
Accelerating RTL Simulation with Hardware-Software Co-Design
Fares Elsabbagh

MIT CSAIL
Cambridge, MA, USA
farese@csail.mit.edu

Shabnam Sheikhha
MIT CSAIL

Cambridge, MA, USA
shab@csail.mit.edu

Victor A. Ying∗
MIT CSAIL

Cambridge, MA, USA
victory@csail.mit.edu

Quan M. Nguyen
MIT CSAIL

Cambridge, MA, USA
qmn@csail.mit.edu

Joel S. Emer
MIT CSAIL

Cambridge, MA, USA
emer@csail.mit.edu

Daniel Sanchez
MIT CSAIL

Cambridge, MA, USA
sanchez@csail.mit.edu

ABSTRACT
Fast simulation of digital circuits is crucial to build modern chips.
But RTL (Register-Transfer-Level) simulators are slow, as they can-
not exploit multicores well. Slow simulation lengthens chip design
time and makes bugs more frequent.

We present ASH, a parallel architecture tailored to simulation
workloads. ASH consists of a tightly codesigned hardware archi-
tecture and compiler for RTL simulation. ASH exploits two key
opportunities. First, it performs dataflow execution of small tasks
to leverage the fine-grained parallelism in simulation workloads.
Second, it performs selective event-driven execution to run only the
fraction of the design exercised each cycle, skipping ineffectual
tasks. ASH hardware provides a novel combination of dataflow and
speculative execution, and ASH’s compiler features several novel
techniques to automatically leverage this hardware.

We evaluate ASH in simulation using large Verilog designs. An
ASH chip with 256 simple cores is gmean 1,485× faster than 1-core
Verilator, and it is 32× faster than parallel Verilator on a server CPU
with 32 complex cores, while using 3× less area.

CCS CONCEPTS
• Computer systems organization → Parallel architectures; •
Hardware → Electronic design automation.

KEYWORDS
simulation, register-transfer-level, hardware acceleration, dataflow
execution, speculative execution, domain-specific architectures.

ACM Reference Format:
Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen,
Joel S. Emer, and Daniel Sanchez. 2023. Accelerating RTL Simulation with
Hardware-Software Co-Design. In 56th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO ’23), October 28–November 01, 2023,
Toronto, ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/
10.1145/3613424.3614257

∗Victor A. Ying began working at Tenstorrent after this work was done.

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614257

1 INTRODUCTION
Fast simulation of digital circuits is crucial for effective digital
design. Current processors and SoCs integrate hundreds of complex
components, including cores, accelerators, and memory hierarchies.
Simulating these systems is needed to explore their design space and
verify their correctness. In particular, verification dominates chip
design cost [24]. Unfortunately, existing simulators are slow. This
increases design time, limits the efficiency of the resulting design
(due to insufficient design exploration), and makes hardware bugs
more likely (due to insufficient verification coverage).

Simulation can happen at different levels of abstraction. In this
work, we focus on accelerating Register-Transfer-Level (RTL) sim-
ulation, i.e., the precise simulation of a hardware design written
in a Hardware Description Language (HDL) like Verilog. RTL sim-
ulation is a common bottleneck in chip design, as it is needed to
debug an evolving implementation and evaluate and improve its
performance, power, and area.

Prior work has built software and hardware techniques to accel-
erate RTL simulation. Unfortunately, these techniques have major
drawbacks. The fastest software simulators, like Verilator [56], are
purpose-built optimizing compilers that translate RTL code into an
efficient software program (e.g., in C++) [8, 46, 56]. But simulators
scale poorly across CPU cores, because parallelism is fine-grained:
work must be split into small tasks with few operations each. But
these tasks havemany data dependences and need frequent synchro-
nization. This causes high overheads on conventional multicores,
which erase most of the benefits of parallelization (Sec. 2).

Since simulators are so slow, chip designers often resort to spe-
cialized emulators, which map a design to hundreds to thousands of
FPGAs [13, 63] or specialized processors [9, 12]. Emulators work at a
lower level of abstraction (logic gates), which limits their efficiency;
they are large and expensive; and they suffer very long compile
times, days to weeks for large designs [23]. This limits emulators
to final integration testing, when the design is nearly finished and
bug-free. By contrast, simulators compile designs in minutes, so
they are the only option for most of the design cycle, when changes
are frequent (Sec. 2.4). Thus, we focus on accelerating software
simulation, retaining its fast compilation while achieving dramatic
speedups.

We propose the ASH (Accelerator of Simulated Hardware) sys-
tem, a carefully co-designed architecture and compiler for RTL
simulation. We present two ASH variants that target the key accel-
eration opportunities in RTL simulation:

https://doi.org/10.1145/3613424.3614257
https://doi.org/10.1145/3613424.3614257
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3613424.3614257

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

Dataflow execution with DASH: RTL simulation is naturally
expressed as many tasks whose outputs drive the inputs of other
tasks, so it is a perfect match for dataflow (i.e., data-driven) execu-
tion [15]. Dataflow execution has the potential to expose abundant
parallelism, as each task can run as soon as its inputs have been
produced. Unfortunately, RTL simulation fails to scale on current
multicores because it needs small tasks to expose sufficient paral-
lelism, but small tasks have prohibitive overheads on multicores
that negate the benefits of parallelism.

DASH (Dataflow ASH) tackles this challenge by providing novel
hardware mechanisms for dataflow execution of small tasks. We
extend a multicore with hardware to orchestrate dataflow execu-
tion: DASH hardware gathers inputs and dispatches tasks to cores
after inputs are available. DASH implements a novel prioritized
dataflow execution that orders tasks to reduce in-flight tasks, avoid-
ing the overheads of prior dataflow architectures [17, 40, 62]. DASH
also features a simple, partitioned memory system without cache
coherence specialized to the needs of simulation.
Selective event-driven execution with SASH: In most digi-
tal designs, only a small fraction of the signals change each cy-
cle [7, 16, 31], so simulating the whole design every cycle is waste-
ful. Selective execution—simulating only the active fraction of the
design—is more efficient. Prior work has proposed event-driven
simulators and architectures [1, 14, 19, 20, 26] where work happens
through events that may schedule other events for later execu-
tion. Unfortunately, these prior systems lack support for dataflow
execution, so running dataflow tasks selectively incurs costly syn-
chronization through memory that negates the benefits of selective
execution.

SASH (Selective event-driven ASH) tackles this challenge by ex-
tending DASH with selective execution, running only tasks whose
inputs change during a given cycle. Selective execution introduces
dynamic data dependences: each task receives inputs only from
producers that have run, but not from skipped ones. SASH handles
these dependences with speculative execution, running each task
with its received inputs and using old values for non-received ones
(i.e., speculating that these inputs will not change this cycle). A
late-received input causes the task to abort and re-execute.
ASH compiler: The ASH compiler builds on Verilator and intro-
duces novel techniques to parallelize RTL code automatically and
efficiently, place tasks and data to minimize communication, and
effectively use DASH’s dataflow scheduling hardware as well as
SASH’s speculative execution features.

In summary, ASH leverages classic compiler and architecture
concepts, including dataflow and speculative execution, and con-
tributes new techniques to make their combination efficient and
use them automatically. While prior systems used either task-level
dataflow [17, 75] or speculation [1, 18, 27], ASH is the first to com-
bine them, achieving good scalability and avoiding ineffectual work.

We evaluate ASH in simulation, on four large Verilog designs that
include CPU cores, GPU cores, and accelerators. Our contributions
make RTL simulation scale to hundreds of cores. A 256-core ASH
system is gmean 1,485× faster than serial Verilator on a system
with a single (simple) core, and it is gmean 32× faster than parallel
Verilator on a commercial CPU with 32 complex cores while using
3× less area.

2 MOTIVATION AND BACKGROUND
In this section, we first introduce the key characteristics of RTL
simulation. We then present its two key optimization opportunities
and quantify the limitations of existing systems, including parallel
simulators and FPGA emulators.

2.1 Understanding RTL simulation
RTL simulation functionally evaluates a digital circuit written in an
HDL like Verilog. RTL simulation precisely evaluates how signals
and state elements (e.g., registers) evolve over clock cycles. For
instance, Fig. 1a shows a 2-stage pipeline that computes the dot-
product of two 4-element vectors. In an RTL simulation, a testbench
feeds inputs each simulated cycle, and compares the outputs (and
maybe other signals) against a reference model. It may also evaluate
performance (e.g., cycles taken on a long computation) and power
(by measuring component activities). Thus, RTL simulation verifies
digital designs and analyzes their efficiency.

In this work, we focus on simulating synchronous circuits, by
far the dominant design style (other styles, like asynchronous cir-
cuits [11], are rarely used). These systems comprise combinational
logic and clocked registers. (For simplicity, we assume that all reg-
isters are driven by one clock, but our techniques also work with
multiple clock domains [70].)

Comb. logic

Wire

Registerclk

a[0]
b[0]

clk

a[1]
b[1]

clk

a[2]
b[2]

clk

a[3]
b[3]

clk

out

*

*

*

*

+

+

+

(a) Example 2-stage pipeline.

* * * * + +
+

Input Register Output
Dataflow node Dataflow edge

(b) Dataflow graph for (a).

Figure 1: RTL simulation of
synchronous circuits can be ab-
stracted as a dataflow graph.

Dataflow graphs: RTL sim-
ulation of synchronous cir-
cuits can be abstracted as
the execution of a dataflow
graph, where nodes repre-
sent combinational logic and
edges represent data values.
Fig. 1b shows the dataflow
graph for the circuit in
Fig. 1a, with inputs on the
top and the only output on
the bottom. The same reg-
isters are shown on both
top and bottom, as they are
read and written every cy-
cle. RTL simulation evaluates
each node in the dataflow
graph once per simulated cy-
cle in an order consistent
with its dataflow edges.
RTL simulators: Modern
RTL simulators like Verilator [56], ESSENT [8], RepCut [71], and
Cuttlesim [46] are compilation-based: they translate HDL code to a
dataflow intermediate representation (IR), then translate the IR to
a software program that simulates the circuit. For example, Fig. 2
shows how an ALU is translated from Verilog to efficient C++.
Translation leverages the semantic similarities of HDLs and soft-
ware languages, e.g., arithmetic operations are directly translated
to C++ arithmetic operations, not bit-level operations.

RTL simulation admits two key optimizations: executing the
dataflow graph in parallel, and executing only the nodes whose
inputs change. We quantify the shortfalls of existing systems, show-
ing the need for hardware support.

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

typedef bit [63:0] Word;
typedef enum {ADD, MUL, AND, XOR} AluOp;

module alu(input Word a, input Word b,
 input AluOp op, output Word out);
 always_comb begin
 case (op)
 ADD: out = a + b;
 MUL: out = a * b;
 AND: out = a & b;
 XOR: out = a ^ b;
 endcase
 end
endmodule

(a) Verilog RTL code for a simple ALU.

a

0

3

1

2

b

op

out
64

64

64

+

*

(b) ALU hardware.

class alu {
 // Inputs
 uint64_t a, b;
 uint8_t op;
 // Outputs
 uint64_t out;

 void eval() {
 if (op == 0) out = a + b;
 else if (op == 1) out = a * b;
 else if (op == 2) out = a & b;
 else if (op == 3) out = a ^ b;
 }
};

(c) Generated C++ code for (a).

