
Trapezoid: A Versatile Accelerator for

Dense and Sparse Matrix Multiplications

Yifan Yang

MIT CSAIL

yifany@csail.mit.edu

Joel S. Emer

MIT CSAIL / NVIDIA

emer@csail.mit.edu

Daniel Sanchez

MIT CSAIL

sanchez@csail.mit.edu

Abstract—Accelerating matrix multiplication is crucial to
achieve high performance in many application domains, includ-
ing neural networks, graph analytics, and scientific computing.
These applications process matrices with a wide range of spar-
sities, from completely dense to highly sparse. Ideally, a single
accelerator should handle matrices of all sparsity levels well. How-
ever, prior matrix multiplication accelerators each target a limited
range of sparsity levels.

We present Trapezoid, a versatile accelerator that performs
matrix multiplication across all sparsity levels effectively. Trape-
zoid builds on a 2D spatial array design, which excels at dense
matrix multiplication, and extends it with new hardware mecha-
nisms that let it handle sparse inputs. We present a novel inner-
product-based dataflow with a multi-fiber intersection unit that
handles mildly sparse matrices. Furthermore, novel Gustavson-
based dataflows and a multi-level memory hierarchy enable high
performance on highly sparse matrices. Trapezoid’s hardware ex-
tensions are reused across dataflows to minimize area overheads.

We evaluate Trapezoid on a broad range of dense and sparse
matrix multiplication workloads. Trapezoid has gmean 19.7×,
4.3×, and 2.9× better performance/area than TPU, SIGMA, and
Flexagon, prior state-of-the-art accelerators that target dense,
mildly sparse, and highly sparse matrices, respectively.

Index Terms—Sparsity, Matrix Multiplication, Accelerator,
Dataflow

I. INTRODUCTION

Matrix multiplication is a dominant kernel in many domains,

including neural networks [9, 15, 28, 44], tensor algebra [37],

graph analytics [21, 36], and scientific computing [24, 53, 57].

As a result, GPUs [55] and many specialized processors spend

considerable area to accelerate matrix multiplication.

While most deployed accelerators target multiplication of

dense matrices, many applications compute on sparse data, i.e.,

those with a large fraction of zeros. Sparse algorithms avoid

storing and processing zeros, achieving high efficiency. This has

sparked many research efforts to accelerate the multiplication

of sparse matrices [32, 43, 50, 58, 60, 64, 70, 79, 81].

A key challenge is that sparsity varies widely across appli-

cations. Fig. 1 shows the range of sparsities typical in several

application domains. For example, neural networks often use

mildly sparse matrices where 90-1% of values are nonzero,

whereas scientific and graph algorithms often process highly

sparse matrices where nonzeros are extremely infrequent (e.g., 1

per million values). But sparsity is a continuum, with substantial

diversity within each domain and overlap across domains. For

example, some neural networks process highly sparse data [9].

Dense NN

100% 10%

Sparse transformer

Sparse CNN

0.0001%1%

Point cloud

0.01%

Graph analytics

Circuit simulation

Fluid dynamics

Mildly sparse (MS)Dense (D) Highly sparse (HS)

Density

Fig. 1: Matrix sparsity varies widely across application domains.

To complicate matters further, a single application often mul-

tiplies matrices with different sparsities, e.g., sparse weights

and dense activations in deep learning [28], and a highly sparse

matrix times a dense vector or matrix in solvers [24, 57].

Ideally, a single matrix multiplication accelerator should

gracefully handle operands across the full range of sparsities,

from dense to highly sparse. But this is challenging, because

sparsity dramatically changes the performance characteristics

of matrix multiplication. Thus, prior accelerators are effective

on limited ranges of sparsity, and perform poorly on other cases.

We can broadly distinguish three types of accelerators, based

on the sparsity of the operands they target:

1. Dense (D) matrices make matrix multiplication regular and

with high arithmetic intensity, as each value is reused many

times. Dense matrix multiplication accelerators, like TPUs [34]

and Tensor Cores [55] in GPUs, are 2D spatial arrays, grids of

multiply-add units connected with local links. These arrays are

pipelined and are often systolic, which reduces handshaking

costs [39]. These units spend nearly all their area on compute,

and achieve extremely high throughput when matrices are dense.

But they are inflexible, and their efficiency quickly plummets

with sparse operands, as zeros waste time and energy.

2. Mildly sparse (MS) matrices have modest sparsity, typ-

ically above 1% nonzeros. With MS inputs, matrix multipli-

cation enjoys medium arithmetic intensity. Thus, accelerators

like SIGMA [60], DSTC [70], and HighLight [71] follow a

similar organization to 2D spatial arrays, which they extend

with mechanisms to handle some degree of sparsity, like distri-

bution networks that gather sparse inputs (either unstructured

or structured), or more flexible accumulation buffers for sparse

outputs. Accelerators targeting MS inputs are relatively effi-

cient on dense operands, but are still wildly inefficient when

matrices are highly sparse.

3. Highly sparse (HS) matrices have below 1% nonzeros, and

often far less. They are common in scientific computing and

graph analytics. Matrix multiplication with HS inputs has little

reuse, very low arithmetic intensity, and high memory traffic, so

mailto:yifany@csail.mit.edu
mailto:emer@csail.mit.edu
mailto:sanchez@csail.mit.edu

Input

Densities

D×D

MS×D

MS×MS

HS×D

HS×MS

HS×HS

Best

<2×

2~5×

5~20×

>20×

gmean slowdown

vs. best design for

each input

(a) Per workload.

0

5

10

15

20

Pe
rf

/A
re

a
ov

er
 T

PU

TPU
Sigma
Flexagon
Trapezoid

(b) Gmean.

Fig. 2: Performance/area of prior accelerators and Trapezoid on matrix

multiplication with different sparsity levels.

data movement is the main bottleneck. Thus, accelerators like

OuterSPACE [58], SpArch [81], MatRaptor [64], Gamma [79],

Flexagon [50], and Spada [43] focus on implementing dataflows

(i.e., schedules) that minimize data movement. They spend most

area on on-chip storage structures and on hardware to traverse

sparse fibers (rows or columns) [66]. Multipliers and adders

take less than 5–10% of area, resulting in low peak through-

put, so they are inefficient on D/MS matrices. Moreover, HS

accelerators are hard to scale up, so they cannot reach the peak

throughput of accelerators targeting denser inputs.

Fig. 2a shows the problems of these disjoint designs: it com-

pares three representative accelerators, one of each type: TPU,

SIGMA, and Flexagon. Each row reports results for a given

combination of input sparsities; the table covers all sparsity

combinations (e.g., MS×D is mildly sparse times dense; see

Sec. IV for methodology details). All designs are normalized

to have the same area, and performance is reported relative to

the best design. Fig. 2a shows that each of these accelerators is

inefficient on matrices outside its range of targeted sparsities.

Trapezoid handles the full range of sparsities: To address

the limitations of prior accelerators, we introduce Trapezoid,

a versatile matrix multiplication accelerator that, for the first

time, handles from dense to highly sparse inputs. Fig. 2a shows

Trapezoid’s performance across the range: while its flexibility

sacrifices some performance at the extremes, it performs con-

sistently well across the full range of sparsities. When averaged

across all input densities, Fig. 2b shows that Trapezoid’s overall

performance is substantially better than prior designs.

To achieve this, we design Trapezoid around two key princi-

ples and novel contributions. First, to achieve high performance

on D and MS inputs, Trapezoid builds on a 2D spatial array,

like prior accelerators targeting D and MS inputs. However,

we contribute new techniques that extend their usefulness to a

much wider range of MS inputs at modest area cost. Second,

to work well on HS inputs, Trapezoid supports sophisticated

dataflows that minimize data movement, but does so in a way

that reuses existing hardware or requires small modifications.

Concretely, Trapezoid integrates the following contributions:

• We introduce a novel inner-product-based dataflow (called

TrIP) that intersects several rows and columns at once to re-

duce the chance of ineffectual intersections, and exploits reuse

in both inputs and outputs. We present a high-throughput or-

ganization for this dataflow that extends a spatial array with

the novel high-throughput multi-fiber intersection unit, dis-

tribution networks for sparse inputs, and a reduction tree for

sparse outputs. This design avoids the limitations of prior

MS accelerators like SIGMA by achieving high utilization

when both inputs are mildly sparse.

• We codesign two memory-efficient Gustavson-based

dataflows (called TrGT and TrGS) with hardware extensions

to handle HS inputs and combinations of one HS and

one MS or D input, respectively. These dataflows enable

reusing existing hardware when possible, and require cheap

modifications otherwise. Furthermore, we design a multi-

level memory hierarchy that achieves high on-chip gather

bandwidth needed by these Gustavson-based dataflows with

low area consumption. These novel dataflows and hardware

support achieve good performance on HS×D and HS×MS

that no prior accelerators can obtain, and provide almost

the same performance on HS×HS as prior accelerators that

focus only on highly sparse inputs.

We evaluate Trapezoid on a range of matrix multiplication

workloads with varying levels of sparsity. Trapezoid has gmean

19.7×, 4.3×, and 2.9× better performance/area than TPU [33,

34], SIGMA [60], and Flexagon [50], the prior state-of-the-

art accelerators for matrix multiplication with dense, mildly

sparse, and highly sparse matrices, respectively. Trapezoid is

also gmean 2.1× faster than the optimal mix of these prior

accelerators for this set of workloads, when both Trapezoid and

this optimal mix use the same area.

II. BACKGROUND AND MOTIVATION

Matrix multiplication computes C = A×B, where A is a

[M ×K] matrix, B is a [K ×N] matrix, and C is a [M ×N]
matrix. Matrix multiplication can be implemented with three

nested loops, two that traverse the independent uncontracted

dimensions M and N , and one that coiterates the contracted

dimension K, which is shared by A and B (we will refer to K
as the coiteration dimension). The order of these loops induces

a dataflow, i.e., a schedule of computation [8, 66].

Fig. 3 shows the three basic matrix multiplication dataflows,

which differ by the level of the coiteration loop. Inner-product

(IP) coiterates in the innermost loop, producing an output at a

time by reducing a row and column of the input matrices. Outer-

product (OP) coiterates in the outermost loop, producing an

AMxK BKxN

X
M

K

K

N

CMxN

=

M

N

X =

X =

for m in [0, M)
 for n in [0, N)
 for k in [0, K)
 C[m,n] += A[m,k] * B[k,n]

for k in [0, K)
 for m in [0, M)
 for n in [0, N)
 C[m,n] += A[m,k] * B[k,n]

for m in [0, M)
 for k in [0, K)
 for n in [0, N)
 C[m,n] += A[m,k] * B[k,n]

Gustavson (Gust) Dataflow

Outer-product (OP) Dataflow

Inner-product (IP) Dataflow

Fig. 3: Basic matrix multiplication dataflows.

MAC …MAC MAC MAC

MAC …MAC MAC MAC

MAC …MAC MAC MAC

… … … … …
MAC …MAC MAC MAC

P

P

(a) TPU architecture.

A = Matrix(shape=[M,K])

B = Matrix(shape=[K,N])

C = Matrix(shape=[M,N])

for n = [0, N):

for m = [0, M): # spatial Y

for k = [0, K): # spatial X

C[m,n] += A[m,k] * B[k,n]

(b) IP Dataflow.

Fig. 4: TPU 2D spatial architecture and dense IP matrix multiplication

dataflow on TPU.

entire partial result matrix at a time; K such matrices are then

reduced to produce the output. Gustavson coiterates in the

middle loop, producing a row of the output at a time.

