
Tailors: Accelerating Sparse Tensor Algebra by Overbooking
Buffer Capacity

Zi Yu Xue
MIT

Cambridge, MA, USA
fzyxue@mit.edu

Yannan Nellie Wu
MIT

Cambridge, MA, USA
nelliewu@mit.edu

Joel S. Emer
MIT/NVIDIA

Cambridge, MA, USA
jsemer@mit.edu

Vivienne Sze
MIT

Cambridge, MA, USA
sze@mit.edu

ABSTRACT
Sparse tensor algebra is a challenging class of workloads to acceler-
ate due to low arithmetic intensity and varying sparsity patterns.
Prior sparse tensor algebra accelerators have explored tiling sparse
data to increase exploitable data reuse and improve throughput, but
typically allocate tile size in a given buffer for the worst-case data
occupancy. This severely limits the utilization of available mem-
ory resources and reduces data reuse. Other accelerators employ
complex tiling during preprocessing or at runtime to determine the
exact tile size based on its occupancy.

This paper proposes a speculative tensor tiling approach, called
overbooking, to improve buffer utilization by taking advantage of
the distribution of nonzero elements in sparse tensors to construct
larger tiles with greater data reuse. To ensure correctness, we pro-
pose a low-overhead hardware mechanism, Tailors, that can tolerate
data overflow by design while ensuring reasonable data reuse. We
demonstrate that Tailors can be easily integrated into the memory
hierarchy of an existing sparse tensor algebra accelerator. To ensure
high buffer utilization with minimal tiling overhead, we introduce a
statistical approach, Swiftiles, to pick a tile size so that tiles usually
fit within the buffer’s capacity, but can potentially overflow, i.e.,
it overbooks the buffers. Across a suite of 22 sparse tensor algebra
workloads, we show that our proposed overbooking strategy in-
troduces an average speedup of 52.7× and 2.3× and an average
energy reduction of 22.5× and 2.5× over ExTensor without and
with optimized tiling, respectively.
ACM Reference Format:
Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2023. Tailors:
Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO
’23), October 28–November 01, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3613424.3623793

1 INTRODUCTION
Tensor algebra is a computing paradigm that is used across a wide
variety of application domains, e.g., graph computing [14, 29], sci-
entific simulations [2, 50], data analytics [11], and recommendation
systems [30]. Many of these applications operate on large tensors
that have high sparsity. In addition, the distributions of zero-value

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3623793

Tiling Strategies Buffer Utilization Tiling Tax

Uniform shape Very Low None

Prescient uniform shape Low High

Uniform occupancy High Very High

Our work (Overbooking) High Low
Table 1: Comparison of different tiling strategies. For any
workload, an ideal tiling strategy should achieve high buffer
utilization and introduce low tiling tax.

locations vary significantly both across tensors and within a single
tensor. For example, a road network graph like roadNet-CA [16]
has an adjacency matrix potentially containing trillions of elements
but with only millions of them being nonzeros. These nonzeros are
densely populated along the diagonal and randomly scattered away
from the diagonal. This large tensor size and high sparsity limit
the arithmetic intensity (i.e., the ratio of operations to data traffic
from DRAM) and make the processing of these large sparse tensors
challenging and memory bound on most architectures.

A popular approach to address the above challenge is to partition
large tensors into smaller sub-tensors, referred to as tiles, which
can be stored in smaller buffers for reuse to significantly reduce
memory traffic [13]. Tiles can have: i) different shapes described
by a tuple of ranges (i.e., the number of elements including both
zeros and nonzeros, along each dimension). For example, a two-
dimensional tile can have a 4-by-4 shape, which has a range of
four along each dimension); ii) different sizes (i.e., the number of
elements including both zeros and nonzeros, for example, a 4-by-
4 tile has a size of 16); iii) different occupancies (i.e., number of
nonzero elements). For sparse tensors, an ideal tiling would use the
largest tile size for which the data fits within a buffer to maximize
buffer utilization (i.e., the percentage of the buffer occupied by data)
and thus data reuse, while simultaneously constructing the smallest
buffer to minimize energy and area. Specifically, an ideal tiling
strategy has the following goals:

• Adaptability: always achieves high buffer utilization across
a wide range of different sparsity distributions (i.e., spatial
distribution of nonzero values and degrees of sparsity).

• Efficiency: partitions the tensors into tiles with low pre-
processing or runtime cost and low hardware cost for
operand matching (i.e., when given a tile of an operand tensor
𝐴, find the corresponding range of coordinates in the other
operand tensor 𝐵). We refer to such overhead as the tiling
tax.

More information on Tailors can be found at http://emze.csail.mit.edu/tailors.

https://doi.org/10.1145/3613424.3623793
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3623793
http://emze.csail.mit.edu/tailors


MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

However, to the authors’ knowledge, no tiling strategy employed
by existing sparse tensor accelerators achieves both goals. Existing
schemes generally select tile sizes by statically selecting a shape
that is known not to overflow the buffers [13, 25, 28, 34, 49] or
filling buffers with a runtime-determined shape that will fit [24, 48].
As introduced in [24], two common strategies for tiling tensors are
tiling with uniform shape tiles and tiling with uniform occupancy
tiles. We summarize the characteristics of different tiling strategies
in Table 1.

The uniform shape tiling strategy, which statically selects a shape
to tile with, partitions a tensor into tiles of identical shapes based
on the available buffer capacity without regard to tensor sparsity.
In particular, not being aware of tensor sparsity, the uniform shape
tiling assumes worst-case occupancy (i.e., assumes a dense tile) and
thus mandates the tile size to not exceed the available buffer capac-
ity. Since the tile shapes are fixed, uniform shape tiling does not
require any runtime overhead for operand matching, thus introduc-
ing zero tiling tax. However, since sparse tensor algebra workloads
often have high sparsity, uniform shape tiling’s extremely conserva-
tive strategy can often result in severely underutilized buffers. For
example, Fig. 1 shows the tile occupancy distribution when a tensor
from the SuiteSparse dataset [16] is tiled using the uniform shape
strategy. Although the worst-case occupancy is 51.4M elements,
the maximum tile occupancy observed in the tensor is only 31.6K,
thus resulting in, at best, a less than 0.1% average buffer utilization.

Uniform shape tiling can be enhanced to take tensor sparsity into
account instead of constructing tiles based on the worst-case occu-
pancy. We refer to this enhanced tiling strategy as prescient uniform
shape tiling, which partitions the tensor based on prescient knowl-
edge about the maximum tile occupancy. Specifically, prescient
uniform-shape tiling partitions the tensor into tiles with a larger
size as long as the maximum occupancy among such tiles does not
exceed the available buffer capacity. However, such an approach
introduces significant pre-processing cost when the tensor is static,
or a runtime cost when the tensor is generated during execution,
thus has a high tiling tax (e.g., for each workload, all tile shapes of
interest need to be explored, and for each tile shape, the maximum
tile occupancy needs to be measured, which requires traversing
the entire tensor). In addition, we observe that even with prescient
uniform shape tiling, the buffer utilization is still low as the tile
occupancy varies significantly from tile to tile and the maximum
tile occupancy is often much larger than that of the majority of the
tiles. For example, Fig. 1 shows that while the maximum occupancy
among the tiles is 31.6K, 90% of the tiles have occupancies of less
than 2K; this leads to a buffer utilization that is less than 10% for
90% of the time. Thus, as shown in Table 1, prescient uniform shape
introduces an undesirable tradeoff between tiling tax and buffer
utilization.

As an alternative to the uniform shape approach, the uniform
occupancy tiling strategy aims to improve buffer utilization by
constructing tiles based on the exact number of nonzero values
in the tensor. Ideally, uniform occupancy tiling aims to always
fully utilize the available buffer capacity with tiles that have the
perfect number of nonzeros to fill every buffer. However, uniform
occupancy tiling often results in non-uniform shapes among the
tiles, especially when the nonzero value distribution is not uniform,
leading to significant tiling tax associated with runtime operand

0 5000 10000 15000 20000 25000 30000
Tile occupancy

0.0%

6.4%

12.8%

19.1%

25.5%

31.9%

N
um

be
r

of
til

es

Maximum 
Occupancy

31.6K

Uncompressed
Tile Size

51.4M

Tile Occupancy

90th Percentile
Occupancy

11.1K

99th Percentile
Occupancy

2K

30%

20%

10%

0%
0 5K 10K 15K 20K 30K25K 50M 55M

P
er

ce
nt

ag
e 

of
 T

ile
s

Figure 1: Occupancy distribution of tiles with a size of 51.4M.
The tiles are obtained by partitioning tensors from SuiteS-
parse [16]. The occupancy varies from tile to tile, themax tile
occupancy is more than three orders of magnitude smaller
than tile size, and 90% threshold tile occupancy is more than
15× smaller than maximum tile occupancy.

matching. In addition, due to the complexity involved in operand
matching, existing work can only emulate uniform occupancy tiling
behaviors with tiles that have occupancies that are similar, but
smaller than, the available buffer capacity, and thus cannot achieve
perfect buffer utilization [24].

To address the above limitations, we propose a simultaneously
adaptable and efficient tiling strategy, with the key insight that
workload tensors can be partitioned into uniformly shaped tiles
that sometimes require a larger buffer capacity than is available. We
refer to such tiling strategy as overbooking.1 In particular, the over-
booking tiling strategy speculatively constructs uniformly shaped
tiles, such that approximately 𝑦% of the tiles will not fit into the
buffer, referred to as a 𝑦% overbooking. As shown in Table 1, our
proposed overbooking strategy is both adaptable and efficient. At
a high level, our proposal achieves both goals by: i) implement-
ing low-cost hardware support called Tailors that turns data reuse
into data streaming to guarantee correctness and throughput while
maintaining some data reuse when a buffer is overbooked; and ii)
employing an overbooking tiling strategy called Swiftiles, which
employs low-overhead statistical characterizations of the tensor
sparsity to pick a tile size that leads to high buffer utilization, but
can be overbooked 𝑦% of the time.

Table 1 summarizes the different tiling strategies in terms of
their adaptability (measured by buffer utilization), and efficiency
(measured by tiling tax).

This work makes the following key contributions:
• This is the first work to demonstrate that the concept of
speculative execution can be applied to tiling sparse tensors
by overbooking buffer capacities.

• To ensure correctness for an overbooked buffer, we propose
Tailors, a low-cost hardware mechanism that streams the

1We choose to name our strategy overbooking due to similarities with how airlines
sell more tickets (larger tile shape) for a flight than the plane (buffer) has capacity for,
thus potentially "overbooking" the plane with more passengers (nonzeros) than it can
hold.



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

overflowed data with a low-cost latency hiding queue while
maintaining reasonable data reuse.

• We show that Tailors can be easily integrated into the mem-
ory hierarchy of an existing accelerator.

• To balance tiling efficiency and adaptability, we propose
Swiftiles, which swiftly determines the tile size of the sparse
tensors statistically by sampling the irregular distribution of
real-world data.

• Across a suite of sparse tensor algebra workloads, we show
that our proposed overbooking strategy introduces an av-
erage speedup of 52.7× and 2.3× and an average energy
reduction of 22.5× and 2.5× over an existing accelerator
without and with optimized tiling (i.e., uniform shape tiling
and prescient uniform shape tiling), respectively.

2 BACKGROUND
This section discusses the basics of sparse tensor algebra, the limi-
tations of prior tiling approaches, and various data orchestration
approaches.

