):
A,B: operand tensors, Z: result tensor. Note that the designs have different dataflows, which are not listed.

Figure 4: Example of combining compressed format, skip-
ping, and gating SAFs in one design.

number of computes performed. As a result, the space of
sparse tensor accelerators is the cross product of dataflow
choices and SAF choices (further information on how this
impacts modeling is in Section IV). Of course, a particular
dataflow might mesh well with a specific SAF implementa-
tion, leading to an efficient design, while another may not.

C. Describing Sparse Tensor Accelerators

General accelerator designs often implement multiple
SAFs that work well with each other to efficiently im-
prove hardware performance. Fig. 4 illustrates the idea
with a simple example, for the same workload in Fig. 3a,
Fig. 4 employs a CP representation format for vector A,
Skip B ← A and Gate Compute. By representing A with
CP, Skip B ← A is implemented by directly reading the
appropriate B values based on A’s metadata. Furthermore,

by applying Gate Compute, Fig. 4 eliminates the compute
unit’s IneffOps for cases with nonzero A and zero B.

Realistic sparse tensor accelerators often feature multiple
storage levels to exploit data reuse opportunities and a set
of spatial compute units for parallel computation. Thus,
to systematically describe each design, we need to define
the SAFs implemented at each level in the architecture.
Based on our proposed classification, Table III describes
the acceleration techniques of the representative designs
introduced in Sec. II.

For example, SCNN [11], a sparse DNN accelerator, uses
a three-level, B-UOP-RLE representation format4 to com-
press input activation (IA) and weights (W). In the innermost
storage level, i.e., the level closest to the compute units,
SCNN performs SkipW ← IA and Skip OA← IA&W ,
where OA refers to output activation. Gating is applied to
compute units, i.e., Gate Compute, to eliminate leftover
IneffOps, similar to Fig. 4’s strategy. ExTensor [8] is an
accelerator for general sparse tensor algebra. We use ma-
trix multiplication as an example workload, which involves
operand tensors A, B and result tensor Z. ExTensor partitions
and compresses tensors with a six-level format and performs
Skip A↔ B and Skip Z ← A&B at all storage levels.

4Some per-dimension formats are applied to split or flattened dimensions.



Thus we hope it is clear how this taxonomy allows the
design-specific terminologies in existing proposals to be
translated into systematic descriptions. More importantly,
it also allows future sparse accelerators to be described
accurately and compared qualitatively in the same way.

IV. SPARSELOOP OVERVIEW

The design space taxonomy in Sec. III lays the foun-
dation for the modeling methodologies of Sparseloop, an
analytical modeling framework that quantitatively evaluates
the processing speed and energy efficiency of sparse tensor
accelerators. In this section, we will discuss the modeling
challenges and Sparseloop’s key methodologies to address
those challenges.

A. Modeling Challenges

There are three key challenges associated with ensuring
the modeling framework’s speed, accuracy, and flexibility.
Multiplicative factors of the design space. To faithfully
model various sparse tensor accelerator designs, the analysis
framework needs to understand the compound impact of
their sparsity-specific design aspects (e.g., the diverse SAFs
shown in Table III) together with general design aspects
(e.g., architecture topology, dataflow, etc.). Simultaneously
modeling the interactions between a considerable number
of design aspects incurs high complexity, slowing down the
modeling process. Building specific models for each design
cannot scale to cover the entire design space, either.
Tradeoff between accuracy and modeling speed. High fi-
delity modeling requires time-consuming sparsity-dependent
analysis. Since sparsity characteristics impact a sparse accel-
erator’s performance, carefully examining the exact data in
each tensor could ensure accuracy. However, the downside
of actual-data based analysis is that it can cause intolerable
slowdown during mapspace exploration, especially for work-
loads with numerous and evolving data sets, e.g., DNNs.
Evolving designs/workloads. Finally, diverse and con-
stantly evolving designs/workloads require flexibility and
extendability in the modeling framework. Since the inter-
actions between the processing schedules and workload
data characteristics are convoluted, the framework must be
flexible and modularized enough to allow easy extensions
for future designs/workloads.

B. Sparseloop Solutions to the Challenges

To solve the challenges, Sparseloop makes two important
observations for sparse accelerator modeling: (1) the runtime
behaviors of sparse accelerators (e.g., number of storage
accesses and computes) can be progressively modeled; (2)
the sparsity-dependent behavior in sparse accelerators can
be statistically modeled with negligible errors.

Based on observation (1), to maintain modeling com-
plexity, Sparseloop performs decoupled modeling of distinct
design aspects: Sparseloop evaluates dataflow independent

Figure 5: Sparseloop High-Level Framework.

of SAFs, as the storage accesses and computes introduced
by the dataflow are irrelevant to how the IneffOps get elim-
inated; Sparseloop evaluates SAFs independent of micro-
architecture, as the number of eliminated IneffOps intro-
duced by the SAFs is orthogonal to the cost of performing
each elimination or the savings brought by each eliminated
IneffOp. Thus, as Fig. 5 shows, Sparseloop’s modeling pro-
cess is split into three steps, each with tractable complexity.

• Dataflow modeling: analyzes the uncompressed data
movement and dense compute, i.e., dense traffic, in-
curred by the user-specified mapping input.

• Sparse modeling: analyzes and reflects the impact of
SAFs by filtering the dense traffic to produce sparse
data movement and sparse compute, i.e., sparse traffic.

• Micro-architecture modeling: analyzes the exact hard-
ware operation cost (e.g., multi-word storage access
cost) and generates the final energy consumption and
processing speed based on the sparse traffic.

Based on observation (2), Sparseloop enables systematic
recognition of the impact of SAFs at the sparse model-
ing step. To balance accuracy and speed, sparse modeling
performs analysis based on statistical characterizations of
nonzero value locations in workload tensors and their sub-
tensors, by leveraging various statistical density models.

Finally, as shown in Fig. 5, to ensure extendability, the
sparse modeling step interacts with statistical density models
and per-dimension format models as decoupled modules so
that these models can be extended to support future sparse
workloads and representation formats.