Figure 2: Fast RTL simulators compile HDL code (e.g., Verilog) to a software program.

100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(a) Finer tasks increase parallelism.
100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(b) Speedup over serial simulation.

100 101 102 103 104

(a) Finer tasks increase parallelism.

0

250

500

Ex
pe

ct
ed

Pa
ra

lle
lis

m

100 101 102 103 104

(b) Speedup over serial simulation.

0

2

4

Pa
ra

lle
l

Sp
ee

du
p

100 101 102 103 104

 Number of tasks
(c) Tiny tasks uncover low activity.

0.0

0.5

1.0

A
ct

iv
ity

Fr
ac

tio
n

(c) Tiny tasks uncover low activity.

Figure 3: Effects of varying task
size for Verilator. More tasks (x-
axis) means finer grain.

2.2 Parallel execution needs small tasks
RTL simulators can parallelize execution by leveraging the dataflow
graph, which exposes the available parallelism: independent paths
can be evaluated in parallel. However, fine-grained dependences
cause serialization: for instance, in Fig. 1b the adder tree can be
partially parallelized, but two inputs feed into the final adder. In
practice, combinational paths have tens of nodes, with edges fan-
ning in and out, creating complex dependences that make parallel
execution challenging.

The granularity of scheduling is a key aspect of parallelization.
Each node in the dataflow graph performs a tiny amount of work, of-
ten just a single assignment. On current multicores, communication
costs would make individually scheduling these nodes extremely
expensive. Instead, dataflow nodes are firstmerged into larger tasks.
Then, this task-level dataflow graph is scheduled across cores.

Merging nodes into larger tasks introduces delicate tradeoffs
between work-efficiency and parallelism. On the one hand, larger
tasks are more work-efficient. On the other hand, merging too much
causes two problems: it reduces parallelism and creates tasks with
many inputs and outputs, which are harder to schedule. For instance,
merging the four independent multiplier nodes in Fig. 1b reduces
parallelism by 4× and produces a task with 8 inputs and 4 outputs.

The problem is that existing multicores force simulators to create
huge sequential tasks that sacrifice most of the parallelism. This
happens because communication and synchronization are very ex-
pensive: communicating a single value across cores is done through
shared memory, and costs hundreds of cycles. Tasks must have
thousands of operations to amortize these costs. But larger tasks
also have more dependences, inducing needless serialization that
tanks parallelism.

To quantify this problem, we use Verilator [56] to compile an
RTL simulator for Chronos, a graph-processing accelerator with
128 processing engines (see Sec. 8 for methodology details). Veri-
lator iteratively merges dataflow nodes into large tasks. It tries to
avoid lengthening the critical path, i.e., the costliest chain of tasks
from initial values (inputs or registers) to final values (outputs or
registers). Merging nodes can produce a costlier task on the critical
path, so Verilator stops merging when the parallelism, i.e., the ratio
of total cost of all tasks to critical path cost, reaches a threshold.

Fig. 3a shows how parallelism grows with the number of tasks.
The x-axis uses a logarithmic scale to show the wide range of op-
tions: from serial simulation using one task, to restricting Verilator

to only do merges that
avoid hurting the criti-
cal path, which produces
74K tiny tasks. Fig. 3a
shows that parallelism is
plentiful, but only with
many small tasks: merely
achieving 100× parallelism requires about 2000 tasks.

Fig. 3b shows how this potential parallelism translates to per-
formance. It reports speedup over serial Verilator across the range
of task counts (and granularities) on a 32-core AMD Zen 2 CPU.
Verilator schedules tasks statically to a fixed number of threads
(a good strategy, as task costs are known at compile time). We
adapt Verilator to allow varying threads and merging level inde-
pendently, and report the performance of the best thread count for
each merging level.

Unfortunately, Fig. 3b shows that parallel execution yields lim-
ited speedups: the best performance is for 203 tasks, which is only
3.5× faster than serial simulation despite an expected parallelism of
18.7. Such limited speedups are typical for Verilator’s multithreaded
simulations [57, 58]. This is because, even with 203 relatively large
tasks, each task has only about a microsecond worth of work, and
synchronization costs dominate. These costs make speedups plum-
met with smaller tasks. DASH’s support for dataflow execution
avoids these costs, enabling small tasks with high parallelism.

2.3 Selective execution needs small tasks
Digital systems have low activity factors: a small fraction of the
logic switches each cycle [7, 16, 31]. Simulators can exploit this by
evaluating only the nodes whose inputs change.

Effective selective execution demands small tasks. Fig. 3c reports
the fraction of work performed by active tasks, averaged across
simulated cycles. A task is active and must execute if any of its
inputs has changed since it last executed. With small tasks, active
tasks make up only 20% of work. But larger tasks make it more
likely that some logic within each task is active, making inactive
tasks rare. Below 2000 tasks, the activity factor is pegged to 100%.

Prior work has developed serial simulators that exploit low ac-
tivity factors through conditional execution [8]. But the inability
of parallel simulators to deal with small tasks makes selective exe-
cution ineffective, and to our knowledge, state-of-the-art parallel
RTL simulators are non-selective [57].

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

In parallel simulation, skipping inactive tasks adds complexity
because any active task must now know which inputs change and
which stay the same. Prior work has proposed conservative and opti-
mistic parallelization approaches. With conservative parallelization,
as done in the Chandy-Misra-Bryant (CMB) algorithm [14], each
inactive task must send null messages to indicate lack of changes in
its outputs. This approach still traverses the entire dataflow graph
each cycle—it skips only the work within each task, but not the
communication. For the tiny tasks needed in RTL simulation, this is
inefficient.

Time Warp [25, 26] avoids null messages and conservative syn-
chronization by using an optimistic approach: tasks execute spec-
ulatively, assuming that no other inputs will be received, and an
input received out of order causes the task to abort and re-execute.
But Time Warp has no concept of dataflow execution: each task
carries one argument from a single simulated object to another.
Thus, while prior accelerators used this optimistic approach in
other domains [1, 20, 27], they lack the hardware support needed to
manage speculative execution of dataflow tasks. Aswe later quantify
(Sec. 10), ASH is the first system with sufficient hardware support
to make selective execution profitable in parallel RTL simulation.

2.4 Emulation versus simulation
Hardware emulators are the only platforms capable of running
billion-gate designs at MHz speeds. Emulators work by mapping
gates directly to hardware elements, either FPGAs or specialized
gate processors. However, their long compile times make emula-
tors ill-suited to crucial parts of the chip design process, such as
design space exploration and prototyping, when RTL changes are
extremely frequent.

Current FPGA-based emulators include Cadence’s Protium [13]
and Synopsys’s ZeBu [63]. Their compilation times span from days
to weeks, as partitioning, placing, and routing a design across many
FPGAs is a very complex process. Processor-based emulators use a
large collection of ASICs instead of off-the-shelf FPGAs: Cadence’s
Palladium [12] uses a massive array of Boolean processors; and
Mentor’s Veloce Strato [37] uses custom FPGAs tailored to emula-
tion. (Sec. 10.3 describes additional systems.) ASIC-based systems
have lower compilation times (hours to days) and better debug-
ging capabilities than FPGA-based ones, but they are slower and
more expensive. Thus, emulators are restricted to late in the design
process, when changes are rare.

Simulation is the best choice for evaluating RTL designs at high
speeds and at large scales. To concretely quantify its advantages, Ta-
ble 1 shows the times to compile, and then run, Chronos in (1) pure
software simulation, (2) SASH, and (3) emulation on 2 FPGAs. Sim-
ulated duration is important, because different activities demand
different durations: one million cycles (∼ 1ms) suffices for short
tests, one billion cycles (∼ 1 s) enables thorough performance eval-
uation, and one trillion cycles (∼ 20min) enables running complex
software. During RTL development, 1M-1Bcycle tests are common.

To benchmark emulation, we use a system with two large Alveo
U250 FPGAs [74] directly connected through 200Gbps links. Chronos
does not fit in one FPGA. By manually partitioning the design and
applying Virtual Wires [6], we achieve a 1.4MHz speed, limited
by inter-FPGA latency. After days of tuning, this design compiled

System Compile Sim.
Time to simulate

time speed 1M cycles 1B cycles 1T cycles

SW sim. 2 mins 11 KHz 3.9 mins 1.1 days 3 years
SASH 2 mins 414 KHz 2.4 mins 43 mins 28 days
FPGA ×2 13 hours 1.4 MHz 13.2 hours 13.4 hours 8.7 days

SASH/FPGA 332× 18.9× 0.3×

Table 1: Simulation vs. FPGA emulation.

in 13 hours (running both FPGA compiles in parallel). Commercial
emulators can automate partitioning but at the cost of longer com-
pile times, so this compilation time is generous to emulators.

SASH has a somewhat lower simulation speed than emulation,
but compiles Chronos in 2 minutes. This enables a much shorter
design and debug cycle than emulation: in the time it takes to carry
out a billion-cycle FPGA emulation run, engineers could have done
nearly 20 SASH runs.

3 SYSTEM OVERVIEW
Fig. 4 shows an overview of the ASH system. ASH consists of a
co-designed hardware architecture and RTL compiler. The archi-
tecture efficiently supports the two key optimizations identified in
Sec. 2: it scales simulation to many cores using dataflow execution,
and it avoids needless work through selective execution. The RTL
compiler leverages these features to achieve high performance.

ASH hardware is designed from the ground up to support fine-
grain tasks. The ASH chip consists of multiple tiles, and each tile
has several cores and a task management unit that queues and dis-
patches tasks to cores. We design two variants of ASH, and present
them in stages: DASH (Sec. 4) supports task dataflow specialized to
simulation workloads, and SASH (Sec. 5) adds speculation to DASH
to achieve selective execution. ASH does not use global coherence;
it performs all inter-tile communication through task arguments;
and it performs task-driven instruction prefetching (Sec. 6) to cope
with the high instruction footprints of RTL simulation.

Our ASH compiler implementation is based on Verilator, a state-
of-the-art Verilog/SystemVerilog simulator [56]. Verilator supports
parallelization on shared-memory multicores, which as we have
seen, achieves limited speedups (Sec. 2.2). We thus contribute new
compiler techniques that automatically divide work into fine-grain
dataflow tasks, partition tasks and their data across tiles, andmodify
these tasks for selective, speculative execution. We explain these
compiler contributions as we introduce DASH and SASH.

M
em

or
y

DASH (Sec. IV)
Prioritized task dataflow

SASH (Sec. V)
Speculative task dataflow

other tiles

ASH Chip

Core Core Core Core
L1 L1 L1 L1

L2 Cache (tile-private)

Task Management Unit

m
em

ory

ASH Tile

ASH
Simulator

Input HDL (Verilog) DASH/SASH code

Compilemodule foo;
module bar;

void task_foo1(args) {
 push_args(task_foo2…);

Figure 4: ASH system overview.

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

4 PRIORITIZED DATAFLOW EXECUTION
WITH DASH

This section presents the DASH system, which implements dataflow
execution but not selective execution—all tasks run in every simu-
lated cycle. We first present DASH’s execution model and ISA; then
describe its hardware implementation; and finally explain how RTL
compiles to DASH.