2.1 Sparse Tensor Algebra
Tensors are multi-dimensional arrays of data, and when there exist
zero values in the data, we call the tensor a sparse tensor. Adopting
the terminology from [35], the logical locations of each element in
a tensor, called points, can be described by a tuple of coordinates,
one for each dimension. For example, for a two-dimensional tensor
(i.e., a matrix), each data point can be defined by a (row, column)
tuple. The tensors we focus on have integer coordinates; thus, the
shape of a tensor is described by a tuple of integer ranges and the
size of a tensor by the product of the ranges.

Sparse tensor algebra involves applying various mathematical
operations (e.g., multiplications and additions) on the data in multi-
ple sparse tensors and can be described compactly with Einstein
summation (Einsum) notation [10, 35]. For example, matrix multi-
plication between a𝑀 × 𝐾 tensor 𝐴 and a 𝐾 × 𝑁 tensor 𝐵 can be
described as:

𝑍𝑚,𝑛 = 𝐴𝑚,𝑘𝐵𝑘,𝑛 (1)
This definesmatrixmultiplication for each point (𝑚,𝑛) of the output
as the sum of the products of elements of row𝑚 in𝐴 and column𝑛 in
𝐵. Since sparse tensors introduce a significant number of ineffectual
computations (e.g., 𝑥 ×0 = 0), many sparse tensor accelerators [13, 24,
25, 28, 34, 48] have been proposed to eliminate hardware operations
associated with such ineffectual computations to improve hardware
efficiency.

2.2 Tiling Sparse Tensors
To increase the arithmetic intensity for sparse tensor algebra pro-
cessing, sparse tensor accelerators are often designed to have a
multi-level memory hierarchy, and employ various tiling strategies
to partition the tensors into tiles, which are transferred to the next
level (i.e., the level with buffers that have smaller capacities) in
the memory hierarchy for data reuse. For sparse tensors, tiling be-
comes challenging as the exact occupancy of each tile (i.e., number
of nonzeros) often cannot be determined without preprocessing or
significant runtime processing. Moreover, sparsity can vary across
the tensor and thus across equally-sized tiles of the tensor. In this

section, we first formalize the tiling concepts introduced in Section 1
and discuss their limitations.

In addition to their original form with both zeros and nonzeros,
referred to as the uncompressed format, sparse tensors can also be
represented with compressed formats with only the nonzeros. Thus,
given a buffer with a certain capacity, compressed formats allow a
larger tile to be stored than if the tile is uncompressed. Adopting the
terminology from [35], we can classify tiling strategies as either:

• Coordinate Space Tiling (CST): construct tiles with uni-
form shapes in the uncompressed space.

• Position Space Tiling (PST): construct tiles with uniform
occupancies based on the range of nonzero elements’ posi-
tions in the buffers independent of each tile’s shape.

However, we make the observation that neither of the above tiling
approaches are simultaneously adaptable and efficient.

2.2.1 Exploiting Sparsity with Coordinate-Space Tiling Requires Ex-
pensive Preprocessing. CST tiling strategies [13, 34] partition work-
load tensors into tiles of uniform shape. Specifically, a conservative
CST approach partitions the workload assuming dense tensors. In
this scenario, CST constructs tiles of a uniform fixed shape with
a size that will always fit in the available buffers, independent of
workload sparsity characteristics (e.g., as indicated by the orange
dotted boxes in Fig. 2a, given a buffer capacity of two, the tile size
will always be two). Such a fixed tile shape allows the hardware to
easily locate the corresponding tiles in other operands to perform
the computations, (i.e., easy runtime operand matching). However,
tiling sparse tensors with the assumption of dense tiles often leads
to low buffer utilization, thus limiting data reuse (e.g., the buffers
for B are never fully utilized for the steps shown in Fig. 2a).

The conservative CST approach can be enhanced to take ten-
sor sparsity into consideration by partitioning the tensor into the
largest possible tiles while guaranteeing each tile fits within the
buffer. Achieving this requires traversal over the entire tensor for
every possible tile shape to determine whether the tile with the
largest occupancy still fits within the buffer. This compute-intensive
step can be done during preprocessing for static data (i.e., the
tensor is known a priori) [13, 19, 24]; however, for input tensors
generated by previous computation, this is done during runtime.
Given a workload tensor, finding a good tile shape that will lead to
higher buffer utilization typically involves expensive optimization
approaches such as deep neural networks [41] or inspector-executor
schemes [39]. However, although taking maximum tile occupancy
into account can potentially lead to higher buffer utilization by
allowing tile shape to scale with sparsity, the significantly varying
tile occupancy within a tensor can still result in a conservative tile
shape, and thus low buffer utilization for most of the tiles.
Takeaway: CST allows for easy runtime operand matching,
but can have low buffer utilization even with heavy pre-
processing.

2.2.2 Position-Space Tiling Requires Expensive Runtime Operand
Matching. PST allows high buffer utilization by partitioning the
workloads into tiles with an occupancy that is equal to the available
buffer capacity. Fig. 2b shows an example of performing PST on
𝐴 and 𝐵. For each processing step, given a buffer with a capacity
of two, PST constructs tiles with two nonzero values whenever
possible (e.g., 𝑎 and 𝑏 in 𝐴).



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

(b) Position Space Tiling (PST)

A B
Step 1 Step 2 Step 3 Step 4

a cb

d
e

(a) Coordinate Space Tiling (CST)

…

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

a cb

d
e

z y x
w
v
u t s

…

…

A B A B A B

Figure 2: Tiled sparse matrix multiplication between sparse 2-dimensional tensors (i.e., matrices) 𝐴 and 𝐵, when tiling in (a)
coordinate space and (b) position space for a buffer with a capacity of two for each operand. Each step shows the tiles operated
on. Dotted yellow boxes indicate the tile in coordinate space. CST constructs 𝐴 and 𝐵 tiles with uniform shapes and thus does
not require runtime operand matching. PST constructs 𝐴 and 𝐵 tiles of uniform occupancy, but can have potentially different
shapes. Thus, PST requires a costly runtime traversal of 𝐵 both to determine its tiling and to search for all possible matching
operands given a tile from 𝐴.

However, even though PST is able to have high buffer utilization,
PST incurs a high tiling tax since it needs to perform expensive
runtime operand matching between sparse operand tiles. Specifi-
cally, since the distribution of nonzero value locations varies within
and across tensors, with one operand tile constructed, PST needs to
traverse over tiles of varying shapes in other tensors to search for
all possible matching operands. For example, as shown in Fig. 2b,
in order to locate the corresponding operands in 𝐵 for the nonzeros
𝑎 and 𝑏 in 𝐴, PST traverses tiles of shapes 3-by-1 at Step 1 and even
across columns at Step 2, resulting in a much more costly traversal
compared to the CST example. Please note that since the tiles in
𝐴 can end up with arbitrary shapes, 𝐵 cannot be tiled apriori and
PST always incurs the cost of full 𝐵 traversal for each tile of 𝐴.
We make the observation that existing work that attempts to tile
multiple sparse tensors in position space uses expensive control
flow schemes and complicated tile management to build tiles [24].
Takeaway: PST allows high buffer utilization at the cost of
complex/expensive hardware support for runtime operand
matching.

2.3 Data Orchestration for Tiling
Caches are commonly used as a buffering idiom for data orchestra-
tion in general-purpose computing (e.g., CPUs and GPUs). Assum-
ing an optimal cache replacement policy, caches are able to manage
tiles with occupancy greater than the cache size. However, caches
incur high overhead for tag matching and associativity and are not
typically suitable for accelerators [27].

Another approach that is better suited for domain-specific accel-
erators is to perform explicit decoupled data orchestration (EDDO),
where data movement is decided explicitly by the program con-
figuration and data requests are decoupled from execution on the

data [12, 23, 27]. However, such techniques often have assump-
tions that are not friendly to sparse tensor algebra workloads. For
example, buffets [27] are an EDDO storage idiom that features effi-
cient decoupling of fine-grained synchronization and hierarchical
composability, which are important attributes to have for domain-
specific accelerator designs. However, the buffets idiom has a fixed
assumption of the data reuse distance that can lead to poor reuse
for sparse tensor algebra workloads. As a result, it is insufficient
for efficiently utilizing available on-chip memory capacity.
Takeaway: Existing data orchestration approaches either in-
troduce high control overhead or low buffer utilization for
sparse tensor algebra workloads.

3 HARDWARE FOR OVERBOOKING
In this section, we describe the concept of overbooking buffers and
implement support for overbooking as an EDDO scheme for buffers.
We first explain why existing EDDO approaches are insufficient
for managing overbooked buffers and instead propose a hardware
storage mechanism, called Tailors, which efficiently support over-
booking with low overhead. We then describe how tiles can be
constructed to control for the degree of overbooking in Section 4.

3.1 General Concept
Overbooking describes a strategywhere tiles are allocated to a given
buffer such that tiles have greater occupancy than the available
buffer capacity (i.e., tiles may not fit in the buffer). This is achieved
by speculating on the occupancy of tiles to determine whether a
given tile will fit within the buffer. However, unlike traditional
speculation schemes where ideal speculation is always accurate,
overbooking-based speculation relies on some tiles not fitting to
allow for larger tiles to be constructed. Essentially, overbooking



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

is intentionally overconfident when it speculates and ideal over-
booking does not have all tiles fit within the buffer. We define 𝑦%
overbooking to be a tiling strategy that leads to 𝑦% of tiles having
occupancy greater than the buffer capacity. We will discuss the
specifics of our tiling strategy in Section 4.

As shown in Fig. 1, most tiles within a tensor have low occu-
pancy and tile occupancies have high variability. Because of this
distribution of tile occupancies in sparse tensors, being less than
100% confident that a tile will fit in a given buffer allows for larger
tiles to be allocated to that buffer, increasing buffer utilization (i.e.,
decreasing blank space) and thus data reuse. Compared to other
existing tiling strategies, which must guarantee that the worst-case
tile occupancy fits within a given buffer, overbooking enables larger
tiles by constructing tiles that occasionally exceed the worst-case
tile occupancy.

Overbooking introduces challenges for data orchestration. No-
tably, because a tile is not guaranteed to fit within the target buffer,
there will always be a cost in terms of reduced data reuse for tiles
that overbook the buffer and the magnitude of this cost will depend
on the data orchestration approach. Although EDDO approaches
are commonly used in domain-specific accelerators, existing EDDO
solutions are insufficient for supporting overbooking memory ac-
cess patterns. We will first introduce the basic concepts behind
EDDO approaches and then we will demonstrate the challenges of
enabling overbooking with EDDO.

3.2 Explicit Decoupled Data Orchestration
Explicit decoupled data orchestration (EDDO) defines a class of
data orchestration approaches where data placement/removal in a
buffer is workload-controlled (explicit) and each buffer can run at
its own rate using data pushed to it (decoupled). EDDO approaches
are commonly used in domain-specific accelerators because of their
low overhead, ability to leverage static workload knowledge, and
hierarchical composability. Two common methods of implementing
buffers in EDDO approaches are FIFOs and buffets [27].

FIFOs are a traditional buffer organization that introduce low
overhead while enabling simple synchronization and hierarchical
composability. FIFOs achieve this by restricting the access order
and replacement policy to be first-in first-out. These restrictions are
unacceptable for tensor algebra accelerators as the tensor algebra
dataflow requires multiple accesses within a tile of data.

To remove the restrictions emplaced by FIFOs, the buffets [27]
storage idiom manages data to support random accesses into the
buffer and workload-controlled removal of data from the buffer.
This is achieved by supporting four storage operations: Fill, Read,
Update, and Shrink. These operations are described below.

Fill(Data): Fill describes how a new element of Data is written
into the buffer. This is done by managing the buffer as a queue:
with a known head pointer and a known buffer occupancy, new
data is placed at the tail of the queue.