V. SPARSELOOP FRAMEWORK

We first discuss the inputs to Sparseloop in Sec. V-A, and
describe the modeling steps in Sec. V-B, V-C, and V-D.

A. Inputs

As shown in Fig. 5, Sparseloop needs four inputs: work-
load specification, architecture specification, SAFs specifi-
cation, and mapping or mapspace constraints. Fig. 6 shows
a set of example specifications to show the input semantics,
and more detailed syntax can be found at [38].

Workload specification describes the shape and statistical
density characteristics of the workload tensors (e.g., in



Figure 6: Example input specifications to Sparseloop. Blank
spaces in the workload tensors refer to locations with zeros.
The locations of zeros are just for illustrative purposes.

Fig. 6, A is 4x4 and has a density of 25% with a uniform
distribution). Workload specification also includes the tensor
algorithm specification, which is based on the well-known
Einsum notation [46], [41] (e.g., the matrix multiplication
kernel is specified as Zm,n =

∑
k Am,k × Bk,n, where the

A and B values along the same k dimension are reduced and
the m and n dimensions are populated to the output tensor
Z). Sparseloop understands any algorithm described with
an extended Einsum notation, similar to existing works [24],
[8].

Architecture specification describes the hardware organi-
zation of the architecture (e.g., two levels of storage and four
compute units) and the hardware attributes of the component
in the architecture (e.g., Backing Storage is 128kB).

SAFs specification describes the SAFs applied to the stor-
age or compute levels and the relevant attributes associated
with each SAF (e.g., Fig. 6 specifies skipping at Buffer, with
A as the leader and B as the follower).

Mapping describes an exact schedule for processing the
workload on the architecture. It is represented by a set
of loops [24]. Each iteration of the for loop represents a
time step, and the iterations in a parallel-for loop repre-
sent operations happen simultaneously at different spatial
instances (e.g., n1s loop shows that different columns of B
are simultaneously processed in four Buffers).

Mapspace Constraints describes a set of constraints on al-
lowed schedule (e.g., allowed loop orders). Sparseloop then
explores the potential mappings that satisfy the provided
partial loops and locates the best one for a specific workload.

B. Step One: Dataflow Modeling

Dataflow modeling derives the uncompressed data move-
ment and dense compute, which we refer to as the dense
traffic. Such dense analysis has been studied in several

Figure 7: (a) Example coordinate-space tiling for tensor A
based on inputs specified in Fig. 6. The shades represent
tiles processed at different time steps. (b) Fiber tree repre-
sentation of the tensor A. Each level of the tree corresponds
to a rank of the tensor and contains one or more fibers that
correspond to the rows or columns of the tensor. The leaves
of the tree are the (nonzero) data values of the tensor.

existing works [24], [32], [29], [47], [31]. Since each mod-
eling step in Sparseloop is well-abstracted, various strategies
can be plugged into Sparseloop’s modeling process. In our
implementation, we adopt Timeloop’s [24] strategy.

Dataflow modeling is performed based on an abstract
architecture topology (e.g., Fig. 7a shows the abstract rep-
resentation of the architecture in Fig. 6), workload tensors’
shapes, and the specified mapping. According to the map-
ping, each workload tensor is hierarchically partitioned into
smaller tiles based on coordinates, with each tile stored
in a specific storage level, and this process is referred to
as coordinate-space tiling [40]. For example, in Fig. 7a,
at L1, the tensor A in Fig. 6 is partitioned into four tiles
(with different shades of blue) based on the m1 for loop
in the mapping, each of which is a row of the tensor.
Each tile is then sequentially sent to L0. To derive the
data movement for each storage level, dataflow modeling
analyzes the stationarity of the tiles and the amount of
data transferred, both temporally and spatially, between
consecutive tiles. The number of computes is derived based
on the input tensor algorithm. More detailed description of
dense traffic calculations can be found in Timeloop [24].

C. Step Two: Sparse Modeling

The sparse modeling step is responsible for reflecting the
overhead and savings introduced by various SAFs. As shown
in Fig. 8, sparse modeling first evaluates the impact of SAFs
locally on per-tile traffic with SAF-specific analyzers, i.e.,
the Gating/Skipping Analyzer and the Format Analyzer, and
then post processes the local traffic with simple scaling to
reflect SAFs’ impact on overall traffic.

Such decomposition of local and global traffic analysis
allows sparse modeling to reflect SAFs’ impact on top of
the dense traffic to produce sparse traffic for storage and
compute units. We now discuss how each module in Fig. 8
interacts with others and the insight behind this design.



Figure 8: Various modules in sparse modeling step. Hashed
red arrows refer to inputs and outputs of this step. The mod-
ules are labeled with their corresponding section numbers.

1) Format-Agnostic Tensor Description: As shown in
Fig. 8, to allow tractable complexity and extendability,
sparse modeling performs decoupled analysis of SAFs with
different analyzers. Describing sparsity characteristics inde-
pendent of representation format is core to performing such
decoupled analysis. We adopt the fibertree concept [40] to
achieve format-agnostic tensor description. In Fig. 7b, we
present the fibertree representation of the sparse tensor A
stored in L1 of Fig. 7a. With the example, we first introduce
the key fibertree concepts relevant to Sparseloop.

In fibertree terminology, each dimension of a tensor is
called a rank5 and is named. Thus this 2D tensor has 2
ranks, with the rows being named M (rank1), and columns
being named K (rank0). In Fig. 7b, each level of the
tree corresponds to a tensor rank in a specific order. Each
rank contains one or more fibers, representing the rows
or columns of the tensor. Each fiber contains a set of
coordinates and their associated payloads. For intermediate
ranks, the payload is a fiber from a lower rank (e.g.,
coordinate 0 in rank1 has a fiber in rank0 as its payload);
for the lowest rank, the payload is a simple value. By
omitting the coordinate for all-zero payloads, i.e., empty
elements, a fibertree-based description accurately reflects the
tensor’s sparsity characteristics (e.g., rank1’s fiber having
empty coordinate 2 indicates that the third row is all-zero).

