
Azul: An Accelerator for Sparse Iterative Solvers

Leveraging Distributed On-Chip Memory

Axel Feldmann

MIT CSAIL

axelf@csail.mit.edu

Courtney Golden

MIT CSAIL

cgolden@csail.mit.edu

Yifan Yang

MIT CSAIL

yifany@csail.mit.edu

Joel S. Emer

MIT CSAIL/NVIDIA

emer@csail.mit.edu

Daniel Sanchez

MIT CSAIL

sanchez@csail.mit.edu

Abstract—Solving sparse systems of linear equations is a
fundamental primitive in many numeric algorithms. Iterative
solvers provide an efficient way of solving large, highly sparse
systems. However, iterative solvers are inefficient on existing
architectures because they perform computations with (1) poor
short-term reuse, which causes frequent off-chip memory traffic;
and (2) challenging data dependences, which limit parallelism.

We present Azul, a hardware accelerator that achieves high
arithmetic intensity by keeping data in distributed on-chip SRAM.
Azul is organized as a grid of tiles, each with a small memory
and a simple processing element (PE). This enables keeping solver
data on-chip across iterations, achieving high reuse. We present
a novel scheduling algorithm that maps data and computation
across PEs to avoid communication bottlenecks while achieving
high parallelism, and a specialized PE that achieves high utilization
of arithmetic units.

When tested on a representative set of matrices for sparse
iterative solvers, Azul is gmean 217× faster than state-of-the art
GPU implementations, 159× faster than a previously proposed
accelerator for sparse iterative solvers, and 90× faster than a
previously proposed distributed-SRAM accelerator.

Index Terms—Hardware accelerators, sparse linear algebra,
iterative solvers, all-SRAM architectures

I. INTRODUCTION

Solving sparse systems of linear equations is a key com-

putation at the heart of many numeric algorithms. In linear

algebra terms, solvers find a vector x such that Ax = b, where

A is a sparse matrix and b is a known right-hand-side vector.

Linear solves dominate the performance of optimization solvers,

physics simulations, and engineering tools.

Iterative solvers are a widely used class of methods to solve

linear systems (Sec. II). Iterative solvers make some initial

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0

10

20

30

40

G
F
L
O
P
/s

0.0

0.2

0.4

0.6

Fig. 1: Performance of a V100
GPU running Ginkgo Cg [3], a
state-of-the-art iterative solver, on
representative matrices.

guess for x, then iteratively

refine it until it converges to

the correct solution [9, 10,

24, 31].

Unfortunately, iterative

solvers are very inefficient

on existing hardware due to

a combination of frequent

main memory accesses

and challenging parallelism

(Sec. III). Fig. 1 shows the

utilization of an NVIDIA

V100 GPU (and percentage

of peak throughput in

GFLOPS/s), when solving several representative sparse

matrices using preconditioned conjugate gradients (PCG), a

common iterative solver. Even on the most favorable matrix,

the GPU achieves only 0.6% of its peak throughput!

This is because a few sparse matrices dominate the memory

footprint. These matrices commonly take several tens of

megabytes. Each iteration traverses these matrices and uses

each value once, yielding no intra-iteration reuse. Conventional

architectures like GPUs fetch these matrices from main memory

each iteration, making memory bandwidth a key bottleneck and

resulting in dismal performance (Fig. 1).

We present Azul, a hardware accelerator for iterative solvers

that addresses these shortcomings. Azul relies on several key

insights:

All-SRAM architecture: We can erase the main-memory

bottleneck by building an architecture that fits operands on-chip

and can thus exploit inter-iteration reuse. Solvers run for many

iterations, with each iteration accessing the same matrices. Al-

locating enough on-chip SRAM to fit these matrices provides a

step-function in reuse. In order to provide high-bandwidth, low-

latency access to this SRAM, we adopt a distributed-memory

architecture consisting of many small, spatially distributed tiles

of memory each with a nearby processing element (PE).

SRAM is large enough: Within a single die, SRAM sizes are

limited to moderately sized matrices. However, many numeric

applications operate on matrices that fit in single-die SRAM, yet

run for hours, as they simulate systems across many (sometimes

millions of) timesteps. In Sec. II-C, we describe in detail how

solving the system state at each timestep involves at least

one linear solve, and these applications’ working sets fit into

chips using current SRAM technology. For example, analog

simulation of one read and one write to a 128×32b SRAM

generated by OpenRAM [28] takes Xyce [59], a state-of-the-art

open-source simulator, 3.5 hours on a 24-core CPU, despite

only 1.7 million matrix nonzeros. Similarly, non-linear magnetic

simulations [55] take hours with just 3.7 million nonzeros.

There is a class of applications whose system matrices are

still too large for current commercial SRAM technology. In

Sec. VI, we evaluate Azul assuming SRAM sizes that do not

currently fit into single-reticle-sized dies but that would apply

to wafer-scale chips or multi-chip-modules, to show that Azul’s

techniques scale gracefully to larger system and problem sizes.

0 1000 2000 3000 4000 5000 6000 7000 8000

gmean GFLOP/s

64 × 64 PE Azul

64 × 64 Azul PEs
+Dalorex Mapping

64 × 64 PE Dalorex

V100 GPU

7640

748

93

35 GPU Peak: 7 TFLOP/s

64 × 64 Azul PEs Peak: 16 TFLOP/s

Fig. 2: Azul’s performance on iterative solvers compared to
baseline systems.

SRAM alone is not sufficient: Prior work has proposed

distributed all-SRAM architectures for other domains, including

machine learning [1, 13] and graph processing [44]. However,

these designs are ill-suited for iterative solvers: some are

incapable of handling unstructured sparsity, while others have

PE designs that limit throughput due to control overheads. Fig. 2

shows that despite having all data on-chip, Dalorex [44], a state-

of-the-art distributed SRAM accelerator, only achieves a gmean

2.3× speedup over the GPU baseline on iterative solves.

This low performance stems from two key problems: (1)

Dalorex’s in-order cores limit throughput due to their high con-

trol overheads. Most instruction issue slots go to bookkeeping

and address calculation, leading to low compute utilization.

(2) Careful data placement is essential for high performance,

but Dalorex neglects it. (This is because Dalorex targets graph

processing, not iterative solvers.) The subset of operands present

in each tile’s memory dictates that tile’s need to exchange data

with other tiles over the network-on-chip (NoC). Poor data

placement results in low arithmetic intensity at a network level

(FLOPs/network traffic), making applications network-bound.

We contribute novel hardware and software techniques that

erase these bottlenecks. First, we design simple PEs that

leverage specialization, dataflow execution, and lightweight

multithreading to achieve high utilization of floating-point units.

Fig. 2 shows that, while Azul’s PEs improve performance

by 8× over Dalorex’s general-purpose cores, using prior data

placement techniques makes the problem communication-bound

and results in only ≈ 4.5% of peak compute throughput.

Second, to increase tile-level reuse and remove the NoC

bottleneck, Azul adopts a hypergraph-partitioning based data

mapping approach. Data values (matrix nonzeros and vector

elements) are individually considered for placement at each

of Azul’s PEs. This fine-grained mapping reduces traffic by

66× gmean, and provides a 10.2× speedup (Fig. 2). While

our mapping algorithm is costlier than the simple heuristics of

prior work, its large performance gains and the long-running

nature of solvers more than compensate this cost (Sec. VI).

We evaluate an Azul implementation with 4096 (64× 64)

small tiles, each with 96 KB of SRAM (Sec. VI). Tiles are

connected with a 2D-torus NoC. This system has 432 MB

of SRAM and an aggregate 196 TB/s of SRAM bandwidth,

with a modest 6 TB/s network bisection bandwidth. As Fig. 2

shows, Azul achieves high performance and utilization, beyond

8 TFLOP/s of double-precision computations, across a wide

range of matrices. Overall, Azul outperforms a GPU by gmean

217×, and prior accelerators for iterative solvers by 159×.

In summary, we make the following contributions:

• The observation that sparse iterative solvers are well suited

to distributed-SRAM architectures.

• A novel high-quality data mapping algorithm that substan-

tially reduces communication over prior approaches.

• A specialized PE design that achieves high utilization.

• An accelerator, Azul, that combines these techniques to out-

perform prior accelerators by over two orders of magnitude.

II. BACKGROUND

Solving systems of linear equations, i.e., solving x such that

Ax= b given matrix A and vector b, is a dominant kernel in many

scientific applications [21, 25, 30, 54]. There are two classes

of solvers: iterative solvers work by starting with an initial

guess of x, and refining it each iteration, until they converge to

a sufficiently accurate value of x. Direct solvers, by contrast,

work by factoring the A matrix, i.e., decomposing A into factors

with a structure that makes solving Ax = b easy. For example,

LU factorization decomposes A into a product of a lower-

triangular matrix L and an upper-triangular matrix U (A = LU).