Read(Index): Read describes how random accesses into data
within the buffer are performed. Because buffets manage the buffer
as a queue, reads are performed relative to the head of the queue
and the Index is used to refer to the offset from the head of the
queue. Thus, index 0 represents the data at the head of the queue
and the largest possible index is equal to the buffer capacity. When

the index read exceeds the current buffer occupancy (i.e., the tail of
the queue) the read stalls until the data arrives.

Update(Index, Data): Update describes how elements within
the buffer can be modified. While Fill and Update both write data
into the buffer, Update is the only way to change the value of data
inside the buffer and the only way to write to an arbitrary index
within the buffer. Similar to reads, writes are performed relative to
the head of the queue based on the Index: the element at a given
Index is updated with Data. By supporting read/write operations
with indexing, buffets support random accesses into the buffer.

Shrink(Num): Shrink describes how data is removed from the
buffer. Within the queue abstraction, shrinks free data from the
head of the queue by incrementing the head pointer by Num to
indicate the number of data elements to remove from the buffer and
shrinking the occupancy byNum. Synchronization between shrinks
and fills is achieved using a credit system: data is only pushed to the
buffet for fills when credits are available (i.e., credits indicate the
number of unoccupied slots in the queue). Following a shrink, Num
credits are released to indicate that another fill can be performed
with the newly freed occupancy of the buffer.

With these four operations, buffets are able to support random
access to any data held within the buffet. Buffets utilize a queue
abstraction to store data within a buffer to enable simple manage-
ment and synchronization; thus, they are limited to data access
patterns that behave as a sliding window over the data (i.e., fill
from the head, shrink from the tail). A sliding window-based data
removal pattern is insufficient for overbooking due to the lack of
fine-grained control over what data can be removed from the buffer.

When a tile overbooks a given buffer, some data within the tile
cannot fit within the available buffer capacity. We refer to this data
as bumped data.2 Using existing tiling strategies with existing data
orchestration methods such as buffets, the entire tile fits within
the buffer and it is possible to exploit data reuse within the buffer.
However, when the buffer is overbooked and data within the tile is
bumped, data reuse is lost.

The problem with supporting overbooking with buffets is that
buffets can only free the oldest data held within the buffer (i.e., shrink
from the head). We show how buffets manage an overbooked tile in
Fig. 3. The sliding window that the buffet operates on has length 3,
which is shorter than the reuse distance of 4 of the data, causing the
buffet to remove data (𝑣 ,𝑤 , 𝑥 , 𝑦) that ends up being reused in the
future. When the sliding window that the buffet wants to operate
on is larger than the buffer, the buffet has no choice except to drop
everything and re-fill the full tile each time it traverses the tile. In
contrast, Tailors only need to re-fill overbooked elements within
the tile.

3.3 Tailors
To address the limitations of buffets, we develop Tail Overbooked
Buffers, or Tailors, as an extension of buffets to enable data reuse
even when a tile does not fit within the buffer. Specifically, we
handle bumped data by (repeatedly) streaming the bumped portion

2A bumping incident on an airline occurs when a flight is overbooked and too many
passengers attempt to board. Typically, a bumped individual is provided substitute
transportation and monetary compensation. Tailors provide no compensation because
nonzeros do not have legally protected rights, but Tailors do provide alternative "trans-
portation", so one can be fearless when overbooking without it becoming treacherous.



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

A
a

b
c

d

f
g

u

s
t

v w y z

B
a

b
c

d

e
f

s
t

u

v w y z

Buffets

Tailors

a b c

s t u

b c d

a b c

s t u

a b d

e f

v w y

A buffer

B buffer

A buffer

B buffer

State 1 State 2

w y z y z v z v w

e f

v w y v w z v w z v w z

v w y

v w y

State 1 State 2 State 3 State 4 State 5

s t u

s t u

e f

e f

e f

e f

e f

e f

e f

e f

a × s, …, c × u d × s e × v, …, e × y e × z f × v f × yf × w

A B

Operations performed:

(b)(a)

Figure 3: Comparison of data management between Tailors and buffets when (a) a tile from the stationary operand 𝐴 overbooks
the buffer and (b) a tile from the non-stationary operand 𝐵 overbooks the buffer. Nonzeros in each sparse tensor are shown
with colour and the tiles needed for the computation are outlined by dotted yellow boxes. Each state describes the data residing
in the buffer after the data in the buffer changes. Data is removed from the buffer when the buffer is full and an element
not residing in the buffer is required for an operation. Arrows are used to indicate data movement. An arrow into the buffer
indicates data being written into the buffer, while an arrow out of the buffer indicates data being removed from the buffer.
While the buffet continuously cycles data in the buffer, the Tailor is able to reuse a portion of the data.

of the tile through the buffer before wemust begin again. To support
this, we overwrite a fixed space at the tail of the buffer when the
buffer is full and use that space for streaming. This approach ensures
that most data held within the buffer is not bumped to satisfy the
requests for new data in a given tile. As a result, Tailors are still
able to exploit data reuse for a portion of an overbooked tile. We
show how Tailors manage data for an overbooked tile in Fig. 3.
Tailors explicitly manage streaming to only remove data from a
fixed space at the tail of the buffer, only overwriting data that is
used for streaming. Thus, in State 3 and 4 of Fig. 3b, Tailors are able
to reuse data already in the buffer to complete the operation (i.e.,
all ’v’ and ’w’ have to do is stay in the buffer).

Tailors provides a scan resistance similar to the Bimodal
RRIP [15] cache replacement policy, however, rather than being
cache based Tailors can be integrated into memory hierarchies as
an EDDO storage idiom. To illustrate the idea, without loss of gen-
erality, we use the accelerator architecture organization in Fig. 4
as an example. The example architecture organization consists of
multiple memory levels, with the DRAM as the highest and buffers

in the PEs as the lowest. We refer to the parent of any memory level
as the memory level above it and the child as the memory level
below it (e.g., in Fig. 4, the parent of the global buffer is DRAM,
while the children of the global buffer are the PEs). Each buffer is
controlled by a sparse address generator (AGEN), which traverses
the compressed representation of a tile to push data to its children.
Shrinks are driven by the child buffer’s address generator, fills are
driven by data from the parent (DRAM), and reads/updates interface
with the children (PEs). To support streaming through the buffer
when overbooked, we free space at the tail of the buffer to use for
data streaming and overwrite existing data with the data needed to
provide fills for the child. Because we only modify a small portion
at the tail of the buffer, the rest of the data (close to the head) can
stay in the buffer for reuse.

3.3.1 Realization of Tail Overbooking. We realize tail overbook-
ing by implementing a streaming interface for the buffets EDDO
scheme. To stream data through a buffer, the intuitive solution is to
have a separate FIFO for bumped data to pass through. However,



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Parent (DRAM)

PE

Global Buffer

Buffer

Shrink
Read/
Update

Fill

AGEN Request
Data

DataAGEN Request

S
hr

in
k

PE…

Overwriting 
Fill

O
ve

rw
rit

in
g 

F
ill

Head (index 0)

Tail

Children

In
de

x

Figure 4: (Left) A typical accelerator memory hierarchymade
up of global buffers, PE buffers, and compute in each PE. Each
buffer is associated with an address generator (AGEN) which
generates addresses for future fills. (Middle) Tailors-defined
operations on the buffer. (Right) Where data can be freed
from the buffer for a given operation. Overwriting fills only
modify the tail of the buffer when the buffer is full, while
shrinks can modify the entire buffer starting from the head,
and fills can modify the buffer when it is not full.

this solution does not bring us out of the woods since it requires ad-
ditional on-chip memory that could instead be used to store larger
tiles. Instead, Tailors support FIFO-like operation by extending
the buffet interface with an additional modified fill operation, the
overwriting fill, which is used to overwrite data at the tail of the
buffer. This enables deque-like management of data in the buffer
and allows for the tail of the buffer to be used for streaming data
while the head is used for general buffer management.

Essentially, Tailors have two modes: (1) when a tile completely
fits within the buffer and the buffer is not overbooked, it allows the
buffer to be managed as a buffet; (2) when a tile does not fit within
the buffer and overbooks the buffer, Tailors partition the buffer into
a buffet-managed region as described in Section 3.2 and a FIFO-
managed overbooked region that is managed with overwriting
fills instead of the general buffet fills. To keep the impact of an
overwriting fill local, an overwriting fill is limited to affecting the
tail of the buffer (i.e., the FIFO-managed region). The size of the FIFO-
managed region used for streaming in the buffer is configurable. If
this space is too small, data streamingmay bottleneck execution due
to the latency of sending data to children. However, if this space is
too large, data reuse in the buffer is reduced as data that could have
been reused is removed to fit streamed data. We statically set the
size of the FIFO-managed region such that the round-trip latency
between the buffer and its parent can be hidden by double-buffering
and thus avoid bottlenecking child buffers (i.e., same partitioning for
all workloads); however, another possible solution to this problem is
to partition the regions at runtime and adapt to whether execution
is memory-bound, so our static solution is not the endgame.

At a high level, overwriting fills have the same interface as fills:
OWFill(Data)writes Data to the tail of the buffer. However, unlike
conventional fills, overwriting fills atomically shrink from the tail
of the buffer to accommodate Data fill rather than decoupling the

shrink from the fill. These overwriting fills operate in the FIFO-
managed region of the buffer. We discuss how Tailors manage data
in this section and provide an example of overbooking with Tailors
in Section 3.3.3.

When a Tailor sees an initial overwriting fill, it clears the space of
the FIFO-managed region by atomically clearing part of the buffet-
managed region by the size of the FIFO-managed region and filling
the region with the bumped data from the tile. Subsequent over-
writing fills modify the FIFO region of the buffer without touching
data in the buffet-managed region. Thus, accesses to data held in
the buffet-managed region can continue to be reused without any
additional cost.

3.3.2 Maintaining Support for Buffet Semantics. Maintaining sup-
port for the original buffet semantics within Tailors enables efficient
data orchestration. In this section, we discuss how Tailors maintain
support for the various buffet operations.

Maintaining support for Fill: Streaming support within Tai-
lors is achieved using the overwriting fill operation, which cannot
be followed by fill operations as both write to the tail of the buffer.
Allowing both to happen at the same time would introduce race
conditions which lead to loss of data since the data that was written
over by an overwriting fill is removed from the buffer and there is
no mechanism to easily recover it.

Tailors avoid such race conditions by mandating that streaming –
and thus the use of overwriting fills – only occurs when the buffer is
full, which naturally blocks fills based on original buffet semantics.
Moreover, to support streaming, the space in the buffer that the
overwriting fill overwrites is kept the same so long as no shrink is
performed.

Maintaining support for Read/Update: Writing to the tail
introduces a key difference between Tailors and buffets: while in
buffets the Index (i.e., the location in the current tile) and the Offset
(i.e., the location in the buffer) are identical because data is managed
as if it were a contiguous sliding window, this is not true for Tailors
since Tailors can divide the buffer into separate buffet-managed
and FIFO-managed regions.

To maintain the sliding window abstraction and thus compatibil-
ity with buffets, Tailors track the difference between the FIFO head
(i.e., the start of the FIFO-managed region) and the index of the
least recent data in the buffer. We call this difference the FIFO offset.
Similarly, we use the terms buffer head and buffet offset to indicate
the start of the buffer (i.e., always zero) and the location in the buffer,
respectively. Given an initial overwriting fill, the FIFO offset is set
to be equal to the size of the FIFO-managed region. Whenever an
overwriting fill replaces earlier data, Tailors increments this value
by one. The FIFO offset is reset to zero when a data read occurs
to data in the buffet-managed region of the buffer. With this FIFO
offset, it then becomes possible for reads and updates to index into
the buffer without modification of read semantics even when some
data has been bumped. This is done by subtracting the FIFO offset
from the Index (i.e., Index - FIFO Offset) to get the position from the
head of the queue to access.