Each fiber in the tree corresponds to a tile being pro-
cessed. For example, in Fig. 7, the first tile processed in L0
corresponds to the first fiber in Rank K. Thus, fibertree-based
description enables format-agnostic sparsity-dependent anal-
ysis: to analyze the tiles of interest, the analyzers can
examine the appropriate fibers to obtain sparsity information
independent of the tensor’s representation format.

2) Statistical Density Models: Examining every fiber
(thus analyzing the behavior of every tile) is too time-

5A rank can also correspond to split or flattened dimensions.

Figure 9: Fiber density probabilities for fibers with various
shapes in a tensor with 50% randomly distributed nonzeros.

Density Models Sparsity Pattern Example Applications

Fixed
structured

Even distribution
Coord. independent

Structurally pruned
DNNs [18]

Uniform Random distribution
Coord. independent

Randomly pruned DNNs
[21] & Activation sparsity

Banded Diagonal distribution
Coord. dependent

SuiteSparse [48]
Scientific simulations [49]

Actual
Data

Non-statistical
Coord. dependent

Graph analytics with
special patterns [4]

Table IV: Summary of density models supported by
Sparseloop. New models can be easily added via
Sparseloop’s interface.

consuming for mapspace and design space exploration.
To enable faster analysis, Sparseloop performs statistical
characterizations of the fibers in the fibertree. As shown in
Fig. 8, Sparseloop can use various statistical density models
of the workload tensor to derive statistical density for fibers
in each rank (e.g., for the example in Fig. 7b, the fibers in
rank0 have a density of 50% with a probability of 0.75 and a
density of 0% with a probability of 0.25). For a given density
model, the derived statistical density can differ significantly
across fibers with different shapes (i.e., fibers from different
ranks in the tree). For example, Fig. 9 shows the distribution
of fiber densities in a tensor with uniformly distributed non-
zero values. In a uniform distribution, a tile’s shape varies
inversely with the deviation in its density.

To estimate the density of fibers with a given shape, a
density model either performs coordinate-independent mod-
eling (i.e., fibers at different coordinates have similar density
distributions) or coordinate-dependent modeling (i.e., fiber’s
density is a function of its coordinates). Sparseloop sup-
ports four popular density models: fixed-structured, uniform,
banded, and actual data. Table IV describes their properties
and use cases in terms of relevant applications (e.g., ran-
domly pruned DNNs [21] and scientific simulations [49]).
The modularized implementation of density models ensures
Sparseloop’s extensibility to modeling of emerging work-
loads with different nonzero value distributions.

3) Format Analyzer: With fibers statistically character-
ized, the format analyzer is responsible for deriving the rep-
resentation overhead for the tiles stored in different storage
levels. Since different tiles correspond to different fibers,
it’s important for the analyzer to identify the tile in each



Figure 10: Example mappings that lead to intersections with
different impact.

storage and obtain the appropriate statistical characterization
of the corresponding fiber from the format-agnostic tensor
characterization module.

As shown in Fig. 8, for each fiber, the analyzer statistically
models the overhead of each rank with the appropriate per-
rank Format Model. Different formats introduce different
amounts of overhead. For example, the RLE format model
calculates the overhead based on the number of non-empty
elements in the fiber, OverheadRLE = #non-empty-
elements × run length bitwidth; whereas, the bitmask
(B) format model produces the same overhead regardless
of fiber density, OverheadB = total# elements × 1.
The statistical format overhead allows Sparseloop to derive
important analytical estimations, e.g., the average and worst-
case overhead. Sparseloop supports five per-rank format
models: B, CP, UOP, RLE, and Uncompressed B, and thus
supports any representation format that can be described
with these models. The framework can be easily extended
to support other formats.

4) Gating/Skipping Analyzer: The Gating/Skipping Ana-
lyzer evaluates the amount of eliminated IneffOps introduced
by each gating/skipping SAF. Since gating/skipping focuses
on improving efficiency for each tile being transferred
and/or each compute being performed, regardless of the total
number of operations, the analyzer evaluates the impact of
SAFs locally on per-tile traffic and breaks down the original
per-tile dense traffic into three fine-grained action types: i)
actually happened, ii) are skipped, and iii) are gated.

As discussed in Sec. III, gating/skipping is based on
various intersections, which eliminate IneffOps by locating
the empty tiles, i.e., tiles with all zeros. In a leader-follower
intersection, when the leader tile is empty, the IneffOps
associated with the follower are eliminated. Whereas in
a double-sided intersection, any tile being empty leads to
eliminations of IneffOps associated with the other tile. Since
a double-sided intersection can be modeled as a pair of
leader-follower intersections (B ↔ A = B ← A+A← B),
we focus on discussing the modeling of SAFs based on
leader-follower intersections.

The key to modeling the amount of eliminated IneffOps
introduced by a SAF based on leader-follower intersection is

to correctly identify the associated leader and follower tiles,
and thus the fibers representing the tiles in the fibertree.
Since different fibers can have significantly different prob-
ability of being empty, the same SAF can lead to different
impacts. We observe that the leader and follower tiles of a
specific intersection can be determined based on the data
reuse defined in the mapping. For example, Fig. 10 shows
two mappings that lead to different intersection behaviors for
SkipB ← A at Buffer. In Mapping 1 , since the innermost
k0 loop iterates through different pairs of A and B values,
a specific Bk,n is only used to compute with a single Am,k.
Thus, the leader tile is a single A value and the follower
tile is a single B value, i.e., if Am,k is zero, the access to
Bk,n will be eliminated. Whereas in Mapping 2 , since the
innermost m0 loop only iterates through different A values,
a specific Bk,n is reused across A0:3,k (i.e., a column of
A). Thus, the leader tile is A0:3,k and the follower tile is a
single B value Bk,n, i.e., if the entire column of A is empty,
the access to Bk,n will be eliminated. Since it is less likely
for the entire column of A to be empty, under Mapping 2 ,
SkipB ← A eliminates fewer IneffOps (e.g., columns of A
are never empty in Fig. 6).