LU factorization is itself expensive, but makes solves cheap.

In this work, we focus on iterative solvers because they

dominate in important cases [31, 35, 62]. Even discounting the

high upfront cost of factorization, a common problem with direct

solvers is that factors are much denser than A. For example, in

LU factorization, the L and U matrices are much denser than A,

so nnz(L+U)>> nnz(A). In some cases, nnz(L+U) can be as

much as 1000× larger than nnz(A). These large factors cause

enormous storage and computation overheads. In contrast, at

each iteration, iterative solvers do O(nnz(A)) work. Even if the

iterative solver takes hundreds of iterations, it is often much

faster. Prior work has shown that sparse matrix factorization

is amenable to hardware acceleration [22]. Even so, iterative

solvers are still vastly more efficient on many input matrices.

Sparsity: Iterative solvers normally process extremely sparse

matrices (< 0.001% nonzeros). This is a result of problem

structure: many physical systems only have local interactions

within a large system. For example, when simulating a circuit

containing millions of nodes, each node is only connected

to a handful of neighbors. Solvers leverage this sparsity by

storing and processing only the nonzero values of these matrices.

Sparsity causes irregular memory access patterns and data

dependences, as well as variations in the amount of work, all

of which depend on the structure (sparsity pattern) of the input

matrix.

Numerical stability and preconditioning: The performance

of iterative methods is also a function of the numeric values

in A, not just its sparsity pattern. With some matrices, the

solver converges in relatively few iterations, while others make

the iterative solver diverge. To ensure convergence, iterative

algorithms rely on preconditioners: instead of solving Ax = b,

they solve PAx=Pb, where P (called a preconditioner) is chosen

using domain-specific knowledge [5, 15, 36, 49].

A. Preconditioned Conjugate Gradients (PCG) Solvers

To make our discussion of iterative solvers more concrete,

we focus on the preconditioned conjugate-gradients (PCG)

cr
an
ks
eg
1

m
t1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0.00

0.25

0.50

0.75

1.00
N
o
rm

a
li
ze
d
R
u
n
ti
m
e

SpTRSV

SpMV

Vector Ops

Fig. 3: Runtime breakdown by
kernel of PCG (Ginkgo Cg [3]),
running on one V100 GPU.

Matrix SpMV SpTRSV original SpTRSV permuted

crankseg 1 884517 657 22409
m t1 1219196 577 36217
shipsec1 1116200 947 37520
consph 858640 2560 52532
thermal2 2145078 1980 490417
apache2 1605956 2086 691630

TABLE I: Maximum available parallelism for SpMV and
SpTRSV across representative matrices. Parallelism is total
work divided by critical path length.

𝐿00 𝐿11𝐿20 𝐿22𝐿30 𝐿33𝐿40 𝐿43 𝐿44𝐿51 𝐿52 𝐿54 𝐿55

𝑥0𝑥1𝑥2𝑥3𝑥4𝑥5

𝑏0𝑏1𝑏2𝑏3𝑏4𝑏5
=

Fig. 4: Given a sparse triangu-
lar matrix L and a known right-
hand-side vector b, SpTRSV
finds x such that Lx = b.

1 def pcg(A, b, L, tol=1e-10):
2 x = zerovec(), r = b # residual

3 z = p = trisolve(L⊤, trisolve(L,r))
4 while (||r|| > tol):
5 Ap = mvmul(A, p)
6 alpha = rz_old / dot(p, Ap)
7 x += alpha * p
8 r -= alpha * Ap

9 y = trisolve(L⊤, trisolve(L, r))
10 rz_new = dot(r, z)
11 beta = rz_new / rz_old
12 p = z + beta * p
13 rz_old = rz_new
14 return x

Listing 1: Pseudocode for the preconditioned conjugate gradients
(PCG) iterative solver (with an ICC preconditioner).

algorithm. Variants of this algorithm are used as a benchmark

for supercomputers [31].

Listing 1 shows pseudocode for an implementation of PCG.

The algorithm takes as inputs the matrix A, the right-hand-side

vector b, a lower-triangular matrix L (i.e., all values above its

diagonal are zero) related to the preconditioner,1 and a small

tolerance value tol used to determine convergence. A and L are

highly sparse matrices stored in a compressed format, while the

vectors are dense. Nonetheless, since each row of A and L have

several nonzeros, they are by far the largest data structures.

The for loop in lines 4–13 progressively refines vector x.

Each iteration updates x (line 7), updates a residual vector

tracking the value of Ax− b for the current x (line 8), and

chooses a new search direction (lines 9–12). Once the residual

is small enough, the loop terminates. The mathematical details

of how x is refined are not needed to understand PCG’s

performance.

PCG’s performance is dominated by the operations that

involve the large matrices, A and L: a sparse matrix-vector

multiply (SpMV) with A (line 5) and two sparse triangular

solves (SpTRSVs) using L and its transpose, L⊤ (line 9). Fig. 3

shows a breakdown of execution time of PCG on one V100

GPU (using Ginkgo Cg [3], a state-of-the-art iterative solver),

showing that most time is spent in SpMV and SpTRSV; the

other operations are simple vector operations (e.g., dot products).

To effectively accelerate PCG (and iterative solvers in

general), we must accelerate these kernels, so we focus on them

next. Note that even though GPUs are well suited to element-

1L is a matrix such that LL⊤ = P−1. It is computationally inefficient to store
P and directly compute PAx. Instead, we can obtain PAx as follows:

v = P(Ax)→ P−1v = Ax → LL⊤v = Ax

which allows us to get v by a triangular solve with L, then one with L⊤.

𝑏5

1𝐿00 × 1𝐿11 × 1𝐿22 ×+ 1𝐿33 ×+ 1𝐿44 ×+ 1𝐿55 ×+𝐿54 ×

𝐿43 ×𝐿52 ×𝐿51 ×

𝐿20 ×𝐿30 ×𝐿40 × 𝑏4
𝑏3

𝑏2
𝑏1

𝑏0

𝑥2

𝑥0
𝑥1

𝑥3
𝑥4

𝑥5
Fig. 5: Data dependences of SpTRSV on the matrix from Fig. 4.

wise vector operations, reductions (present in vector dot product

on lines 6-8, 10, and 12 of Listing 1) consume non-trivial

amounts of time. This is because inter-thread communication

and synchronization are expensive on GPUs. Furthermore,

the all-to-all dependences on the dot products mean that the

computation must be broken up across several kernels incurring

repeated kernel launch overheads and excess data movement.

SpMV: Sparse-matrix times vector multiplication takes a sparse

matrix M and multiplies it by a vector v to create a new vector

y. The expression for each element of y is as follows:

yi = ∑
j∈nz(Mi)

Mi jv j

where nz refers to nonzeros. Note two interesting properties of

SpMV: (1) Each matrix element is read only once. This lack of

reuse means that SpMV is memory-bound if the matrix comes

from main memory. (2) Ample parallelism: products of any

Mi j and v j are independent and can be computed in parallel.

Since GPUs have more memory bandwidth than CPUs and

can effectively parallelize this computation, they achieve sizable

speedups on SpMV [26].

SpTRSV: Solving a triangular matrix is done by straightforward

substitution. Consider the triangular system shown in Fig. 4:

lower-triangular matrix L and vector b are known, and we seek

x such that Lx = b. Finding x0 is trivial: x0 =
b0
L00

. However,

consider finding x2. By multiplying L and x, we obtain:

L20x0 +L22x2 = b2

Rearranging, we get:

x2 =
b2 −L20x0

L22

0

1

2

3

5

6

7

8

1

3

5

7

0

2

4

6

0 1 2 3 4 5 6 7 1 3 5 7 0 2 4 6

Fig. 6: Example of how graph coloring
creates triangular solve parallelism. Note
that while non-triangular A matrices are
shown, the triangular solves in PCG operate
on L and L⊤ matrices with the same sparsity
pattern as A’s lower and upper triangles.

cr
an
ks
eg
1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0.0

0.5

1.0

N
o
rm

a
li
ze
d
R
u
n
ti
m
e

Original Permuted

Fig. 7: Improving parallelism
using graph coloring signifi-
cantly improves solver perfor-
mance on GPUs.