To divide a buffer into two regions, Tailors defines a head pointer
to indicate the start of each region. Although we implement buffer
management with a rolling buffer, we discuss offsets and heads as
though they are fixed for simplicity. For the buffet-managed region,



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

the head always points to the start of the buffer (i.e., an offset of 0).
In contrast, the FIFO head points to the start of the FIFO-managed
region and is equal to the size of the buffet-managed region. To
determine whether to index using the FIFO offset or not, Tailors
compares the index to the two head pointers. For indices less than
the difference between the FIFO head and the buffet head, accesses
go to the buffet-managed region and can use the index directly as
the offset into the buffer. For indices greater than the difference,
accesses go to the FIFO-managed region, and the FIFO offset is
needed to compute the offset into the buffer.

Maintaining support for Shrink:When a shrink occurs and
frees data from the head of the buffer, the buffer will no longer
be full and, if overwriting fills continue, buffer utilization will be
reduced. Thus, a shrink triggers overwriting fills to backfill the
buffer with the tile that caused the buffer to be overbooked. To
maintain coherent indexing, backfill only occurs after reaching
data held in the buffet-managed region of the buffer. If the buffer
still cannot hold the tile and is overbooked, the remaining bumped
data continues to be handled by overwriting fills. If the buffer is no
longer overbooked, the parent can push new data to the buffer as
credits will be available.

By only modifying the interaction between the parent and the
buffer itself, Tailors maintain the hierarchical composability of
prior EDDO schemes and enables the hierarchical integration of
Tailors into memory systems.

3.3.3 Example of Overbooking with Tailors. Fig. 5 illustrates a se-
quence of operations with Tailors and illustrates how Tailors tracks
data over the course of operation on an overbooked tile. Follow-
ing the Fill(d) operation, the buffer becomes full while there is
still data in the tile. Thus, the initial overwriting fill OWFill(e)
splits the buffer into a buffet-managed region and a FIFO-managed
region (outlined in red). Since the Tailor was configured with a
FIFO-managed region of size two, the FIFO offset is set to two and
the FIFO head is also set to two.

With the subsequent OWFill(f) operation, the FIFO-managed
region is full. The Read(5) operation accesses index 5 in the tile.
Since this accesses the FIFO-managed region, the buffer offset read
from the buffer is 3 (Buffer Offset = Index - FIFO Offset).

Since the following data reads (Read(0) and Read(1)) are from
indices less than the FIFO head, they proceed without modification.
However, subsequent overwriting fills must select some data to
replace. Since overwriting fills operate solely on the FIFO-managed
region, the following OWFill(c) operation drops the oldest data
(e) and increments the offset by one. Due to the rollover of data
(c), the Read(2) operation rolls over indexing and thus accesses an
offset of 3.

The operation that follows (OWFill(d)) replaces the data at the
end of the tile (f) and thus resets the FIFO offset to zero.

4 OVERBOOKING TILING STRATEGY
In this section, we describe an adaptable and efficient tiling strat-
egy, Swiftiles, to construct coordinate-space tiles (CST) that may
overbook a given buffer.

a b c d e f

0 1 2 3 4 5

Tile:

Index:

x x x xBuffer:

Offset: 0 1 2 3

a b c d

a b c d

a b e

a b e

a b e f

a b e f

a b f c

a b f c

a b c d

a b e f

a b e f

Tile 
Index

FIFO 
Offset

Buffer 
Offset

3 3

24 2

2

25 3

2

21 1

20 0

32 3

3

0

OWFill(c)

FIFO Head: 2

BufferOperation

Read(3)

Fill(d)

Read(4)

OWFill(e)

Read(5)

OWFill(f)

Read(1)

Read(0)

Read(2)

OWFill(c)

OWFill(d)

a b f c

Step

2

1

4

3

6

5

8

7

10

9

11

Figure 5: Tailors management following an example se-
quence of consecutive operations caused by overbooking
with a buffer that can hold four elements. The FIFO-managed
region is configured to hold two elements. Red boxes indicate
the FIFO-managed region of the buffer and arrows indicate
data movement. Arrows into the buffer indicate data fills
from the parent, while arrows out of the buffer indicate data
sent to the child. The FIFO Offset (i.e., the difference between
the FIFO Head and the index of the least recent data in the
FIFO) and the Buffer Offset (i.e., the location in the buffer)
used to index into the buffer are shown. We implement the
FIFO-managed region as a rolling buffer with a head pointer
but show it with a fixed head position for simplicity.

4.1 Preprocessing for Tile Construction
The efficacy of overbooking depends on the frequency of the buffer
being overbooked by a tile. In overbooking, this is described by a
confidence threshold𝑦 on which𝑦% of tiles will overbook the target
buffer (i.e., 𝑦% equals the number of tiles that are overbooked out of
the total number of tiles). However, determining the exact tile size
necessary to minimize memory traffic for any given confidence has
a prohibitive preprocessing cost of checking the tile occupancy of
each tile for all possible tile sizes.



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Un�led Input Tensor

Ini�al Es�mate

Sampled Tiles Output Tensor

Tinitial
Ttarget (predicted)
Ttarget (observed)

s

b

Tinitial

Ttarget

b Qy

(a) Initial Estimate (b) Tile Sampling (c) Distribution Scaling

Tile occ.

Figure 6: Overview of Swiftiles operating on a sparse tensor. Darker squares show nonzeros while white squares show zeros.
Dotted yellow boxes are used to show sampled tiles and solid yellow boxes are used to show the final tiling. (a) Initial estimate
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is constructed using global average sparsity 𝑠 of the tensor and buffer capacity 𝑏, (b) Tiles are sampled from the tensor
using the initial estimate to generate a list of tile occupancy samples, (c) The tile occupancy distribution when the tensor is tiled
using different tile sizes. After tiling using the initial estimate 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 to generate the sampled distribution (shown in orange),
Swiftiles finds the 𝑦% quantile (shown with ellipses), and the distribution is scaled so that the 𝑦% quantile fits exactly inside the
buffer. This gives the resulting predicted distribution with Swiftiles (shown in blue) and the final prediction 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (predicted).
We show the observed tile occupancy distribution (i.e., the distribution obtained by traversing the entire tensor at the given tile
size) for when the tensor is tiled with 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 in black as 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (observed).

For example, prescient CST can be framed as 0% overbooking
where no tiles overbook the buffer. Determining whether a given
tile size never causes a buffer to overbook on a given tensor requires
fully traversing the tensor to compute the tile occupancies of each
and every tile for a given tile size. Thus, to determine themaximum
tile size that never overbooks, this traversal must be done across a
huge number of candidate tile sizes, resulting in a preprocessing cost
that scales with the size of the tensor and the number of candidate
tile sizes. This cost can easily dominate the cost required to perform
the actual sparse tensor operation.

As a result, it is necessary to have a tile construction technique
for arbitrary 𝑦 which minimizes construction cost and, ideally, de-
couples the cost of preprocessing from the size of each tensor.

4.2 Swiftiles
We propose an adaptable and efficient tile size search strategy,
Swiftiles, to swiftly size tiles for a given confidence. Swiftiles targets
a confidence 𝑦 > 0 for a given tensor and tries to select a tile size
where 𝑦% of tiles lead to overbooking in the buffer.

To minimize preprocessing cost, Swiftiles performs tile size es-
timation using a one-shot sampling scheme separated into three
steps: (1) Swiftiles makes an initial estimate of the tile size 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙
without traversing the tensor. (2) Swiftiles performs tile sampling
using this tile size to create a sampling distribution of tile occu-
pancies using samples of tiles from the tensor. This tile occupancy
distribution aims to capture variability in sparsity between tiles of
the tensor. (3) By assuming that small changes in tile size do not
significantly change the shape of the distribution, Swiftiles scales
the distribution so that the 𝑦% quantile fits within the buffer and
produces the final prediction 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 . We evaluate the change in
distribution caused by a change in tile size in Fig. 11 and show an
example of this distribution shift in Fig. 13.

Swiftiles optimizes for tile size rather than tile shape because tile
shape is often dependent on the dataflow and estimation based only

on tile size is more tractable. Fig. 6 shows a general overview of how
Swiftiles estimates the tile size for a given confidence threshold.
We discuss the three steps of Swiftiles in detail in the following
sections.

4.2.1 Initial Estimate𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . In Swiftiles, an initial estimate of the
tile size is used to partition the target tensor for sampling (Fig. 6a).
Since the degree of variability in the tile occupancy distribution
depends on tile size, the tile size used when constructing tiles for
sampling is important for ensuring the reliability of the sampling
distribution. Generally, smaller tile sizes have greater variability
due to capturing more fine-grained detail in the sparsity pattern,
while larger tile sizes have less variability due to averaging over a
larger number of elements.

The initial estimate has two key design considerations: (1) To
minimize preprocessing cost, the initial estimate should be com-
putable in constant time. (2) Since Swiftiles makes the reasonable
assumption that small changes in tile size do not significantly affect
the shape of the tile occupancy distribution, 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 should also
scale proportionally to 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 and be roughly close to 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 . To
meet both considerations, Swiftiles uses the tensor average sparsity
𝑠 and the buffer capacity 𝑏 to construct 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 :

𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 =
𝑏

𝑠
. (2)

The tensor average sparsity can be computed using only the shape
of the tensor and the total number of nonzeros in the tensor, values
that are typically available without having to traverse the tensor.
In the overbooking framework, this estimate would describe the
tile size needed for 50% overbooking (i.e., confidence threshold of
50%) when nonzeros are uniformly distributed across the tensor.
Notably, 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 scales with the tensor size and sparsity, although
not necessarily with the variability of sparsity between tiles nor
the value of 𝑦. These variations are captured and corrected in the
later steps of Swiftiles.



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

4.2.2 Tile Sampling. Using the initial estimate, Swiftiles tiles the
tensor and samples the tile occupancy of different tiles in the tensor
(Fig. 6b). If all tiles are sampled, Swiftiles produces the exact tile
occupancy distribution at 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 . However, because iterating over
the entire tensor to sample all the tiles is expensive, Swiftiles adopts
a random sampling strategy that uses a fixed number of samples
depending on the confidence threshold 𝑦.

Specifically, Swiftiles selects 𝑘 as the number of samples that fall
in the top𝑦% quantile of sampled tile occupancies. This ensures that,
regardless of what 𝑦 is selected, Swiftiles is able to identify enough
samples to make a good approximation of the true tile occupancy
distribution. For example, for𝑦 = 10%, Swiftiles collects 𝑘

0.1 = 10×𝑘
samples to construct the sampling distribution. We statically set 𝑘
and leave the per-workload selection of 𝑘 based on the tensor to
future work. We show the results of a sweep of sampling choices
in Section 6.3.