These basic dataflows have key differences, including the

traversal order and level of reuse of each input and output

operand, and with sparsity, the frequency and effectiveness of

sparsity-handling operations, like intersections and reductions.

Accelerators implement enhanced versions of these dataflows:

they often tile the computation, creating additional loop levels

to improve reuse of operands; parallelize it, mapping loop it-

erations spatially to different processing units; and include a

wide range of sparsity-handling mechanisms to skip ineffec-

tual work and capture irregular reuse. Nonetheless, the basic

dataflow accelerators build on determines key characteristics,

so we refer to them as *-based dataflows (e.g., IP-based).

We now discuss how matrix multiplication changes with spar-

sity, and review prior accelerators targeting each sparsity level.

A. Spatial arrays for dense matrix multiplication

Dense matrix multiplication is regular and has plentiful data

reuse. Dense accelerators, like the TPU [33, 34], adopt a 2D

spatial array designed to exploit these features. Fig. 4a shows

a P × P TPU array, with a grid of multiply-and-accumulate

(MAC) units, each connected only to its neighbors.

Fig. 4b shows mapping the dense IP matrix multiplication

dataflow to the TPU. The M and K loops are mapped spatially

to the vertical (Y) and horizontal (X) dimensions. (assume M
and K match the PE array dimensions; if they exceed them,

they can be tiled). In this way, each element of A is stationary

in a MAC unit. Each cycle, a column of B is fed to the first row

of the array, and successive B columns move through the array

using the vertical links. Each row of the 2D array performs a

dot product between a row of A and a column of B; each PE

computes a different partial product, and partial products are

accumulated horizontally (along the K dimension), producing

a column of C at a time.

This 2D spatial array achieves high data reuse and com-

pute intensity, delivering quadratic compute throughput (P 2

MACs/cycle) with linear communication from the outside (P
input and output values/cycle). Communication within the array

is local, between adjacent MAC units, and thus cheap. There-

fore, most area is spent on compute units.

B. Leveraging mildly sparse (MS) inputs

Mildly sparse (MS) matrices, with 1-90% nonzeros, are com-

mon in domains like deep neural networks (DNN) [28]. Both

weight and activation matrices can be sparse due to weight prun-

ing and activation functions like ReLU [51], but a substantial

fraction of nonzeros remains. Exploiting this mild sparsity can

bring significant speedups, e.g., if both inputs are 90% sparse,

the number of MACs can potentially be reduced by 100×.

The level of sparsity greatly affects the effectiveness of differ-

ent dataflows: with sparse matrices, the coiteration loop implies

an intersection, and values produced below the coiteration loop

must be reduced. IP performs element-level intersections and

reductions: it intersects the coordinates of each row and column

to find the k coordinates where both are nonzero. Those nonze-

ros are multiplied, then reduced to produce one output element.

Element-level reductions are simple (needing just an accumula-

tor), but intersections are frequent (M ×N of them) and they

become very inefficient as sparsity grows, because matches on

k coordinates will be very rare. For example, in Fig. 3, only one

element from A’s row and B’s column results in an effectual

intersection; the others are at non-matching coordinates.

OP, by contrast, performs matrix-level intersections and re-

ductions: each of the K outer products is a successful inter-

section if the input A column and B row have any nonzero,

so unlike IP, there are very few intersections (only K) that are

trivial to perform. The tradeoff is that OP reduces K matrices,

so reductions are complicated and may cause excessive data

movement, e.g., to store and align these partial products.

Finally, Gustavson performs row-level intersections and re-

ductions, balancing their cost: each element of A is intersected

with a row of B, so there are as many intersections as nonzeros

in A, and each intersection succeeds if B’s row is not empty;

and reductions happen on partial output rows.

In general, for MS inputs, IP’s intersections can still be made

reasonably efficient. For example, if nonzero coordinates are

represented using bitvectors (a space-efficient choice with mild

sparsity), intersections can be computed cheaply at high through-

put, by ANDing bitvectors. If matrices have p = 20% den-

sity and coordinates are uniformly distributed, only one out of

1/p2=25 intersections yields a match on average, but ANDing

25 bits/cycle is cheap compared to the multiply-accumulate

induced by the match. But highly sparse inputs make IP very

inefficient, and using another dataflow becomes necessary.

SIGMA [60] is an IP-based accelerator that builds on a 2D

spatial array. SIGMA achieves quadratic compute with linear

inputs and outputs, like dense accelerators, with modest addi-

tions. SIGMA packs A’s nonzeros, placing them sequentially

into each row of PEs. It then streams B columns like in the

dense array (Sec. II-A). Each row of PE computes a few ele-

ments of C, as many as rows of A are mapped. The challenge

is that B elements need to be routed to matching A nonzeros.

This requires all-to-all communication within each row of PEs;

SIGMA presents an efficient Benes distribution network that

achieves this with modest overheads, adding about 30% area

to a dense array. In addition, partial results of multiple output

elements need to be reduced separately; since each A row is

placed sequentially, a cheap reduction tree accomplishes this.

SIGMA maintains the high arithmetic intensity and reuse of

a 2D spatial array (quadratic operations for a linear amount of

inputs and outputs). However, SIGMA works well only with

modest sparsity: it exploits one-sided sparsity of A, but not of B

in MS×MS, which is fed uncompressed (i.e., including zeros).

Alternatively, DSTC [70] extends a 2D array to accelerate

MS×MS using an OP-based dataflow. OP lets DSTC exploit

dual-sided sparsity, unlike SIGMA. OP makes it trivial to pro-

duce partial products: nonzeros of each column of A and row

of B are streamed into the array packed, resulting in full uti-

lization of MAC units. The problem is that each partial product

must be streamed out of the 2D array, buffered, and reduced.

This sacrifices a key advantage of 2D spatial arrays: quadratic

compute now requires quadratic output, instead of linear, so

it is not possible to scale to large 2D arrays. Moreover, the

merging step requires complex hardware, as nonzeros must be

scattered to their correct locations for reduction.

These tradeoffs make IP a more efficient choice for MS in-

puts; Trapezoid builds on SIGMA with a new IP-based dataflow,

TrIP, and hardware that enables dual-sided MS sparsity.

C. Leveraging highly sparse (HS) inputs

Domains like graph analytics and scientific computing use

highly sparse (HS) matrices, with < 1% and often many fewer

nonzeros (e.g., 0.0001%).

Multiplying HS matrices causes low arithmetic intensity and

reuse, as each input of A and B contributes to one or a few

outputs of C. Thus, data movement becomes the key concern.

As we discussed, IP is inefficient for HS inputs because

it’s dominated by ineffectual intersections, leaving OP and

Gustavson. Early HS×HS accelerators OuterSPACE [58] and

SpArch [81] are OP-based, but OP’s large partial result matri-

ces add data movement. Thus, all recent HS×HS accelerators,

including MatRaptor [64], Gamma [79], Flexagon [50], and

Spada [43], leverage a Gustavson-based dataflow.

Gustavson has two advantages over OP. First, it greatly re-

duces the complexity of reductions; in practice, this means

worse reuse of B for much better reuse of partial outputs, trading

more reads for fewer writes+reads. Second, Gustavson leverages

structure in A: in many applications, nearby rows of A have

matching nonzeros. This causes repeated accesses to the same

rows of B. Gamma [79] uses a special cache, the fibercache,

to exploit this reuse, achieving close to compulsory traffic.

Recent accelerators can support multiple dataflows: Flexa-

gon [50] presents a Merge-Reduction Network (MRN) that can

be used as a reduction tree when running IP or as a merger (to

facilitate reduction) when running Gustavson or OP. Spada [43]

proposes a configurable window-based dataflow that acts as IP,

Gustavson, or OP depending on window size.

Unfortunately, HS×HS accelerators lack the compute

throughput and scalability of D×D and MS×MS accelerators.

First, they dedicate most area to caches, buffers, and structures

to support HS, like mergers. Second, they use crossbar-based

networks between PEs and on-chip storage, which are flexible

but sacrifice the scalability of a 2D spatial array.

Trapezoid addresses these limitations by cheaply support-

ing two Gustavson-based dataflows (TrGT and TrGS) in its

2D spatial array, which retains high throughput. We observe

P
E

 R
o

w
P

E
 R

o
w

P
E

 R
o

w

Merge-reduction tree

Mul Mul Mul Mul…
Distribution networks

B
u

f
…

Merge-reduction tree

Mul Mul Mul Mul…
Distribution networks

B
u

f

…
… … … … …

C
a

ch
e

…

Mul Mul Mul Mul…
Merge-reduction tree

Distribution networks

B
u

f

…

…

M
F

IU
M

F
IU

M
F

IU
Fig. 5: Trapezoid architecture overview.

PE Row 1

Merge-reduction tree

In
te

rs
e

ct
io

n …

Buf

Mul Mul Mul Mul

A Reg

A Distribution

B Distribution

C
a

c
h

e

From PE row 0

To PE row 2

A Reg A Reg A Reg…

x4…

x128

B
 b

it
m

a
sk

x128

x128

B Distribution

fro
m

 b
u

f

fro
m

 ca
ch

e

fro
m

 ro
w

 0

…

x4

fro
m

 ca
ch

e

fro
m

 ro
w

 0

…

x12x112

fro
m

 ro
w

 0

…

Fig. 6: PE row microarchitecture.

that flexible interconnects in prior accelerators stem from Gus-

tavson’s need to perform gather loads; we introduce a multi-

level memory hierarchy that increases gather bandwidth with

a small amount of shared storage.

III. TRAPEZOID ARCHITECTURE

Overview and supported dataflows: Fig. 5 shows an overview

of Trapezoid’s hardware. We build Trapezoid by extending a

2D spatial array (128×128 PEs in our implementation), which

excels at dense matrix multiplication and supports the standard

IP dense dataflow from Sec. II-A.

To efficiently support MS inputs, Trapezoid implements a

new IP-based dataflow, TrIP, by extending the spatial array:

each row of the array, called the PE row and shown in Fig. 6,

has a local buffer, a multi-fiber intersection unit (MFIU), two

distribution networks, and a merge-reduction tree to support

TrIP.

To efficiently support HS inputs, Trapezoid implements two

new memory-efficient Gustavson-based dataflows, TrGT and

TrGS, 1 which process sparse rows of B temporally (TrGT) or

spatially (TrGS). We introduce a multi-level memory hierarchy

with row-local buffers and a global cache to handle Gustavson’s

data movement, and reuse TrIP’s hardware extensions as well.

These four dataflows let Trapezoid work well across inputs

with all sparsity combinations: the standard IP dataflow han-

dles D×D; TrIP handles MS×D and MS×MS; TrGT handles

HS×HS; and TrGS handles HS×MS and HS×D.

1To distinguish them easily, we read TrGT as target and TrGS as targus.

X =

PE

Row 2

In
te

rs
e

c
ti

o
n

Mul Mul Mul Mul

A Distribution

B Distribution

From PE row 1

To PE row 3

B
 b

it
m

a
s
k

B
00

B
10

B
20

B
30

A
20

A
21

A
22

A
23

A
20

A
21

A
22

A
23

B
01

B
11

B
00

B
10

A
20

B
00

A
21

B
10

A
22

B
20

A
23

B
30

Add Add

Add

B
00

B
10

B
20

B
30

B
21

B
20

Buf

C
20

BufB
30

B
31❶

❷

❸

❹

A
20

A
21

A
22

A
23

A
30

A
31

A
32

A
33

A
MK

M

K B
30

B
20

B
10

B
00

B
01

B
11

B
21

B
31

B
KN

K

N

C
20

C
21

C
30

C
31

C
MN

N

M

Fig. 7: Example of Trapezoid running IP for D×D.