Algorithm Preconditioner Kernels

Conjugate None SpMV
Gradients Diagonal/Jacobi SpMV

Sym. Gauss-Seidel SpMV + SpTRSV
Incomplete Cholesky SpMV + SpTRSV

Power Iteration SpMV
SSOR SpTRSV
BiCGStab None SpMV

Gauss-Seidel SpMV + SpTRSV
Incomplete LU SpMV + SpTRSV

TABLE II: Many iterative solvers use SpMV and SpTRSV
as their key kernels. Note that different preconditioners
have different numeric properties. Selecting the appro-
priate solver and preconditioner for a specific problem
is an unsolved problem in numerical algorithms.

which implies a data dependence on x0. We can solve for x2

only after finding x0. In general, we have:

xi =
1

Lii

(

bi −
i−1

∑
j=0

x jLi j

)

Observe that like SpMV, each nonzero in L is read only

once, causing similarly low arithmetic intensity. But unlike

SpMV, SpTRSV does not have ample parallelism. In fact, the

expression indicates that xi depends on x j for all j where Li j ̸= 0.

Fig. 5 shows the data dependence graph of the solve from Fig. 4.

The data dependence graph captures all dependences, and is

directly derived from the matrix’s sparsity pattern.

Parallelism-improving preprocessing: SpTRSV’s irregular

data dependences limit its parallelism. Different sparsity patterns

inherently imply different levels of parallelism. Consider for

example the tri-diagonal matrix shown on the left of Fig. 6.

Naively, executing triangular solve on its lower triangle is a

purely sequential computation. To solve each row, we must

solve the previous row, eliminating any possible parallelism.

Graph coloring is a well-known [2, 43, 51] technique

used to boost the parallelism of these inherently sequential

computations. This involves treating a matrix as a graph and

coloring its rows, then permuting both its rows and columns such

that same-color rows are adjacent (Fig. 6, right). By definition,

rows with the same color are independent, so placing them

next to each other eliminates many dependences. Instead of

being totally sequential, the triangular solve now has some

parallelism.

Permuting a matrix can increase the iterative solver’s iteration

count, but the parallelism benefits far outweigh this cost on

parallel architectures. Fig. 7 shows the speedups gained by

graph coloring on a GPU, which are at least 2× and often

much larger.

Table I demonstrates how graph coloring takes a parallelism-

limited computation and significantly reduces this bottleneck.

We estimate the maximum available parallelism of these compu-

tations by dividing the total number of operations by the length

of the computation’s critical path. Note that these estimates are

approximate: they ignore data-movement latency and assume

that all operations have single-cycle latency. However, it is

clear that as a highly parallel hardware accelerator, it is crucial

for Azul to take advantage of such state-of-the-art parallelism

improving techniques. Also note that while this preprocessing

step enhances available parallelism, Table I shows that it is still

not boundless. Unless otherwise specified, all results shown

in this paper (including Fig. 1 and Fig. 3) use colored and

permuted versions of input matrices.

B. Other Solvers

Though Sec. II-A discusses PCG, the computations Azul

accelerates are very general: other iterative solvers like GMRES

and BiCGStab [50, 53] have the same kernels and challenges.

Overall, the kernels described in this section form the basis of

the vast majority of iterative solvers. Using SpMV and SpTRSV,

we can implement all the widely used algorithms shown in

Table II. Moreover, these algorithms are only a subset of the

vast universe of iterative solvers based around these kernels.

C. Understanding End-to-End Applications of Solvers

Now that we’ve introduced iterative solvers, we motivate their

importance and Azul’s focus by looking at an important class

of end-to-end applications: simulations of physical systems.

Fig. 8 shows the general structure of a physical system

simulator. Simulation proceeds in timesteps. Each timestep

begins with a solve of Ax = b; x is then used to update the

values of b and, optionally, A, for the next timestep.

The meaning of A, x, and b is application-dependent. For

example, when simulating the deformation of solid bodies (e.g.,

a car safety test), x is the vector of velocities of different points;

b is the set of instantaneous forces; and A is a stiffness matrix

that encodes how forces act upon the system. When simulating

heat transfer through an object, x is the set of temperatures at

each point; b is the heat stored at each node; and the A matrix

encodes how heat transfers across the system.

Initial A, b

Solve Ax=b

Update A and b

Find preconditioner P

x

A, b, P

N
e

x
t

ti
m

e
s
te

p

R
a
re

ly
 o

r n
e

v
e

r

Fig. 8: Structure of a
physical system simulator.

Various types of simulations up-

date b’s and A’s values differently.

In some cases, for example heat

transfer, A is static, and only b

changes over time. bnext is cal-

culated by a sparse matrix-vector

product with the resulting x. Other

cases have simple updates to A,

e.g., in many rigid-body simulations,

Anext’s nonzero values are a linear function of x. Finally, for

more dynamic simulations, updating A is non-trivial (10-20% of

total FLOPs [37]). For example, when simulating elastic bodies

(like a floppy-eared bunny), the stiffness matrix A changes with

the system state. But even then, this computation is point-wise

and highly parallelizable [8, 37].

Crucially, while A’s values may change across timesteps, its

sparsity structure is static. For example, a floppy-eared bunny

is modeled as a mesh, and its nonzeros denote the connections

of adjacent triangles; as the bunny’s ears flop around, these

connections do not change, only their stiffness values do.

Finally, when A changes over time, the preconditioner P may

need to be updated to keep convergence fast. But updating

P can be infrequent (A must change substantially to affect

convergence), and takes a small fraction of time in most

cases [11, 14, 27]. Like A, P’s sparsity pattern is constant

over time.

In summary, physical system simulation showcases why

Azul’s problem is important, and why we focus on linear solves:

1) Simulations with matrices that fit on-chip easily take hours:

with 1µs per timestep and 1000 iterations per solve, simulating

a system for only 10 seconds takes 10 billion inner-loop

iterations—hours even with a few microseconds per iteration.

2) Reuse is very high, as A and b are reused across timesteps.

3) Since the sparsity structure is static, optimizing the place-

ment of nonzeros is the right tradeoff: Azul’s placement

algorithm spends a few minutes to map each problem, but

this cost is quickly recouped when the simulation takes hours.

4) Azul already has the necessary support to run many of these

simulations end-to-end, e.g., when A is static or trivially

updated, as in heat transfer. Even when the preconditioner

needs to be updated, Azul already supports preconditioners

like Gauss-Seidel, which simply takes A’s lower triangle.

5) Azul does not support running certain types simulations

end-to-end, e.g., those requiring non-trivial updates to A

or recomputing complex preconditioners like incomplete

Cholesky. But these comutations are either easy to parallelize

or take negligible FLOPs, so simple extensions to Azul would

enable end-to-end support at high performance.

III. SPARSE ITERATIVE SOLVERS ARE ILL-SUITED TO

PRIOR ARCHITECTURES

Due to their importance, iterative solvers are the focus of

many prior hardware and software techniques.

GPUs: GPUs are the preferred current hardware platform

for iterative solvers given their high compute throughput and

memory bandwidth. But GPUs still suffer from the bottlenecks

identified in Sec. II-A, and suffer poor utilization as shown in

Fig. 1. Their small caches do not capture cross-iteration reuse,

causing frequent memory accesses, and their programming

model struggles with frequent data dependences.

ALRESCHA: Prior work has proposed hardware to accelerate

iterative solvers. ALRESCHA [4] is a hardware accelerator

that aims to accelerate the SpMV and SpTRSV steps within

one iteration.2 Since these steps do not have any intra-iteration

2The ALRESCHA paper does not directly mention SpTRSV, but instead men-
tions symmetric Gauss-Seidel (SymGS). This is equivalent to two consecutive
triangular solves.

reuse, ALRESCHA uses specialized processing elements (PEs)

to reduce control overheads resulting in it saturating its

main-memory bandwidth (288 GB/s in their implementation).

However, this memory bandwidth bound limits ALRESCHA’s

throughput to 48 GFLOP/s, roughly in line with GPUs.

Distributed-SRAM accelerators: As both GPUs and AL-

RESCHA are severely bottlenecked by main memory, we now

consider distributed-SRAM architectures. These consist of tiles,

each with a small SRAM and a core or PE. PEs directly access

local memory and communicate asynchronously with other PEs

over a network.

There is a rich history of systems of this type, dating

back to the J-Machine [7, 20, 42, 58, 61]. There have been

recent efforts to develop such architectures in both industry,

including Cerebras [13] and Groq [1], and academia, including

Dalorex [44] and Tascade [45]. These architecture have been

used to accelerate workloads with low arithmetic intensity, like

unbatched LLM inference and graph processing. The Cerebras

Wafer-Scale Engine has even been used to accelerate sparse

iterative solvers [64]. However, this work is limited to the

narrow class of grid-structured problems, which are completely

regular.3 This limitation is due to Cerebras hardware features,

such as a circuit-switched NoC.