4.2.3 Distribution Scaling. Following tile sampling, Swiftiles has
a sampling distribution of tile occupancies for when the tensor is
tiled using the tile size 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , which is scaled to make the final
prediction (Fig. 6c). Swiftiles then finds the 𝑦% quantile point 𝑄𝑦 ,
which is the point that 𝑦% of sampled tiles have occupancy greater
than. However, 𝑄𝑦 does not consider the buffer capacity and how
many tiles would overbook the actual buffer. To adjust to the actual
buffer capacity, Swiftiles scales 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 using the point 𝑄𝑦 and the
capacity of the target buffer 𝑏 to get 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 :

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ×
𝑏

𝑄𝑌
. (3)

This linear scaling to produce the final prediction 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 from
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 assumes that the tile occupancy distribution between
𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and𝑇𝑡𝑎𝑟𝑔𝑒𝑡 are strongly correlated. As shown in Fig. 6c, the
scaled distribution (𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (predicted)) may still differ from the ob-
served distribution (𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (observed)): Swiftiles aims to minimize
the difference between these two distributions at the 𝑦% quantile
point. We show that this assumption is accurate in Fig 11. With
this correlation, Swiftiles is able to make accurate predictions of
the tile size needed for 𝑦% of tiles to overbook the buffer without
measuring the tile occupancy distribution for different tile sizes,
even if the distribution may not be identical.

5 METHODOLOGY
We integrate overbooking into the state-of-the-art CST-based Ex-
Tensor [13] and evaluate over a set of sparse tensor algebra work-
loads.

5.1 Evaluation Platform
Weuse the Sparseloop-Accelergy infrastructure [26, 42, 43] tomodel
the various accelerator designs. Sparseloop-Accelergy captures an
accelerator’s cycle counts and component runtime activities. We
implement a new sparsity model in Sparseloop to capture sparsity
characteristics based on the per-tile data occupancy extracted from
sparse tensors. We characterize energy consumption of various
components using an Accelergy energy-estimation plug-in: 1) for
datapath components, we used synthesized RTL with a 65nm PDK;
2) for small SRAMs, we used a 65nm SRAM compiler; 3) for large
SRAMs, we used CACTI [8].

Tensor Dimensions Sparsity

rma10 47𝑘 × 47𝑘 99.89%

cant 63𝑘 × 63𝑘 99.90%

consph 83𝑘 × 83𝑘 99.913%

shipsec1 141𝑘 × 141𝑘 99.960%

pwtk 218𝑘 × 218𝑘 99.971%

cop20k_A 121𝑘 × 121𝑘 99.982%

mac_econ_fwd500 207𝑘 × 207𝑘 99.997%

mc2_depi 525𝑘 × 525𝑘 99.9992%

pdb1HYS 36𝑘 × 36𝑘 99.67%

sx-mathoverflow 24𝑘 × 24𝑘 99.96%

email-Enron 37𝑘 × 37𝑘 99.973%

cage12 130𝑘 × 130𝑘 99.988%

soc-Epinions1 76𝑘 × 76𝑘 99.991%

soc-sign-epinions 131𝑘 × 131𝑘 99.995%

p2p-Gnutella31 63𝑘 × 63𝑘 99.996%

sx-askubuntu 159𝑘 × 159𝑘 99.997%

amazon0312 400𝑘 × 400𝑘 99.998%

patents_main 241𝑘 × 241𝑘 99.999%

email-EuAll 265𝑘 × 265𝑘 99.9994%

web-Google 916𝑘 × 916𝑘 99.99958%

webbase-1M 1.0𝑀 × 1.0𝑀 99.99968%

roadNet-CA 2.0𝑀 × 2.0𝑀 99.99986%

Table 2: Characteristics of the tensors used in the evaluation.
Tensors listed in the top half are constructed from systems
of linear equations, while those listed in the bottom half are
from other applications with sparse operands. Tensors are
sorted by sparsity in decreasing order.

5.2 Accelerator Designs
We demonstrate how overbooking can improve upon ExTensor,
a state-of-the-art sparse tensor algebra accelerator. ExTensor pro-
poses to tile both operands in coordinate space and perform in-
tersection between streams of nonzero coordinates. Coordinate
streams are constructed by accessing coordinate metadata (which
indicates where nonzeros occur in the tensor) for both operand tiles
in a scan access pattern over the shared dimension. Operands are
stored in compressed sparse fiber [35] format in separate buffers.

ExTensor uses CST along all three memory levels including
DRAM, global buffer, and PE buffers. We evaluate three variants
of ExTensor with different tiling strategies: the original ExTensor
design without preprocessing (ExTensor-N), ExTensor with pre-
scient preprocessing (ExTensor-P), and ExTensor with overbooking
using Tailors and Swiftiles (ExTensor-OB). The ExTensor-N uses
fixed coordinate-space tile size and shape across all workloads to
always fit within a given buffer, avoiding any preprocessing cost by
constructing tiles according to the size of the tile rather than the oc-
cupancy. We extend ExTensor-N by creating a baseline ExTensor-P,



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

rm
a1

0

ca
nt

co
ns

ph
sh

ips
ec

pw
tk

co
p2

0k
_

m
ac

_e
co

m
c2

de
pi

pd
b1

HY
S

sx
-m

at
h

em
ail

-E
ca

ge
12

so
c-

Ep
i

so
c-

sig
p2

p-
Gn

u
sx

-a
sk

u
am

az
on

0
pa

te
nt

s
em

ail
-E

we
b-

Go
o

we
bb

as
e

ro
ad

Ne
t

ge
om

ea
n

10
0

10
1

10
2

10
3

Sp
ee

du
p 

O
ve

r E
xT

en
so

r ExTensor-P
ExTensor-OB

Figure 7: ExTensor-P and ExTensor-OB speedup relative to ExTensor-N. ExTensor-N’s performance is shown with a red line.

rm
a1

0

ca
nt

co
ns

ph
sh

ips
ec

pw
tk

co
p2

0k
_

m
ac

_e
co

m
c2

de
pi

pd
b1

HY
S

sx
-m

at
h

em
ail

-E
ca

ge
12

so
c-

Ep
i

so
c-

sig
p2

p-
Gn

u
sx

-a
sk

u
am

az
on

0
pa

te
nt

s
em

ail
-E

we
b-

Go
o

we
bb

as
e

ro
ad

Ne
t

ge
om

ea
n

10
0

10
1

10
2

10
3

En
er

gy
 E

ffi
ci

en
cy

 (N
or

m
al

iz
ed

 to
 E

xT
en

so
r-N

) ExTensor-P
ExTensor-OB

Figure 8: ExTensor-P and ExTensor-OB energy relative to ExTensor-N. ExTensor-N’s performance is shown with a red line.

which constructs tiles based on knowing the worst-case observed
tile occupancy prior to tiling. Thus, ExTensor-P shows the per-
formance of the best-possible CST without exceeding the size of
any given buffer. In practice, ExTensor-P would incur a significant
preprocessing overhead due to needing to check the occupancy
of each tile at all tile sizes. We compare these two baselines to
ExTensor-OB, which uses Tailors to support overbooking and uses
Swiftiles targeting 10% overbooking to determine tile size.

For 2D tensors, ExTensor-N uses fixed 128 × 128 size tiles for PE
buffers and sizes global buffer tiles to fit the worst-case occupancy
of PE buffers (i.e., that each tile is dense). We construct tiles for
ExTensor-P and ExTensor-OB by first expanding along the shared
𝐾 dimension between two operands until reaching the end of the
dimension, then along the 𝑁 dimension for operand 𝐵, then along
the 𝑀 dimension for operand 𝐴. This tile construction strategy
maximizes output reuse given the original ExTensor dataflow. Sim-
ilar to ExTensor-N, ExTensor-P and ExTensor-OB first partition
a tensor into tiles for the global buffer, then partition the global
buffer tile into subtiles for each of the 128 PE buffers.

We normalize the configuration of all evaluated accelerators to
that described in the original ExTensor paper at 1GHz. ExTensor
uses a 30MB global buffer with 128 PEs and 4 DRAM channels with
a total bandwidth of 68.25 GB/s.

5.3 Workloads
We evaluate performance using real-world tensors from the SuiteS-
parse Matrix Collection [16] spanning a range of sparsities, sparsity

patterns, application domains, and tensor dimensions. We select
tensors that span a wide range of sparsities and observe that tensors
with high sparsity tend to have greater variation in tile occupancy.
Similar to prior work [13, 34, 48], we evaluate SpMSpM computing
𝐴 × 𝐴𝑇 . The tensors used in our evaluation are summarized in
Table 2.

We note that a large majority of the tensors in SuiteSparse are
built from large systems of linear equations. Systems of linear equa-
tions are typically represented as sparse 2D tensors with many
nonzeros near the diagonal and few nonzeros away from the diago-
nal because of the nature of linear equations. In general, systems of
linear equations have high variability in tile occupancy because of
this dense diagonal. This typically leads to poor buffer utilization
with CST approaches due to a small number of tiles having high
occupancy while the majority of tiles have low occupancy.

Although some sparse linear solvers do involve multiple sparse
operands [3, 44], most sparse linear solvers rely on sparse-dense
tensor algebra. Thus, we also select tensors from other applications
that rely more heavily on sparse-sparse tensor algebra such as
graph and data analytics [9, 33]. We focus on tensors that cannot
fully fit inside the global buffer as tiling provides little benefit when
all data fits on-chip.



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

6 EVALUATION
6.1 Comparison to ExTensor-N and ExTensor-P
Fig. 7 shows the speedup relative to ExTensor-N on all workloads
for ExTensor-P and ExTensor-OB. ExTensor-OB has an average
speedup of 52.7× and 2.3× over ExTensor-N and ExTensor-P, re-
spectively, based on the impact of overbooking compared to pre-
scient CST. Because ExTensor-P and ExTensor-OB construct tiles
dependent on sparsity rather than with a fixed tile size, they are
able to significantly improve on ExTensor-N in terms of both speed
and efficiency. Because of this, we will primarily focus on the com-
parison between ExTensor-OB and ExTensor-P. We do not evaluate
the preprocessing cost of ExTensor-P, but note that prescient pre-
processing requires many iterations over the operand tensors to
determine the optimal tile size and shape.

Since Tailors enable tiles with occupancy greater than the avail-
able buffer capacity, the tiles used by ExTensor-OB are larger than
those used by ExTensor-P. This leads to greater average buffer oc-
cupancy and improved data reuse per buffer fill, reducing expensive
accesses to DRAM for tensors with more variation in sparsity.

Because overbooking takes advantage of variability in tile oc-
cupancy, ExTensor-OB sees large speedups of 6.3× and 5.7× over
ExTensor-P on tensors with very high variability such as roadNet-
CA and webbase-1M, while workloads with uniformly distributed
sparsity such asweb-Google and patents_main show similar speedup
between ExTensor-P and ExTensor-OB compared to ExTensor-N.
With less variability in the sparsity distribution, overbooking pro-
vides less benefit since allowing for overbooking does not signifi-
cantly increase the tile size supported by the buffer. For these work-
loads, inaccuracywith Swiftiles’ predictions can cause ExTensor-OB
to perform worse than ExTensor-P due to inaccuracy in tile size es-
timation (e.g., email-Enron, sx-askubuntu). Workloads that fit almost
entirely on chip such as sx-mathoverflow and p2p-Gnutella31 also
show very similar speedup between ExTensor-P and ExTensor-OB
due to the reduced impact of tiling when most of the tensor already
fits on chip.

Fig. 8 shows the energy consumption of ExTensor-P and
ExTensor-OB relative to ExTensor-N. ExTensor-OB achieves a
22.5× and 2.5× reduction in energy compared to ExTensor-N and
ExTensor-P, respectively. Overbooking is able to reduce energy
even when unable to increase speed (e.g., email-Enron) by allowing
larger PE-level tiles and thus reducing accesses to the global buffer.
Since ExTensor-OB is still limited by DRAM traffic, ExTensor-OB
would see no speedup from these larger PE-level tiles.