Matrix formats: Trapezoid supports the most efficient for-

mats for matrices of different sparsity levels: compressed sparse

row/column (CSR/CSC) formats for HS inputs, where each

sparse fiber (compressed row or column) is stored as a list

of nonzero values and their coordinates; and variants of these

formats where the nonzero coordinates are represented using

bitmasks instead, which are more efficient for MS inputs.

In this section we introduce Trapezoid dataflow by dataflow,

presenting detailed examples and introducing the novel hard-

ware components that enable each dataflow.

A. Dense IP dataflow (for D×D)

We first explain how Trapezoid runs dense×dense (D×D).

Fig. 7 shows a walkthrough example of how a 4-multiplier

PE row runs D×D. In this and future examples, all unused

hardware blocks are greyed out.

Trapezoid uses a standard IP dataflow for D×D, similar to the

TPU’s (Sec. II-A): each PE row computes the dot product of a

row of A and a column of B. Elements of A are held at PEs, and

B’s columns are streamed vertically. Our only deviation from

the TPU is that, instead of reducing partial products through

horizontal connections, the merge-reduction tree performs these

reductions spatially. We adapt Flexagon’s merge-reduction net-

work [50] (MRN), and explain its full functionality later. Since

this is needed for sparse dataflows, we reuse it for D×D.

Fig. 7 shows PE row 2, which holds row 2 of matrix A

(A20, A21, A22, A23) in registers. In this example, 1 column 0

of B arrives to PE row 2 (from adjacent PE row 1); 2 the mul-

tipliers compute individual partial products; 3 the reduction

tree accumulates partial products and produces a single output

element, C20, which is streamed out of the array; in parallel,

4 column 0 of B is forwarded to the next PE row (3).

TPU SIGMA Trapezoid

M

K

K

N

Effectual MACs Ineffectual MACs Work per PE row per cycle

Fig. 8: Comparison of IP-based dataflows on MS×MS.

B. TrIP dataflow (for MS×MS and MS×D)

Trapezoid uses a new IP-based dataflow, TrIP, to handle MS

inputs. TrIP supports dual-side sparsity, i.e., it remains efficient

when both inputs are mildly sparse. To achieve high efficiency

and reuse even when some intersections are ineffectual, TrIP

intersects a few rows of A and columns of B at a time. By

considering multiple rows and columns, each nonzero of A and

B can contribute to multiple partial products. This compensates

for ineffectual intersections and achieves fine-grained reuse.

To make this concrete, Fig. 8 compares how TPU, SIGMA’s

IP-based dataflow, and TrIP run the same MS×MS multiplica-

tion on a 4-multiplier PE row. The red box indicates the amount

of work that is performed by a single PE row per cycle. The

TPU processes a single row of A and column of B per cycle;

sparsity causes ineffectual work (multiplications where either

input is zero) that quickly tanks performance. In this example,

A row 0 and B column 0 have a single effectual multiplication

(darker color), yielding 25% utilization.

SIGMA improves on the TPU by packing A’s sparse rows.

In this example, the 4-multiplier PE row can hold A’s rows 0

and 1. Every cycle, the PE row receives a column of B and

initiates multiplications with the two rows of A. In the example,

A rows 0–1 and B column 0 have two effectual multiplications,

yielding 50% utilization. This is better than the TPU, but it is

still limited by B’s sparsity, which SIGMA does not exploit.

Trapezoid’s TrIP improves on SIGMA by, in addition to pack-

ing A’s sparse rows, streaming multiple columns of B per cycle

when B is sparse. In this example, TrIP maps A’s rows 0 and

1 to the PE row (like SIGMA), and streams B’s columns 0

and 1. This yields four effectual intersections, using 100% of

multipliers even though only 25% of intersections are effectual.

TrIP handles sparsity better than SIGMA, but it also takes

more area and complexity: whereas SIGMA distributes B val-

ues to A nonzeros in fixed locations, Trapezoid must dynami-

cally find matching nonzeros in both A and B, and distribute

these nonzeros to multipliers. The complexity of some of this

matching step (specifically, intersections) is quadratic with the

number of rows of A and columns of B that are packed/streamed

at a time. To limit complexity, we restrict the number of rows

of A and columns of B to a maximum of 4 (i.e., 4× 4 = 16
fiber intersections), which keeps hardware costs modest.

Since A and B have varying sparsities, streaming as many of

B’s columns as possible may require computing more partial

products than multipliers in a PE row. Trapezoid dynamically

adjusts the number of B columns streamed at a time so that all

PE rows can process them in one shot, avoiding overflowing.

Fig. 9 shows the loop nest of TrIP dataflow and how it maps

to the hardware. We first explain TrIP through an example, then

detail the hardware components needed to support it.

A = Matrix(shape=[M1,K1,M0,K0])

B = Matrix(shape=[N1,K1,N0,K0])

C = Matrix(shape=[N1,M1,M0,N0])

for n1 = [0, N1):

for m1 = [0, M1):

for k1 = [0, K1):

for [n_l, n_h) = [0, N0).split(dynamic): # stream in groups of B cols

for [m_l, m_h) = [0, M0).split(static): # spatial Y, PE row

for m0 = [m_l, m_h): # spatial X, local buf bank, MFIU

for n0 = [n_l, n_h): # spatial X, local buf word, MFIU

for k0 = [0, K0): # spatial X, adjacent MRN leaf, MFIU

C[n1,m1,m0,n0] += A[m1,k1,m0,k0] * B[n1,k1,n0,k0]

C tile on-chip

Fig. 9: Loop nest of TrIP dataflow.

A
20

A
22

A
31

A
32

X
C

20
C

21

C
31

=

B
30

B
00

B
01

B
21

PE Row 1

In
te

rs
e

c
ti

o
n

Mul Mul Mul Mul

A Distribution

B Distribution

From PE row 0

To PE row 2

B
00

B
01

B
21

B
21

A
20

A
22

A
31

A
32

A
20

A
20

A
22

A
32

B
00

B
30

A
20

B
00

A
20

B
01

A
22

B
21

A
32

B
21

Add Add

Add

B
00

B
30

B
01

B
21

B
01

Buf BufB
21

1

0

1

01

0

0

1

1

0

1

01

0

0

1

A
20

B
01

A
22

B
21

C
20

C
21 C

31

C
20

C
21

C
31

❶

❷

❸

❸

❹

❺

❻

❼

❶

A
MK B

KN

C
MN

Fig. 10: Example of Trapezoid running TrIP for MS×MS.

Walkthrough example: Fig. 10 shows Trapezoid running a

similar multiplication to Fig. 7, but with mildly sparse A and B.

Because A is sparse, four nonzeros from two rows of A (A20,

A22, A31, A32) are mapped to the registers in PE row 1. In

this example, 1 the PE row first receives two sparse columns

of B (B00, B30, B01, B21); the intersection unit takes their bit-

masks; 2 the intersection unit intersects each B bitmask with

the bitmasks of the two rows of A, and finds the matching k
coordinates, which constitute the routing information for the

A and B distribution networks; 3 the A and B distribution

networks route values of all matching coordinates (A20-B00,

A20-B01, A22-B21, A32-B21) to multipliers. Note that A31 and

B30 are not routed to any of the multipliers because they do not

contribute to any effectual computation; however, A21 and B21

are both used twice, compensating for this inefficiency. 4 Mul-

tipliers generate four partial results that eventually contribute to

three final outputs (C20, C21, C31). In TrIP, the merge-reduction

tree is configured into reduction mode. 5 The merge-reduction

tree behaves as 3 smaller reduction trees to generate the fi-

nal outputs C20 (=A20B00), C21 (=A20B01+A22B21), and C31

(=A32B21). 6 Final outputs are written to the local buffer (2-

Multi-fiber intersection unit (MFIU)

B30B00 B01 B21

B bitmask

1 0 1 0 0 1 1 0

1001 1 0 1 0

1 0 1 0 0 1 1 0

1001 1 0 1 0
& & & &

1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1 2 2 3 3 3 3 4 4
& & & &

1 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0

= = = =

Prefix sum

1 0 0 0 0 0 0 0 2 0 3 0 0 0 4 0
= = = =

A20 A22 A31 A32

Shift Shift Shift Shift Shift Shift Shift Shift

1
2

3 4 1 2 3
4

A Distribution B Distribution

A bitmask

A&B bit-vector

A&B prefix sum

A&B bit-vector

Effectual

compute idx

routing meta

data

Register

A20 A20 A22 A32 B01B00 B21 B21

1 2 3 4 1 2 3 4

❶

❷

❹

❺

❸

Fig. 11: Example of multi-fiber intersection and distribution.

bank 2-word wide in this example). Because C20 and C21 are

contiguous, they are coalesced into one wide write to the same

bank. Different banks hold the outputs of different rows; that’s

why C31 is written to the other bank. 7 Concurrently with

this, B’s columns (values and bitmasks) are forwarded to the

next PE row, 2.

Hardware extensions: As shown in the example, TrIP requires

(1) an intersection unit to find matching coordinates, (2) two

distribution networks to align matching A and B nonzeros, (3) a

merge-reduction tree capable of producing multiple outputs per

cycle, and (4) banked buffers to store scattered outputs.

We use SIGMA’s distribution network, a Benes network [3],

which is non-blocking and has low area overhead. However,

Trapezoid has two networks, for A and B, whereas SIGMA has

a single one for B. We also adopt Flexagon’s merge-reduction

tree [50] that can both merge and reduce multiple partial sum

clusters in a parallel and non-blocking way; However, we en-

hance it with a banked local buffer, described later, to achieve

higher gather and scatter bandwidth. Our key innovation for

TrIP is the multi-fiber intersection unit, which we explain next.

Multi-fiber intersection unit (MFIU): Fig. 11 shows the struc-

ture of the multi-fiber intersection unit, which consists of hard-

ware to (1) produce all pairwise intersections of A row and B

column bitmasks (just AND gates, A&B); (2) compute the cumu-

lative sum of matching bits, using a prefix sum; and (3) shift

indices to produce routing metadata for the distribution net-

works.

Fig. 11 also shows how the intersection unit generates the

routing information for the example in Fig. 10. 1 A row and B

column bitmasks are intersected (ANDed) pairwise, producing

4 4-bit masks, which in this case have 4 1’s; 2 The prefix

sum unit (a tree of narrow adders) computes the count of 1’s

at or below each index; 3 These counts are masked by the

intersected bitmasks, keeping only the indices of each effectual

computation. For example, focus on the intersection between

the first row of A ([A20, 0, A22, 0]) and second column of B

([B01, 0, B21, 0]), (marked with a red box in Fig. 11). The prefix

Shift unit

a b c d e f g h

0 1 1 1 2 3 3 4 0 5 0 0 0 6 0 7

Effectual compute idx

A[1] zero count

a b 0 0 c 0 0 d
0 e f 0 0 g 0 h

A

5 0 0 0 6 0 0 7
0 1 1 1 0 1 1 0

zero count bit 0

0 0 0 0 1 1 1 0
zero count bit 1 5 0 6 0 0 0 0 7

0 0 0 0 0 0 0 1
zero count bit 2 5 0 6 7 0 0 0 0

5 0 6 70 0 0 0
>> 4A[1] offset

A Register

Fig. 12: Example of shift unit.

sum for the two successful pairs of intersection are 2 (A20-

B01) and 3 (A22-B21). Thus, A20-B01 is the second effectual

computation and A22-B21 is the third effectual computation,

which should be mapped to multipliers 2 and 3. This effectively

packs the sparse multi-fiber multiplication into a dense vector

multiplication, with elements in increasing coordinate order,

so that all partial products that contribute to the same output

element are contiguous. 4 The shift unit (described below)

shifts these effectual computation indices to the corresponding

registers holding the values of A and B. For instance, values A20

and B01 receive index 2. 5 Finally, the A and B distribution

networks deliver the values to multipliers using the indices as

routing information (this routing is done as in SIGMA [60]).