Dalorex [44] generalizes the Cerebras architecture for un-

structured problems like the ones Azul targets. It features

a packet-switched 2D-torus, and uses simple in-order cores

as its processing elements. Dalorex is evaluated on sparse

algorithms (graph processing, SpMV) with large unstructured

inputs, where it achieves large speedups. However, Dalorex is

not optimized for sparse iterative solvers. Despite its all-SRAM

architecture with vastly more memory bandwidth, Fig. 9 shows

that a 4096-core 2 GHz Dalorex design running PCG achieves

limited speedups over GPUs, with at most 187 GFLOP/s, 1%

of its peak throughput (16 TFLOP/s, since each core can do 1

FMAC/cycle, and each FMAC is 2 FLOPs).

We select Dalorex as a baseline because it is the state-of-

the-art all-SRAM accelerator that targets unstructured sparse

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0

50

100

150

G
F
L
O
P
/s

0.00

0.25

0.50

0.75

1.00

Fig. 9: Dalorex performance
running PCG.

computations. But Dalorex

suffers from two performance

bottlenecks that make it ill-

suited for sparse iterative

solvers. First, its data map-

ping strategy causes exces-

sive network traffic, making

solvers NoC-bound. Map-

ping operand values (matrix

nonzeros and vector elements)

across tiles completely deter-

mines the amount of inter-tile

data transfer over the NoC.

3In a grid-structured problem, the system is modeled as a regular n-
dimensional grid. While the resulting A matrix is sparse, is has a completely
regular structure. For example, in a 2D grid, each point (i, j) has four neighbors
(i±1, j±1), so each row of A has four nonzeros at fixed offsets. Thus, solvers
like Cerebras’s map grid points to PEs and do not even materialize the matrix.
But in many cases, e.g., when simulating a car or a floppy-eared bunny, the A

matrix encodes an unstructured mesh and is irregular.

cr
an
ks
eg
1

m
t1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0

2500

5000

7500

10000

G
F
L
O
P
/s

Round robin mapping

Block mapping

Azul mapping

Fig. 10: Performance on PCG of
Azul with idealized PEs under
different mapping strategies.

cr
an
ks
eg
1

m
t1

sh
ip
se
c1

co
ns
ph

th
er
m
al
2

ap
ac
he
2

0.00

0.25

0.50

0.75

1.00

N
o
rm

a
li
ze
d
L
in
k
A
ct
iv
a
ti
o
n
s

Round robin mapping

Block mapping

Azul mapping

Fig. 11: NoC traffic on PGC
under different mapping strate-
gies.

Dalorex’s mapping strategy, which we call Round Robin

Mapping, partitions a data structure by listing all its nonzeros

in row-major order and then assigning each nonzero i to PE i

mod P, where P is the number of PEs. Tascade [45] adopts a

variation on this approach, which we call Block Mapping, that

constructs the same list of nonzeros but instead maps sequential

blocks of ⌈ nnz
P
⌉ nonzeros to each PE. High-performance

computing systems use similar techniques (see Sec. IV-E). Both

Round Robin and Block Mapping strategies are sparsity-pattern

agnostic, grouping nonzeros purely based on their position in

the row-major enumeration, not their matrix coordinates. As

a result, they achieve poor reuse within each tile, forcing PEs

to frequently communicate data over the NoC. This severely

limits system performance. Fig. 10 and Fig. 11 show the NoC

bottleneck in detail. To focus the discussion on network traffic

as a driver of performance, we present the results of running

PCG with Round Robin, Block, and Azul mappings on hardware

that uses idealized PEs that run each task as fast as possible.

Despite this idealization, the Dalorex and Tascade mappings

deliver only a fraction of peak compute throughput (Fig. 10)

due to their much higher network traffic (Fig. 11). In Sec. IV,

we present Azul’s data mapping strategy, which dramatically

reduces NoC traffic.

Secondly, Dalorex’s in-order cores suffer from high control

overhead when executing iterative solvers. Computation in

iterative solves features frequent address calculations and

branches. Thus, when compiling to a CPU program, the large

majority of instructions being executed are not computing

numeric results. Such high overheads result in limited floating-

point instruction throughput. In Sec. V, we present Azul’s

more specialized PE architecture that is designed to avoid these

overheads.

More specialized accelerators: FDMAX [38] is an accelerator

to solve PDEs using the finite difference method (FDM).

FDMAX uses a custom iterative solver highly specialized to

its problem domain. Importantly, FDMAX only targets grid-

structured sparsity (like Cerebras), a regular problem. FDMAX

is built around FDM-specific optimizations and follows a

systolic design to exploit problem structure. Despite being more

specialized, FDMAX is only 2.9× faster than ALRESCHA, as

it suffers the same bottleneck: memory bandwidth.

IV. AZUL DATA MAPPING ALGORITHM

In this section, we show that effective data placement is

essential to high performance and present Azul’s hypergraph-

partitioning-based data mapping algorithm, which greatly re-

duces NoC traffic and makes most matrices compute-bound.

A. Dataflow Execution of Azul Kernels

We first show how communication arises in Azul. Azul

kernels are structured as a dataflow graph of tasks. All memory

accesses are local, and inter-tile communication occurs when a

task on one tile sends a message to another, which triggers a

task on the destination tile.

We illustrate our approach using SpMV as an example.

Suppose we want to compute the matrix-vector product shown

in Fig. 12 on a toy 2×2-tile Azul system. Operands are mapped

across the four tiles, so each tile holds only a subset of M, v,

and y values. Fig. 14 shows an example mapping.

Fig. 13 shows the corresponding dataflow graph of tasks for

SpMV given the illustrated mapping. Each task is a small piece

of computation that is triggered by the arrival of a message from

the parent task, which may involve sending messages to trigger

child tasks. Task execution is local to a specific tile. There are

three types of tasks for SpMV: (1) Initially, each tile sends the

input vector elements that it holds to other tiles that need them.

Specifically, each v j is multicast to tiles holding a nonzero

from M’s jth column, using SendV tasks. (2) Receiving each

v j triggers a ScaleAndAccumCol task (SAAC in Fig. 13), which

multiplies v j with all the local M nonzeros from the jth-column

and accumulates these results into local per-row partial sums.

Listing 2 shows the pseudocode of the ScaleAndAccumCol task.

When all local values for the ith row of M have been updated,

if the final value yi is mapped to a different tile, the partial

sum ti is sent to the tile. (3) Finally, each received partial sum

triggers a ReduceY task that accumulates it into the final sum.

As an example, consider the ScaleAndAccumCol task executed

on Tile10, marked in red in Fig. 13. Since Tile10 holds M20

and M30, Tile00 first sends v0 to Tile10, as shown in Fig. 14,

The arrival of v0 triggers the ScaleAndAccumCol task. The task

multiplies v0 with M20 and M30 and accumulates their results

into local partial sums for rows 2 and 3, respectively, as shown

in Fig. 15. Tile10 is the home tile for y2, so it will receive row-

2 partial sums from other tiles. However, the home for y3 is

Tile11, so Tile10 sends its row-3 partial sum, t3, to Tile11. Fig. 15

shows these messages, which implement inter-tile reductions.

Execution concludes after all reductions finish, with the result

vector y stored distributed in its assigned tiles.

To write a kernel in this dataflow manner, a programmer

defines a set of tasks and a set of message types, and then

specifies the types of messages that can trigger each task and

the messages that each task can send. SpTRSV has a task similar

to SpMV’s ScaleAndAccumCol that is triggered by multicasting

solved variables, as well as additional tasks to solve the variable

and write the final result. Implementing iterative solvers also

involves some kernels beyond SpMV and SpTRSV, such as dot-

products, but these kernels consume a small fraction of overall

execution time and are thus less relevant to performance.

𝑀00 𝑀02𝑀03𝑀11𝑀20 𝑀22𝑀30 𝑀33

𝑣0𝑣1𝑣2𝑣3
𝑦0𝑦1𝑦2𝑦3

=

Fig. 12: An example sparse matrix-vector
product (SpMV) computing y = Mv.

y0

y1

y2

y3Message
Self-triggered task
Worked Example

SAAC(PE01)

SAAC(PE00)

SAAC(PE01)

SAAC(PE10)

SAAC(PE11)

SAAC(PE11)

SAAC(PE00)

ReduceY(PE00)

ReduceY(PE01)

ReduceY(PE10)

ReduceY(PE11)

ReduceY(PE00)

ReduceY(PE00)

ReduceY(PE10)

ReduceY(PE11)

SendV(v0)

PE00

SendV(v1)

PE01

SendV(v2)

PE10

SendV(v3)

PE11

Fig. 13: Dataflow graph of tasks for the
SpMV example.