4.1 Execution model and ISA
All computation in DASH happens through tasks. A task is a unit
of code—a function in our implementation. Tasks can have one or
more input arguments, which are produced by other tasks, and can
produce arguments for other tasks.
Dataflow execution: Hardware provides native support for data-
flow execution of tasks. A task enqueues arguments for other tasks
with a push_args instruction. Hardware buffers the arguments for
each task; the task becomes ready when all its arguments are avail-
able. Ready tasks are queued and dispatched to cores for execution.
Cores execute each task to completion, and stall if no further tasks
are available.

Hardware support for dataflow execution avoids communication
through shared memory: a task enqueues output arguments from
registers, and when a task starts execution, its input arguments are
placed in registers.
Prioritized execution and timestamps: Prioritized execution is
DASH’s key distinguishing feature. Previous dataflow architectures
(Sec. 10.2) execute the dataflow graph in an unordered fashion. This
often produces an excessive number of in-flight task arguments,
requiring large storage structures for arguments [3, 75].

Instead, DASH prioritizes tasks for execution: software assigns
an integer timestamp to each task, and hardware dispatches ready
tasks for execution in timestamp order. The DASH compiler assigns
timestamps to prioritize work in the critical path and keep a small
memory footprint. Thus, DASH hasmuch lower footprint than prior
dataflow architectures, and a simpler implementation (Sec. 9.3).

Timestamps also differentiate invocations of the same task. Each
task invocation has a different timestamp (as each task runs once
per simulated cycle), and timestamps enable their arguments to
coexist. This allows overlapping the execution of successive cycles,
increasing parallelism.
Memory: Although task arguments are passed through registers,
tasks can also access memory. Supporting data accesses serves two
purposes. First, some simulated structures, like SRAM memories,
have a lot of state. It would be inefficient to encode all this state in
dataflow edges; it is better to store this state in memory and have
dataflow nodes that access it. Second, hardware limits the number
of arguments per task (our implementation allows up to five 64-bit
arguments). Tasks that exceed this limit must store some inputs in
memory (Sec. 4.3.4).
Taskmapping:While memory stores some state, there is no global
shared memory, and all global communication happens through
task arguments. To enforce this restriction, each task is mapped to
run on a fixed tile, and all memory accesses to the same data must
happen from same-tile tasks.
Argument enqueue ISA: The push_args instruction conveys the
task’s metadata: function pointer, timestamp, tile id, and the total

void adderOut(uint16_t ts, uint64_t wire0, uint64_t wire1) {
 output_ports->reg_out = wire0 + wire1;
}

Timestamp = 1002, Tile = ADDEROUT_TILE

void adder1(uint16_t ts,
 uint64_t reg2,
 uint64_t reg3) {

 uint64_t wire1 = reg2 + reg3;
 push_args<&adderOut, ARG1,

 ADDEROUT_TILE,
 /*#parents=*/2>
 (ts + 1, wire1);
}

Timestamp = 1001, Tile = ADDER0_TILE Timestamp = 1001, Tile = ADDER1_TILE

wire1wire0

void adder0(uint16_t ts,
 uint64_t reg0,
 uint64_t reg1) {

 uint64_t wire0 = reg0 + reg1;
 push_args<&adderOut, ARG0,

 ADDEROUT_TILE,
 /*#parents=*/2>
 (ts + 1, wire0);
}

Figure 5: Task code for the adder tree in Fig. 1.

core

Inter-Tile Network

(5
, a
d
d
e
r
0

, r
eg

1)

(5
, a
d
d
e
r
0

, r
eg

0)

(5
, a
d
d
e
r
1

, r
eg

2)

(5
, a
d
d
e
r
1

, r
eg

3)

M
ER

G
E

…

(5
, a
d
d
e
r
0

, r
eg

0,
 re

g1
)

(7
, a
d
d
e
r
1

, r
eg

2)

(6
, a
d
d
e
r
0

, r
eg

0)

(7
, a
d
d
e
r
1

, r
eg

2)

(6
, a
d
d
e
r
O
u
t

, w
ire

0)

(7
, a
d
d
e
r
1

, r
eg

3)

11
2

3

4
5

1

2

3

4

5

6

AQ receives reg1 for adder0 at ts 5
and inserts based on timestamp priority.
Merge unit dequeues reg0 and reg1
for adder0 at ts 5.
If args missing, wait in the merge unit;
otherwise, merge and send to RTB.

RTB dispatches adder0.

adder0 runs, produces wire0, pushes
an arg descriptor for adderOut at ts 6.

6

ASB sends arg descriptors to
appropriate tiles.

AQ ASB
spill

Cache
task
accessesRTB

Figure 6: DASH tile, with descriptors from Fig. 5.

number of arguments. push_args may also convey one or more
argument values and their indices.

Fig. 5 shows this interface, with code for Fig. 1’s adder tree. Tasks
adder0 and adder1 can run in parallel, each enqueueing arguments
for the adderOut task to sum.

4.2 DASH hardware implementation
DASH extends each tile with a Task Management Unit (TMU)
shown in Fig. 6 that consists of two components: an Argument
Queue (AQ) and an Argument Send Buffer (ASB).

Each execution of push_args creates an argument descriptor,
which includes the task metadata (function pointer, tile id, time-
stamp, and number of parents) and task arguments. This descriptor
is sent to the tile where the task is mapped, and queued in the AQ.
The TMU merges queued descriptors of ready tasks, and dispatches
them for execution.

The ASB is a simple FIFO that buffers produced argument de-
scriptors and autonomously sends them to their destination tiles.
The ASB makes push_args asynchronous: the core continues ex-
ecution and does not stall while the descriptor is sent. ASBs use
a push message protocol with NACKs and exponential backoff to
handle full AQs in destination tiles.

Each tile’s AQ stores in-flight argument descriptors for tasks
mapped to the tile. Along with the argument descriptors, the AQ
also has a priority queue sorted by the pair (timestamp, task function
pointer). This enables quickly finding the argument descriptors

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

for the lowest-timestamp queued task. We implement this fixed-
capacity priority queue using a pipelined heap [1, 10] that can pop
one descriptor per cycle.

The TMU’s merge unit consumes argument descriptors from the
AQ in priority order, and merges them into tasks. The merge unit is
similar to a reservation station [69] in an OOO core: it has a small
number of entries (16 in our implementation). Each entry gathers
the arguments for a task: the first descriptor for a task allocates
a new entry, and later arguments for the task are merged in the
same entry. After all the arguments are merged into one entry, the
entry is freed and the resulting ready task is queued for execution
at a core, in a small ready task buffer, as shown in Fig. 6. Ready
tasks may execute out of order, while tasks with missing arguments
wait in the merge unit. Unlike reservation stations, since tasks may
arrive and allocate entries out of order, the merge unit may need to
evict an unready task back to the AQ to allow an earlier-timestamp
task to be merged. These evictions are very rare (Sec. 9.3).

The AQ has a small and fixed size (512 descriptors in our im-
plementation). When the AQ fills up, a simple FSM spills high-
timestamp descriptors to memory and later returns these descrip-
tors to the AQ in timestamp order. This prevents high-timestamp
descriptors from starving low-timestamp ones.

Prioritized execution keeps DASH’s TMU small and efficient.
Prior dataflow architectures implemented large wait-match units
that stored arguments for unready tasks and performed expen-
sive lookups to merge them and find ready tasks [17, 40, 62]. In-
stead, DASH uses tiny merge units similar to reservation stations,
which work almost as well as unbounded ones because most lowest-
timestamp tasks have all arguments available (Sec. 9.3). Moreover,
prior dataflow architectures hinder memory footprint: they ex-
ecute the dataflow graph in an unordered fashion, so produced
arguments may not be consumed for a long time. Instead, pri-
oritization produces arguments in the right order, so modestly

Extract
Dataflow Graph

Unroll

Partition

Coarsen

Prioritize

Allocate Args
(Reg/Memory)

Generate
Task Code

Verilator IR

Basic DFG

Unrolled DFG

Mapped DFG

Task DFG

+Timestamps

+DTTs

Task C++

Figure 7: DASH
compiler passes.

sized AQs suffice to keep spills rare.

4.3 DASH compiler
We build DASH’s compiler by modifying
Verilator [56], a state-of-the-art compiler
that transforms Verilog RTL into an efficient
parallel C++ simulator. We reuse its fron-
tend, which translates Verilog to a dataflow-
style IR. We then heavily modify its backend
to produce DASH code from this IR. Fig. 7
shows our backend’s compiler passes, which
we describe next.

4.3.1 Increasing parallelism with the un-
rolled dataflow graph. Existing RTL simu-
lators parallelize execution cycle by cycle,
and use a single-cycle dataflow graph like the
one introduced in Fig. 1b. In this representa-
tion, wires are converted to dataflow edges,
but registers, inputs, and outputs are in memory. This representa-
tion limits parallelism in two ways. First, it induces write-after-read
dependences within each simulated cycle: every read to a register
must be performed before the register is updated. For example, in
Fig. 1b, the adders in the second pipeline stage must read their

* + +
+

* * *

* + +
+

* * *

Cycle N
inputs

Cycle N+1
inputs

Cycle N
output

Cycle N+1
output

Cy
cl

e
N

Cy
cl

e
N

+1

Figure 8: The unrolled dataflow graph turns registers into
cross-cycle edges (shown in red) to expose more parallelism.

registers before the multipliers in the first stage write them. Second,
the single-cycle dataflow graph makes it hard to parallelize across
cycle boundaries because it assumes that registers are up-to-date
at the start of each simulated cycle.

To overcome these limitations, we contribute the unrolled dataflow
graph. This representation turns registers into cross-cycle dataflow
edges. Fig. 8 shows this representation, distinguishing between
same-cycle edges (wires) and cross-cycle edges (registers). This
representation avoids write-after-read dependences and allows
overlapping computation from different simulated cycles, exposing
more parallelism.

4.3.2 Mapping and coarsening dataflow nodes. DASH first parti-
tions the unrolled dataflow graph across tiles. Since sending argu-
ments across the chip consumes bandwidth and energy, we try to
both minimize cross-tile communication and balance work across
partitions. In addition, nodes that access the same data in memory
(e.g., an SRAM array, as explained in Sec. 4.1) are restricted to the
same tile. Finally, we map nodes that incur (rare) system tasks, like
I/O, to a fixed tile, which lets us use standard libraries despite the
lack of cache coherence.

We use METIS [29] to perform this partitioning, minimizing the
sum of cross-partition edge costs while keeping the sum of node
costs per partitions roughly balanced. We estimate a node’s cost as
the number of instructions within it and an edge’s cost as the bits
of its argument descriptor.

The compiler then coarsens the partitioned graph, producing
larger tasks from small dataflow nodes. We modify Verilator’s merg-
ing pass (described in Sec. 2.2) to prevent merging tasks from dif-
ferent partitions, prioritize merging tasks outside the critical path,
and limit task size.

After these passes, we have a task dataflow graph where each
task is mapped to a tile, and memory accesses are local to a tile: all
cross-tile communication is through descriptors.