Shift unit: Fig. 12 shows the microarchitecture of the shift unit

and an example of its operation. The design is similar to the

zero eliminator in SpAtten [68]. It is responsible for shifting

the effectual computation index to the corresponding value. In

this example, the effectual computation indices of A[1] (5, 6, 7)

are shifted to their corresponding registers holding A[1] values

(e, g, h). f does not receive an index because after intersection

with columns of B, no effectual computation is generated. We

start by calculating the zero count of A[1] before each element

offline. A K-element input is shifted by logK levels, with each

bit of the zero count controlling whether to shift the value at

this level. At i-th level, if the bit i is 1, the value is shifted left

by 2i. For example, since bit 1 is 1 for index 6, it is shifted left

by 2. In this way, each effectual computation index is eventually

shifted to the corresponding value starting at position 0. Note

that since rows of A are stored contiguously along registers

in the PE row, the starting location of A[1] is not position 0.

A final right shift using the offset of A[1] aligns the effectual

computation indices to the values.

Dynamic packing of B columns: The key hardware constraint

for choosing the number of columns of B to stream in each

cycle is that the number of effectual computation generated by

the intersection unit of each PE row should not exceed the num-

ber of multipliers (128). Trapezoid makes this choice ahead of

time, when columns of B are streamed from off-chip to on-chip.

Using the A bitmask and B bitmask, it calculates the number

of effectual computations per PE row (using popcount on the

PE row

64B

32x32, 64B crossbar

x4……

To
 B

 D
istrib

u
tio

n

64B
Buf:2KB,16B-wide

16B16B

64B
Buf:2KB,16B-wide

16B16B

From

cache

…

Cache: 4MB, 32 bank, 64B line…
…

x4

x4

…

…

Fig. 13: Multi-level memory hierarchy.

A&B bitvector). Then, the maximum number of effectual com-

putations across all PE rows is produced for every number of

columns of B (i.e., 1-4), and Trapezoid chooses the maximum

number of B columns so that the number of effectual compu-

tations does not exceed the number of multipliers per row.

Reductions and output buffering: After partial products are

computed, the merge-reduction tree accumulates them. Each

tree node consists of an adder, a comparator, and a few muxes.

When configured in merge mode (which is not used in TrIP),

comparators in each node are used to forward the smaller of the

inputs up the tree; this is used to merge partial output fibers in

coordinate order in TrGT/TrGS. TrIP uses the tree in reduction

mode, where the adders within each node are used to form

reduction trees. Following Flexagon’s design, the tree can be

sliced into smaller subtrees, each accumulating a contiguous

subset of input elements. TrIP configures subtrees so that each

subtree produces one element of C.

Since TrIP processes several A rows and B columns per

cycle, it produces a larger number of C elements per cycle

than SIGMA. We add a banked local buffer to support this

output bandwidth. Each subtree writes results directly to the

local buffer; in our implementation, the local buffer has 4 banks,

each 4 words wide, which suffices to absorb the scatter-output

bandwidth of intersecting 4 rows of A and 4 columns of B (i.e.

a 4×4 partial result matrix).

C. TrGT dataflow (for HS×HS)

Trapezoid uses a memory-efficient Gustavson-based dataflow,

TrGT (Fig. 14), similar to Gamma [79] and Flexagon’s Gus-

tavson mode [50], to handle multiplications of highly sparse

inputs. In the Gustavson dataflow, A is accessed element by

element and C is produced row by row, but B suffers accesses

to non-consecutive rows, and has matrix-level reuse.

Trapezoid leverages caching, a key optimization to reduce B

matrix traffic [50, 79]. The key innovation is Trapezoid’s multi-

level memory hierarchy, which offers the high gather bandwidth

needed by Gustavson dataflow in HS×HS while keeping the

area overhead low. In this way, Trapezoid can scale up the

processing throughput of HS×HS at only modest area cost.

Multi-level memory hierarchy: Fig. 13 shows Trapezoid’s

memory hierarchy. Trapezoid’s global cache is organized as

4 clusters, each serving 32 PE rows. Each 4 MB cluster has

A = Matrix(shape=[M2,M1,M0,K])

B = Matrix(shape=[N1,K,N0])

C = Matrix(shape=[N1,M2,M1,M0,N0])

for n1 = [0, N1):

for m2 = [0, M2):

for m1 = [0, M1): # spatial Y, PE row

for m0 = [0, M0): # spatial Y, PE subrow

B_tmp = Matrix(shape=[K,N0])

for k = [0, K): # leader follower

for n0 = [0, N0):

B_tmp[k,n0] = B[n1,k,n0]

merger, pipelined with next loop

B_tmp_t = B_tmp.transpose() # merger [K,N0] -> [N0,K]

for n0 = [0, N0):

for k = [0, K): # reduction

C[n1,m2,m1,m0,n0] += A[m2,m1,m0,k] * B_tmp_t[n1,n0,k]

C tile on-chip

B tile on-chip

Fig. 14: Loop nest of TrGT dataflow.

32 banks, and 16-word (64B) lines. A 32×32 crossbar con-

nects banks and PE rows. This clustered organization avoids

an expensive 128×128 all-to-all network between PE rows and

caches, but at the same time offers sufficient cache capacity in

each cluster (4 MB) to capture irregular reuse in the B matrix.

Each PE row has a 4-bank, 4-word-wide (16B) local buffer

(matching the throughput to cache banks). Since the TrIP

dataflow uses local buffers holding outputs, we reuse them for

TrGT, though to hold inputs (rows of B). In this way, the wider

16-word sequential access to the global cache can be translated

into several narrower gather accesses (4 gather reads/cycle) to

4 banks of the local buffer, effectively increasing gather band-

width to the global cache. This hierarchical organization avoids

the all-to-all communication overhead of prior HS×HS accel-

erators, at a modest cost of local buffer and global cache area.

In principle, we could dedicate each PE row to produce a

single output row using a row of A, i.e., spatially map M to PE

rows. This would let each PE row handle up to 128 nonzeros

per row of A, since we have a 128 multipliers and a radix-

128 merge-reduction tree. But HS matrices rarely have that

many nonzeros per row, so this would leave most of the PE

row unused. Since TrIP already has the hardware needed to

support up to 4 rows of A, including 4 local buffer banks, and

the multi-level memory hierarchy can support 4 gather accesses

per cycle, we divide each PE row into 4 PE subrows.

TrGT maps different rows of A to different PE subrows

(rather than PE rows), making the spatial M dimension 4×

larger. Fig. 14 shows TrGT’s loop nest, which includes this

mapping: both the M1 and M0 dimensions are mapped spa-

tially (instead of just M1) to hardware. TrGT fetches each row

of B temporally, i.e., one element at a time, according to the

nonzeros in the A row, and computes the linear combination

of these rows of B to produce one C row. The merge-reduction

tree is configured into a merge tree to facilitate the linear combi-

nation. This offers a similar functionality as a Gamma PE [79].

Depending on the number of nonzeros of A, each PE subrow

gets a slice of the PE row resources. Specifically, a PE subrow

handling a K-element row of A is allocated K registers (stor-

ing A values), K multipliers, 1 buffer bank (storing B rows),

K-to-K distribution networks and a radix-K merge tree (by us-

ing K-element slices of the 128-element distribution networks

and merge-reduction tree).

A20 A22

A31 A32
X =

B30

B00

B11

B21

B31

B12

B02

B13

B23

C20 C21

C31

C22 C23

C32 C33

PE Row 1

In
te

rs
e

ct
io

n

Mul Mul Mul Mul

A Distribution

B Distribution

C
a

c
h

e

To PE row 2

B
00

B
21

A
20

A
22

A
31

A
32

A
20

A
22

A
31

A
32

A
20

B
00

A
22

B
21

A
31

B
11 A

32
B

21

Cmp Cmp

Buf

B
02

B
00

B
23

Buf

B
23

B
21

Add

A
20

B
00

Add

A
32

B
21

C
31

From PE row 0

❶

❷

❸

B
12

B
13❹

C
20

A
MK B

KN

C
MN

B
 b

it
m

a
sk

Fig. 15: Example of Trapezoid running TrGT for HS×HS.

Walkthrough example: Fig. 15 shows a 4-multiplier PE row

divided in two PE subrows. In this example, the left PE subrow

gathers and linearly combines 2 rows of B, B[0] (B00, B02)

and B[2] (B21, B23), to produce row 2 of C (C20, C21, C22, C23).

Each row of B is stored in a FIFO. The two B FIFOs (holding

a few head elements of B[0] and B[2]) are implemented using

the local buffer; in this mode, each buffer bank offers a read

throughput of 1 element/cycle. 1 Elements from each B row

are routed to the multiplier holding the corresponding nonzero

of A (with the matching k coordinate), and scaled. For example,

B[0] is routed to A20; the figure shows how B00 is multiplied

to produce partial product A20B00. 2 The merge tree flows

partial products in the order of n coordinate, and accumulates

those with a matching n coordinate, e.g., A32B21 and A31B11

produce C31. 3 Elements of C’s row at the output of the merge

tree are written to the cache in order. 4 The B FIFO only

buffers a few head elements of the row while rest of the row

(B12, B13) is obtained from the cache in a wider word fetch

(2-word in the example).

D. TrGS dataflow (for HS×MS and HS×D)

While TrGT minimizes traffic, which is the key for HS ma-

trices, it has low peak arithmetic intensity. Our final dataflow,

TrGS, is a novel Gustavson-based dataflow that processes rows

of B spatially. TrGS leverages our spatial fabric’s multipliers

and cache bandwidth, and is useful for HS×MS and HS×D,

which have higher arithmetic intensity than HS×HS.

Fig. 16 shows TrGS’s loop nest. TrGS uses a PE row (not

subrow) to compute a single row of C, by linearly combining

rows of B. TrGS spatially maps A’s rows (i.e., the M0 dimension

in Fig. 16) across PE rows. TrGS’s key feature is that it also

A = Matrix(shape=[M1,M0,K])

B = Matrix(shape=[N2,K,N1,N0])

C = Matrix(shape=[N2,M1,M0,N1,N0])

for n2 = [0, N2):

for m1 = [0, M1):

for m0 = [0, M0): # spatial Y, PE row

for k = [0, K): # leader follower

for n1 = [0, N1): # cacheline

for n0 = [0, N0): # spatial X, within cacheline

C[n2,m1,m0,n1,n0] += A[m1,m0,k] * B[n2,k,n1,n0]

C tile on-chip

B tile on-chip

Fig. 16: Loop nest of TrGS dataflow.