Dynamic reflexive tiling (DRT) [24], which is concurrent with
this work, proposed improving buffer utilization by constructing
tiles dynamically based on sparsity. When compared to Tailors and
Swiftiles, DRT requires more complex logic on-chip to facilitate
dynamic tiling at runtime. To compare overbooking to DRT, we used
the DRT simulator [24], and found that ExTensor enhanced with
DRT is 2.4× faster than ExTensor-P. Then using our Sparseloop
simulations [26, 43], we found that ExTensor-OB is 2.3× faster
than ExTensor-P. Therefore, we extrapolate that ExTensor-OB is
approximately the same speed as ExTensor with DRT, but with
simpler hardware.

rm
a1

0
ca

nt
co

ns
ph

sh
ips

ec
pw

tk
co

p2
0k

_
m

ac
_e

co
m

c2
de

pi
pd

b1
HY

S
sx

-m
at

h
em

ail
-E

ca
ge

12
so

c-
Ep

i
so

c-
sig

p2
p-

Gn
u

sx
-a

sk
u

am
az

on
0

pa
te

nt
s

em
ail

-E
we

b-
Go

o
we

bb
as

e
ro

ad
Ne

t
av

er
ag

e

0

20

40

60

80

100

D
R

AM
 tr

af
fic

 (%
)

Baseline traffic Overbooking overhead

(a)

0 25 50 75 100
Bumped Data (%)

0

25

50

75

100

D
at

a 
R

eu
se

d 
(%

)

(b)

Figure 9: Impact of overbooking on data reuse for different
workloads. (a) Proportion of DRAM traffic used by streaming
in Tailors when 10% of tiles overbook the buffer. The over-
head in additional DRAM traffic of overbooking depends on
the variation in the sparsity of each workload. (b) Percent-
age of data reused relative to the percentage of bumped data
using Tailors when 𝑦 = 10%. Each blue dot corresponds to a
workload from SparseSuite. The strong correlation between
data reuse and the bumped data (shown in red) indicates that
Tailors is adaptable to many workloads instead of taking
advantage of specific sparsity patterns for each workload.

6.2 Impact on Data Reuse
Overbooking affects data reuse in two ways: (1) in non-overbooked
tiles, increasing the tile size leads to more reuse within a tile; how-
ever, (2) in overbooked tiles the portion of overbooked elements
must be fetched from the parent buffer for every use and thus gets
minimal reuse. When a tile overbooks the buffer, Tailors stream in
the overbooked portion of the tile and do not exploit reuse on that
overbooked portion. Thus, overbooking can be described both in
terms of how many tiles are overbooked (e.g., 𝑦 = 10%) and how
much of each such tile is overbooked. Although Swiftiles targets
a fixed percentage of overbooked tiles (i.e., how many tiles are



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

overbooked), the percentage of data that is bumped (i.e., how much
of the tile is overbooked) can vary between workloads depending
on the sparsity distribution. Moreover, the degree of exploitable
data reuse may vary based on specific sparsity patterns in the data.

Although ExTensor-OB’s larger tiles increase average buffer oc-
cupancy and thus data reuse per buffer fill, support for overbooking
results in some buffer fills with limited to no reuse. We use the
percentage of DRAM traffic dedicated to streaming bumped data
to study how the cost associated with overbooking varies across
workloads.

Fig. 9a shows the DRAM traffic of streaming bumped data
through the Tailors relative to the baseline DRAM traffic assuming
the same tiling and an infinitely large buffer that never overbooks.
On average, overbooking of 10% of tiles leads to 26% overhead for
streaming data because of the lost data reuse for bumped data in an
overbooked buffer. This penalty is offset by the increased data reuse
across other tiles due to the larger tile size enabled by overbooking.

For diagonally-dense coordinate-dependent tensors such as
rma10, cant, and consph, the traffic from streaming for overbooking
is negligible as overbooking is unable to make much impact on
tile size with 𝑦 = 10%. Notably, although these tensors have high
variability in tile occupancy, the tile occupancy distribution is very
deterministic: the region along the diagonal has many nonzeros,
while the region away from the diagonal has very few nonzeros.

Some tensors such as roadNet-CA see baseline DRAM traffic get
dominated by accesses to bumped data. This is because roadNet-CA
has a highly asymmetric tile occupancy distribution, that is, that
there are very few tiles that each have very high occupancy and
many tiles with very low occupancy.

Another way to show the impact of overbooking on data reuse
is by comparing the percentage of data that is treated as bumped
data to the percentage of data that is reused (Fig. 9b). If all tiles fit
without overbooking, the percentage of data reused would be 100%
since any output could be computed from values already held in the
buffer. As fewer tiles fit and more data in each tile is overbooked,
the percentage of data reused would approach 0% due to the smaller
likelihood of data accesses matching data held in the buffer.

The comparison shown in Fig. 9b isolates the impact of howmuch
each tile is overbooked and helps understand how sparsity variation
within a tile impacts overbooking with Tailors. Specifically, since
Tailors keeps a fixed portion of tile data resident in the buffer (i.e.,
the first elements that fit), sparsity patterns in tensors may cause
the data in the buffer to be accessed rarely or never accessed. This
can occur when the coordinates of nonzeros in the one operand
intersect only the coordinates of overbooked nonzeros in the other
operand. Tailors introduce no mechanism for replacing different
data if the portion of the tile held in the buffer sees limited reuse.

We observe that data reuse and the percentage of bumped data
are strongly correlated. The strong correlation between data reuse
and the percentage of bumped data shows that Tailors’ efficacy
depends primarily on the percentage of bumped data as expected
from a scan access pattern rather than on specific sparsity patterns
from each workload. Although Tailors is not able to fully exploit
data reuse for some sparsity patterns, the likelihood of sparsity
patterns that harm data reuse in Tailors (i.e., by accessing data not
in the buffer more often than data in the buffer) is no greater than
the likelihood of sparsity patterns that benefit data reuse. The use

0 20 40 60 80 100
y (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p 

O
ve

r E
xT

en
so

r-P

Figure 10: Speedup of ExTensor-OB over ExTensor-P using
Swiftiles with different overbooking probabilities 𝑦. The
speedup is averaged across all workloads.We show ExTensor-
P in red for comparison. The choice of𝑦 = 10% falls in a region
that is relatively insensitive to changes in overbooking rate.

0 10 20 30 40 50
Overbooking Rate using 
Initial Estimate Tinitial (%)

10

20

30

40

O
ve

rb
oo

ki
ng

 R
at

e 
us

in
g 

Sw
ift

ile
s 

Pr
ed

ic
tio

n 
T t

ar
ge

t (
%

)

cant

mc2depi

amazon0312

Figure 11: Comparison of the overbooking rate between
tiling the tensor using the initial estimate and tiling with the
Swiftiles predicted tile size when the target 𝑦 = 10% (shown
in red) is used and all tiles are sampled. Each blue dot corre-
sponds to a workload from SparseSuite.

of different replacement policies, specifically those that manage
data replacement with greater flexibility for what data is kept in
the buffer, may improve data reuse and is an interesting direction
for future work. For example, instead of using the end of the buffer
as the FIFO-managed region, the region used for replacement could
be selected on a per-workload or per-tile basis or could adopt a dif-
ferent replacement policy (e.g., LIFO) with corresponding changes
to data orchestration.

6.3 Impact of Swiftiles Parameters
Swiftiles introduces a number of parameters that can be tuned for
improved prediction accuracy as well as improved performance. In
this section, we study the behaviour of Swiftiles for the different
parameters.

Impact of 𝑦: The selection of 𝑦 makes a key assumption for how
much overbooking is desirable when tiling. To evaluate the efficacy



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

0 10 20 30 40 50
k

0

5

10

15

20

M
AE

 (%
 fr

om
 y

=1
0%

)

Figure 12: MAE of Swiftiles predictions as the number of sam-
ples increases and 𝑦 = 10%. With 𝑘 = 0, no sampling occurs
and Swiftiles uses the initial estimate. Based on Swiftiles,
the total number of tiles sampled is equal to 10 × 𝑘 . As the
number of samples increases, Swiftiles predictions converge
to a certain degree of error. Swiftiles does not converge to 0
MAE because Swiftiles only samples for one tile size.

of our choice of 𝑦, we compare the speedup of ExTensor-OB over
ExTensor-P with different values of 𝑦 in Fig. 10.

At 𝑦 = 0% when Swiftiles predicts no tile as overbooked,
ExTensor-OB is approximately 25% slower than ExTensor-P due to
inaccuracy in tile size estimates from Swiftiles. As 𝑦 increases up
to 22%, ExTensor-OB selects progressively larger tile sizes and gets
faster due to increasing buffer utilization. As 𝑦 increases past 22%,
ExTensor-OB begins to select tile sizes for which the overbooking
overhead exceeds the benefit from improved buffer utilization and
thus reduces performance. At 𝑦 = 100%, Swiftiles predicts every tile
as overbooked and ExTensor-OB performs significantly worse than
ExTensor-P as it pays the data reuse penalty for overbooking every
tile. We select 𝑦 = 10%, which falls in a region that is relatively
insensitive to variations in 𝑦.

To give an idea of the impact of using a fixed 𝑦 across all work-
loads, we further compare to an idealized version of ExTensor-OB
that selects the best 𝑦 for each workload. We find that this idealized
version of ExTensor-OB is 4.8× faster than ExTensor-P and 2.1×
faster than ExTensor-OB with 𝑦 = 10%. ExTensor-OB loses half of
its potential performance due to the static selection of 𝑦 across all
workloads; however, similar to ExTensor-P, selecting the best 𝑦 for
each workload would incur a significant preprocessing overhead
due to having to check the occupancy of each tile at all tile sizes as
well as searching for 𝑦.

Impact of scaling: Swiftiles relies on the assumption that tile
occupancy distributions do not change for small variations in tile
size. As shown in Fig. 6b, the sampled distribution generated from
the initial estimate is used to identify the tile occupancy that 10%
of sampled tiles exceed. After scaling, the expectation is that the
overbooking rate will average the target 𝑦 = 10%. To evaluate the
performance of the tile estimator, we compare the error between
the average overbooking rate across different workloads and the
target as well as the variation of overbooking rate to the target.

Fig. 11 compares the overbooking rate for different workloads
using the initial estimate 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and the final predicted tile size

𝑇𝑡𝑎𝑟𝑔𝑒𝑡 when 𝑦 = 10%. Tiling with the initial estimate leads to an
average overbooking rate of 19.9% and a mean average error (MAE)
of 15.6% across the workloads we study in SparseSuite. Notably, the
average overbooking rate with the initial estimate is significantly
different from the target 𝑦 = 10% as the initial estimate makes no
effort to approximate the tile occupancy for a given 𝑦. After scaling
with Swiftiles, the average overbooking rate is 10.6% with an MAE
of 5.8%, matching 𝑦 on average and significantly reducing error.
Due to variations in sparsity characteristics, different workloads
behave differently when scaled. In particular, the tile occupancy
distribution of workloads such as cant and mc2depi are poorly
approximated by the initial estimate and do not scale linearly with
tile size, leading them to deviate from the 𝑦 = 10% target.

Impact of 𝑘: When constructing the sample distribution, there
exists a tradeoff between sample distribution accuracy and the cost
of collecting more samples. In order to evaluate the ideal number
of samples Swiftiles should collect to construct the tile occupancy
distribution, we compare the MAE of Swiftiles’ predictions using
different 𝑘 averaged across all workloads.

Fig. 12 shows the MAE of Swiftiles predictions as the number
of positive samples collected varies from no samples to fully sam-
pling all tiles. Although error decreases as the number of samples
increases, there are diminishing returns to increasing the number
of samples. With 𝑘 = 10, MAE is 5.8%, compared to 5.5% when all
tiles are sampled. The gap that remains between the fully-sampled
Swiftiles estimate and the actual target is caused by the one-shot
process of Swiftiles: Swiftiles only checks one tile size (the initial
estimate) before making a prediction to maintain the low cost of
preprocessing.