4.3.3 Prioritizing tasks. DASH next assigns timestamps to tasks,
prioritizing their execution within and across cycles. Within a cycle,
each task has a depth 𝑑 : the longest chain of tasks that produces an
argument for the task, measured from the start of the cycle. The
cycle depth 𝐷 is the length of the deepest task chain in a cycle. For
instance, assuming that each node in Fig. 8 is a task, the multipliers
and initial adders have𝑑 = 0, the final adder has𝑑 = 1, and the cycle
has 𝐷 = 2. Each task instance is given 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 = 𝐷 · 𝑐𝑦𝑐𝑙𝑒 + 𝑑 ,
where 𝑐𝑦𝑐𝑙𝑒 is the current cycle.

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

P

C

Cycle N

DTT

Cycle N+1

registers

Tile 1’s local
memory

DTT

P

CDTT

DTT

Tile 1

Tile 0

push_args

memory access

empty (RAW)
40B in registers

empty (WAR)

Tasks

P C DTT

Producer
Consumer
Data Transfer

Figure 9: Example showing how DTTs transfer values that do
not fit in register arguments from producers to consumers,
and how consumers read them from memory.

4.3.4 Allocating arguments to registers and memory. DASH hard-
ware allows each task to receive arguments in up to five 64-bit
registers. In most cases, all arguments fit in registers; non-fitting
values are read from memory.

If producer and consumer are on the same tile, the producer
simply writes the non-fitting values to memory (at a pre-allocated
location specific to the consumer task), and the consumer later
reads them. But since ASH does not have global shared memory,
when the producer is on a different tile, values are communicated
through auxiliary data-transfer tasks (DTTs). Fig. 9 shows DTTs in
action: a producer must pass a large 120-byte value. It passes 40
bytes directly to the consumer through arguments, and creates two
DTTs to ship the remaining 80 bytes. Each DTT takes 40 bytes of
arguments from the producer, and is sent to the consumer’s tile,
where it writes these bytes to a fixed memory location. Each DTT
has a dataflow edge to the consumer task (with no arguments) to
preserve RAW dependences.

ASH hardware also limits the number of direct parents (producer
tasks) of each task (to 8 in our implementation). To address this, the
compiler emits a fan-in task tree for tasks with many arguments.
Similarly, if a produced argument has many consumers, the com-
piler emits a fan-out tree to pass these values in parallel and reduce
inter-tile communication.

Storing some arguments in a single memory location introduces
write-after-read (WAR) dependences (like we saw in Sec. 4.3.1 for
single-cycle dataflow graphs). For instance, in Fig. 9, the next-cycle’s
DTTs have aWAR dependence with the consumer. For simplicity,
we add cross-cycle edges to the task graph to respect WAR depen-
dences, using a push_args without arguments from the reader to
the writer. We do this selectively, adding a WAR edge only if the
dependence isn’t already covered by existing edges (often, a chain
of RAW edges already forces the writer to run after the reader).

The resulting task dataflow graph obeys hardware limits while
preserving two invariants: it encodes all dependences as dataflow
edges, and localizes all memory accesses.

Finally, the compiler generates C++ code for this task graph,
producing a DASH program.

5 SELECTIVE DATAFLOW EXECUTION
DASH runs all tasks in the dataflow graph, but many tasks are
ineffectual because only a fraction of the logic switches each cycle.
SASH leverages low activity factors by running only tasks whose
inputs have changed on each cycle.

SASH extends DASH hardware to skip inactive tasks and to run
tasks speculatively, using optimistic parallelization as described in
Sec. 2.3.We first describe the changes needed for selective execution,
then those needed for speculation.

5.1 Selective execution
In SASH, parents only push arguments that are different from
previous cycles. This requires simple hardware changes, shown
in Fig. 10. First, a task must be able to detect a change in their
produced output compared to previous cycles. Second, since each
task may only receive some of its arguments, it must fill in the
missing arguments with their previous values.
Ineffectual arguments are filtered: SASH statically allocates a
per-task, hardware-managed, in-memory output argument buffer
that holds the latest arguments the task has pushed. This buffer
has finite size because we restrict each task to push at most 8
descriptors, and each push has at most five 64-bit registers. Each
push_args reads the output buffer and compares the new and
previous arguments. If they differ, the output buffer is updated
and an argument descriptor is pushed to the ASB. If they match,
no action is taken.
Task dispatch does not wait for all arguments: In SASH, every
task that has received at least one descriptor is ready. The TMU’s
merge unit now does not store multiple tasks: it merges the descrip-
tors for the lowest-timestamp task and dispatches it for execution.
Dispatched tasks fillmissing argumentswith old values: Since
tasks with inactive parents have missing arguments, SASH main-
tains a per-task, in-memory input argument buffer that records the
latest arguments of the task. When a task is dispatched, before
starting execution, the input argument buffer is read to retrieve the
task’s missing arguments, and then updated with the latest values.
Handling in-memory arguments: When a task consumes in-
puts from memory (Sec. 4.3.4), two types of descriptors carry no
arguments: those that encode read-after-write (RAW) dependences
(e.g., between DTTs and consumer in Fig. 9) and those that encode
WAR dependences (e.g., between consumer and next-cycle DTTs
in Fig. 9). When a descriptor has no arguments, push_args takes
an isRAW flag to distinguish them. Argumentless RAW descriptors
are not filtered, as they encode a memory dependence (in this case,
software checks whether the in-memory value is the same, and
skips pushing the descriptor if so). WAR descriptors are used in
speculative execution, described next.

5.2 Speculative execution
SASH dispatches tasks even if some of their arguments are miss-
ing. Given enough parallelism and appropriate timestamps, most
missing arguments arise because their producer task was skipped
or filtered them. But occasionally, an argument is missing because
it is late, so using its old value is incorrect. To preserve correctness,
SASH runs tasks speculatively: on a late-arriving argument, the
task and all its consumers are aborted, and the task is re-executed
with the new argument.

SASH implements speculative execution by adapting techniques
from from Chronos [1] and Time Warp [26]. Note that, unlike most
speculative architectures (e.g., transactional memory), SASH does

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

core

Inter-Tile Network

M
ER

G
E

1 AQ
RTB

TCQ ASB

Cache

rollbackspill

arg descriptor/
task

abort
message

requeue
message

memory
traffic

undo
log

child pointers

speculative
state

data (including
in/out arg buffers)

Figure 10: SASH tile.

not detect misspeculation through memory accesses. This results
in much simpler hardware.
Speculation and rollback: SASH uses a per-tile task commit queue
(TCQ) that holds the speculative state of uncommitted tasks. Each
dispatched task is allocated an entry in the TCQ.

SASH detects conflicts when descriptors arrive at the tile. The
TCQ is checked to find if a task with the same timestamp and func-
tion pointer was dispatched. If so, the task is aborted and requeued
to the AQ, along with the new argument.

WAR descriptors are handled differently: they undergo conflict
detection as described above, but are not enqueued in the AQ and
are immediately discarded. This is because WAR descriptors do
not encode a true data dependence, they ensure that writers do
not clobber earlier readers. By conflict-checking but discarding
the descriptor, we enforce its WAR dependence but prevent an
ineffectual task from running.

SASH adopts eager versioning with undo logs to handle memory
accesses, following Chronos’s hardware-only implementation: on a
store, the core updates memory in-place, and pushes the old value
to a small in-memory undo log. If the task aborts, memory values
are restored from the undo log. The undo log is discarded when
the task commits. Note that updates to output and input argument
buffers are also logged.

Finally, SASH implements cancellation of pushed argument de-
scriptors as in Time Warp. When a task aborts, in parallel with
restoring memory, its TCQ deletes each argument descriptor that
the aborted task had pushed, sending messages to perform this
deletion if the argument descriptor is in a remote AQ. If the argu-
ment descriptor was used by a dispatched task, that task instance is
aborted. The AQ overflowmechanism fromDASH ismodified to use
the spill policy from Chronos, spilling only argument descriptors
whose parents are not speculative.
High-throughput commits: To make commits fast, each TCQ
can buffer tens of finished tasks per core, and the TMU determines
which tasks are safe to commit in bulk, amortizing commit over-
heads over many tasks. Specifically, we use the Virtual Time proto-
col from Time Warp: periodically (every 100 ns in our implementa-
tion) each tile sends the timestamp of its earliest unfinished task
to a global arbiter, which finds the minimum such value across all
tiles and broadcasts it. TCQs then commit all tasks with timestamps
lower or equal than this minimum. We follow Chronos’s Virtual
Time implementation: tiles and arbiter communicate through the
network, and each round of the protocol takes tens of cycles.

6 TASK-DRIVEN INSTRUCTION
PREFETCHING

Beyond dataflow and selective execution, ASH includes a simple
optimization to cope with high instruction footprints: large hard-
ware designs execute multiple megabytes of code per simulated
cycle. On conventional systems, this causes frequent instruction
cache (icache) misses that limit performance [5].

To avoid this problem, we add a simple task-driven instruction
prefetching mechanism that fetches the task’s code into the core’s
icache ahead of execution. We add a small Ready Task Buffer (RTB)
to each core. The task unit pushes tasks to this RTB eagerly, so the
RTB holds the task that runs after the currently running task. The
core starts fetching a task’s code into the icache as soon as the RTB
receives it. To do this accurately, we include the task function’s size
(up to 8 cache lines) in some of the unused high-order bits of the
task pointer.

Task-driven instruction prefetching virtually eliminates icache
stalls and avoids overfetching, because tasks have a few tens of
instructions each and executemost of them (branches do not usually
skip whole cache lines).

7 HARDWARE COSTS

Component Area (mm2)

256 cores 45.1
64×1MB L2s 39.3
4×Mem ctrl+PHY 25.0
64×SASH TMU 5.6

Total 115.0

Table 2: Area breakdown.

We evaluate an ASH implemen-
tation with 256 scalar in-order
cores—for RTL simulation, us-
ing many simple cores that are
closely integrated is preferable
to using fewer complex cores,
as we will see later. We use a
2-level memory hierarchy with
1MB tile-private L2s and quad-
channel DDR5 memory, shown in
Fig. 4 and with parameters given in Table 3.

Table 2 shows the estimated area of the SASH system in a 7nm
process, which takes a modest 115mm2. We estimate core area us-
ing scaled-down Atom Bonnell cores [77], and other components
are measured from Alder Lake-S [51] (built in Intel 7). We estimate
SASH’s area requirements (DASH would be simpler) by synthesiz-
ing its key components based on the Chronos open-source RTL [67]
using yosys [73] on FreePDK45 [39] and scaling to 7nm. SASH adds
45 KB of state per tile and adds 4.8% to chip area, a modest overhead.