A
20

A
22 X =B

00

B
11

B
21

B
22

B
02

B
03

B
13

B
23

C
20

C
21

C
22

C
23

PE Row 2

In
te

rs
e

c
ti

o
n

Mul Mul Mul Mul

A Distribution

B Distribution
C

a
c
h

e

From PE row 1

To PE row 3

B
00

B
02

A
20

A
22

A
20

A
20

A
20

A
20

B
03

A
20

B
00

A
20

B
02

Add Add

Buf BufB
02

C
20

C
21

B
00

0

B
21

B
22

C
22

C
23

0101

❶
❷

❹

❺

❻

❻

❼

❸

A
MK B

KN

C
MN

B
 b

it
m

a
s
k

Fig. 17: Example of Trapezoid running TrGS for HS×MS.

spatially maps elements of each row of B (i.e., the N0 dimension

in Fig. 16) within each PE row. TrGS reuses existing hardware.

Each multiplier is responsible for producing a single element

in the final C row; 128 elements of C’s row will be produced

after merging all the relevant B rows. The 16-word wide cache

is able to provide 16 contiguous nonzeros of B per cycle to the

PE row; the B distribution network routes these nonzeros to

the corresponding multipliers using their n coordinates. In this

way, the PE row running TrGS conducts 16 MACs/cycle, which

is 4× higher than TrGT (1 MAC/cycle/subrow). TrGS works

well for HS×MS and HS×D, but not for MS×MS, because it

leverages the fact that the B row is MS or D so that we can

treat the N dimension as a dense dimension with low overhead.

Walkthrough example: Fig. 17 shows a 4-multiplier PE row

running TrGS to generate a row of C (C20, C21, C22, C23) with

a 2-word wide cache. Every multiplier is responsible for pro-

ducing one final output element of C’s row. According to the k
coordinate of the nonzeros in A (A20, A22), the PE row needs

to scale and accumulate B row 0 (B00, B02, B03) and B row

2 (B21, B22, B23). The nonzeros of these two rows of B are

streamed in from the cache in order. In this example we are

currently working on B row 0, so the corresponding A value

(A20) is broadcast to all multipliers using the A distribution

network. 1 Because the cache is 2-word wide, the first two

nonzeros of B row 0 (B00, B02) are fetched. 2 The bitmasks of

the two elements are read in from cache and used to route the

B distribution network. 3 The B distribution network routes

these B values to the corresponding multipliers using their n
coordinates: B00 is routed to multiplier 0; B02 is routed to mul-

tiplier 2. 4 A and B values are multiplied to produce partial

products. 5 The reduction tree accumulates partial products

(A20B00, A20B02) with the partial results of C20 and C22, re-

spectively. 6 Later, the remaining nonzeros of B row 0 (B03)

and B row 2 (B21, B22...) are fetched in wide 2-word accesses

from the cache and accumulated. 7 Finally, when all the ac-

cumulation of B row 0 and B row 2 are done, the final result

row of C (C20, C21, C22, C23) is written to the cache.

IV. METHODOLOGY

System: We built a cycle-level simulator to evaluate Trapezoid,

using the configuration shown in Table I. This configuration

provides 32 TFLOP/s, using 128 PE rows, each with 128 FP32

multipliers and adders, running at 1 GHz. The 17 MB of on-

chip SRAM is organized as a 16MB cache (4MB/cluster); local

buffers take an additional 1 MB. The system has 2TB/s HBM

main memory, representative of modern GPUs and TPUs. We

model the activities of all hardware components cycle by cycle,

including MAC units, merge-reduction tree, distribution net-

works, multi-fiber intersection unit, local buffers, global cache,

and HBM. We model contention and stalls faithfully.

Baselines: We compare Trapezoid against three state-of-the-art

accelerators designed for matrix multiplication with D, MS, and

HS inputs: TPU [33], SIGMA [60], and Flexagon [50]. Since

TPU and SIGMA are also designed on top of a 2D spatial array,

we size them with the same 128×128 spatial array as Trapezoid

and a 16MB global scratchpad. SIGMA is also equipped with

the same 1MB local buffer as Trapezoid.

The original Flexagon design has 64 MACs and a 1MB cache,

which provide limited compute throughput (this is the case

for other HS accelerators). We carefully scale it up to match

Trapezoid’s area by replicating 67 Flexagon instances without

establishing all-to-all connections among instances (otherwise,

the crossbar would completely dominate area). The scaled-up

Flexagon system has 67×64 MACs, and 67 MB of cache.

We model the baselines using the same simulation infras-

tructure described above. Our simulation results closely follow

the performance numbers reported in the original papers.

Area and energy: We implement Trapezoid and baseline

components in RTL and synthesize them in 45 nm using the

FreePDK library [52]. We use CACTI7 [5] to estimate SRAM

area in 45 nm. We then scale the area to 16 nm [59]. We present

detailed area analysis in Sec. V-A. We obtain component en-

ergies using FreePDK15 [6] and Synopsys Design Compiler,

and estimate HBM energy from prior work [18, 61].

Workloads: We evaluate 128 standalone matrix multiplication

workloads (15 D×D, 15 MS×D, 38 MS×MS, 12 HS×D, 36

HS×MS, 12 HS×HS) and 8 DNNs (4 Llama, 2 ResNet, 2 VGG)

with widely varying sparsity levels. Table III and Table IV list

the matrices we use and their densities.

D and MS combinations use DNN workloads. For D×D,

we select 15 projection layers from the Llama-2-7B [67] large

TABLE I
CONFIGURATION AND AREA BREAKDOWN OF TRAPEZOID.

Component Config Area(mm
2)

Vector multiplier 128× FP32 multiplier 0.17
Merge-reduction tree radix-128, FP32 adder 0.13
Distribution network 32b 128×128 Benes 0.10

Multi-fiber intersection unit 4 rows & 4 columns 0.12
Local Buffer 8KB, 4 banks, 16B-wide 0.03

PE row 0.54

Compute overall 128×PE row 69.7

Cache
16MB, 128 banks, 16-way
set-associative, 64B line

10.2

NoC
4 64B 32×32 crossbar (32
cache banks ↔ 32 PE rows)

2.0

Trapezoid Overall
1GHz, 128×128 MACs,
17MB SRAM, 2TB/s HBM

81.9

TABLE II
CONFIGURATION AND AREA OF THE BASELINE SYSTEMS.

Component Config Area(mm
2)

TPUv3-like [33]
1GHz, 128×128 MACs,
16MB SRAM, 2TB/s HBM

41.0

SIGMA [60]
1GHz, 128×128 MACs,
17MB SRAM, 2TB/s HBM

62.3

Scaled-up Flexagon [50]
1GHz, 67 Flexagon instances,
67×64 MACs, 67MB SRAM,
2TB/s HBM

80.8

TABLE III
DNN WORKLOADS.

DNN weight density activation density

Llama2-7b 0.2-0.6, 1.0 1.0

ResNet-0.2 0.11-0.22 0.27-0.75

ResNet-0.1 0.03-0.12 0.30-0.76

VGG-0.32 0.27-0.53 0.26-0.71

VGG-0.1 0.1 0.29-0.75

TABLE IV
HS MATRICES.

Name density rows nnz name density rows nnz

p2p-Gnutella24 9.3e-5 26518 65369 sme3Db 2.5e-3 29067 2081063

sx-mathoverflow 3.9e-4 24818 239978 poisson3Da 1.9e-3 13514 352762

ca-CondMat 3.5e-4 23133 186936 wiki-RfA 1.5e-3 11380 188077

Oregon-2 3.5e-4 11806 65460 ca-AstroPh 1.1e-3 18772 396160

email-Enron 2.7e-4 36692 367662 msc10848 1.0e-2 10848 1229776

opt1 8.1e-3 15449 1930655 ramage02 1.0e-2 16830 2866352

scircuit 3.3e-5 170998 958936 cage12 1.2e-4 130228 2032536

gupta2 1.1e-3 62064 4248286

language model with dense activations. For MS×D, we use a

sequence length of 1024 and follow recent work that sparsifies

GPT networks [15, 40]: we conduct magnitude-based pruning

on the weight matrices of 3 Llama-2-7B [67] projection layers

to match the density levels in this recent work: 0.2, 0.3, 0.4,

0.5, 0.6. For MS×MS, we prune ResNet-50 [29] to average

weight densities of 0.1 and 0.2 using STR [41], and pick 8

convolution layers per model. We also conduct magnitude-based

pruning on VGG-16 [62] to density 0.1 and 0.32 and use all 11

convolution layers. Sparse activations are extracted by running

the pruned model on ImageNet [11]. We also evaluate end-to-

end performance on these DNNs, pruned to different degrees.

Combinations involving HS inputs use matrices from SuiteS-

parse [38]. For HS×D, we select 12 diverse matrices and mul-

tiply them with a randomly generated 1024-column dense B

matrix; this is representative of e.g. solvers with multiple right

hand sides. For HS×MS, the same 12 matrices are multiplied

with 3 randomly generated 1024-column sparse B matrices with

density 0.2, 0.4, 0.6. For HS×HS, we evaluate A×AT for the

12 matrices (matching the workload of prior HS accelerators).

Tiling: We conduct coordinate-space [32] and occupancy-based

tiling [54] on the inputs to maximize data reuse and on-chip

buffer utilization similar to prior work [50, 60, 79]. For TrIP,

we perform coordinate-space tiling on K and occupancy-based

tiling on M and N . For TrGT, we perform occupancy-based

tiling on M . For TrGS, we perform coordinate-space tiling on

N and occupancy-based tiling on M .

V. EVALUATION

A. Area

TP
U

Sig
ma

Fle
xa

go
n

Tra
pe

zoi
d

0.0

0.2

0.4

0.6

0.8

1.0

Ar
ea

 B
re

ak
do

w
n

Add & Mul
SRAM

Sparsity handling
Other

Fig. 18: Area breakdown.

Table I shows the area break-

down of Trapezoid and Table II

reports the overall area of the

baseline accelerators. Trapezoid is

81.9 mm2 at 16nm, which is 2.0×

larger than TPU and 1.3× larger

than SIGMA at iso-throughput con-

figurations (32 TFLOPs).

Fig. 18 shows the area break-

down of all accelerators. TPU,

SIGMA, and Trapezoid dedicate a

significant fraction of area to com-

pute to ensure high throughput on

dense inputs. The area overhead of

Trapezoid over TPU mainly comes from the sparsity handling

hardware (distribution network, multi-fiber intersection unit,

merge-reduction tree), which occupies half of the PE row area.

The additional A distribution network and multi-fiber intersec-

tion unit in Trapezoid contributes to a modest 30% area increase

over SIGMA but improves performance significantly. Flexagon,

on the other hand, spends most of the area on buffers to over-

come the memory bottleneck with HS inputs, and therefore

cannot offer high performance on denser cases due to the insuffi-

cient compute resources. Trapezoid’s novel multi-level memory

hierarchy design enables the same traffic reduction and high

gather bandwidth while keeping total capacity modest.

B. Overall Performance

Fig. 19 presents the performance/area of all accelerators

on all 6 category of workloads: D×D, MS×D, MS×MS,

HS×D, HS×MS, and HS×HS. For accelerators supporting mul-

tiple dataflows (Trapezoid and Flexagon), we pick the best-

performing dataflow for each workload, like [50]; Sec. V-C

analyzes dataflow choice. We use performance/area rather than

performance to penalize Trapezoid for its higher area over the

iso-throughput TPU and SIGMA designs. Within each cate-

gory, we take the gmean over all workloads and report perfor-

mance/area normalized to the best design. The overall perfor-

mance/area is the gmean over the gmean of all categories (this

avoids biasing to categories with more inputs).