Tile00

𝑀00 𝑀02 𝑦0
Tile01

𝑀03𝑀11 𝑦1
𝑣1

Tile10

𝑀20𝑀30
𝑦2

𝑣0

𝑣2 Tile11

𝑀22𝑀33 𝑦3

𝑣3

Fig. 14: Executing the SpMV from Fig. 12
on a 4 × 4 array of Azul PEs requires
multicasting values v j to tiles holding any
nonzeros from M’s jth column.

Tile00

𝑀00 𝑀02 𝑦0
Tile01

𝑀03𝑀11
𝑡0𝑦1

𝑣1

Tile10

𝑀20𝑀30
𝑦2𝑡3

𝑣0

𝑣2 Tile11

𝑀22𝑀33
𝑡2𝑦3

𝑣3

Fig. 15: Each PE keeps a partial sum for
each row of nonzeros it stores. If a partial
sum ti is computed on a PE that is not yi’s
home PE, an inter-PE reduction is needed.

void ScaleAndAccumCol(msg_t msg) {

int n = *msg.col_start;

for (int idx = 1; idx <= n; idx++) {

M_val_t Mij = *(msg.col_start + idx);

ps_t* ps = &partial_sums[Mij.row];

ps->val += (msg.val * Mij.val);

if (--ps->updates_remaining == 0)

send(ps->dest, ps->val);

}

}

Listing 2: The dominant task (ScaleAndAccumCol) in SpMV

This example shows that the amount of inter-tile traffic is

determined by how data are mapped across tiles. Good mappings

improve locality, so that more tasks can trigger local child tasks

instead of sending messages to other tiles.

B. Data Mapping Problem Formulation

The objective of our data mapping algorithm is to maximize

performance subject to three constraints: (1) limited capacity

at each tile’s small memory, making it important to load-

balance data across tiles; (2) limited network bandwidth,

making it important to minimize communication; and (3)

data dependences, making it important to avoid unnecessary

serialization.

We first discuss our basic formulation of the mapping

problem, which optimizes for objectives (1) and (2), and then

extend it to handle objective (3). Azul’s mapping approach

partitions all data structures in the kernel (e.g., the input matrix,

input vector, and output vector for SpMV) simultaneously, with

the goal of partitioning such that we maximize locality among

data elements that are involved in the same computation.

In the SpMV example, each element of the input vector v j

forms a communication set with all the nonzeros in column j

of the input matrix, because v j must be multiplied with each of

them. Similarly, each element of the output vector yi forms a set

with all nonzeros in row i of the matrix. If all data values in a

set are co-placed on the same tile, no inter-tile communication is

needed. However, if values are spread across multiple tiles, each

input vector element must be sent to the other tiles containing

data from its set and each partial sum must be reduced into

the tile containing the corresponding output vector element.

Inter-PE communication thus grows linearly with the number

of unique tiles containing elements from a communication set.

The same locality patterns hold for SpTRSV.

We represent these locality patterns using a hypergraph.

A hypergraph is a mathematical structure with vertices and

edges (like an ordinary graph) except that a hypergraph’s edges

(hyperedges) are between sets of vertices, instead of between

just two vertices as in an ordinary graph. In this hypergraph,

each element of each data structure is represented by a vertex,

and each communication set is represented by a hyperedge that

connects all of its elements. Fig. 16 (center) shows an example

hypergraph for SpMV on a small matrix. Each nonzero data

element is a node in the hypergraph, and orange and blue lines

represent hyperedges connecting them.

Since each hyperedge connects elements of a communication

set, hyperedges encode locality and represent the one-to-many or

many-to-one communication that would occur over the network

if the vertices in the set were placed on different PEs. Note that

placing vertices in a set across N tiles induces N −1 messages.

Thus, our goal is to keep each communication set restricted

to as few tiles as possible—other factors, like the number of

vertices mapped to each tile, do not affect communication.

Armed with this representation of the data structures, the

mapping problem reduces to finding a partitioning of this

hypergraph that load-balances vertices (matrix and vector values)

while minimizing the total number of cuts of hyperedges across

partitions. Minimizing edge-cut corresponds to maximizing row

and column locality, since cutting an edge increases the number

of unique tiles whose computation involves that row or column.

Fortunately, efficient hypergraph partitioning algorithms have

been developed, which we can leverage [12, 34, 52]. Fig. 16

(right) shows an example of partitioning our small example

hypergraph into three PEs using this approach. This particular

example actually achieves the minimum possible number of

hyperedge cuts given balanced partition sizes.

𝑀00 𝑀02𝑀03𝑀04𝑀11 𝑀15𝑀20 𝑀22 𝑀25𝑀30 𝑀33 𝑀34𝑀40 𝑀43𝑀44𝑀45𝑀51𝑀52 𝑀54𝑀55
constructed hypergraphSpMV operands partitioned hypergraph (P = 3)

𝑀00 𝑀02 𝑀03 𝑀04𝑀11𝑀20 𝑀22𝑀30 𝑀33 𝑀34𝑀40 𝑀43 𝑀44

𝑀15𝑀25
𝑀45𝑀51 𝑀52 𝑀54 𝑀55

𝑦0
𝑦2𝑦3𝑦4

𝑦1

𝑦5

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑀00 𝑀02 𝑀03 𝑀04𝑀11𝑀20 𝑀22𝑀30 𝑀33 𝑀34𝑀40 𝑀43 𝑀44

𝑀15𝑀25
𝑀45𝑀51 𝑀52 𝑀54 𝑀55

𝑦0
𝑦2𝑦3𝑦4

𝑦1

𝑦5

𝑣0 𝑣1 𝑣2 𝑣3 𝑣4 𝑣5𝑣0𝑣1𝑣2𝑣3𝑣4𝑣5

𝑦0𝑦1𝑦2𝑦3𝑦4𝑦5
=

𝑦 = 𝑀 ∙ 𝑣
.

𝑣

𝑦𝑀

𝑣

𝑦𝑀
Fig. 16: Hypergraph partitioning formulation for an SpMV. In the eventual partitioned hypergraph,
different vertex colors represent placement into different partitions.

0 2000 4000 6000
Cycle

0

1000

2000

3000

4000

In
st
ru
ct
io
n
s
Is
su
ed

Nonzero Balancing
Time Balancing (5 quantiles)

Fig. 17: Effect of time balancing on
consph lower triangle SpTRSV.

C. Extensions for Limited Parallelism

We now introduce an extension to our hypergraph formulation

of the mapping problem that incorporates objective (3), i.e.,

maximizing parallelism in the face of data dependences, which

is important to avoid unnecessary serialization.

Partitioning using only locality and data balance as objectives

can cause poor load balance in time. For example, hypergraph

partitioning can fill specific Azul tiles with computations that are

all either early or late in the dataflow graph’s topological order.

This results in long tails where a single PE holds up the kernel’s

completion. Fig. 17 shows a clear example of this when running

PCG on the consph matrix. Our basic hypergraph partitioning

formulation distributes the computation well in terms of locality,

but poorly in terms of temporal load balance.

To integrate temporal load balancing into the hypergraph

partitioning’s objective, we bucket all nodes into q quantiles

based on their associated arithmetic operation’s depth (in

the dataflow graph’s topological order). Existing hypergraph

partitioning algorithms allow for multiple balance constraints,

so instead of simply balancing all elements across partitions,

we apply a constraint to balance the elements in each quantile

across partitions.

Fig. 17 shows how using this technique with q= 5 eliminates

a long tail of instructions caused by PEs that are overloaded

with tasks that run late in the kernel, yielding a 3.5× speedup

on a single SpTRSV. Time-balancing helps when parallelism is

limited and dependences are common (e.g., in SpTRSV), but

does not help if parallelism is plentiful and the dataflow graph

is shallow (e.g., in SpMV).

Finally, non-local reductions are more expensive than mul-

ticasts for two reasons: (1) non-local reductions incur an

additional standalone Add operation that would otherwise be

fused into an FMAC, and (2) in SpTRSV, reduction messages

can be delayed due to queuing, delaying parallelism-revealing

variable eliminations. To address this, we assign a larger weight

to row hyperedges than column hyperedges, modeling this cost

and discouraging breaking up rows instead of columns.

D. Generating Communication Patterns

Once data has been partitioned and placed, inter-tile com-

munication patterns and PE tasks can be generated.