8 METHODOLOGY
We evaluate DASH and SASH using a simulator based on Swarm’s
simulator [2, 27, 76], which is execution-driven using Pin [36, 43].
We use detailed timing models for cores, caches, main memory,
on-chip network, and all ASH features. We simulate all task and
speculation overheads.
Baselines: We compare with Verilator running on two systems: a
32-core AMD Zen2 CPU (Threadripper 3975WX) at 3.5 GHz (also
used in Sec. 2); and a simulated multicore with the same parameters
in Table 3, but no ASH features and a shared, coherent LLC (instead
of tile-private L2s).
Benchmark hardware designs: We simulate the four large, com-
plex, and diverse hardware designs in Table 4:

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Cores

256 scalar in-order cores in 64 tiles (4 cores/tile), 2.5 GHz,
x86-64 (base) ISA, scoreboarded, stall-on-use, 8B-wide
2-stage ifetch, 2-level bpred with 512×10-bit BHSRs +
1024×2-bit PHT, 3-stage decode, 1-stage issue, 2-5-stage
backend, 16-entry ld/st queue

L1 caches 16 KB L1D & 16 KB L1I per core, 8-way, 2-cycle latency
L2 caches 1 MB per tile, 16-way, inclusive, 9-cycle latency

NoC 16×16 mesh, X-Y routing, 1 cycle/hop when going straight,
2 cycles on turns (like Tile64 [72]), 2.5 GHz

DRAM 4 controllers at chip edges, 120-cycle minimum latency

ASB 64-entry FIFO per tile for new argument descriptors
AQ 512 entries per tile to hold unmerged argument descriptors
Merge 16-entries per tile to merge descriptors, DASH only
RTB 1 entry per core holding merged task for dispatch

TCQ 512 entries per tile for SASH to track speculating tasks,
global Virtual Time computed every 100 ns

Table 3: Parameters of the evaluated systems.

(1) Vortex GPU system: We use the open-source Vortex GPU [68]
with 32 cores using 2 lanes and 4 warps each, running an OpenCL
kernel that performs vector addition.
(2) Chronos domain-specific accelerator: We use the Chronos open-
source framework [67] to generate an accelerator for Dijkstra’s
algorithm for shortest weighted paths. We simulate a 128-PE system
traversing a 128 × 128 grid.
(3) Chronos RISC-V manycore: To represent manycore systems, we
use another Chronos configuration to generate 128 simple VexRiscv
cores [60] instead of specialized PEs.
(4) NTT wide functional unit: We evaluate a pipeline that computes
Number Theoretic Transforms (NTT). NTTs are similar in structure
to FFTs but use modular arithmetic; NTT functional units are a
key component of Fully Homomorphic Encryption accelerators [32,
52, 53]. We follow CraterLake’s NTT unit design [53], which we
implement from scratch. This unit performs 256-point NTTs using
a 256-wide, 8-stage pipeline with 1024 modular multipliers.

These designs have diverse activity factors (Table 4) and are large,
requiring multi-FPGA emulation (from 2 FPGAs for Chronos/PE,
as we saw in Sec. 2.4, to 6 FPGAs for NTT).
RTL compiler implementation: Our implementation adds 12 K
lines of code (LoC) to Verilator, and the whole compiler takes 86 K
LoC of C++. We retain Verilator’s fast compilation times: each
design takes 7.2–140s to compile (Table 4).

Verilator is a full-featured Verilog/SystemVerilog simulator, which
matches or outperforms state-of-the-art commercial simulators like
VCS [57, 58]. Verilator has fewer features than commercial sim-
ulators, e.g., no support for 4-state logic, VHDL, or private IPs.
However, these are not ASH limitations: ASH provides general-
purpose cores, and could accelerate other simulators.
Sampling: Each RTL simulation runs for many instructions (of-
ten trillions), so we use a sampling-based approach following Sim-
Points [55]. First, we functionally execute the whole RTL simulation
to record activity factors. Then, we select three cycle ranges repre-
sentative of the full program. We fast-forward to the start of each
range, warm up for 3 simulated cycles, and gather results for the
remainder of the range. The methodology ensures that our results
have the same activity factor as the full run. Even with sampling,
each simulation runs many millions of instructions.

9 EVALUATION
9.1 ASH widely outperforms baseline systems
Table 5 reports simulation speeds. Each row reports results for a
system, and each column shows the speed for a specific benchmark
design. Speeds are in KHz, i.e., thousands of simulated cycles per
second. The last rows report SASH’s speedups over the baselines.
Overall, SASH is 32× faster than Zen2 despite taking 3× less area
than Zen2, and it is 21× faster than the simulated 256-core baseline.

Parallel Verilator has limited scalability, so for the baselines, Ta-
ble 5 reports both their 1-core and best parallel speeds, showing
the best thread count on each cell (e.g., Zen2’s best Vortex result
is with 12 threads). DASH and SASH always improve with more
cores, so Table 5 reports only their 256-core speeds. The Zen2 sys-
tem achieves a gmean speed of 19.6 KHz, whereas the simulated
baseline multicore achieves 29.9 KHz. Note that, for the simulated
results, smaller systems have fewer tiles and thus less LLC. Thus, at
1-core, Zen2 widely outperforms the simulated baseline mainly due
to having much more cache; but on the best results, which have a
similar amount of LLC, the simulated baseline outperforms Zen2.
This happens because Verilator makes limited use of out-of-order
cores: its large code footprint and poor branch predictor perfor-
mance limit IPC below 1.0, so using simpler cores is preferable.

DASH and SASH achieve high simulation speeds: 263 KHz and
636 KHz gmean, respectively. DASH widely outperforms the base-
lines because it (1) exploits more parallelism; (2) avoids synchroniza-
tion overheads due to hardware support; and (3) reduces memory
stalls due to tile-private caches, distributed tasks, and prefetch-
ing. SASH further outperforms DASH due to selective execution.
SASH’s improvement over DASH is highly correlated with the
design’s activity factor (Table 4).

Looking across benchmarks, Table 5 shows that Vortex and
the two Chronos variants achieve similar simulation speeds, e.g.,
around 10KHz on Zen2. SASH has more pronounced differences
across designs due to varying activity factors (Vortex’s activity fac-
tor is only 7%, whereas Chronos/RV’s is 15%). The NTT benchmark
is quite different from the others. First, despite being the largest
design in terms of area, NTT is the fastest to simulate and has a
lower code footprint (Table 4), as it is dominated by arithmetic
operations. This highlights a key advantage of simulation over em-
ulation: on arithmetic-heavy or structured benchmarks, a single
instruction (e.g., a multiply) can perform the functionality of many
gates. In these cases, simulating RTL code using CPU instructions
is especially advantageous over compiling it to gates and emulating
it. Second, the NTT benchmark has a near-100% activity factor,
representing a worst-case scenario for SASH vs. DASH. The fact
that SASH and DASH perform similarly on this benchmark shows
that SASH performs selective execution efficiently.

9.2 Architectural analysis
We now present more detailed data to understand the performance
and efficiency of DASH and SASH, and evaluate the impact of our
contributions.
Scalability: Fig. 11 shows the speedup of all simulated systems
as we scale from 1 to 256 cores. Larger systems have more tiles
and thus more total cache capacity (scaling this way keeps the area
ratio between cores and cache fixed).

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

Name Description Nodes Edges Tasks %DTTs Task Paral- Activity 1-core Code Compile
Edges lelism Factor Cycles Footprint Time

Vortex Full-system GPU 245.5K 414.7K 86.3K 14.9 % 167.0K 672 7.1 % 8.6M 10.1MB 70.6s
Chronos/PE Graph accelerator 297.1K 635.0K 82.7K 57.4 % 207.0K 407 17.4 % 8.4M 16.2MB 140.5s
Chronos/RV RISC-V manycore 375.9K 733.2K 65.5K 51.3 % 184.0K 415 15.0 % 8.9M 13.7MB 134.1s
NTT Cryptographic accelerator 29.4K 41.7K 7.4K 0.0 % 11.8K 558 97.0 % 0.8M 0.7MB 7.2s

Table 4: Main characteristics of the benchmark hardware designs.

Design Vortex Chronos Chronos NTT gmeanSystem /PE /RV

Zen2 t=1 3.8 3.1 2.8 101.0 7.6
Zen2 Best t=2414.8 t=1610.7 t=129.2 t=1101.0 19.6
Baseline t=1 0.2 0.3 0.2 2.6 0.4
Baseline Best t=6425.6 t=6419.3 t=6418.8 t=1686.0 29.9
DASH 256-core 201.3 108.1 133.0 1,644.7 262.7
SASH 256-core 686.5 413.9 340.5 1,689.2 635.8

SASH/Zen2 Best 46.5× 38.6× 36.8× 16.7× 32.4×
SASH/Baseline Best 26.8× 21.5× 18.1× 19.6× 21.3×

Table 5: Workload simulation speeds (in KHz) and speedups.

Compared to serial Verilator running on one core, 256-core
DASH is gmean 617× faster, and SASH is gmean 1,485× faster
(up to 2,877× on Vortex).

Fig. 11 shows that speedup increases linearly throughout the
range for DASH, showing that it leverages the plentiful parallelism
in these benchmarks. SASH also shows good scalability, though
the slope of the speedup curve drops somewhat between 128 and
256 cores for applications with a low activity factor (Vortex and
the Chronos variants). This is because SASH performs less work
per cycle, which tends to reduce dynamic parallelism (the ratio of
active work to critical path).
Cycle breakdowns: Fig. 12 gives more insight into these results by
showing how cores spend cycles for SASH systems of different sizes.
Each plot reports results for a different benchmark, and each bar
reports the number of cycles summed across all cores, normalized
to the cycles of the 1-core system (lower bars are better, and a height
of 1.0 denotes a speedup equal to the number of cores). Each bar
is broken down into the cycles that cores spend (1) running tasks
that later commit, (2) running tasks that later abort, and (3) idle
because the AQ is empty or the TCQ is full.

Fig. 12 shows two key trends. First, the number of committed
cycles decreases as the system size grows, with a sharp knee around
16 or 64 cores. This happens because L2 misses and memory stalls
fall as the system grows: each tile executes a smaller fraction of
the tasks, and the tasks’ working set fits into the L2 caches for the
larger systems. This causes IPC to grow from about 0.2 at 1 core
to about 0.6 at 256 cores. Specifically, these models have both a
large code footprint and a substantial data footprint; this speedup
arises because the model’s data starts fitting in-cache (instruction
footprint is even larger, but those are prefetched, as we’ll see next).

Second, Fig. 12 shows that most time is spent running committed
tasks. Aborts are rare, and the slight scalability drop at 256 cores in
Vortex and Chronos/RV stems from idle cycles due to lack of work.
Energy breakdowns: Fig. 13 shows the chip energy consumed
by the 256-core DASH, SASH, and by the 256-core baseline system

1 16 64 12
8

25
6

Cores

0

1k

2k

3k

Sp
ee
du
p

Vortex

1 16 64 12
8

25
6

Cores

0

0.5k

1.0k

1.5k

2.0k
Chronos/PE

1 16 64 12
8

25
6

Cores

0

0.5k

1.0k

1.5k

2.0k
Chronos/RV

Baseline DASH SASH

1 16 64 12
8

25
6

Cores

0

250

500

750
NTT

Figure 11: Speedups of DASH and SASH over serial Verilator
on the 1-core simulated baseline as cores grow from 1 to 256.

1 4 16 64 12
8

25
6

Cores

0.0

0.5

1.0

A
gg

re
ga

te
 c

or
e

cy
cl

es Vortex

1 4 16 64 12
8

25
6

Cores

Chronos/PE

1 4 16 64 12
8

25
6

Cores

Chronos/RV
Committed Aborted Idle

1 4 16 64 12
8

25
6

Cores

NTT

Figure 12: Breakdown of core cycles for SASH on 1–256 cores.