Based on the mapping and the statistical fibertree charac-
terization, the analyzer defines the behaviors of each gating
or skipping SAF, and derives a breakdown of the original
dense traffic for each tile into fine-grained action types
(e.g., for each B tile transferred from Buffer to Compute,
there are 50% skipped reads, 50% actual reads, 0% gated
reads). Furthermore, when a gating/skipping SAF is applied
to upper storage levels in the architecture, the analyzer
propagates the savings introduced to lower levels (e.g., for
the architecture in Fig. 6, skipping at Backing Storage
reduces operations happened at both Buffer and Compute).

5) Traffic Post-processing: As shown in Fig. 8, after the
analyzers evaluate the impact of their respective SAFs based
on per-tile traffic, sparse modeling performs post-processing
to first reflect the interactions between the SAFs (e.g., how
much format overhead is skipped due to a skipping SAF)
and then scale the per-tile breakdowns based on the number
of tiles transferred to derive the final sparse traffic.

D. Step Three: Micro-architectural Modeling

Micro-architecture modeling first evaluates the validity of
the provided mapping. A mapping is valid only if the largest
tiles, which are derived based on statistical tile densities
and format overheads, meet the capacity requirement of
their corresponding storage levels. If the mapping is valid,
micro-architecture modeling evaluates the impact of micro-
architecture on generated sparse traffic. The analysis focuses
on capturing general micro-architectural characteristics, e.g.,
segmented block accesses for storage levels, instead of the
design-specific micro-architectural analysis, e.g., impact of
an exact routing protocol.



Micro-architectural modeling then evaluates the process-
ing speed and energy consumption. For processing speed,
cycles are spent for actual and gated storage accesses and
computes. The model considers available bandwidth at each
level in the architecture to account for bandwidth throttling.
For energy consumption, we use an energy estimation back
end (e.g., Accelergy [50]) to evaluate the cost of each fine-
grained action, which is combined with its corresponding
sparse traffic to derive accurate energy consumption.

VI. EVALUATIONS

We first introduce our experimental methodology and then
demonstrate that Sparseloop is fast and accurate.

A. Methodology

Sparseloop is implemented in C++ on top of
Timeloop[24], an analytical modeling framework for dense
tensor accelerators. Sparseloop reuses Timeloop’s dataflow
analysis, adds the new sparse modeling step, and improves
Timeloop’s micro-architectural analysis to account for the
impact of various fine-grained actions introduced by the
SAFs. As a result, Sparseloop allows modeling of both dense
and sparse tensor accelerators in one unified infrastructure.
We use Accelergy [50], [30] as the energy estimation back
end. For DNN workloads, Sparseloop performs per-layer
evaluations with the appropriate dataflow and SAFs, and
aggregates the results to derive the energy/latency for the
full network. This methodology is consistent with state-of-
the-art tensor accelerator modeling frameworks [24], [29],
[32], [47]. Experimental results in the next sections are all
evaluated on an Intel Xeon Gold 6252 CPU.

B. Simulation Speed

Fast modeling speed allows designers to quickly explore
each design’s large mapspace as well as various designs.
We evaluate Sparseloop’s modeling speed with the metric
computes simulated per host cycle (CPHC), which refers
to the number of accelerator computes simulated for each
cycle in the host machine that runs the modeling framework.
CPHC carries similar information as MIPS (million instruc-
tions per second), a popular metric for evaluating simulators
for conventional processors.

Detailed cycle-level simulators often have CPHCs that are
lower than 1. For example, STONNE [28] has CHPCs that
are less than 0.5 when running popular DNN layers with
various architecture configurations, e.g., number of rows and
columns in the compute array. The main reasons include: i)
instead of statistical analysis, cycle-level simulators iterate
through actual data to perform all computations, which
take significant time for large workloads with millions of
computations such as DNNs; ii) detailed control logic needs
to be simulated for every cycle and all the components (e.g.,
memory interface protocols, exact intersection checks).

Accelerator
Designs

Workloads
ResNet50 BERT-base VGG16 AlexNet

Eyeriss 5.2k 13.3k 53.8k 21.4k
Eyeriss V2 PE 2.7k 12.5k 20.4k 13.2k

SCNN 1.1k 4.3k 3.7k 5.2k

Table V: Computes simulated per host cycle (CPHC) for
designs modeled by Sparseloop. Compared to cycle-level
tensor accelerator simulator STONNE [28], which has less
than 0.5 CPHC, Sparseloop is over 2000× faster.

Sparseloop achieves much higher CPHCs with its analyt-
ical modeling approach since Sparseloop avoids performing
analysis on all computations by performing statistical anal-
ysis on transient and steady state design behaviors only; and
does not simulate detailed cycle-level control logic. Table V
shows Sparseloop’s CPHCs for example DNN accelera-
tors [9], [10], [11] running representative workloads [51],
[52], [53], [54]. The CPHCs are dependent on accelerator
architecture characteristics (e.g., SAFs complexity, number
of levels, etc.), employed dataflow, and DNN workload char-
acteristics (e.g., sparsity, tensor shapes, number of layers,
etc.). For example, compared to Eyeriss V2 and SCNN, Ey-
eriss’ less powerful SAF support (more details in Table III)
always introduces lower SAF modeling complexity and more
simulated computes, leading to a higher CPHC. Overall,
Sparseloop is over 2000× faster compared to STONNE [28].

C. Validation

High modeling accuracy, in terms of both absolute values
and relative trends, allows designers to correctly analyze de-
sign trade-offs at an early stage. To demonstrate Sparseloop’s
accuracy, we validate on five well-known accelerator de-
signs: SCNN [11], Eyeriss [9], Eyeriss V2 [10], and dual-
side sparse tensor core (DSTC) [21], and Sparse Tensor
Core (STC) [18]. Overall, Sparseloop maintains relative
trends and achieves 0.1% to 8% average error. Based
on available information from existing work, validations
are performed on baseline models that capture increasing
amount of design details: from analytical models based
on statistical sparsity patterns to cycle-level models/real
hardware designs based on actual sparsity patterns. At a
high-level, common sources of error include: 1) statistical
approximation of actual data 2) approximated component
characteristics 3) approximated impact of design-specific
micro-architectural implementations. Table VI summarizes
the validations.