Implementing multicasts and inter-tile reductions naively

using point-to-point messages, as shown in Fig. 18 (left) would

cause two inefficiencies. First, it would cause redundant network

00

10

20

30

40

50

60

70

01

11

21

31

41

51

61

71

02

12

22

32

42

52

62

72

03

13

23

33

43

53

63

73

04

14

24

34

44

54

64

74

05

15

25

35

45

55

65

75

07

17

27

37

47

57

67

77

06

16

26

36

46

56

66

76

00

10

20

30

40

50

60

70

01

11

21

31

41

51

61

71

02

12

22

32

42

52

62

72

03

13

23

33

43

53

63

73

04

14

24

34

44

54

64

74

05

15

25

35

45

55

65

75

07

17

27

37

47

57

67

77

06

16

26

36

46

56

66

76

direct point-to-point messages multicast trees

Fig. 18: Azul uses multicast trees to distribute values, avoiding
redundant traffic over many point-to-point messages.

traffic. For example, in Fig. 18, Tile33 must send a message

to four other tiles, three of which are to its left (Tile11, Tile31,

Tile61). Sending separate messages would either use send

three identical messages over the same east-west link, or use

3× as many east-west links as needed. Secondly, sending

separate point-to-point messages may introduce serialization

that lengthens an algorithm’s critical path. For example, in both

SpMV and SpTRSV, a single PE may be responsible for sending

a value to hundreds or even thousands of other tiles. Sending

these messages individually adds cycles and hurts performance.

Instead, Azul’s compiler creates communication trees to avoid

these problems. Multicast trees are shown in Fig. 18 (right). In

this example, Tile33 send a single east-west message to Tile31,

which forwards it north and south. The above also applies to

reductions, where Azul implements reduction trees.

E. Hypergraph Partitioning in High-Performance Computing

While prior work [66] has used hypergraph partitioning

for partitioning sparse matrices across GPU nodes on simple

problems (i.e., SpMV), we are the first to apply it to splitting

data within a single chip and the first to use it on parallelism-

constrained problems like SpTRSV. Furthermore, these methods

have achieved limited adoption due to mismatches between the

partitioning formulation and the hardware and software con-

straints. GPUs lack the support for fine-grained communication

necessary to make these methods effective. Papers exploring

these techniques [46] explicitly state that these communication

overheads are the key obstacle to wider adoption. These meth-

ods are therefore not supported by major scientific computing

packages such as Petsc [41]. Instead, most high-performance

computing systems, including distributed-memory systems in

MPI environments, partition sparse computations across nodes

using variants of Block Mapping [32, 40, 46].

V. AZUL MICROARCHITECTURE

Azul’s mapping strategy removes the network bottleneck by

minimizing inter-tile communication. In this section, we discuss

how Azul’s hardware architecture then removes computation

bottlenecks via specialization and fine-grained multithreading.

As illustrated in Fig. 19, Azul hardware is a tiled architecture

with distributed memories. Each tile consists of a tightly inte-

grated processing element (PE) and two scratchpad memories,

as well as a router to communicate with other tiles through an

on-chip network. The two SRAMs store data and program state,

and are small (taking 108 KB per tile). This allows fast and low-

energy accesses. Azul achieves high throughput by scaling to a

large number of tiles (4096 in our implementation). This also

provides high aggregate on-chip memory capacity (432 MB),

and bandwidth (192 TB/s). Table III details the parameters and

performance figures of our evaluated Azul configuration.

Azul’s PEs execute tasks when triggered by the arrival of

messages over the NoC. This message-driven approach is widely

used in prior work [42, 47, 60]. However, the prior system

targeting unstructured sparsity, Dalorex, uses general-purpose

in-order cores as PEs, leading to high control overheads and

low floating-point unit utilization.

A. Azul Tile

The Azul tile is designed to support dataflow execution of

task graphs. A router connects the tile to the on-chip network

and is responsible for sending and receiving messages, which

trigger tasks. The multithreaded PE is designed to execute

tasks with minimal control overhead and stalls. A Data SRAM

(72 KB) holds input operands (matrix and vector values) and

an Accumulator SRAM (36 KB) holds partial results. They are

both 96-bit wide, allowing a 64-bit floating-point value and 32

bits of metadata to be accessed each cycle.

The Azul PE is designed to maximize the throughput of

arithmetic operations, obtaining one arithmetic operation per

cycle. It achieves this primarily through specialized control flow.

We recognize that when SpMV and SpTRSV are executed

in the dataflow manner described in Sec. IV, the dominant

tasks in each kernel share the same control flow pattern

and can be implemented using just FMAC operations and

a custom Send operation. We discuss here this dominant

control flow pattern and later extend the PE to support the

remaining tasks in the SpMV and SpTRSV kernels. In SpMV,

the dominant task is the ScaleAndAccumCol task (Listing 2).

SpTRSV has a similar dominant task with identical control flow.

The SpTRSV task is triggered by multicasting solved variables,

and involves multiplying the solved variables by local column

values, accumulating them to partial sums, and sending partial

sums to the tiles that hold corresponding diagonal elements.

The shared control flow pattern is thus as follows: (1) at

the start of a task, the number of arithmetic operations to

be done (i.e., the for-loop count) given the received column

index is determined by the number of local M nonzeros in

that column (i.e., the result of the first memory access); (2)

arithmetic operations (FMAC in this case) are executed; and

(3) a branch at the end of each loop iteration (resolved at the

Tile00 Tile05 Tile01 Tile04 Tile02 Tile03

Tile50

Tile10

Tile40

Tile20

Tile30

Router
Network-to-PE

Interface

PE-to-Network

Interface

Data

SRAM

Operation

Generator

FSM

Issu
e Accumulator

SRAM

FP64 ALUD
isp

a
tch

RAW Conflict

Detection

stall

Tileij

Op queue

Fig. 19: View of a 6×6 Azul system showing the 2D-torus NoC
as well as a more detailed Azul tile diagram.

Clock Frequency 2 GHz
Tiles 64×64 (4096 total)
Scratchpads (72+36) KB SRAMs/Tile (432 MB total),

2 cycles per memory access, pipelined
Network 2D Torus, 96-bit links, 1 cycle/hop

Aggregate Compute Throughput 16 TFLOP/s (1 FMAC / PE / cycle)
Aggregate Scratchpad Bandwidth 192 TB/s (192 bits / PE / cycle)
NoC Bisection Bandwidth 6 TB/s

7-stage PE pipeline: Decode (1 stage); Data SRAM access (2 stages); Compute
and accumulator SRAM read (4 stages: accumulator read and FMAC are
partially overlapped, the fist two stages complete the read, and the last two
perform the floating-point accumulation); Writeback/send (1 stage).

TABLE III: Parameters of our evaluated Azul configuration.
Azul achieves high throughput and on-chip memory capacity
by integrating a large number of simple PEs.

output of the ALU) determines whether to send a message. Azul

hardens this control flow pattern into the control logic of each

PE’s simple scalar pipeline. Such specialization significantly

improves arithmetic throughput over a general-purpose core,

which uses bookkeeping instructions that occupy pipeline slots.

We now describe the key features of the Azul PE, which

is designed around making this dominant control flow pattern

fast. We extend it later in this section to incorporate lightweight

multithreading and other tasks. Fig. 19 shows the fully pipelined

microarchitecture of the PE. The control flow pattern described

above maps to a sequence of FMAC operations. Each operation

contains two sequentially dependent memory reads, the first to

the Data SRAM (to fetch a nonzero and its row coordinate)

and the second to the Accumulator SRAM (to fetch the row’s

partial output). After reading from the Data SRAM, the pipeline

checks for data dependences (e.g., an in-flight operation for the

same accumulator), then issues the operation, which reads the

Accumulator SRAM and performs the FMAC. Finally, the FMAC

result is either written back to the Acumulator SRAM or sent

to another tile; to allow this, the final pipeline stage connects

directly to the router.

In addition to specialized control flow, Azul also uses fine-

grained multithreading to achieve high throughput. This is

essential because even with a specialized control flow, data

dependences can still cause stalls. For example, multiple SpMV

ReduceY tasks in a row could accumulate partial results to

the same y element consecutively, creating a data dependence.

We extend the PE design described above to keep the FMAC

unit highly utilized. To support multithreading, we replicate

the operation generator context (one per task) and the PE’s

intermediate operation queue so that operations from multiple

tasks can be in-flight. Operations are chosen for execution

from the earliest task that has no dependences on other in-

flight operations. This ensures forward progress and avoids task

starvation. Such a design hides stalls and achieves a throughput

of one arithmetic operation per cycle.

The PE described above needs no additional hardware to

execute all other tasks in SpMV and SpTRSV. We simply

extend the operation generator FSM to produce two new

simpler operations, Add and Mul, which flow through the same

pipeline and use minimal additional logic to skip unnecessary

functionalities (e.g., reading the Accumulator SRAM in Mul).

Tasks like SendV and ReduceY map to 1–2 Add/Mul/Send

operations.