Trapezoid achieves 19.7×, 4.3×, and 2.9× better perfor-

mance/area than TPU, SIGMA, and Flexagon, respectively.

From left to right, the workloads become sparser. TPU, designed

DD MSD MSMS HSD HSMS HSHS gmean0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

f/
Ar

ea
TPU Sigma Flexagon Trapezoid

Fig. 19: Performance/area comparison on matrix multiplication with dif-

ferent sparsity levels (normalized to the best accelerator in each category).

Llama-1.0 Llama-0.6 Llama-0.4 Llama-0.2 ResNet-0.2ResNet-0.1 VGG-0.32 VGG-0.10.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
er

f/
Ar

ea

TPU Sigma Flexagon Trapezoid

Fig. 20: End-to-end performance/area comparison on DNNs with different

sparsity levels (normalized to the best accelerator).

for D×D, is the best on D×D but tanks on sparser workloads be-

cause it cannot exploit any sparsity (e.g., TPU is 4134× worse

than Trapezoid on the sparsest HS×HS). SIGMA is optimized

for mildly sparse inputs and therefore performs better than TPU

on MS×D and MS×MS. But it also takes a significant perfor-

mance hit on HS inputs. Flexagon performs well on HS×HS

and HS×MS, but on denser inputs, it is far slower than other

accelerators due to its limited compute throughput.

By contrast, Trapezoid performs consistently well across

workloads despite their vastly different sparsity levels. It is

only 2.0× and 1.3× away performance/area-wise from the best

performing accelerator on D×D (TPU) and MS×D (SIGMA).

Because Trapezoid is able to achieve the same peak throughput

of TPU in D×D and SIGMA in MS×D, their performance/area

difference stems from the area overhead of sparsity handling

hardware in Trapezoid. Thanks to the multi-fiber intersection

unit, Trapezoid is 2.1× better than SIGMA on MS×MS. The

TrGS dataflow excels at HS×D and HS×MS and achieves 2.4×

and 2.5× better performance/area than Flexagon. On HS×HS,

Trapezoid is only 1.2× worse than Flexagon.

End-to-end DNN performance: Fig. 20 shows the end-to-end

performance per area of running 8 DNN workloads with vary-

ing levels of activation and weight sparsity (D×D, MS×D and

MS×MS). Llama-1.0 is fully dense, so the TPU is optimal;

Trapezoid is only 2.0×/1.3× slower than TPU and SIGMA.

The weight-sparsified Llamas (Llama-0.6,0.4,0.2) are dom-

inated by MS×D, so SIGMA is optimal for them; Trapezoid is

only 1.3× slower. Finally, the layers in ResNet-50 and VGG-

16 leverage both weight and activation sparsity, and are there-

fore MS×MS workloads. Trapezoid has 1.4-2.9× better per-

formance/area than SIGMA on ResNet-50 and VGG-16, and

outperforms the other accelerators further.

Roofline analysis: Fig. 21 shows two roofline plots of all ac-

celerators on all workloads. The full plot is shown on the

bottom-right corner; the large plot is a zoomed-in region.

The memory roofline is 2TB/s and the compute roofline is

TPU/SIGMA/Trapezoid’s peak throughput (32TFLOPs).

Fig. 21: Log-log roofline of all workloads.

Trapezoid is always on or close to the roofline because its

design optimizes for all sparsity levels. For accelerators that

can run multiple dataflows (Trapezoid and Flexagon), only the

best-performing dataflow per workload is shown. When run-

ning workloads with any sparsity, TPU’s (+) throughput quickly

drops. SIGMA (Y) achieves modest throughput with MS inputs

(top right region), but quickly drops far below the roofline on

sparser inputs (bottom left region). Flexagon uses its Gustavson-

based dataflow with HS inputs (⋆), leveraging its cache to im-

prove arithmetic intensity and reach the memory roofline. Its

limited gather bandwidth sometime limits throughput (flat line).

On denser workloads, Flexagon’s IP-based dataflow (X) is far

away from the roofline due to its limited peak throughput.

Trapezoid is always close to the roofline across different

arithmetic intensities. With high arithmetic intensity D×MS

inputs (top right corner), TrIP (♦) achieves the highest through-

put. When we gradually move left on the plot lowering the

arithmetic intensity, the TrGS dataflow (▲) takes over and lets

Trapezoid comfortably saturate the memory bandwidth. Finally

on HS×HS, TrGT (■) performs the best. Thanks to the on-chip

cache and Gustavson-based dataflows, Trapezoid is also at or

near the roofline for HS×D, HS×MS, and HS×HS.

Trapezoid outperforms combinations of prior accelerators:

Faced with a diverse workload mix, we could combine multiple

accelerators to achieve better gmean performance. We study this

by finding the optimal accelerator mix for our workload mix.

We explore combinations of TPU, SIGMA, and Flexagon that

take the same total area as Trapezoid, and process each matrix

across all accelerators (this way, each accelerator contributes

to performance on all workloads). We find that, for this mix of

workloads, the optimal combination is to devote 60% of area to

SIGMA and 40% to Flexagon. Still, Trapezoid is gmean 2.1×

faster than this combination.

C. Analysis of representative workloads

We select 3 representative workloads from each category

(MS×D, MS×MS, HS×D, HS×MS, HS×HS) and present their

results to gain more insights into Trapezoid’s efficiency. Fig. 22

shows the performance/area of these 15 workloads normalized

to the best-performing accelerator. In addition, for denser work-

loads (MS×D, MS×MS), which are typically compute-bound,

MS£D MS£MS HS£D HS£MS HS£HS
llam

a0
.6-
1.0

llam
a0
.4-
1.0

llam
a0
.2-
1.0

Re
s0.
27
-0.
15

Re
s0.
62
-0.
15

VG
G0
.45
-0.
42

ca-
1.0

p2
p-1
.0

op
t1-
1.0

ca-
0.6

ca-
0.4

ca-
0.2 ca-

ca

cag
e-c
ag
e

op
t1-
op
t1

0.0

0.5

1.0

N
or

m
al

iz
ed

 P
er

f/
Ar

ea TPU Sigma Flexagon Trapezoid

Fig. 22: Performance/area comparison on 15 representative workloads (normalized to the best accelerator).

MS£D MS£MS
llam

a0.6
-1.0

llam
a0.4

-1.0

llam
a0.2

-1.0

Res
0.27

-0.1
5

Res
0.62

-0.1
5

VGG
0.45

-0.4
2

0.00

0.25

0.50

0.75

1.00

Co
m

pu
te

 U
ti

liz
at

io
n TPU Sigma Flexagon Trapezoid

Fig. 23: Compute utilization comparison on 6 denser workloads.

HS£D HS£MS HS£HS
ca-1

.0
p2p

-1.0
opt1

-1.0 ca-0
.6

ca-0
.4

ca-0
.2

ca-c
a

cag
e-ca

ge

opt1
-opt

1
0.0

0.5

1.0

1.5

N
or

m
al

iz
ed

O
ff

-c
hi

p
Tr

af
fic

P P P P P P P P PS S S S S S S S SF F F F F F F F FT T T T T T T T T

A B C

Fig. 24: Off-chip memory traffic breakdown comparison on 9 sparser

workloads (normalized to SIGMA). P: TPU, S: SIGMA, F: Flexagon, T:
Trapezoid.

llama0.4-1.0
MS£D

Res0.27-0.15
MS£MS

ca-1.0
HS£D

ca-0.6
HS£MS

ca-ca
HS£HS

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 P
er

f/
Ar

ea

TPU-IP
Sigma-IP-based
Flexagon-Gust-based
Flexagon-IP-based
Trapezoid-TrIP
Trapezoid-TrGT
Trapezoid-TrGS

Fig. 25: Performance/area of different dataflows on 5 representative work-

loads (normalized to the best dataflow).

we plot the compute utilization in Fig. 23. Trapezoid consis-

tently achieves the highest compute utilization in denser work-

loads. And for sparser workloads (HS×D, HS×MS, HS×HS)

which tend to be memory bound, we plot the off-chip traffic

breakdown by data type in Fig. 24 (normalized to SIGMA).

Trapezoid has the lowest traffic for all sparser workloads.

For MS×D, SIGMA, Flexagon, and Trapezoid all exploit

A’s sparsity using an IP-based dataflow and achieve high com-

pute utilization. But these accelerators cannot fully exploit the

20% dense A in llama0.2-1.0 because they can only pack

4 rows of A. TPU utilization drops as A gets sparser as doing

IP densely results a significant amount of ineffectual work.

Trapezoid particularly shines in MS×MS. It achieves a

13.3× utilization gain over TPU in Res0.27-0.15 with 27%

dense A and 15% dense B, which translates into 6.5× better

performance/area. This is because Trapezoid’s multi-fiber in-

tersection unit is able to conduct 16 fiber intersections (4 rows

of A and 4 columns of B) at once rather than 1 fiber intersec-

tion in TPU. Trapezoid’s gain over SIGMA derives from its

ability to exploit the additional B sparsity using the multi-fiber

intersection unit. Its theoretical 4× utilization gain is realized

in Res0.27-0.15 and Res0.62-0.15, which results in 3.0×

and 2.0× better performance/area than SIGMA. TrIP’s benefits

are lower when B is denser: in VGG0.45-0.42, the Trapezoid

intersection unit can pack 2 columns of B per cycle at most,

achieving 1.4× higher utilization. Though Flexagon achieves

similar utilization to SIGMA, its low peak throughput results

in 6-9× worse performance/area than Trapezoid.

For HS workloads, we pick four representative matrices

(ca-CondMat, p2p, opt1, cage12) with varying sparsity de-

grees and nonzero patterns. In HS×D, Trapezoid achieves

10.6× and 5.4× better performance/area than SIGMA on ca

and p2p, because it runs TrGS, avoiding the ineffectual work of

IP-based SIGMA. Gustavson’s dataflow also reduces effectual

fetch of B, which can be observed in Fig. 24 as Trapezoid and

Flexagon has lower traffic than SIGMA and TPU. opt1 shows

different behavior, and SIGMA performs best. Though opt1

has low overall density, its nonzeros appear in dense clusters.

SIGMA’s IP-based dataflow achieves high throughput in the

dense clusters and skips the other regions. Trapezoid’s TrIP is

close to SIGMA (1.3× performance/area away).

In HS×MS, Trapezoid performs the best on varying density

of B matrices, roughly 2× better than Flexagon owing to our

novel TrGS dataflow over Flexagon’s TrGT-like dataflow. TrGS

can utilize a larger fraction of the spatial array (compared to

TrGT) to achieve higher peak throughput.

For HS×HS, Trapezoid achieves similar performance/area

as HS×HS-optimized Flexagon. Trapezoid runs TrGS more ef-

ficiently on opt1 because of its dense clusters, achieving 1.8×

performance/area improvement over Flexagon. Flexagon is

more efficient on ca. Because both Trapezoid and Flexagon run

a TrGT-like dataflow, Flexagon has higher peak throughput than

Trapezoid in TrGT mode. However, their efficiency is flipped on

cage, which saturates HBM bandwidth, so Flexagon’s smaller

cache translates to higher traffic. Finally, both Trapezoid and

Flexagon have the lowest traffic in HS×HS.