In the next sections, we present more detailed validation
discussions. In order to validate our work against prior
works, we need to use the workloads reported in those
works, despite the reported workloads being old (though
popular at the time of the work’s publication) or different
across designs. This is mainly due to the fact that other
workloads are either not available in the reported results or
not directly supported by the available simulators.



Accelerator
Design

Baseline Model Average
Accuracy Major Sources of Error

Source Type Sparsity
Pattern Output

SCNN Simulators obtained
from authors [11], [10]

Design-specific
Analytical

Statistical Runtime activities 99.9% None

Eyeriss V2 PE

Actual

Processing latency >98% Statistical approximations

Eyeriss Results directly
from paper

or technical report
[9], [21], [18]

Real hardware Compression rate
Energy savings >95%

(1) Statistical approximations
(2) Approximated component
energy characterizations

DSTC
Cycle-level simulator

validated on
silicon [55]

Processing latency 92.4%
(1) Statistical approximations;
(2) Optimistic modeling
of microarchitectural details

STC Real hardware Processing latency 100%
None
(structured sparsity introduces
deterministic behaviors)

Table VI: High-level summary of performed validations based on available data from existing work. Overall,
Sparseloop achieves 0.1% to 8% average error across different designs. More details in Sections VI-C1, VI-C2, VI-C3,
VI-C4 and VI-C5.

Figure 11: Runtime activity validation for SCNN [11].
Achieves less than 1% error for all components.

1) SCNN: We first validate Sparseloop on SCNN [11]
with a customized simulator that was used in the paper: it
performs analytical modeling based on statistically charac-
terized data. SCNN baseline assumes uniform distribution
and captures the runtime activities of the components in
the architecture (e.g., the number of reads and writes to
various storage levels). Fig. 11 shows the error rate of the
runtime activities for each component in the architecture.
Sparseloop , running with a uniform density model, is able
to capture all runtime activities accurately with less than 1%
error for all components in the architecture.

2) Eyeriss V2 : Since Eyeriss V2’s SAFs are imple-
mented in its processing element (PE), we focus on val-
idating the PE based on a baseline model that performs
actual sparsity pattern based analytical modeling. To quan-
titatively demonstrate the sources of error, we validate
Sparseloop with both an actual-data density model and a
uniform density model.

Fig. 12 shows the validation on the number of cycle
counts. In terms of total cycle counts for processing the
entire MobileNet [56], Sparseloop achieves more than 99%
accuracy and is able to capture the relative trends across dif-
ferent layers with both density models. However, for layers

Figure 12: Processing latency validation for Eyeriss V2
processing element [10] running MobileNet [56]. We only
show total cycle counts and layers with more than 1% error.

with both sparse operands compressed, modeling based on a
uniform density model results in up to 7% error for layer27.
Fig. 12 shows the layers with more than 1% error. The
errors are mainly attributed to the statistical approximation
of the expected nonempty intersection ratio between two
sparse tensors, as the exact nonempty ratio deviates from
case to case, e.g., when both operands have identical nonzero
value locations, the intersection nonempty ratio is equal
to the tensor densities. With an actual-data density model,
Sparseloop accounts for the exact intersections, and thus
accurately captures the cycle counts (at the cost of a slower
modeling speed).

3) Dual-Side Sparse Tensor Core: For DSTC, the base-
lines are also obtained directly from the papers whose
reported results are based on a cycle-level simulator that
is validated on real hardware [55]. We validate on the
normalized processing latency running matrix multiplication
workloads with various operand tensor density degrees, as
shown in Fig. 13. We modeled the tensors with a uniform
density model, captured the performance trends across den-



Figure 13: Processing latency of dual-side sparse tensor
core [21] running matrix multiplication workloads with vari-
ous operand tensor densities, normalized to dense processing
latency. Average error is 7.6%.

Conv1 Conv2 Conv3 Conv4 Conv5

Eyeriss[9] 1.2 1.4 1.7 1.8 1.9
Sparseloop 1.2 1.4 1.7 1.9 1.9

Table VII: Eyeriss[9] DRAM compression rate validation.

sity degrees, and obtained an average error of less than
8%. In addition to errors introduced by deviations from
the expected nonempty intersection ratio, Sparseloop also
performs optimistic modeling of micro-architectural details.
More specifically, Sparseloop assumes no storage bank
conflicts but DSTC’s baseline results contain bank conflicts
when operand tensors are relatively sparse (e.g., 30% den-
sity), thus introducing higher processing latency.

4) Eyeriss: We validate on Eyeriss [9] with baselines
obtained from the paper and based on taped-out silicon. We
first validate DRAM compression rates for AlexNet [54], as
shown in Table VII. Overall, we achieve 1% error on average
and the discrepancy could be due to imperfect compression
with the actual data. We also validate on the PE array energy
reduction ratio due to on-chip gating. Eyeriss claims that
the energy savings of the processing elements can achieve
45%. Our results show a max energy efficiency improvement
of 43%. The discrepancy could be due to not modeled PE
components with unknown energy characteristics.

5) Sparse Tensor Core: Finally, we validate the Ampere
GPU’s sparse tensor core accelerator (STC) based on pub-
licly available architecture descriptions [57], [58], [18]. STC
focuses on accelerating structured sparse workloads with a
2:4 sparsity structure, which demands at most two nonzero
values in every block of four values. Fig. 14 shows the
high-level STC architecture and an example processing flow
of a 2:4 structured sparse matrix multiplication workload
(algorithm defined in Fig. 6). We will discuss more details
about STC in Section VII-A.

To validate STC, we use the fixed structured density
model parameterized with the 2:4 structure along each chan-
nel to model the structured sparse weight tensor. Existing

Figure 14: Modeled sparse tensor core architecture (includ-
ing the SMEM in streaming processor for a more holistic
view) and example processing of a 2:4 structured workload.

work reports that STC achieves 2× speedup compared to
dense processing [18], [57], [58]. Because of the fully de-
fined behaviors with the structured sparsity, Sparseloop also
produces an exact 2× speedup (STC design in Fig. 15),
achieving 100% accuracy.

VII. CASE STUDIES

In this section, we demonstrate Sparseloop’s flexibility
with two case studies.