Vortex Chronos/PE Chronos/RV NTT
0.00
0.25
0.50
0.75
1.00

N
or

m
al

iz
ed

 e
ne

rg
y B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

B
as

e
D

A
SH

SA
SH

NoC
TMU
Caches
Cores
Static

Figure 13: Energy breakdown for 256-core baseline, DASH,
and SASH.

at its best-performing thread count (at 256 threads, the baseline is
often dominated by spin-waiting and far less efficient). We model
core and network energy with McPAT at 22 nm and scale to 7 nm.
Caches are modeled at 7 nm using FinCACTI [54]. We also use these
tools to model energy consumed by the components of the Task
Management Unit (TMU, Sec. 4.2 and Sec. 5.1). Power stays under
60W across all systems and applications.

DASH consumes less energy than the baseline, thanks to exe-
cuting fewer instructions and completing faster (which reduces
static energy). SASH’s selective execution further reduces energy
for all benchmarks but NTT, where the near-100% activity factor
shows that speculative selective execution has modest energy costs.
TMU costs are small, and most task-related energy is spent sending
argument descriptors through the NoC.

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

9.3 Impact of ASH features
Prioritized dataflow: ASH’s prioritized dataflow execution has
two benefits over prior dataflow architectures: simplifying hard-
ware and keeping memory footprint in check (Sec. 4.2). We now
analyze these benefits.

16 32 64 ∞
Merge Unit Capacity

-10%

-5%

0%

+5%

+10%

Pc
t.

sp
ee

du
p

ch
an

ge

Figure 14: Sensitivity to
DASH merge unit size.

Fig. 14 shows DASH’s gmean per-
formance as the number of entries
in the merge unit grows, relative to
the default (16 entries). While small
merge units incur some degradation
(e.g., 8 entries is 3% slower), the de-
fault is sufficient, and a merge unit
with unbounded entries is only 3%
faster. Thus, prioritized tasks enable
dataflow execution with minimal re-
sources (each tile’s merge unit is
much smaller than the issue queue of a modern OOO core).

Unlike in OOO cores, arguments arrive at a tile out of order,
and a late-arriving task might evict a higher-timestamp task from
the merge unit. Such evictions are rare: one per 500 dequeues on
average (thousands of cycles elapse between evictions).

Vortex
Chronos/PE

Chronos/RV

NTT
0

10
20
30
40
50

N
or

m
al

iz
ed

 fo
ot

pr
in

t
 TS Order Unordered

Figure 15: Prioritization
reduces memory foot-
print.

Fig. 15 compares the memory foot-
print of prioritized vs. unordered
(conventional) dataflow. Unordered
dataflow execution runs each task as
early as its inputs become available.
This causes tasks within short paths
in the simulated design (the common
case) to run ahead of critical paths,
producing arguments that will not
be consumed for a long time. Fig. 15
shows that this is a major problem:
conventional dataflow increases av-
erage data footprint by 16.8× gmean
and by up to 47× (Chronos/PE) over
prioritized dataflow. With data footprint in the tens of megabytes
(Table 4), this blowup would cause substantial main memory traffic,
hindering performance.

1 4 16 64 128256
Cores

0

1

2

3

4

Sp
ee

du
p

w
ith

 p
re

fe
tc

hi
ng

Figure 16: Speedup of
task-driven instruction
prefetching for SASH on
1–256 cores.

Instruction prefetching: So far, all
the results we have presented include
task-driven instruction prefetching.
Fig. 16 shows the speedup that
prefetching achieves on SASH (DASH
results are similar). Each bar shows
gmean speedup across benchmarks
for a specific core count. Smaller sys-
tems have greater need for prefetch-
ing because less code fits on chip. At
1 core, most code is evicted every
simulated cycle. At 256 cores, Vortex,
Chronos/PE, and Chronos/RV still
have 3-6% of L1 instruction cache misses also miss in the L2, chiefly
due to L2 cache conflicts. Thus, prefetching code offers speedups
across system sizes (e.g., 1.9× at 256 cores). We observe a peak
memory bandwidth of 114GB/s at 256 cores (on Chronos/PE), with
code making up the vast majority of memory traffic.

Vortex
Chronos/PE

Chronos/RV

NTT
0

100

200

300

A
vg

. Q
ue

ue
 O

cc
up

an
cy AQ TCQ

Figure 17: Average queue
occupancies per bench-
mark in 256-core SASH.

Queue utilizations: Fig. 17 re-
ports the average occupancies
of the per-tile Argument Queue
(AQ) and Task Commit Queue
(TCQ) on the 256-core SASH sys-
tem. Each group of bars reports re-
sults for a single benchmark. Each
structure holds up to 512 entries.
AQ occupancy corresponds to the
average number of in-flight ar-
guments per tile, and TCQ occu-
pancy is the average number of
uncommitted tasks per tile. The
modest AQ occupancy shows that prioritized dataflow execution
works well: thanks to ordering tasks by timestamp, we execute
the dataflow graph in an order that incurs a modest number of
in-flight arguments that comfortably fit in the AQs (three of the
designs never spill argument descriptors to memory at 256 cores,
and Vortex has minimal spilling). The TCQ occupancy shows that
tiles exploit out-of-order execution, running ahead of the earliest
unfinished task to extract speculative parallelism.

verilator
+hw

 df
+unroll
+m

apping
+selective

0
5

10
15
20
25

Sp
ee

du
p

Figure 18: Factor
analysis.

Factor analysis: Fig. 18 shows gmean
speedup vs. parallel Verilator as we add fea-
tures, quantifying the benefits of our hard-
ware and compiler techniques. +hw df uses
hardware dataflow execution within each
cycle. +unroll uses our unrolled dataflow
graph instead, which passes register values
through dataflow edges and increases paral-
lelism. +mapping uses our task partitioning
and coarsening algorithm instead of Veri-
lator’s; this configuration is DASH. Finally,
+selective adds selective execution; this is
SASH. Fig. 18 shows that each of our contributions yields substan-
tial performance gains.

10 RELATEDWORK
We first discuss prior architectures with task-level speculative and
dataflow execution, and compare them with SASH and DASH, then
discuss other simulation-related techniques.

10.1 Prior task-level speculative architectures
Chronos [1] and Swarm [27] are the closest architectures to SASH.
Swarm is a shared-memory multicore with hardware support for
small ordered atomic tasks. Tasks can access arbitrary memory,
and cache coherence is used to detect conflicts, similar to other
speculative systems like HTM [21, 22, 38] and TLS [47, 59, 61].
Chronos avoids cache coherence by mapping each task to a fixed
tile and providing hardware support for mutual exclusion. These
systems target graph analytics and other domains, including non-
RTL event-driven simulation, as they are good match for Time
Warp’s [26] optimistic parallelization.

SASH’s speculation support borrows heavily fromChronos (Sec. 5,
Sec. 7). However, these systems are poorly suited for RTL simu-
lation because they do not support dataflow execution: each task

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

Vortex Chronos/PE Chronos/RV NTT
0
1
2
3
4
5

Sp
ee
du
p

6 7 1926 22 18 20

Baseline Swarm+DF
Swarm+SE

Chronos+DF
Chronos+SE

DASH
SASH

Figure 19: Speedup over best Verilator multicore run.

has a single parent and can run the moment it is created. This re-
quires implementing dataflow execution in software, which adds
substantial overheads.

To quantify these overheads, we simulate 256-core Swarm and
Chronos systems with similar parameters to ASH. Since these sys-
tems lack hardware support for dataflow execution, we modify our
compiler to do dataflow synchronization in software. Each producer
spawns a task for the consumer. All tasks except the last write their
arguments to memory and finish. The last task gathers all argu-
ments and runs the consumer once. For selective execution, we
perform output filtering in software.

Fig. 19 compares the performance of the baseline multicore,
Swarm and Chronos with dataflow non-selective (DF) and selective
(SE) execution, DASH, and SASH. Each group of bars shows, for
one benchmark, the speedup of each scheme vs. the best-thread
baseline. Swarm-DF is slower than the baseline, because the lack of
dataflow support adds large overheads: instruction footprint grows
by about 2×, and branches and memory accesses become more
frequent, limiting IPC. Swarm-SE has limited improvements over
Swarm-DF, and is significantly faster only in Vortex, where the ac-
tivity factor is lowest. This happens because selective execution in
software adds even more overheads. Chronos shows similar trends
to Swarm: whereas Swarm uses a coherent cache hierarchy (like
the multicore baseline), Chronos uses private caches and avoids
coherence (like ASH); this makes Chronos somewhat faster than
Swarm. But these systems lack hardware support for dataflow exe-
cution, which is crucial to accelerate RTL simulation: DASH/SASH
are gmean 12.5×/12.9× faster than Chronos-DF/SE, respectively.

10.2 Dataflow architectures
Dataflow execution [15] runs operations as their inputs become
available, instead of following a fixed operation sequence. Dataflow
execution is a general principle to exploit fine-grain parallelism,
and there is rich prior work applying it to a wide range of architec-
tures [15, 17, 40–42, 44, 62, 75].

Task-superscalar [17] is perhaps the closest to DASH. It performs
task-level dataflow execution, with dedicated on-chip structures
to track in-flight arguments and dispatch tasks. As we have seen
(Sec. 4.2), DASH’s key distinguishing feature is prioritized dataflow
execution: DASH gives each task a timestamp, and follows this
priority at runtime. Sec. 9.3 showed that this addresses the key
challenges of dataflow architectures. First, prior systems require
large on-chip structures to track arguments, e.g., multi-megabyte
eDRAMs in Task Superscalar [17], or add metadata to main memory
as in I-Structures [4]. They also perform costly associative lookups
to find ready operands. Instead, DASH performs dataflow execution

on a tiny window of tasks (the number of merge unit entries).
Second, unordered dataflow systems often produce many live in-
flight arguments, sacrificing locality [3]. Sec. 9.3 showed order-of-
magnitude footprint blowups in in-flight arguments, which ASH
avoids.

10.3 Hardware emulators
Rizzatti [48–50] reviews the rich history of hardware emulation, in-
cluding key technical and commercial developments. IBM’s YSE [45]
and EVE [9] were the first specialized architectures for emula-
tion, including ASIC processors to simulate 4-input logic gates and
storage elements. Early commercial emulators combined tens to
thousands of off-the-shelf FPGAs [6, 30, 34], interconnected with a
low-latency network, and software to partition and map large cir-
cuits across FPGAs. Current processor- and FPGA-based emulators,
described in Sec. 2.4, all follow this template.

ASH fundamentally differs from hardware emulators in many
ways: (1) Emulators synthesize RTL to gates, which forces the use
of specialized processors or FPGAs; instead, ASH compiles RTL to
general-purpose code, where each instruction can simulate many
gates. (2) Emulators directly map gates to hardware elements so
emulator size limits the size of the emulated system; instead, ASH
simulates large systems by running tasks over time. Consequently,
(3) emulators are large and expensive, with costs in the millions of
dollars, whereas ASH systems can be small. (4) Due to these design
choices, emulators suffer from long compilation times, as Sec. 2.4
showed. Finally, (5) emulators do not leverage selective execution,
and cannot avoid ineffectual work.