Finally, Fig. 25 reports the performance/area of individual

dataflows (IP- and Gustavson-based) on 5 representative work-

loads. For MS inputs, IP-based dataflows outperform Gustavson-

based ones. As Sec. II-B described, supporting complex row

reductions in Gustavson (and matrix reductions in OP) has

higher costs and is thus less desirable than intersections for

MS inputs. When the sparsity level increases, i.e. from MS×D

to MS×MS, IP-based dataflows (e.g., SIGMA) gradually drop

MS£D MS£MS HS£D HS£MS HS£HS
llama0.6-1.0

llama0.4-1.0

llama0.2-1.0

Res0.27-0.15

Res0.62-0.15

VGG0.45-0.42
ca-1.0

p2p-1.0
opt1-1.0

ca-0.6
ca-0.4

ca-0.2
ca-ca

cage-cage

opt1-opt1
0

2
N
or
m
al
iz
ed

En
er
gy

P P P P P P P P P P P P P P PS S S S S S S S S S S S S S SF F F F F F F F F F F F F F FT T T T T T T T T T T T T T T

Static DRAM SRAM MAC Sparsity handling

Fig. 26: Energy breakdown comparison on 15 workloads (normalized to SIGMA). P: TPU, S: SIGMA, F: Flexagon, T: Trapezoid.

in performance/area due to increasing ineffectual intersections.

On HS inputs, Gustavson-based dataflows (Flexagon, TrGT,

TrGS) consistently outperform IP-based dataflows, by avoiding

ineffectual intersections and reducing memory traffic.

By looking at individual dataflows, we can also establish

comparisons with other HS×HS accelerators beyond Flexagon.

Spada [43] would be similar performance as Flexagon, as they

have similar compute to memory ratio and support multiple

dataflows. We expect Gamma [79] to perform similarly to

Flexagon-Gust; MatRaptor [64] would be slower due to the

lack of caching [79], and conversely, Trapezoid’s memory or-

ganization increases effective capacity and reduces traffic.

D. Energy and Power

Fig. 26 shows the energy breakdown (normalized to SIGMA)

on the same 15 representative workloads. In MS×D and

MS×MS, Trapezoid only incurs a modest 13% energy overhead

over SIGMA on average. Trapezoid is 1.1-2.6× and 2.4-6.8×

more energy-efficient than TPU on MS×D and MS×MS by ex-

ploiting sparsity. For HS inputs, Trapezoid and Flexagon signif-

icantly reduce energy over SIGMA and TPU. TPU suffers from

high static energy, and SIGMA’s ineffectual IP intersections re-

sult in high sparsity-handling energy. On HS inputs, Trapezoid

uses gmean 13.5× and 1660× less energy than SIGMA and

TPU. Trapezoid is even more energy efficient than Flexagon

because its multi-level memory hierarchy can hold larger tiles

of B, reducing HBM traffic. Across all workloads, Trapezoid

achieves gmean 1697×, 20×, and 3.6× better EDP than TPU,

SIGMA, and Flexagon.

Power analysis shows TPU operates at around 100W, con-

sistent with published figures [33, 34]. Trapezoid, with 2× the

area of TPU, consumes 25-191W (average 110W), with HS

inputs on the lower end and MS/D inputs on the higher end.

VI. ADDITIONAL RELATED WORK

Prior work has proposed accelerators for applications do-

mains involving matrix multiplication. In dense/sparse neural

networks, accelerators for CNNs [1, 2, 8, 16, 17, 22, 59, 74, 80],

transformers [25, 26, 35, 47, 68, 76, 77, 78], point clouds [13,

14, 45] and beyond have been proposed. These focus on the

D/MS matrices in neural networks and do not handle HS ma-

trices well. In domains involving HS matrices, such as graph

analytics [7, 10, 19, 23, 27, 42, 48, 49, 72, 73, 75] and scientific

computing [4, 12, 20, 30, 63, 69], various accelerators have been

designed. They devote significant area to memory optimizations

due to the low arithmetic intensity of HS matrices.

ExTensor [32] supports operations beyond matrix multiplica-

tion, such as tensor contractions. ExTensor can perform tiling

and multi-level intersection of coordinate lists to skip ineffectual

work, e.g., skipping intersections of tiles that are zero. ExTen-

sor is tailored to HS tensors and, like the HS×HS accelerators

above, has limited compute throughput needed by MS and D

inputs. Tensaurus [65] codesigns a novel storage format and

accelerator for computations that combine sparse and dense

tensors.

Another line of work exploits a specific type of sparsity

presents in neural networks, structured sparsity, where zeros

appear in a structured pattern (e.g. an entire channel) [31]. The

NVIDIA Sparse Tensor Core (STC) [56] exploits 2:4 sparsity

of weights in DNNs where there are at most 2 nonzeros in a 4-

element block. S2TA [46] supports structured sparsity on both

weights and activations. HighLight [71] proposes Hierarchical

Structured Sparsity (HSS) to represent finer-grain sparsity lev-

els in DNNs and presents cheap hardware support for it. How-

ever, structured sparsity is limited to DNNs, degrades accuracy

further (so for a given target accuracy, exploiting unstructured

sparsity allows sparser matrices), and cannot be applied to other

domains where matrices have arbitrary sparsity patterns.

VII. CONCLUSION

Matrix multiplication is a key kernel in many application

domains. However, applications process matrices with orders-

of-magnitude variation in their sparsity degree, which induce

very different performance characteristics. We have shown that

it is possible to design a single accelerator that exploits a wide

range of sparsities. Trapezoid extends a 2D spatial array archi-

tecture with a novel multi-fiber intersection unit and multi-level

memory hierarchy to gracefully handle increasing levels of spar-

sity at modest area costs. The architecture supports multiple

novel dataflows, both inner-product-based (TrIP) and Gustavson-

based (TrGT, TrGS), that achieve high throughput while reusing

hardware. As a result, Trapezoid’s substantially outperforms

prior accelerators, which target a specific sparsity range.

ACKNOWLEDGMENTS

We sincerely thank Maggie Du, Fares Elsabbagh, Axel Feld-

mann, Courtney Golden, Aleksandar Krastev, Hyun Ryong Lee,

Quan Nguyen, Nikola Samardzic, Shabnam Sheikhha, Victor

Ying, and the anonymous reviewers for their helpful feedback.

This work was supported in part by the Semiconductor Research

Corporation under contract 2020-AH-2985, and by the National

Science Foundation under grant CCF-2217099.

REFERENCES

[1] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and
A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural network
computing,” in Proc. ISCA-43, 2016.

[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN
accelerators,” in Proc. MICRO-49, 2016.

[3] S. Arora, T. Leighton, and B. Maggs, “On-line algorithms for path se-
lection in a nonblocking network,” in Proceedings of the twenty-second

annual ACM symposium on Theory of computing, 1990, pp. 149–158.

[4] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “Alrescha:
A lightweight reconfigurable sparse-computation accelerator,” in Proc.

HPCA-26, 2020.

[5] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and
V. Srinivas, “CACTI 7: New tools for interconnect exploration in inno-
vative off-chip memories,” ACM Transactions on Architecture and Code

Optimization (TACO), vol. 14, no. 2, 2017.

[6] K. Bhanushali and W. R. Davis, “FreePDK15: An Open-Source Predictive
Process Design Kit for 15nm FinFET Technology,” in Proc. of the 2015

Intl. Symp. on Physical Design (ISPD), 2015, p. 165–170.

[7] X. Chen, T. Huang, S. Xu, T. Bourgeat, C. Chung, and A. Arvind,
“Flexminer: A pattern-aware accelerator for graph pattern mining,” in
Proc. ISCA-48, 2021.

[8] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks,” in Proc. ISCA-43,
2016.

[9] C. Choy, J. Gwak, and S. Savarese, “4d spatio-temporal convnets:
Minkowski convolutional neural networks,” in Proceedings of the

IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 3075–3084.

[10] V. Dadu, S. Liu, and T. Nowatzki, “Polygraph: Exposing the value of
flexibility for graph processing accelerators,” in Proc. ISCA-48, 2021.

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009.

[12] A. Feldmann and D. Sanchez, “Spatula: A hardware accelerator for sparse
matrix factorization,” in Proc. MICRO-56, 2023.

[13] Y. Feng, G. Hammonds, Y. Gan, and Y. Zhu, “Crescent: taming memory
irregularities for accelerating deep point cloud analytics,” in Proc. ISCA-

49, 2022.

[14] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi: Architec-
ture support for point cloud analytics via delayed-aggregation,” in Proc.

MICRO-53, 2020.

[15] E. Frantar and D. Alistarh, “Sparsegpt: Massive language models can be
accurately pruned in one-shot,” 2023.

[16] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scal-
able and efficient neural network acceleration with 3d memory,” in Proc.

ASPLOS-XXII, 2017.

[17] M. Gao, X. Yang, J. Pu, M. Horowitz, and C. Kozyrakis, “Tangram: Op-
timized coarse-grained dataflow for scalable nn accelerators,” in Proc.

ASPLOS-XXIV, 2019.

[18] W. Ge, M. Zhao, C. Wu, and J. He, “The design and implementation
of ddr phy static low-power optimization strategies,” in Communication

Systems and Information Technology, 2011.

[19] T. Geng, A. Li, R. Shi, C. Wu, T. Wang, Y. Li, P. Haghi, A. Tumeo, S. Che,
S. Reinhardt et al., “Awb-gcn: A graph convolutional network accelerator
with runtime workload rebalancing,” in Proc. MICRO-53, 2020.

[20] G. Gerogiannis, S. Yesil, D. Lenadora, D. Cao, C. Mendis, and J. Torrellas,
“Spade: A flexible and scalable accelerator for spmm and sddmm,” in
Proc. ISCA-50, 2023.

[21] J. R. Gilbert, S. Reinhardt, and V. B. Shah, “High-performance graph
algorithms from parallel sparse matrices,” in International Workshop on

Applied Parallel Computing, 2006.

[22] A. Gondimalla, N. Chesnut, M. Thottethodi, and T. Vijaykumar, “SparTen:
A sparse tensor accelerator for convolutional neural networks,” in Proc.

MICRO-52, 2019.

[23] Z. Gong, H. Ji, Y. Yao, C. W. Fletcher, C. J. Hughes, and J. Torrellas,
“Graphite: optimizing graph neural networks on cpus through cooperative
software-hardware techniques,” in Proc. ISCA-49, 2022.

[24] H. Goto, K. Endo, M. Suzuki, Y. Sakai, T. Kanao, Y. Hamakawa, R. Hi-
daka, M. Yamasaki, and K. Tatsumura, “High-performance combinatorial
optimization based on classical mechanics,” Science Advances, vol. 7,
no. 6, p. eabe7953, 2021.

[25] T. J. Ham, S. J. Jung, S. Kim, Y. H. Oh, Y. Park, Y. Song, J.-H. Park,
S. Lee, K. Park, J. W. Lee, and D.-K. Jeong, “A3: Accelerating attention
mechanisms in neural networks with approximation,” in Proc. HPCA-26,
2020.

[26] T. J. Ham, Y. Lee, S. H. Seo, S. Kim, H. Choi, S. J. Jung, and J. W. Lee,
“Elsa: Hardware-software co-design for efficient, lightweight self-attention
mechanism in neural networks,” in Proc. ISCA-48, 2021.

[27] T. J. Ham, L. Wu, N. Sundaram, N. Satish, and M. Martonosi, “Graphi-
cionado: A high-performance and energy-efficient accelerator for graph
analytics,” in Proc. MICRO-49, 2016.

[28] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and Huffman coding,”
in Proc. ICLR, 2015.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. CVPR, 2016.