A. Investigating Next Generation Sparse Tensor Core

In recent years, various techniques have been proposed
to add sparsity support to tensor core (TC). In this case
study, we use Sparseloop to first compare two variations:
the commercialized NVIDIA STC [18] and a research-based
proposal DSTC [21]. Based on the comparison, we then dis-
cuss the potential opportunities for next-generation STC, and
showcase an example design flow that uses Sparseloop to
identify current STC design’s limitations and explore various
solutions to such limitations to unlock more potential.

1) DSTC vs. NVIDIA STC: We perform an apples-to-
apples comparison of the two designs. Since both designs
are TC-based, both architectures contain the SMEM-RF-
Compute hierarchy as shown in Fig. 14, and are controlled
on allocated hardware resources, including compute, storage
capacity, and memory bandwidth. To model realistic sys-
tems, we only provision a subset of a real GPU’s SMEM
bandwidth to the accelerators, since other processes running
on the GPU share the same SMEM storage. At a high-
level, DSTC employs complex sparsity support and a special
outer product dataflow to exploit arbitrary sparsity in both
operands to perform compression and skipping. In contrast,
STC ignores input sparsity and uses low-overhead sparsity
support to compress and perform skipping on weights with
2:4 structured sparsity only.

Fig. 15 compares the cycles spent and energy consumed
by DSTC and STC running ResNet50 [51] pruned to var-
ious sparsity degrees. ResNet50 contains sparse weights



Figure 15: Sparseloop’s analysis on the normalized total
cycles spent and energy-delay product for various designs of
tensor core accelerator running representative ResNet50 [51]
layers pruned to various sparsity degrees. The accelerators
are controlled to have similar amount of hardware resources.

(if pruned) and sparse inputs. Compared to STC, DSTC’s
dataflow for supporting arbitrary sparsity incurs a significant
amount of data movement. As a result, when processing
denser workloads (e.g., unpruned ResNet50 in this example
or BERT-like networks with dense input activations), even
if DSTC is able to always introduce lower cycles counts,
the savings brought by SAFs cannot compensate for the
additional energy spent and thus the overall hardware effi-
ciency is low. However, STC provides very limited support
for different workloads. Furthermore, for sparser workloads,
e.g., 25% dense ResNet50 in Fig. 15(a), despite DSTC’s
overhead, it’s able to achieve a much higher overall effi-
ciency because of the speedup introduced by a significant
amount of skipping.
Opportunities for STC: only supporting 2:4 sparsity in
the current STC design leads to missed opportunities, as
many modern DNNs can be pruned to >50% sparsity
(structured [59] or unstructured [60]) while maintaining
reasonable accuracy. Thus, one possible feature for a
next generation STC to have is to efficiently exploit the
savings brought by more sparsity degrees but still keep
the sparsity structured to reduce SAF overhead.

2) Naive STC Extension To Support More Ratios: In
order to extend the existing STC to support more sparsity
degrees, we first introduce the existing high-level processing
of STC running matrix multiplication workloads (algorithm
defined in Fig. 6) with the default 2:4 structured sparsity. In
the case of a DNN, tensor A in Fig. 6 corresponds to the
structured sparse weights in Fig. 14.

As shown in Fig. 14, the weight tensor is compressed
with an offset-based coordinate payload format, where each

nonzero carries an offset coordinate to indicate its position
in the block of four values, e.g., the nonzero weight g is
the third element in its block, and thus carries a metadata
of 2. This format matches our CP format in earlier sections.
The compressed weight tensor and the uncompressed input
tensor are stored in SMEM. For each iteration of processing,
the weights, weight metadata, and dense inputs are fetched
out. However, since inputs are uncompressed, as shown in
Fig. 14, a tile with four weights corresponds to a tile with
eight inputs. Thus, to ensure correctness, a 4:2 selection
needs to be performed on the inputs for each block of four
weights. Since only nonzero weights need to be processed,
the 2:4 processing is 2× faster than dense processing.

Thus, naively supporting more sparsity degrees in STC
simply involves extending the above discussed sparsity sup-
port with input activation selection logic for more ratios,
e.g., 2:6 and 2:8. We name this naive extension as STC-
flexible. As shown in Fig. 15, Sparseloop’s modeling in-
dicates that STC-flexible does support and introduce extra
energy reductions for lower density workloads. However,
no desirable speedup is obtained with the higher sparsity,
e.g., theoretically, 2:6 structured sparsity should introduce
3× speedup. In fact, surprisingly, the baseline processing
barely brings any additional speedup with the naive
extension for 2:6 and 2:8 workloads.

3) Identify Design Limitations: STC-flexible’s approach
does not improve performance due to SMEM bandwidth lim-
itation. Fig. 16 shows Sparseloop’s analysis on the required
bandwidth for processing workloads with various sparsity
ratios. To ensure full utilization of the tensor core, the same
number of nonzero weights needs to be processed spatially
regardless of the workload sparsity, i.e., we always need
1× weights as shown in Fig. 16. As discussed above, STC
stores inputs in uncompressed format. Thus, the sparser
the weight tensor, the more inputs need to be fetched in
a cycle, e.g., in Fig. 16, 4× inputs need to be fetched
for workloads with 2:8 sparse weights. In addition to the
bandwidth pressure imposed by inputs, the metadata also
needs to be described with more bits as the block size
gets larger. The amount of additional metadata overhead
is dependent on the chosen representation format, e.g., run
length encoding (RLE) requires fewer bits than offset-based
CP for 2:6 sparse workloads. As a result, STC is bottle-
necked by the limited bandwidth, which is provisioned
for 2:4 structured sparsity, and thus cannot obtain the
theoretical speedup for sparser workloads.

4) Explore Solutions to Overcome Limitations: With
Sparseloop, we can perform early design stage exploration
on potential solutions. Without loss of generality and for
the ease of presentation, we discuss two example directions
with low-hanging fruit: 1) improve representation format
support to reduce metadata overhead; 2) introduce additional
compression SAFs for inputs.