Each tile contains a small register-based buffer for storing

incoming messages. To avoid deadlocks, if the buffer becomes

full, additional incoming messages are spilled to the Data

SRAM.

B. On-chip Network

Azul uses a 2D-torus network topology. Each PE has its own

router. Each cycle, the router is able to receive a message on

all input queues and send a message on all output queues.

VI. EVALUATION

We evaluate Azul on preconditioned conjugate gradients

(PCG) with an incomplete-Cholesky preconditioner. PCG is

commonly used and is representative of many other iterative

solvers, which consist of SpMV and SpTRSV (Sec. II-B).

A. Experimental Methodology

Simulation infrastructure: We evaluate Azul using a cycle-

level simulator with detailed timing models for the PEs and

network. We model each hardware component as an object and

tick each object for each cycle, thus simulating execution cycle-

by-cycle. We faithfully simulate contention in the network and

operation interleaving in PEs due to multithreading. We ensure

functional correctness by checking the simulator’s PCG results

against a reference implementation [3].

We use RTL synthesis for Azul’s custom PE, and standard

modeling tools for the other components, combined with activity

factors from simulation, to obtain area and power figures in

7nm technology, as detailed in Sec. VI-E.

Simulated system: By default, we model the 4096-tile Azul

configuration in Table III. Sec. VI-G evaluates larger designs.

We implement PCG as shown in Listing 1, with dataflow

tasks as detailed in Sec. IV. To remove long-latency floating

point divisions from the computation’s critical path, we store

all diagonal elements d in memory as 1
d

.

Baselines: We compare Azul with three baseline architectures:

1. GPU is an NVIDIA V100 PCIe GPU running Ginkgo [3], a

state-of-the-art linear algebra library, to execute PCG with an

incomplete Cholesky preconditioner.

Matrix n nnz A b Matrix n nnz A b

s3dkt3m2 9.04e4 3.75e6 29 1 G3 circuit 1.59e6 7.66e6 59 13
cant 6.25e4 4.01e6 31 1 shipsec1 1.41e5 7.81e6 60 2
offshore 2.60e5 4.24e6 33 2 thermal2 1.23e6 8.58e6 66 10
pdb1HYS 3.64e4 4.34e6 34 1 m t1 9.76e4 9.75e6 75 1
thread 2.97e4 4.47e6 35 1 crankseg 1 5.28e4 1.06e7 81 1
apache2 7.15e5 4.82e6 37 6 bmwcra 1 1.49e5 1.06e7 82 2
ecology2 1.00e6 5.00e6 39 8 hood 2.21e5 1.08e7 83 2
tmt sym 7.27e5 5.08e6 39 6 pwtk 2.18e5 1.16e7 89 2
consph 8.33e4 6.01e6 46 1 BenElechi1 2.46e5 1.32e7 101 2
boneS01 1.27e5 6.72e6 52 1 nd12k 3.60e4 1.42e7 109 1

af 1 k101 5.04e5 1.76e7 134 4 Emilia 923 9.23e5 4.10e7 313 8
af shell8 5.05e5 1.76e7 135 4 ldoor 9.52e5 4.65e7 355 8
bundle adj 5.13e5 2.02e7 155 4 Hook 1498 1.50e6 6.09e7 465 12
msdoor 4.16e5 2.02e7 155 4 Geo 1438 1.44e6 6.32e7 482 11
StocF-1465 1.47e6 2.10e7 161 12 Serena 1.39e6 6.45e7 493 11
Fault 639 6.39e5 2.86e7 219 5 bone010 9.87e5 7.17e7 547 8
inline 1 5.04e5 3.68e7 281 4 audikw 1 9.44e5 7.77e7 593 8
PFlow 742 7.43e5 3.71e7 284 6

Flan 1565 1.56e6 1.17e8 896 12 Queen 4147 4.15e6 3.29e8 2514 32
Bump 2911 2.91e6 1.28e8 975 23

TABLE IV: Benchmark matrices used in the evaluation. Matrices
in the first section fit in 4K tiles, matrices in the mid section fit
in 16K tiles, and matrices in the bottom section fit in 64K tiles.
The A and b columns report matrix and vector SRAM footprints,
respectively, in MB.

2. ALRESCHA [4] is a prior accelerator for iterative solvers

(Sec. III). We model it as a full-utilization accelerator that

completely saturates its 288 GB/s main-memory bandwidth, and

achieves perfect reuse on all vectors, so that the only memory

traffic is from the sparse matrices in SpMV and SpTRSV. This

generously overestimates ALRESCHA’s actual performance.

3. Dalorex is modeled using the same configuration as Azul

(Table III), except that each PE is a scalar RISC-V core. The

core has a fully pipelined FPU that can do FMACs, ensuring the

same peak throughput as Azul. Sends take a single instruction.

We compile each task using gcc with -O3.

Data Mapping algorithms: We implement Azul’s data map-

ping algorithms using PaToH v3.3 [12] to perform hypergraph

partitioning. Sec. VI-C compares with prior works’ mapping

algorithms.

Input matrices: Because PCG works on symmetric positive-

definite (SPD) matrices, we select large SPD matrices from

SuiteSparse [19]. For most of the evaluation, we use the 20

largest SPD matrices that fit in 4096-tile Azul’s memory, shown

in Table IV.4 They come from diverse domains such as circuit

simulation, finite-element modeling, and computer vision.

In Sec. VI-G, we evaluate scaled-up Azul designs with 4×
and 16× more memory. These designs fit all the largest SuiteS-

parse matrices (Table IV), which we use in these experiments.

We color and permute matrices with networkx.greedy -

coloring [29] to increase available SpTRSV parallelism.

B. Performance Analysis

Speedup comparison: Fig. 20 shows the speedups of Azul,

ALRESCHA, and Dalorex over the GPU baseline when running

PCG. Matrices in this and later figures are sorted by their avail-

able parallelism (parallelism grows from left to right). As seen

4We remove near-duplicate matrices, e.g., we only take one (af shell).

th
re
ad

pd
b1
H
Y
S

nd
12
k

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

ca
nt

s3
dk
t3
m
2

bo
ne
S0
1

co
ns
ph

bm
w
cr
a
1

ho
od

pw
tk

B
en
E
le
ch
i1

off
sh
or
e

tm
t
sy
m

th
er
m
al
2

ap
ac
he
2

G
3
ci
rc
ui
t

ec
ol
og
y2

0

50

100

150

200

250

300

S
p
ee
d
u
p
o
v
er

G
P
U

GPU ALRESCHA Dalorex Azul

Fig. 20: End-to-end speedup comparison with baselines on PCG.

in the figure, Azul significantly outperforms all baselines, with

a gmean speedup of 217× over GPU, 159× over ALRESCHA

and 90× over Dalorex. Azul achieves gmean 7,640 GFLOP/s,

ranging from 2,541 GFLOP/s (nd12k) to 11,755 GFLOP/s

(BenElechi1).

Each matrix’s performance depends largely on its sparsity

pattern. The sparsity pattern determines both the total available

parallelism as well as the available row and column locality. All

figures have matrices sorted left to right in order of increasing

parallelism. Some matrices, specifically thread, nd12k, and

crankseg 1 are parallelism-bound (even with parallelism-

improving preprocessing), which limits their compute through-

put. Nonetheless, Azul’s architecture and mapping strategy

provide large speedups over all baselines. On the other end of the

spectrum, many high-parallelism matrices such as G3 circuit

and ecology2 have only ≈ 5 nonzeros per row, so per-row

fixed costs (message sending) become noticeable.

Note that achieving these throughputs without inter-iteration

reuse of the matrices would require around 6 GB/s of off-chip

memory bandwidth for every 1 GFLOP/s achieved—a totally

infeasible 71 TB/s for BenElechi1.

PE cycle breakdown: Fig. 21 shows the breakdown of

cycles spent in the Azul PEs. Overall, the PE achieves high

throughput arithmetic operations (over 40% of cycles are spent

on FMAC operations on almost all inputs). Stalls can be primarily

attributed to limited parallelism in the SpTRSV kernel. Due to

having few nonzeros per row, thermal2 and apache2 spend

a higher fraction of time on reductions (i.e., sends and adds).

Breakdown by kernel: Fig. 22 shows the breakdown of cycles

spent on SpMV, SpTRSV, and other vector operations for PCG.

With Azul’s acceleration, SpMV and SpTRSV are still the

dominant phases of the computation. Because SpMVs have

ample parallelism, they achieve consistently high performance

across our test matrices. On the other hand, parallelism-limited

SpTRSVs are slower and thus take a larger fraction of runtime.