10.4 Batched GPU-accelerated simulation
RTLFlow [35] accelerates RTL simulation on a GPU by batching
different tests, i.e., running them in a single group. Batching enables
using vectors to represent each signal (with each vector element
dedicated to a different test), and makes simulation well-suited to
a GPU. Batching works well on small circuits when running thou-
sands of homogeneous tests: RTLFlow breaks even with Verilator
when batching 1K simulations, and is up to 40× faster with 64K
simulations.

However, RTLFlow has several limitations. First, large RTL de-
signs have large amounts of state, and batching blows up that state,
making simulation memory-bound and eventually overwhelming
memory capacity. For example, the Chronos/PE design has a data
footprint of 30MB (this includes registers, on-chip memories, and
the active pages of simulated main memory, which we optimisti-
cally assume are the same across all batched simulations). Batching
1K simulations, RTLFlow’s break-even point with Verilator, would
require 30GB of memory, roughly the size of an A100 GPU; 64K
simulations would require 1.9TB. Second, many use cases for RTL
simulation don’t use thousands of homogeneous tests. For instance,
test programs often have vastly different lengths, and batching
requires running for the duration of the longest program. And de-
bugging an evolving RTL design often requires tracing a single long
run. By exploiting parallelism within a simulation, ASH avoids the
footprint issues of batching and supports use cases where simula-
tion latency is important.

Accelerating RTL Simulation with Hardware-Software Co-Design MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

10.5 Other simulation accelerators
Prior work has also proposed several FPGA-based simulation ac-
celerators, but these systems do not target RTL simulation. RAMP
Gold [65] and FAME [66] simulate a multicore system by offload-
ing core simulation to FPGAs, time-division multiplexing cores as
needed, and use a high-level timing model for the memory system.
RAMP Blue [33] emulates distributed message-passing architec-
tures. These systems are restricted to multicore designs.

Diablo [64] and FireSim [28] emulate datacenter-scale systems
and offer scalable multi-FPGA emulation. However, these systems
target simulating large collections of loosely connected systems,
and use conservative (CMB-style) parallelization. Thus, while these
systems work well for scale-out systems (e.g., many simple in-order
cores connected through Ethernet), they cannot simulate a large
RTL model that does not fit in an FPGA. In addition, adapting
existing designs to these systems requires manual changes to the
RTL.

11 CONCLUSION AND FUTUREWORK
RTL simulation is a key bottleneck in chip design, and existing
simulators and emulators have serious drawbacks. By leveraging
classic parallelization approaches (dataflow and speculative execu-
tion) and through several novel techniques, we have dramatically
accelerated RTL simulation while retaining its fast compilation time
and flexibility.

DASH and SASH open exciting avenues for future work. Though
we have focused on RTL simulation, our combination of dataflow
and selective execution may be more broadly beneficial, both for
other types of simulation (e.g., microarchitectural), and for work-
loads beyond simulation. Our compiler-based techniques may ex-
tend to these domains, making it possible to map their designs
automatically. Also, we have focused on a single-chip system, but
our techniques are general and should apply to other architecture
styles. For example, ASH could be implemented on a multi-FPGA
system using soft cores to accelerate simulation on existing infras-
tructure.

ACKNOWLEDGMENTS
We are grateful to all who have supported and given feedback
on this work, including Serge Leef, Sung-Kyu Lim, James Wilson,
Darrell Teegarden, Julian Warchall, Hyun Ryong (Ryan) Lee, Axel
Feldmann, Yifan Yang, Nikola Samardzic, Xingran (Maggie) Du,
Aleksandar Krastev, Nithya Attaluri, Clément Pit-Claudel, Thomas
Bourgeat, and Lauro Rizzatti. This work was supported in part
by DARPA under contract N00014-21-1-2960. Shabnam Sheikhha
was supported in part by an MIT EECS graduate fellowship. This
research was, in part, funded by the U.S. Government. The views
and conclusions in this document are those of the authors and
should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

REFERENCES
[1] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Speculative

Parallelism for Accelerators. In Proc. of the 25th intl. conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXV).

[2] Maleen Abeydeera, Suvinay Subramanian, Mark C. Jeffrey, Joel Emer, and Daniel
Sanchez. 2017. SAM: Optimizing Multithreaded Cores for Speculative Parallelism.

In Proc. of the 26th Intl. Conf. on Parallel Architectures and Compilation Techniques
(PACT-26).

[3] Arvind. 2005. Passing the token. In Proc. of the 32nd annual Intl. Symp. on
Computer Architecture (ISCA-32).

[4] Arvind, Rishiyur S. Nikhil, and Keshav K. Pingali. 1989. I-Structures: Data
Structures For Parallel Computing. ACM TOPLAS 11, 4 (1989).

[5] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Moseley,
and Parthasarathy Ranganathan. 2019. AsmDB: understanding and mitigating
front-end stalls in warehouse-scale computers. In Proc. of the 46th annual Intl.
Symp. on Computer Architecture (ISCA-46).

[6] Jonathan Babb, Russell Tessier, Matthew Dahl, Silvina Zimi Hanono, David M
Hoki, and Anant Agarwal. 1997. Logic emulation with virtual wires. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 16, 6
(1997).

[7] Scott Beamer. 2020. A Case for Accelerating Software RTL Simulation. IEEE
Micro 40, 4 (2020), 112–119.

[8] Scott Beamer and David Donofrio. 2020. Efficiently exploiting low activity factors
to accelerate RTL simulation. In Proc. of the 57th Design Automation Conf. (DAC-
57).

[9] Daniel K Beece, G Deiberg, Georgina Papp, and Frank Villante. 1988. The IBM
engineering verification engine. In Proc. of the 25th Design Automation Conf.
(DAC-25).

[10] Ranjita Bhagwan and Bill Lin. 2000. Fast and scalable priority queue architecture
for high-speed network switches. In Proc. of the IEEE Infocom 2000.

[11] Janusz A Brzozowski and Carl-Johan H Seger. 1995. Asynchronous circuits.
Springer.

[12] Cadence. 2015. Palladium Z1 enterprise emulation platform.
https://www.cadence.com/content/dam/cadence-www/global/en_US/
documents/tools/system-design-verification/palladium-z1-ds.pdf, archived at
https://perma.cc/MD6F-EYGQ.

[13] Cadence. 2019. Protium X1 enterprise prototyping platform. https://www.
cadence.com/en_US/home/tools/system-design-and-verification/emulation-
and-prototyping/protium.html.

[14] K. Mani Chandy and Jayadev Misra. 1981. Asynchronous distributed simulation
via a sequence of parallel computations. Commun. ACM 24, 4 (1981).

[15] Jack B Dennis and David P Misunas. 1975. A preliminary architecture for a
basic data-flow processor. In Proc. of the 2nd annual Intl. Symp. on Computer
Architecture (ISCA-2).

[16] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Proc. of
the 38th annual Intl. Symp. on Computer Architecture (ISCA-38).

[17] Yoav Etsion, Felipe Cabarcas, Alejandro Rico, Alex Ramirez, Rosa M. Badia,
Eduard Ayguade, Jesus Labarta, and Mateo Valero. 2010. Task Superscalar: An
Out-of-Order Task Pipeline. In Proc. of the 43rd annual IEEE/ACM intl. symp. on
Microarchitecture (MICRO-43).

[18] Richard Fujimoto. 1989. The virtual time machine. In Proc. of the 1st ACM Symp.
on Parallelism in Algorithms and Architectures (SPAA).

[19] Richard Fujimoto. 1990. Parallel discrete event simulation. Commun. ACM 33, 10
(1990).

[20] Richard M. Fujimoto, Jya-Jang Tsai, and Ganesh C. Gopalakrishnan. 1992. Design
and evaluation of the rollback chip: Special purpose hardware for Time Warp.
IEEE Trans. Comput. 41, 1 (1992).

[21] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis,
Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and
Kunle Olukotun. 2004. Transactional memory coherence and consistency. In
Proc. of the 31st annual Intl. Symp. on Computer Architecture (ISCA-31).

[22] Maurice Herlihy and J Eliot B Moss. 1993. Transactional memory: Architectural
support for lock-free data structures. In Proc. of the 20th annual Intl. Symp. on
Computer Architecture (ISCA-20).

[23] William N.N. Hung and Richard Sun. 2018. Challenges in large FPGA-based logic
emulation systems. In Proc. of the 2018 Intl. Symp. on Physical Design (ISPD).

[24] IBS data on IC design costs. 2018. As Chip Design Costs Skyrocket, 3nm Process
Node Is in Jeopardy. https://www.extremetech.com/computing/272096-3nm-
process-node.

[25] David Jefferson. 1985. Virtual time. ACM TOPLAS 7, 3 (1985).
[26] David Jefferson, Brian Beckman, Fred Wieland, Leo Blume, Mike DiLoreto, Phil

Hontalas, Pierre Laroche, Kathy Sturdevant, Jack Tupman, Van Warren, John
Wedel, Herb Younger, and Steve Bellenot. 1987. Distributed Simulation and the
Time Warp Operating System. In Proc. of the 11st Symp. on Operating System
Principles (SOSP-11).

[27] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel Sanchez.
2015. A scalable architecture for ordered parallelism. In Proc. of the 48th annual
IEEE/ACM intl. symp. on Microarchitecture (MICRO-48).

[28] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid,
Dayeol Lee, Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra,
Qijing Huang, Kyle Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and
Krste Asanovic. 2018. FireSim: FPGA-accelerated cycle-exact scale-out system

https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://www.cadence.com/content/dam/cadence-www/global/en_US/documents/tools/system-design-verification/palladium-z1-ds.pdf
https://perma.cc/MD6F-EYGQ
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.cadence.com/en_US/home/tools/system-design-and-verification/emulation-and-prototyping/protium.html
https://www.extremetech.com/computing/272096-3nm-process-node
https://www.extremetech.com/computing/272096-3nm-process-node

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Fares Elsabbagh, Shabnam Sheikhha, Victor A. Ying, Quan M. Nguyen, Joel S. Emer, and Daniel Sanchez

simulation in the public cloud. In Proc. of the 45th annual Intl. Symp. on Computer
Architecture (ISCA-45).

[29] George Karypis and Vipin Kumar. 1998. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. SIAM Journal on Scientific Computing
20, 1 (1998).

[30] Ubaid R. Khan, Henry L. Owen, and Joseph L.A. Hughes. 1993. FPGA architectures
for ASIC hardware emulators. In Proc. of the Sixth Annual IEEE Intl. ASIC Conf.
and Exhibit.

[31] Donggyu Kim, Jerry Zhao, Jonathan Bachrach, and Krste Asanović. 2019. Sim-
mani: Runtime power modeling for arbitrary RTL with automatic signal selection.
In Proc. of the 52nd annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-52).

[32] Sangpyo Kim, Jongmin Kim, Michael Jaemin Kim, Wonkyung Jung, John Kim,
Minsoo Rhu, and Jung Ho Ahn. 2022. BTS: An accelerator for bootstrappable fully
homomorphic encryption. In Proc. of the 49th annual Intl. Symp. on Computer
Architecture (ISCA-49).

[33] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre-Yves
Droz. 2007. RAMP Blue: A message-passing manycore system in FPGAs. In Proc.
of the 2007 intl. conf. on Field Programmable Logic and Applications (FPL).