First, we evaluate if a different representation (compres-



Figure 16: Sparseloop’s analysis on bandwidth requirements
for getting ideal speedup for various operands and associated
metadata (if any).

sion) format can alleviate the overhead introduced by meta-
data, especially for 2:6 structured sparsity. Thus, as shown
in Fig. 15, we enabled RLE support for STC-flexible to form
STC-flexible-rle. At a high-level, compared to the STC’s
original CP support, RLE support does provide similar or
better processing speed. However, since the majority of the
overhead comes from transferring actual data, the benefits
are too insignificant to bring STC-flexible-rle over DSTC.

We then target the more important bottleneck: the uncom-
pressed input data traffic. To solve the problem, we added
bitmask-based compression to input such that both operands
are compressed to form STC-flexible-rle-dualCompress de-
sign in Fig. 15. To keep the compute easily synced, we did
not add input-based skipping. As a result, all of the obtained
speedups come from bandwidth requirement reduction. As
shown in Fig. 15, STC-flexible-rle-dualCompress can actu-
ally introduce similar speed even if it cannot exploit input
sparsity for skipping. This is because even if DSTC exploits
both operands for speedup, its dataflow has more frequent
streaming of operands, introducing additional pressure to
SMEM bandwidth as well. Thus, with this example, we
have demonstrated that exploiting more sparsity does
not guarantee more speedup, and it is very important to
make sure the dataflow and SAF overhead is reasonable.

Overall, as shown in Fig. 15, we derived STC-flexible-rle-
dualCompress that, compared to DSTC, always introduces
lower energy consumption and has similar processing speed
most of the time for the studied sparsity degrees.

B. Co-design of Dataflow, SAFs and Sparsity

Looking beyond the deep learning workloads and tensor
core accelerators discussed in the previous case study, this
section demonstrates how Sparseloop can model workloads
with more diverse sparsity degrees and accelerator designs
that employ various dataflows and SAFs. With a set of
small-scale experiments, we show various broad insights for
designing sparse tensor accelerators: (1) the best design for
one application domain might not be the best for another; (2)
combining more energy or latency saving features together
does not always make the design more efficient. Thus,
careful co-design of dataflow, SAFs and sparsity is necessary
for achieving desired latency/energy savings.

1) Design Choices: Workloads: We use matrix multi-
plication with sparse input tensors (spMspM) of various

(a)

Dataflow Choices Tensor Reuse
A B Z

ReuseABZ Innermost storage Shared buffer Innermost storage
ReuseAZ Innermost storage None Innermost storage

(b)

SAFs Choices Operand Intersection
Off-chip On-chip

InnermostSkip None SkipB ↔ A
HierarchicalSkip SkipB ↔ A SkipB ↔ A

Table VIII: Choices for different design aspects: (a)
dataflows (b) SAFs (representation formats and other minor
SAFs are identical and thus are not shown for simplicity)

Figure 17: Normalized energy-delay product of different
combinations of dataflow-SAFs running matrix multiplica-
tions with various density degrees, which are labeled with
relevant example workloads. Sparseloop shows (1) dataflow
and SAFs should be co-designed to ensure potential savings;
(2) the correct combination needs to be chosen for different
applications to realize the potential savings.

density degrees as example workloads. spMspM, represented
as Zm,n =

∑
k Am,k ×Bk,n as an Einsum, is an important

kernel in many popular applications, such as scientific sim-
ulations, graph algorithms and DNNs, each of which can
have different tensor density degrees.
Dataflows: Given a hardware budget of 256 compute units
and 128KB on-chip storage, we consider two choices shown
in Table VIII(a): (1) ReuseABZ that reuses all tensors on-
chip; (2) ReuseAZ that doesn’t have on-chip reuse for B.
SAFs: As shown in Table VIII(b), we consider two sets of
SAFs choices: (1) InnermostSkip that performs SkipB ↔ A
at the innermost on-chip storage (2) HierarchicalSkip that hi-
erarchically performs SkipB ↔ A at DRAM and innermost
storage to reduce both off-chip and on-chip data movement.

2) Interactions Among Design Choices: Fig. 17 com-
pares the energy-delay-product (EDP) of different dataflow-
SAF combinations running spMspM with various A tensor
density degrees. At each density degree, the EDPs are
normalized to ReuseABZ.InnermostSkip’s EDP.

We first make the observation that the best design for



one application domain might not be the best for another.
For example, while ReuseABZ.InnermostSkip is the best
design for NN workloads (i.e., A density >6%), for sparser
workloads, such as scientific simulations or graph algorithm,
this design is sub-optimal due to its large off-chip bandwidth
requirement. On the other hand, ReuseAZ.HierarchicalSkip
performs the best with hyper-sparse workloads since this
design performs early off-chip traffic eliminations, but it fails
to reduce EDP with NN workloads due to its inability to per-
form effective off-chip intersections on denser operands and
its lack of on-chip B reuse. Thus, a design’s dataflow-SAFs
combinations need to be chosen based on target application’s
sparsity characteristics to realize potential savings.

We also show that combining more energy or latency sav-
ing features together does not always make the design more
efficient. For example, ReuseABZ.HierarchicalSkip combines
a dataflow that reuses all tensors with SAFs that skip
both off-chip and on-chip traffic to form a design with the
most number of latency/energy savings features. However,
as shown in Fig. 17, ReuseABZ.HierarchicalSkip is never
the best design in terms of EDP. This is because the
ReuseABZ dataflow prevents the off-chip skipping SAF from
eliminating B’s off-chip data movement. More specifically,
since ReuseABZ reuses each on-chip B tile for multiple
A tiles, B tile transfers can be eliminated by the off-chip
skipping SAF only when all values in its corresponding A
tiles are zeros, which rarely happens. Thus, dataflow and
SAFs need to be carefully co-designed to ensure there
exist opportunities for reasonable savings.

VIII. RELATED WORK

There is ample prior work in modeling frameworks for
tensor accelerator designs. These models can be classified
into two classes: cycle-level models and analytical models.