An example of the Swiftiles process is shown in Fig. 13, which
compares the tile occupancy distributions gathered by Swiftiles
to the observed tile occupancy distribution when the tensor ama-
zon0312 is tiled with tile size 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 . Fig 13a shows the scaling
process from Swiftiles: given the initial estimate𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 and a num-
ber of samples, Swiftiles scales the tile occupancy distribution so
that 90% of tiles contain less than 8K nonzeros. Fig. 13b shows the
cumulative distribution function of the given distributions to better
visualize the impact of scaling on the overbooking rate. Despite
the relative inaccuracy of 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , scaling helps the distribution
𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (predicted) align with 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (observed).

7 RELATEDWORK
7.1 Concept of Overbooking
Overbooking is a widely used approach in various industries for
cost savings and improvements in efficiency when faced with lim-
ited resources [40]. For instance, airlines [31], deliberately over-
book planes to minimize the loss incurred by cancellations and
‘no-shows’, while clinics overbook to increase patient access [20].
While algorithms used to determine the amount of overbooking for
these applications can be quite complex [32, 47], our Swiftiles is a
relatively simple approach. In addition, our Tailors ensure that all
tiles reach their destination (i.e., no denied service), avoiding disas-
trous overbooking scenarios that we know all too well (e.g., [18]).

Overbooking has also been explored in other aspects of com-
puting including overbooking CPU and networking resources in
the data center to improve utilization [36, 38]. In this work, we



Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

0 10000 20000 30000 40000 50000
Tile Occupancy

0

20

40

60

80

100

C
um
ul
a
tiv
e
T
ile
s
(%
)

Tinit ial
Ttarget (predicted)

Ttarget (observed)

0 10000 20000 30000 40000 50000
Tile Occupancy

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

100.0

0 10000 20000 30000 40000 50000
Tile Occupancy

0

5

10

15

20

25

30

T
ile
s
(%
)

Tinit ial
Ttarget (predicted)

Ttarget (observed)

Figure 13: Tile occupancy distributions for Swiftiles applied on the workload amazon0312 when targetting a buffer size of 8K
nonzeros and 𝑦 = 10%. The distribution made when tiling with the initial estimate is shown as 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑙 , the scaled distribution
created by Swiftiles is shown as 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (predicted), and the actual distribution observed when tiling with the target tile size is
shown as 𝑇𝑡𝑎𝑟𝑔𝑒𝑡 (observed). (a) The probability density function of tile occupancies. (b) The cumulative distribution function of
tile occupancies. (c) The cumulative distribution function, specifically when 80% to 100% of tiles fit in the buffer. The 𝑦 = 10%
point (90% of tiles fit) is shown in red.

overbook storage resources in an accelerator to improve buffer
utilization.

7.2 Tiling Strategies and Storage Idioms
To the best of our knowledge, tiling strategies for sparse tensor
algebra workloads have not been widely studied. ExTensor [13] pro-
posed to perform CST across the entire tensor. Dynamic Reflexive
Tiling (DRT) [24], which is concurrent with our overbooking work,
performs coordinate-based position-space tiling. However, DRT
introduces complicated and expensive tile construction control to
search for tiles in position space and has significant overhead. To
the best of our knowledge, no prior work has explored coordinate-
space tiling where tiles may not fit within a given buffer.

There also exist various storage idioms and buffering strategies
for domain-specific accelerator designs [1, 4, 7, 12, 17, 22, 23, 27, 37].
However, none of them allow data allocation to a buffer to exceed
the buffer capacity to efficiently support overbooking.

7.3 Existing Sparse Tensor Accelerators
There is ample prior work designing accelerators for efficiently
processing various sparse tensor algebra workloads [5, 6, 13, 21,
25, 28, 34, 45, 46, 49, 51]. However, these works focus on enabling
flexible sparsity support by designing novel sparse dataflows or per-
forming software-hardware co-design with novel sparsity patterns.
Such proposals are often complementary to tiling strategy choices,
which is the focus of our work and can therefore be integrated with
prior work.

The GAMMA accelerator [48] has some similarities to this work
in terms of managing data overflow of the buffer to achieve sim-
ilar benefits to overbooking, but differs from Tailors in three key
aspects: (1) Tailors uses explicit data orchestration, while GAMMA
uses implicit data orchestration; (2) Tailors supports streaming of
tiles of both operands, while GAMMA only streams row data for the

non-stationary operand; and (3) Tailors performs coordinate-space
tiling of both operands, while GAMMA only performs selective
coordinate-space tiling of very high-occupancy rows of the station-
ary operand.

8 CONCLUSION
Tiling is key to improving data reuse and thus reducing memory
traffic for sparse tensor algebra applications. This paper addresses
the importance of balancing the tiling strategy’s adaptability and
efficiency by proposing a speculative tiling strategy, Swiftiles, that
achieves high buffer utilization by constructing tiles that occasion-
ally overbook the available buffer capacity. By statistically estimat-
ing tensor sparsity characteristics, Swiftiles introduces minimal pre-
processing overhead. In conjunction, we integrate a low-overhead
hardware recovery mechanism, Tailors, into the existing memory
hierarchy to ensure correctness for tiles that overbook the buffers.
Across representative workloads, we demonstrate that allowing
overbooked tiles can introduce a 2.3× speedup and a 2.5× reduction
in energy compared to existing accelerators. We think it possible
that the overbooking paradigm can be extended beyond buffers in
sparse tensor accelerators, including overbooking of data conver-
sion in resistive memories and overbooking of compute elements
in machine learning accelerators. We hope that this work inspires
research on the use of overbooking in these other spaces.

ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their con-
structive feedback. This research was funded in part by the MIT
AI Hardware Program. We would like to thank Nandeeka Nayak
and Toluwanimi Odemuyiwa for their help in enabling us to better
validate/extend ExTensor and DRT, respectively.



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Zi Yu Xue, Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze

REFERENCES
[1] Michael Adler, Kermin E. Fleming, Angshuman Parashar, Michael Pellauer, and

Joel Emer. 2011. Leap scratchpads: automatic memory and cache management
for reconfigurable logic. In Proceedings of the 19th ACM/SIGDA international sym-
posium on Field programmable gate arrays (FPGA ’11). Association for Computing
Machinery, New York, NY, USA, 25–28. https://doi.org/10.1145/1950413.1950421

[2] John David Anderson and John Wendt. 1995. Computational fluid dynamics.
Vol. 206. Springer.

[3] Marian Brezina, R Falgout, S MacLachlan, T Manteuffel, Steve McCormick, and
John Ruge. 2004. Adaptive AlgebraicMultigridMethods. Siam Journal on Scientific
Computing 27 (Jan. 2004).

[4] Tao Chen and G. Edward Suh. 2016. Efficient data supply for hardware ac-
celerators with prefetching and access/execute decoupling. In 2016 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783749

[5] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. 2016. Eyeriss: A Spatial Architec-
ture for Energy-Efficient Dataflow for Convolutional Neural Networks. In 2016
ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).
367–379. https://doi.org/10.1109/ISCA.2016.40 ISSN: 1063-6897.

[6] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. 2019. Eyeriss v2: A
Flexible Accelerator for Emerging Deep Neural Networks on Mobile Devices.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 9, 2 (2019),
292–308. https://doi.org/10.1109/JETCAS.2019.2910232

[7] Eric S. Chung, James C. Hoe, and Ken Mai. 2011. CoRAM: an in-fabric memory
architecture for FPGA-based computing. In Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays (FPGA ’11). As-
sociation for Computing Machinery, New York, NY, USA, 97–106. https:
//doi.org/10.1145/1950413.1950435

[8] Xiangyu Dong, Xiaoxia Wu, Guangyu Sun, Yuan Xie, Helen Li, and Yiran Chen.
2008. Circuit and microarchitecture evaluation of 3D stacking magnetic RAM
(MRAM) as a universal memory replacement. In 2008 45th ACM/IEEE Design
Automation Conference. 554–559.

[9] S. M. van Dongen. 2000. Graph clustering by flow simulation. Dissertation.
https://dspace.library.uu.nl/handle/1874/848 Accepted: 2001-02-13T10:26:00Z.

[10] A. Einstein. 1916. The Foundation of the General Theory of Relativity. Annalen
der Physik 354, 7 (1916), 769–822. https://doi.org/10.1002/andp.19163540702

[11] Nada Elgendy and Ahmed Elragal. 2014. Big data analytics: a literature review
paper. In Advances in Data Mining. Applications and Theoretical Aspects: 14th In-
dustrial Conference, ICDM 2014, St. Petersburg, Russia, July 16-20, 2014. Proceedings
14. Springer, 214–227.

[12] Tae Jun Ham, Juan L. Aragón, and Margaret Martonosi. 2015. DeSC: Decoupled
supply-compute communication management for heterogeneous architectures.
In 2015 48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). 191–203. https://doi.org/10.1145/2830772.2830800

[13] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer
Jaleel, Edgar Solomonik, Joel Emer, and Christopher W. Fletcher. 2019. ExTensor:
An Accelerator for Sparse Tensor Algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO) (Columbus,
OH, USA). 319–333.

[14] Nathalie Henry, Jean-Daniel Fekete, and Michael J. McGuffin. 2007. NodeTrix:
a Hybrid Visualization of Social Networks. IEEE Transactions on Visualization
and Computer Graphics (IEEE Trans Vis Comput Graph) 13, 6 (2007), 1302–1309.
https://doi.org/10.1109/TVCG.2007.70582

[15] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, and Joel Emer. 2010. High
Performance Cache Replacement Using Re-Reference Interval Prediction (RRIP).
SIGARCH Comput. Archit. News 38, 3 (jun 2010), 60–71. https://doi.org/10.1145/
1816038.1815971

[16] Scott Kolodziej, Mohsen Mahmoudi Aznaveh, Matthew Bullock, Jarrett David,
Timothy Davis, Matthew Henderson, Yifan Hu, and Read Sandstrom. 2019. The
SuiteSparse Matrix Collection Website Interface. Journal of Open Source Software
(J. Open Source Softw.) 4 (2019), 1–4. https://doi.org/10.21105/joss.01244

[17] Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa,
Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve. 2015.
Stash: Have your scratchpad and cache it too. In 2015 ACM/IEEE 42nd Annual
International Symposium on Computer Architecture (ISCA). 707–719. https://doi.
org/10.1145/2749469.2750374

[18] Spencer Kornhaber. 2022. How Taylor Swift Broke Ticketmaster. The Altantic (No-
vember 2022). Available at: https://www.theatlantic.com/culture/archive/2022/
11/taylor-swift-ticketmaster-presale-concert-tickets/672181/ (Accessed: April
27, 2023).