[34] Helena Krupnova and Gabriele Saucier. 2000. FPGA-based emulation: Indus-
trial and custom prototyping solutions. In Proc. of the 10th intl. conf. on Field-
Programmable Logic and Applications (FPL).

[35] Dian-Lun Lin, Haoxing Ren, Yanqing Zhang, Brucek Khailany, and Tsung-Wei
Huang. 2023. From RTL to CUDA: A GPU Acceleration Flow for RTL Simulation
with Batch Stimulus. In Proc. of the 51st Intl. Conf. on Parallel Processing (ICPP-51).

[36] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation.
SIGPLAN Notices (2005).

[37] Mentor/Siemens. 2017. Veloce Strato. https://eda.sw.siemens.com/en-US/ic/
veloce/strato-hardware/.

[38] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A.
Wood. 2006. LogTM: Log-based transactional memory. In Proc. of the 12nd IEEE
intl. symp. on High Performance Computer Architecture (HPCA-12).

[39] Nangate Inc. 2008. The NanGate 45nm Open Cell Library. http://www.nangate.
com/?page_id=2325.

[40] Rishiyur S. Nikhil and Arvind. 1990. Executing a program on the MIT tagged-
token dataflow architecture. IEEE Trans. on Computers 39, 3 (1990).

[41] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-dataflow acceleration. In Proc. of the 44th annual Intl.
Symp. on Computer Architecture (ISCA-44).

[42] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. 2015. Ex-
ploring the potential of heterogeneous Von Neumann/dataflow execution models.
In Proc. of the 42nd annual Intl. Symp. on Computer Architecture (ISCA-42).

[43] Heidi Pan, Krste Asanović, Robert Cohn, and Chi-Keung Luk. 2005. Control-
ling Program Execution through Binary Instrumentation. SIGARCH Computer
Architecture News (2005).

[44] Yale N Patt, Wen-mei Hwu, and Michael Shebanow. 1985. HPS, a new microar-
chitecture: Rationale and introduction. In Proc. of the 18th annual workshop and
symp. on Microprogramming and Microarchitecture (MICRO-18).

[45] Gregory F Pfister. 1982. The Yorktown simulation engine: Introduction. In Proc.
of the 19th Design Automation Conf. (DAC-19).

[46] Clément Pit-Claudel, Thomas Bourgeat, Stella Lau, Arvind, and Adam Chlipala.
2021. Effective Simulation and Debugging for a High-Level Hardware Language
Using Software Compilers. In Proc. of the 26th intl. conf. on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-XXVI).

[47] Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck, and
Josep Torrellas. 2005. Thread-level speculation on a CMP can be energy efficient.
In Proc. of the Intl. Conf. on Supercomputing (ICS’05).

[48] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
I. https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/
volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-
evolution_vh-v11-i1.pdf, archived at https://perma.cc/F3DU-U6ZK. Verification
Horizons 11, 1 (2015), 26–27.

[49] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
II. https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/
volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-
evolution-part-II_vh-v11-i2.pdf, archived at https://perma.cc/XB4N-C7MS.
Verification Horizons 11, 2 (2015), 40–42.

[50] Lauro Rizzatti. 2015. Hardware emulation: Three decades of evolution. Part
III. https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/
volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-
evolution-part-iii_vh-v11-i3.pdf, archived at https://perma.cc/BK4D-NAJX.
Verification Horizons 11, 3 (2015), 15–18.

[51] Efraim Rotem, Yuli Mandelblat, Vadim Basin, Eli Weissmann, Arik Gihon, Ra-
jshree Chabukswar, Russ Fenger, and Monica Gupta. 2021. Alder Lake Architec-
ture. In IEEE Hot Chips 33 Symposium (HotChips-33).

[52] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Srinivas Devadas, Ronald
Dreslinski, Christopher Peikert, and Daniel Sanchez. 2021. F1: A fast and pro-
grammable accelerator for fully homomorphic encryption. In Proc. of the 54th
annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-54).

[53] Nikola Samardzic, Axel Feldmann, Aleksandar Krastev, Nathan Manohar,
Nicholas Genise, Srinivas Devadas, Karim Eldefrawy, Chris Peikert, and Daniel
Sanchez. 2022. CraterLake: a hardware accelerator for efficient unbounded com-
putation on encrypted data.. In Proc. of the 49th annual Intl. Symp. on Computer
Architecture (ISCA-49).

[54] Alireza Shafaei, Yanzhi Wang, Xue Lin, and Massoud Pedram. 2014. FinCACTI:
Architectural analysis and modeling of caches with deeply-scaled FinFET devices.
In Proc. of IEEE Computer Society Annual Symposium on VLSI (ISVLSI).

[55] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. 2002. Auto-
matically characterizing large scale program behavior. In Proc. of the 10th intl.
conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X).

[56] Wilson Snyder. 2003. Verilator. https://www.veripool.org/verilator/.
[57] Wilson Snyder. 2018. Verilator 4.0: Open Source Simulation Goes Multithreaded.

In The Open Source Digital Design Conference (ORConf).
[58] Wilson Snyder. 2020. Verilator, Accelerated. In 2nd Workshop on Open-Source

Design Automation (OSDA).
[59] Gurindar S Sohi, Scott E Breach, and TN Vijaykumar. 1995. Multiscalar processors.

In Proc. of the 22nd annual Intl. Symp. on Computer Architecture (ISCA-22).
[60] SpinalHDL. 2018. A FPGA friendly 32 bit RISC-V CPU implementation. https:

//github.com/SpinalHDL/VexRiscv.
[61] J. Gregory Steffan and Todd C. Mowry. 1998. The Potential for Using Thread-

Level Data Speculation to Facilitate Automatic Parallelization. In Proc. of the 4th
IEEE intl. symp. on High Performance Computer Architecture (HPCA-4).

[62] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. 2007. The WaveScalar
architecture. ACM Transactions on Computer Systems (TOCS) 25, 2 (2007).

[63] Synopsys Inc. 2018. ZeBu Server 4. https://www.synopsys.com/verification/
emulation/zebu-server.html.

[64] Zhangxi Tan, Zhenghao Qian, Xi Chen, Krste Asanovic, and David Patterson.
2015. DIABLO: A warehouse-scale computer network simulator using FPGAs. In
Proc. of the 20th intl. conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XX).

[65] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook,
David Patterson, and Krste Asanović. 2010. RAMP Gold: an FPGA-based architec-
ture simulator for multiprocessors. In Proc. of the 47th Design Automation Conf.
(DAC-47).

[66] Zhangxi Tan, Andrew Waterman, Henry Cook, Sarah Bird, Krste Asanović, and
David Patterson. 2010. A case for FAME: FPGA architecture model execution. In
Proc. of the 37th annual Intl. Symp. on Computer Architecture (ISCA-37).

[67] The Chronos FPGA Framework to accelerate ordered applications. 2020. https:
//github.com/SwarmArch/chronos/.

[68] Blaise Tine, Krishna Praveen Yalamarthy, Fares Elsabbagh, and Kim Hyesoon.
2021. Vortex: Extending the RISC-V ISA for GPGPU and 3D-Graphics. In Proc. of
the 54th annual IEEE/ACM intl. symp. on Microarchitecture (MICRO-54).

[69] Robert M Tomasulo. 1967. An efficient algorithm for exploiting multiple arith-
metic units. IBM Journal of research and Development 11, 1 (1967).

[70] Ray Turner. 2004. A primer on processor-based emulation. EETimes, https:
//www.eetimes.com/a-primer-on-processor-based-emulation/.

[71] Haoyuan Wang and Scott Beamer. 2023. RepCut: Superlinear Parallel RTL Sim-
ulation with Replication-Aided Partitioning. In Proc. of the 28th intl. conf. on
Architectural Support for Programming Languages and Operating Systems (ASPLOS-
XXVIII).

[72] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F. Brown III, and Anant
Agarwal. 2007. On-chip interconnection architecture of the Tile Processor. IEEE
Micro 27, 5 (2007).

[73] Claire Wolf. 2014. Yosys Open SYnthesis Suite. http://www.clifford.at/yosys/.
[74] Xilinx. 2019. Alveo U250 Data Center Accelerator Card. https://www.xilinx.com/

products/boards-and-kits/alveo/u250.html.
[75] Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-Gonzalez, and

Yoav Etsion. 2013. Hybrid Dataflow/Von-Neumann Architectures. IEEE Trans. on
Parallel and Distributed Systems (2013).

[76] Victor A. Ying, Mark C. Jeffrey, and Daniel Sanchez. 2020. T4: Compiling Sequen-
tial Code for Effective Speculative Parallelization in Hardware. In Proc. of the
47th annual Intl. Symp. on Computer Architecture (ISCA-47).

[77] Rumi Zahir. 2012. Medfield smartphone SOC Intel® Atom Z2460 processor. In
IEEE Hot Chips 24 Symposium (HotChips-24).

https://eda.sw.siemens.com/en-US/ic/veloce/strato-hardware/
https://eda.sw.siemens.com/en-US/ic/veloce/strato-hardware/
http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-1/articles/stream/hardware-emulation-three-decades-of-evolution_vh-v11-i1.pdf
https://perma.cc/F3DU-U6ZK
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-2/articles/stream/hardware-emulation-three-decades-of-evolution-part-II_vh-v11-i2.pdf
https://perma.cc/XB4N-C7MS
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://s3.amazonaws.com/verificationhorizons.verificationacademy.com/volume-11_issue-3/articles/stream/hardware-emulation-three-decades-of-evolution-part-iii_vh-v11-i3.pdf
https://perma.cc/BK4D-NAJX
https://www.veripool.org/verilator/
https://github.com/SpinalHDL/VexRiscv
https://github.com/SpinalHDL/VexRiscv
https://www.synopsys.com/verification/emulation/zebu-server.html
https://www.synopsys.com/verification/emulation/zebu-server.html
https://github.com/SwarmArch/chronos/
https://github.com/SwarmArch/chronos/
https://www.eetimes.com/a-primer-on-processor-based-emulation/
https://www.eetimes.com/a-primer-on-processor-based-emulation/
http://www.clifford.at/yosys/
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html
https://www.xilinx.com/products/boards-and-kits/alveo/u250.html

	Abstract
	1 Introduction
	2 Motivation and Background
	2.1 Understanding RTL simulation
	2.2 Parallel execution needs small tasks
	2.3 Selective execution needs small tasks
	2.4 Emulation versus simulation

	3 System Overview
	4 Prioritized Dataflow Execution with DASH
	4.1 Execution model and ISA
	4.2 DASH hardware implementation
	4.3 DASH compiler

	5 Selective Dataflow Execution
	5.1 Selective execution
	5.2 Speculative execution

	6 Task-Driven Instruction Prefetching
	7 Hardware Costs
	8 Methodology
	9 Evaluation
	9.1 ASH widely outperforms baseline systems
	9.2 Architectural analysis
	9.3 Impact of ASH features

	10 Related Work
	10.1 Prior task-level speculative architectures
	10.2 Dataflow architectures
	10.3 Hardware emulators
	10.4 Batched GPU-accelerated simulation
	10.5 Other simulation accelerators

	11 Conclusion and Future Work
	Acknowledgments
	References