[30] X. He, S. Pal, A. Amarnath, S. Feng, D.-H. Park, A. Rovinski, H. Ye,
Y. Chen, R. Dreslinski, and T. Mudge, “Sparse-tpu: Adapting systolic
arrays for sparse matrices,” in Proceedings of the 34th ACM international

conference on supercomputing, 2020, pp. 1–12.

[31] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very deep
neural networks,” in Proc. ICCV, 2017.

[32] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: An accelerator
for sparse tensor algebra,” in Proc. MICRO-52, 2019.

[33] N. P. Jouppi, D. Hyun Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,
G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad,
C. Young, Z. Zhou, and D. Patterson, “Ten lessons from three generations
shaped Google’s TPUv4i: Industrial product,” in Proc. ISCA-48, 2021.

[34] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle, P.-l. Cantin, C. Chao,
C. Clark, J. Coriell, M. Daley, M. Dau, J. Dean, B. Gelb, T. V. Ghaem-
maghami, R. Gottipati, W. Gulland, R. Hagmann, C. R. Ho, D. Hogberg,
J. Hu, R. Hundt, D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan,
H. Khaitan, D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law,
D. Le, C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni, K. Nix,
T. Norrie, M. Omernick, N. Penukonda, A. Phelps, J. Ross, M. Ross,
A. Salek, E. Samadiani, C. Severn, G. Sizikov, M. Snelham, J. Souter,
D. Steinberg, A. Swing, M. Tan, G. Thorson, B. Tian, H. Toma, E. Tuttle,
V. Vasudevan, R. Walter, W. Wang, E. Wilcox, and D. H. Yoon, “In-
datacenter performance analysis of a tensor processing unit,” in Proc.

ISCA-44, 2017.

[35] S.-C. Kao, S. Subramanian, G. Agrawal, A. Yazdanbakhsh, and T. Krishna,
“Flat: An optimized dataflow for mitigating attention bottlenecks,” in Proc.

ASPLOS-XXVIII, 2023.

[36] J. Kepner, D. Bader, A. Buluç, J. Gilbert, T. Mattson, and H. Meyerhenke,
“Graphs, matrices, and the GraphBLAS: Seven good reasons,” Procedia

Computer Science, vol. 51, 2015.

[37] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[38] S. P. Kolodziej, M. Aznaveh, M. Bullock, J. David, T. A. Davis, M. Hen-
derson, Y. Hu, and R. Sandstrom, “The SuiteSparse matrix collection
website interface,” Journal of Open Source Software, vol. 4, no. 35, 2019.

[39] H. T. Kung and C. E. Leiserson, “Systolic arrays (for vlsi),” in Sparse

Matrix Proceedings 1978, vol. 1. Society for industrial and applied
mathematics Philadelphia, PA, USA, 1979, pp. 256–282.

[40] E. Kurtic, D. Campos, T. Nguyen, E. Frantar, M. Kurtz, B. Fineran,
M. Goin, and D. Alistarh, “The optimal bert surgeon: Scalable and ac-
curate second-order pruning for large language models,” arXiv preprint

arXiv:2203.07259, 2022.

[41] A. Kusupati, V. Ramanujan, R. Somani, M. Wortsman, P. Jain, S. Kakade,
and A. Farhadi, “Soft threshold weight reparameterization for learnable
sparsity,” in Proc. ICML, 2020.

[42] J. Li, A. Louri, A. Karanth, and R. Bunescu, “Gcnax: A flexible and
energy-efficient accelerator for graph convolutional neural networks,” in
Proc. HPCA-27, 2021.

[43] Z. Li, J. Li, T. Chen, D. Niu, H. Zheng, Y. Xie, and M. Gao, “Spada:
Accelerating sparse matrix multiplication with adaptive dataflow,” in Proc.

ASPLOS-XXVIII, 2023.

[44] J. Lin, C. Gan, and S. Han, “Tsm: Temporal shift module for efficient video
understanding,” in Proceedings of the IEEE/CVF international conference

on computer vision, 2019, pp. 7083–7093.

[45] Y. Lin, Z. Zhang, H. Tang, H. Wang, and S. Han, “Pointacc: Efficient
point cloud accelerator,” in Proc. MICRO-54, 2021.

[46] Z.-G. Liu, P. N. Whatmough, Y. Zhu, and M. Mattina, “S2ta: Exploiting
structured sparsity for energy-efficient mobile cnn acceleration,” in Proc.

HPCA-28, 2022.

[47] L. Lu, Y. Jin, H. Bi, Z. Luo, P. Li, T. Wang, and Y. Liang, “Sanger: A
co-design framework for enabling sparse attention using reconfigurable
architecture,” in Proc. MICRO-54, 2021.

[48] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez, “Ex-
ploiting locality in graph analytics through hardware-accelerated traversal
scheduling,” in Proc. MICRO-51, 2018.

[49] A. Mukkara, N. Beckmann, and D. Sanchez, “Phi: Architectural support
for synchronization-and bandwidth-efficient commutative scatter updates,”
in Proc. MICRO-52, 2019.

[50] F. Muñoz-Martı́nez, R. Garg, M. Pellauer, J. L. Abellán, M. E. Acacio, and
T. Krishna, “Flexagon: A multi-dataflow sparse-sparse matrix multiplica-
tion accelerator for efficient dnn processing,” in Proc. ASPLOS-XXVIII,
2023.

[51] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. ICML, 2010.

[52] Nangate Inc., “The NanGate 45nm Open Cell Library,” http://www.
nangate.com/?page id=2325, 2008.

[53] M. Naumov, M. Arsaev, P. Castonguay, J. Cohen, J. Demouth, J. Eaton,
S. Layton, N. Markovskiy, I. Reguly, N. Sakharnykh, V. Sellappan, and
R. Strzodka, “Amgx: A library for gpu accelerated algebraic multigrid and
preconditioned iterative methods,” SIAM Journal on Scientific Computing,
vol. 37, no. 5, pp. S602–S626, 2015.

[54] N. Nayak, T. O. Odemuyiwa, S. Ugare, C. Fletcher, M. Pellauer, and
J. Emer, “Teaal: A declarative framework for modeling sparse tensor
accelerators,” in Proc. MICRO-56, 2023.

[55] NVIDIA, “Nvidia tesla v100 gpu architecture,” 2017.

[56] NVIDIA, “Nvidia ampere ga102 gpu architecture,” 2020.

[57] D. P. O’Leary, “The block conjugate gradient algorithm and related meth-
ods,” Linear algebra and its applications, vol. 29, pp. 293–322, 1980.

[58] S. Pal, J. Beaumont, D.-H. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H.-S. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “OuterSPACE: An
outer product based sparse matrix multiplication accelerator,” in Proc.

HPCA-24, 2018.

[59] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,
J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An accelerator for
compressed-sparse convolutional neural networks,” in Proc. ISCA-44,
2017.

[60] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul,
and T. Krishna, “Sigma: A sparse and irregular gemm accelerator with
flexible interconnects for dnn training,” in Proc. HPCA-26, 2020.

[61] Rambus Inc., “White paper: HBM2E and GDDR6: Memory solutions
for AI,” 2020.

[62] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

[63] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong, “Sextans:
A streaming accelerator for general-purpose sparse-matrix dense-matrix
multiplication,” in Proc. FPGA-30, 2022.

[64] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang, “MatRaptor: A
sparse-sparse matrix multiplication accelerator based on row-wise prod-
uct,” in Proc. MICRO-53, 2020.

[65] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor compu-
tations,” in Proc. HPCA-26, 2020.

[66] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks,” Synthesis Lectures on Comp. Arch., 2020.

[67] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher,
C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini,
R. Hou, H. Inan, M. Kardas, V. Kerkez, M. Khabsa, I. Kloumann, A. Ko-
renev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poul-
ton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X.
Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang,
A. Rodriguez, R. Stojnic, S. Edunov, and T. Scialom, “Llama 2: Open
foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

[68] H. Wang, Z. Zhang, and S. Han, “Spatten: Efficient sparse attention ar-
chitecture with cascade token and head pruning,” in Proc. HPCA-27,
2021.

[69] M. Wang, I. McInerney, B. Stellato, S. Boyd, and H. K.-H. So, “Rsqp:
Problem-specific architectural customization for accelerated convex
quadratic optimization,” in Proc. ISCA-50, 2023.

[70] Y. Wang, C. Zhang, Z. Xie, C. Guo, Y. Liu, and J. Leng, “Dual-side
sparse tensor core,” in Proc. ISCA-48, 2021.

[71] Y. N. Wu, P.-A. Tsai, S. Muralidharan, A. Parashar, V. Sze, and J. S.
Emer, “Highlight: Efficient and flexible dnn acceleration with hierarchical
structured sparsity,” in Proc. MICRO-56, 2023.

[72] M. Yan, L. Deng, X. Hu, L. Liang, Y. Feng, X. Ye, Z. Zhang, D. Fan,
and Y. Xie, “Hygcn: A gcn accelerator with hybrid architecture,” in Proc.

HPCA-26, 2020.
[73] Y. Yang, J. S. Emer, and D. Sanchez, “SpZip: Architectural support for

effective data compression in irregular applications,” in Proc. ISCA-48,
2021.

[74] Y. Yang, J. S. Emer, and D. Sanchez, “Isosceles: Accelerating sparse cnns
through inter-layer pipelining,” in Proc. HPCA-29, 2023.

[75] Y. Yang, Z. Li, Y. Deng, Z. Liu, S. Yin, S. Wei, and L. Liu, “Graphabcd:
Scaling out graph analytics with asynchronous block coordinate descent,”
in Proc. ISCA-47, 2020.

[76] H. You, Z. Sun, H. Shi, Z. Yu, Y. Zhao, Y. Zhang, C. Li, B. Li, and
Y. Lin, “Vitcod: Vision transformer acceleration via dedicated algorithm
and accelerator co-design,” in Proc. HPCA-29, 2023.

[77] A. H. Zadeh, I. Edo, O. M. Awad, and A. Moshovos, “Gobo: Quantizing
attention-based nlp models for low latency and energy efficient inference,”
in Proc. MICRO-53, 2020.

[78] A. H. Zadeh, M. Mahmoud, A. Abdelhadi, and A. Moshovos, “Mokey:
enabling narrow fixed-point inference for out-of-the-box floating-point
transformer models,” in Proc. ISCA-49, 2022.

[79] G. Zhang, N. Attaluri, J. S. Emer, and D. Sanchez, “Gamma: Leveraging
Gustavson’s algorithm to accelerate sparse matrix multiplication,” in Proc.

ASPLOS-XXVI, 2021.
[80] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and

Y. Chen, “Cambricon-X: An accelerator for sparse neural networks,” in
Proc. MICRO-49, 2016.

[81] Z. Zhang, H. Wang, S. Han, and W. J. Dally, “SpArch: Efficient archi-
tecture for sparse matrix multiplication,” in Proc. HPCA-26, 2020.

http://www.nangate.com/?page_id=2325
http://www.nangate.com/?page_id=2325

	Introduction
	Background and Motivation
	Spatial arrays for dense matrix multiplication
	Leveraging mildly sparse (MS) inputs
	Leveraging highly sparse (HS) inputs

	Trapezoid Architecture
	Dense IP dataflow (for DD)
	TrIP dataflow (for MSMS and MSD)
	TrGT dataflow (for HSHS)
	TrGS dataflow (for HSMS and HSD)

	Methodology
	Evaluation
	Area
	Overall Performance
	Analysis of representative workloads
	Energy and Power

	Additional Related Work
	Conclusion
	References