[19] Süreyya Emre Kurt, Aravind Sukumaran-Rajam, Fabrice Rastello, and P. Sadayya-
pan. 2020. Efficient Tiled Sparse Matrix Multiplication through Matrix Signatures.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. 1–14. https://doi.org/10.1109/SC41405.2020.00091

[20] Linda R LaGanga and Stephen R Lawrence. 2007. Clinic overbooking to improve
patient access and increase provider productivity. Decision Sciences 38, 2 (2007),

251–276.
[21] Z. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina. 2022. S2TA: Exploiting Struc-

tured Sparsity for Energy-Efficient Mobile CNN Acceleration. In 2022 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE
Computer Society, Los Alamitos, CA, USA, 573–586. https://doi.org/10.1109/
HPCA53966.2022.00049

[22] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. 2012. The
accelerator store: A shared memory framework for accelerator-based systems.
ACM Transactions on Architecture and Code Optimization 8, 4 (Jan. 2012), 48:1–
48:22. https://doi.org/10.1145/2086696.2086727

[23] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. 2017. Stream-Dataflow Acceleration. SIGARCH Comput. Archit. News
45, 2 (jun 2017), 416–429. https://doi.org/10.1145/3140659.3080255

[24] Toluwanimi O. Odemuyiwa, Hadi Asghari-Moghaddam, Michael Pellauer, Kartik
Hegde, Po-An Tsai, Neal C. Crago, Aamer Jaleel, John D. Owens, Edgar Solomonik,
Joel S. Emer, and Christopher W. Fletcher. 2023. Accelerating Sparse Data Orches-
tration via Dynamic Reflexive Tiling. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operat-
ing Systems, Volume 3 (Vancouver, BC, Canada) (ASPLOS 2023). Association for
Computing Machinery, 18–32.

[25] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim,
D. Blaauw, T. Mudge, and R. Dreslinski. 2018. OuterSPACE: An Outer Product
Based Sparse Matrix Multiplication Accelerator. In Proceedings of the International
Symposium on High Performance Computer Architecture (HPCA). 724–736. https:
//doi.org/10.1109/HPCA.2018.00067

[26] Angshuman Parashar, Priyanka Raina, Yakun Sophia Shao, Yu-Hsin Chen,
Victor A Ying, Anurag Mukkara, Rangarajan Venkatesan, Brucek Khailany,
Stephen W. Keckler, and Joel Emer. 2019. Timeloop: A Systematic Approach to
DNN Accelerator Evaluation. In IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS).

[27] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and Joel
Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Explicit
Decoupled Data Orchestration. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating
Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Machin-
ery, New York, NY, USA, 137–151. https://doi.org/10.1145/3297858.3304025

[28] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T.
Krishna. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible
Interconnects for DNN Training. In Proceedings of the International Symposium
on High Performance Computer Architecture (HPCA). 58–70. https://doi.org/10.
1109/HPCA47549.2020.00015

[29] Chiara Ravazzi, Roberto Tempo, and Fabrizio Dabbene. 2018. Learning Influence
Structure in Sparse Social Networks. IEEE Transactions on Control of Network
Systems 5, 4 (2018), 1976–1986. https://doi.org/10.1109/TCNS.2017.2781367

[30] Abdon Carrera Rivera, Mariela Tapia-Leon, and Sergio Lujan-Mora. 2018. Rec-
ommendation systems in education: A systematic mapping study. In Proceedings
of the International Conference on Information Technology & Systems (ICITS 2018).
Springer, 937–947.

[31] Marvin Rothstein. 1971. An airline overbooking model. Transportation Science 5,
2 (1971), 180–192.

[32] Marvin Rothstein. 1974. Hotel overbooking as a Markovian sequential decision
process. Decision Sciences 5, 3 (1974), 389–404.

[33] Viral B. Shah. 2007. An interactive system for combinatorial scientific computing
with an emphasis on programmer productivity. phd. University of California at
Santa Barbara, USA. AAI3274428 ISBN-13: 9780549152705.

[34] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang.
2020. MatRaptor: A Sparse-Sparse Matrix Multiplication Accelerator Based
on Row-Wise Product. In Proceedings of the 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 766–780. https://doi.org/10.1109/
MICRO50266.2020.00068

[35] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer. [n. d.]. Efficient
Processing of Deep Neural Networks. Springer International Publishing. https:
//doi.org/10.1007/978-3-031-01766-7

[36] Luis Tomás and Johan Tordsson. 2013. Improving cloud infrastructure utilization
through overbooking. In Proceedings of the 2013 ACM Cloud and Autonomic
Computing conference. 1–10.

[37] Po-An Tsai, Nathan Beckmann, andDaniel Sanchez. 2017. Jenga: Software-defined
cache hierarchies. In 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA). 652–665. https://doi.org/10.1145/3079856.3080214

[38] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. 2002. Resource
overbooking and application profiling in shared hosting platforms. ACM SIGOPS
Operating Systems Review 36, SI (2002), 239–254.

[39] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
Yajuan Wang, Endong Wang, Qing Zhang, Bo Shen, et al. 2014. Intel math kernel
library. High-Performance Computing on the Intel® Xeon Phi™: How to Fully
Exploit MIC Architectures (2014), 167–188.

https://doi.org/10.1145/1950413.1950421
https://doi.org/10.1109/MICRO.2016.7783749
https://doi.org/10.1109/ISCA.2016.40
https://doi.org/10.1109/JETCAS.2019.2910232
https://doi.org/10.1145/1950413.1950435
https://doi.org/10.1145/1950413.1950435
https://dspace.library.uu.nl/handle/1874/848
https://doi.org/10.1002/andp.19163540702
https://doi.org/10.1145/2830772.2830800
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1145/1816038.1815971
https://doi.org/10.1145/1816038.1815971
https://doi.org/10.21105/joss.01244
https://doi.org/10.1145/2749469.2750374
https://doi.org/10.1145/2749469.2750374
https://www.theatlantic.com/culture/archive/2022/11/taylor-swift-ticketmaster-presale-concert-tickets/672181/
https://www.theatlantic.com/culture/archive/2022/11/taylor-swift-ticketmaster-presale-concert-tickets/672181/
https://doi.org/10.1109/SC41405.2020.00091
https://doi.org/10.1109/HPCA53966.2022.00049
https://doi.org/10.1109/HPCA53966.2022.00049
https://doi.org/10.1145/2086696.2086727
https://doi.org/10.1145/3140659.3080255
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/TCNS.2017.2781367
https://doi.org/10.1109/MICRO50266.2020.00068
https://doi.org/10.1109/MICRO50266.2020.00068
https://doi.org/10.1007/978-3-031-01766-7
https://doi.org/10.1007/978-3-031-01766-7
https://doi.org/10.1145/3079856.3080214


Tailors: Accelerating Sparse Tensor Algebra by Overbooking Buffer Capacity MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

[40] Lawrence R Weatherford and Samuel E Bodily. 1992. A taxonomy and research
overview of perishable-asset revenue management: Yield management, over-
booking, and pricing. Operations research 40, 5 (1992), 831–844.

[41] Jaeyeon Won, Charith Mendis, Joel S. Emer, and Saman Amarasinghe. 2023.
WACO: Learning Workload-Aware Co-Optimization of the Format and Schedule
of a Sparse Tensor Program. In Proceedings of the 28th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for ComputingMa-
chinery, New York, NY, USA, 920–934. https://doi.org/10.1145/3575693.3575742

[42] Yannan Nellie Wu, Joel S. Emer, and Vivienne Sze. 2019. Accelergy: An
Architecture-Level Energy Estimation Methodology for Accelerator Designs.
In 2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
1–8. https://doi.org/10.1109/ICCAD45719.2019.8942149

[43] Yannan N. Wu, Po-An Tsai, Angshuman Parashar, Vivienne Sze, and Joel S.
Emer. 2022. Sparseloop: An Analytical Approach To Sparse Tensor Accelerator
Modeling . In ACM/IEEE International Symposium on Microarchitecture (MICRO).

[44] Ichitaro Yamazaki and Xiaoye S. Li. 2011. On Techniques to Improve Robustness
and Scalability of a Parallel Hybrid Linear Solver. In High Performance Computing
for Computational Science – VECPAR 2010 (Lecture Notes in Computer Science),
José M. Laginha M. Palma, Michel Daydé, Osni Marques, and João Correia Lopes
(Eds.). Springer, Berlin, Heidelberg, 421–434. https://doi.org/10.1007/978-3-642-
19328-6_38

[45] Dingqing Yang, AminGhasemazar, Xiaowei Ren,MaximilianGolub, Guy Lemieux,
and Mieszko Lis. 2020. Procrustes: a Dataflow and Accelerator for Sparse Deep
Neural Network Training. In 2020 53rd Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO). 711–724. https://doi.org/10.1109/MICRO50266.
2020.00064

[46] Tzu-Hsien Yang, Hsiang-Yun Cheng, Chia-Lin Yang, I-Ching Tseng, Han-Wen
Hu, Hung-Sheng Chang, and Hsiang-Pang Li. 2019. Sparse ReRAM Engine: Joint
Exploration of Activation and Weight Sparsity in Compressed Neural Networks.
In Proceedings of the 46th International Symposium on Computer Architecture
(Phoenix, Arizona) (ISCA ’19). Association for Computing Machinery, New York,
NY, USA, 236–249. https://doi.org/10.1145/3307650.3322271

[47] Christos Zacharias and Michael Pinedo. 2014. Appointment scheduling with
no-shows and overbooking. Production and Operations Management 23, 5 (2014),
788–801.

[48] Guowei Zhang, Nithya Attaluri, Joel S. Emer, and Daniel Sanchez. 2021. Gamma:
Leveraging Gustavson’s Algorithm to Accelerate Sparse Matrix Multiplication. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS) (Virtual, USA). 687–701.
https://doi.org/10.1145/3445814.3446702

[49] Z. Zhang, H.Wang, S. Han, andW. J. Dally. 2020. SpArch: Efficient Architecture for
Sparse Matrix Multiplication. In Proceedings of the IEEE International Symposium
on High Performance Computer Architecture (HPCA) (Los Alamitos, CA, USA).
261–274. https://doi.org/10.1109/HPCA47549.2020.00030

[50] M. Zhao, R.V. Panda, S.S. Sapatnekar, and D. Blaauw. 2002. Hierarchical analysis
of power distribution networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD) 21, 2 (2002), 159–168. https://doi.org/10.
1109/43.980256

[51] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. 2019. Sparse Tensor Core:
Algorithm and Hardware Co-Design for Vector-Wise Sparse Neural Networks
on Modern GPUs. In Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 359–371. https://doi.org/10.
1145/3352460.3358269

https://doi.org/10.1145/3575693.3575742
https://doi.org/10.1109/ICCAD45719.2019.8942149
https://doi.org/10.1007/978-3-642-19328-6_38
https://doi.org/10.1007/978-3-642-19328-6_38
https://doi.org/10.1109/MICRO50266.2020.00064
https://doi.org/10.1109/MICRO50266.2020.00064
https://doi.org/10.1145/3307650.3322271
https://doi.org/10.1145/3445814.3446702
https://doi.org/10.1109/HPCA47549.2020.00030
https://doi.org/10.1109/43.980256
https://doi.org/10.1109/43.980256
https://doi.org/10.1145/3352460.3358269
https://doi.org/10.1145/3352460.3358269

	Abstract
	1 Introduction
	2 Background
	2.1 Sparse Tensor Algebra
	2.2 Tiling Sparse Tensors
	2.3 Data Orchestration for Tiling

	3 Hardware for Overbooking
	3.1 General Concept
	3.2 Explicit Decoupled Data Orchestration
	3.3 Tailors

	4 Overbooking Tiling Strategy
	4.1 Preprocessing for Tile Construction
	4.2 Swiftiles

	5 Methodology
	5.1 Evaluation Platform
	5.2 Accelerator Designs
	5.3 Workloads

	6 Evaluation
	6.1 Comparison to ExTensor-N and ExTensor-P
	6.2 Impact on Data Reuse
	6.3 Impact of Swiftiles Parameters

	7 Related Work
	7.1 Concept of Overbooking
	7.2 Tiling Strategies and Storage Idioms
	7.3 Existing Sparse Tensor Accelerators

	8 Conclusion
	Acknowledgments
	References