Cycle-level models evaluate the detailed cycle-level be-
haviors of potential designs. Many of them assume a spe-
cific target platform, such as ASIC [61] or FPGA [62],
[63], [64] and perform register-transfer-level (RTL) analysis,
which includes low-level hardware details (e.g., pipeline
stages). There are also platform-independent models, e.g.,
STONNE[28], which perform cycle-level architectural anal-
ysis without RTL implementations. While these cycle-level
models are very accurate, they hinder the exploration among
the vast number of dataflows due to their long simulation
time [22], [23], [24]. Furthermore, cycle-level models are of-
ten not well parameterized in terms of architecture topology,
employed SAFs, dataflow, etc. These assumptions adversely
limit the explorable designs.

Analytical models [24], [65], [27], [30], [29], [31], [32],
[33], [34] perform higher level analytical evaluations without
considering per-cycle processing details of the design. Since
these models work on abstracted hardware models, they
are usually well parameterized and modularized to support
a wider range of architecture designs. However, to the

authors’ knowledge, they either do not recognize the sparse
workloads or SAFs at all [24], [30], [29], [31], [32], [33],
[34], or only target design-specific SAFs [65], [27]. For
example, Procrustes[65] supports modeling of B format for
one operand only. That is, no prior work aims to flexibly
model general sparse tensor accelerators with various SAFs
applied. Since at each architecture level, different SAFs can
introduce different amounts of savings and overhead, the
lack of trade-off analysis for SAFs prevents designers from
using such analytical models for design space exploration.

IX. CONCLUSION

Sparse tensor accelerators are important for efficiently
processing many popular workloads. However, the lack of a
unified description language and a modeling infrastructure
to enable exploration of various designs impedes further
advances in this domain. This paper proposes a systematic
classification of sparsity-aware acceleration techniques into
three high-level sparse acceleration features (SAFs): repre-
sentation format, gating, and skipping. Exploiting this clas-
sification, we develop Sparseloop, an analytical modeling
framework for sparse tensor accelerators. We further observe
that the analyses of dataflow, SAFs, and micro-architecture
are orthogonal to each other. Based on the orthogonality,
we design Sparseloop’s internal analysis as three decoupled
steps to keep its modeling complexity tractable. To balance
modeling accuracy and simulation speed, Sparseloop uses
statistical characterizations of tensors.

Sparseloop is over 2000× faster than cycle-level simula-
tions, and models well-known sparse tensor accelerators with
accurate relative trends and 0.1% to 8% average error. With
case studies, we demonstrate that Sparseloop can be used in
accelerator design flows to help designers to compare and
explore various designs, identify performance bottlenecks
(e.g., memory bandwidth), and reveal broad design insights
(e.g., co-design of sparsity, SAF and dataflow).
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APPENDIX

A. Abstract

In this artifact, we provide the source code of Sparseloop,
its energy estimation backend based on Accelergy [50], and
input specifications to key experimental results presented
in the paper. To allow easy reproduction, we provide a
docker environment with all necessary dependencies, auto-
mated scripts, and a Jupyter notebook that includes detailed
instructions on running the evaluations. The artifact can be
executed with any X86-64 machine with docker support and
more than 10GB of disk space.

B. Artifact check-list (meta-information)
• Algorithm: Analytical modeling of sparse tensor accelerator

performance (energy and cycles).
• Program: C++, python.
• Run-time environment: Dockerfile.
• Hardware: Any X86-64 machine.
• Output: Plots or tables generated from scripts.
• Experiments: Analytical modeling of various sparse tensor

accelerators running various workloads.
• How much disk space required (approximately)?: 10GB
• How much time is needed to prepare workflow (approxi-

mately)?: Less than 30min if directly pulling docker image;
less than 2 hours if building docker from the source.

• How much time is needed to complete experiments
(approximately)?: Less than 1 hour to finish running all
experiments in the provided default mode.

• Publicly available?: Yes
• Code licenses (if publicly available)?: MIT
• Archived (provide DOI)?: Yes, DOI 10.5281/zen-

odo.7027215

C. Description

1) How to access: The artifact is hosted both
on github (https://github.com/Accelergy-Project/
micro22-sparseloop-artifact) and on an archival
repository with DOI 10.5281/zenodo.7027215
(https://doi.org/10.5281/zenodo.7027215).

D. Installation

Since we provide a docker, the installation process
mainly involves obtaining the docker image that
contains the dependencies, the compiled Sparseloop,
and the energy estimation backend. Please follow the
provided instructions (https://github.com/Accelergy-Project/
micro22-sparseloop-artifact/blob/main/README.md) to
obtain and start the docker.

E. Evaluation and expected results

We provide a jupyter notebook in workspace/2022.micro.
artifact/notebook/artifact evaluations.ipynb to guide
through the evaluations. Please navigate to the notebook in
your docker Jupyter notebook file structure GUI.

Each cell in the notebook provides the background,
instructions, and commands to run each evaluation with

provided scripts. The evaluations include the following key
results from the paper:

• Comparison of performance and energy for accelerators
supporting different representation formats (Fig. 1).

• Validations on various sparse tensor accelerators
(Fig. 12, Table VII, Fig. 13, and the STC design in
Fig. 15.)

• Example design flow using Sparseloop to perform
apples-to-apples comparison, identify design limita-
tions, and explore various solutions to the limitation
(Fig. 15).

The output of each evaluation will either produce a figure
or the content of a table. The easiest way to check validity
is to compare the generated figure/table with the ones in
the paper. However, raw results can also be accessed in the
workspace/evaluation setups folder. Please note that we had
to use energy estimation data based on public technology
node instead of our proprietary technology node, so the exact
data might not match for certain evaluation(s). We explicitly
point out such cases in the notebook.

F. Experiment customization

The input specifications in the
workspace/evaluation setups folder can be updated to
specify different hardware setups (e.g., different buffer
sizes). Moreover, we also provide options in the scripts
to enable map space search using Sparseloop (e.g., --
use mapper option can be enabled).

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://github.com/Accelergy-Project/micro22-sparseloop-artifact
https://github.com/Accelergy-Project/micro22-sparseloop-artifact
https://doi.org/10.5281/zenodo.7027215 
https://github.com/Accelergy-Project/micro22-sparseloop-artifact/blob/main/README.md
https://github.com/Accelergy-Project/micro22-sparseloop-artifact/blob/main/README.md
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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