C. Azul Data Mappings

To understand the impact of Azul’s data mapping strategy,

we compare against several baselines. Recall that Dalorex

uses the Round Robin mapping and both Tascade and many

distributed MPI-based systems use the Block mapping. Both

of these approaches are examples of position-based [57]

partitioning: data values are placed into partitions based on

their position in the data’s enumerated representation. These

th
re
ad

pd
b1
H
Y
S

nd
12
k

cr
an
ks
eg
1
m
t1

sh
ip
se
c1
ca
nt

s3
dk
t3
m
2

bo
ne
S0
1

co
ns
ph

bm
w
cr
a
1

ho
od
pw
tk

B
en
E
le
ch
i1

off
sh
or
e

tm
t
sy
m

th
er
m
al
2

ap
ac
he
2

G
3
ci
rc
ui
t

ec
ol
og
y2

0.0

0.2

0.4

0.6

0.8

1.0

C
y
cl
e
B
re
a
k
d
o
w
n

Add Fmac Send Mul Stalls

Fig. 21: End-to-end cycle breakdown of Azul PE.

th
re
ad

pd
b1
H
Y
S

nd
12
k

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

ca
nt

s3
dk
t3
m
2

bo
ne
S0
1

co
ns
ph

bm
w
cr
a
1

ho
od

pw
tk

B
en
E
le
ch
i1

off
sh
or
e

tm
t
sy
m

th
er
m
al
2

ap
ac
he
2

G
3
ci
rc
ui
t

ec
ol
og
y2

0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
ze
d
R
u
n
ti
m
e

Vector Ops

SpMV

SpTRSV

Fig. 22: End-to-end runtime breakdown by kernel.

approaches are fast to compute and balance data per-partition

by construction. However, they do not account for the target

algorithm’s communication patterns.

Prior work has separately proposed coordinate-based [57]

partitioning approaches. These approaches place data values

into partitions based on their coordinate in the data structure,

regardless of the underlying hardware representation (e.g.,

compressed or uncompressed). SparseP [23] is a state-of-the-

art hardware accelerator that uses coordinate-based partitioning.

It creates chunks that are contiguous in coordinate-space and

are of roughly equal size. It achieves this by first dividing the

matrix into
√

P chunks of contiguous columns (where P is

the total number of partitions) such that each chunk contains

(approximately) the same number of nonzeros. Then, it further

subdivides each column chunk into
√

P chunks of contiguous

rows such that each has the same number of nonzeros. This

produces P final chunks, each with roughly the same number

of nonzeros. Each partition contains rows and columns that are

contiguous in coordinate-space, but each partition may contain

a variable number of rows and columns. We select SparseP as a

baseline to represent coordinate-based partitioning approaches.

Fig. 23 shows Azul’s end-to-end throughput against all the

baseline mappings on PCG. Azul widely outperforms baseline

mappings on every matrix: it outperforms Round Robin by

gmean 10.2×, Block by 13.5×, and SparseP by 25.2×.

These large speedups happen because prior methods are based

on non-robust assumptions about matrix structure. Namely, they

only effectively minimize inter-partition communication if a

matrix is spatially correlated, i.e., adjacent rows contain similar

nonzero column coordinates. In some cases, this assumption

holds; SparseP and Block mappings are then somewhat suited to

SpMV. However, this assumption does not hold universally. As a

th
re
ad

pd
b1
H
Y
S

nd
12
k

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

ca
nt

s3
dk
t3
m
2

bo
ne
S0
1

co
ns
ph

bm
wc
ra
1
ho
od

pw
tk

Be
nE
lec
hi
1

off
sh
or
e

tm
t
sy
m

th
er
m
al
2

ap
ac
he
2

G
3
cir
cu
it

ec
ol
og
y2

0

2500

5000

7500

10000

12500

15000
G
F
L
O
P
/s

Round robin mapping
Block mapping

SparseP mapping
Azul mapping

Fig. 23: End-to-end throughput comparison with prior mappings.

result, Azul’s mapping strategy achieves large reductions in NoC

traffic: gmean 66× over Round Robin, 46× over Block, and

34× over SparseP. Furthermore, prior methods are not designed

to efficiently handle triangular solves (or other computations

with data dependences).

D. Data Mapping Algorithm Costs

Azul’s data mapping approach is computationally expensive.

Across the benchmark matrices, it takes an average of 6.16

minutes to map each of them to Azul’s 4096 PEs. In contrast,

it takes on average 0.25 minutes to map matrices with Block

and 1.9 minutes to map them with Round Robin (Round

Robin is much more expensive than Block because reduction

trees become much more expensive to construct), and 0.6

minutes with SparseP. Despite Azul’s mapping algorithm taking

longer than baselines, this overhead is very well amortized:

computationally expensive numeric algorithms perform linear

solves at up to millions of timesteps, each using the same

mappings. Furthermore, the preprocessing overhead can be

amortized across different simulations using the same sparsity

pattern. For example, if a user is solving for turbulent flow over

an airplane wing in several situations, the connectivity of the

meshed wing will be unchanged across simulations.

Prior work [62] has gone much further than Azul in terms of

preprocessing costs: an FPGA-based accelerator, RSQP, goes as

far as specializing an entire FPGA design to each input sparsity

pattern, taking several hours per instance to compile.

Finally, Azul uses PaToH’s quality preset. If mapping time

is important, users could opt for a lower quality mapping by

using the default or speed presets.

E. Area and Power Estimation

Methodology: We derive Azul’s area and power at 7nm using

the following methodology. We implement Azul’s PE in RTL

and synthesize it on ASAP7 (7.5-track [17]) using Synopsys

Design Compiler with a 2 GHz target frequency.

For memory, we follow Dalorex’s methodology and use

figures from fabricated SRAM at 7nm [65], which achieves

29.2 Mb/mm2 (3.75 MB/mm2). To estimate SRAM energy, we

use CACTI [6] to model each tile’s memories. Since CACTI

supports nodes down to 22nm, we scale energy down to 7nm.

This yields 10.9 pJ per 96-bit read to a 36KB memory, which

is similar to published results [33].

th
re
ad

pd
b1
H
Y
S

nd
12
k

cr
an
ks
eg
1
m
t1

sh
ip
se
c1

ca
nt

s3
dk
t3
m
2

bo
ne
S0
1

co
ns
ph

bm
wc
ra
1
ho
od

pw
tk

Be
nE
lec
hi
1

off
sh
or
e

tm
t
sy
m

th
er
m
al
2

ap
ac
he
2

G
3
cir
cu
it

ec
ol
og
y2

0

50

100

150

200

250

P
ow

er
(W

)

Leakage

SRAM

NoC

Compute

Fig. 24: Power breakdown by component.

Component Area

PEs 4096 × 0.0043 mm2 = 17.8 mm2

Routers 4096 × 0.0016 mm2 = 6.6 mm2

SRAMs 4096 × 0.0281 mm2 = 115.2 mm2

I/O 15 mm2

Total 155 mm2

TABLE V: Azul area estimates.

For the network, we estimate router and link area and energy

using DSENT [56], which we scale from 22nm to 7nm, using

ASAP7 technology. The 2D torus NoC links are short (two

tile lengths, Fig. 19); and they use global wires that are routed

above logic. ASAP7 global wires achieve 112ps/mm, so link

traversal takes only 42ps, less than 10% of the cycle time.

Finally, for I/O, we conservatively estimate the area for

a 512GB/s interface by using the area of an HBM2e PHY,

15 mm2 [18, 48] (note that Azul has no off-chip memory).

Results: Table V shows the area breakdown of Azul. Overall,

our Azul configuration has modest area at 7nm, about 155mm2.

As expected, SRAM takes most area, 74%.

Fig. 24 shows Azul’s power consumption for each matrix,

broken down by component (SRAM, compute, and network).

We compute power by combining activity factors from simu-

lation with energies from RTL synthesis and modeling tools,

as described above. We include leakage and dynamic power.

Azul consumes 210 W on average, and up to 288 W. SRAMs

dominate energy due to the high rate of memory accesses.

Comparison with WSE-2: Estimating area and power in a

modern technology node is necessarily approximate as we lack

access to commercial PDKs and tools, like SRAM compilers.

This said, we believe these estimates are reasonable given

available details of fabricated designs. Specifically, the Cerebras

WSE-2, built in TSMC N7, takes 38,000µm2 per tile [39, slide

7]. Each tile has 48KB of SRAM, a core that’s substantially

more complex than Azul’s PE, and a router. Each tile has a

peak power of 30 mW at 1.1 GHz. Thus, a 4096-tile WSE-2

would take 155 mm2 with a TDP of 123 W; Azul’s peak power

is higher due to its higher frequency and SRAM capacity.

Since Azul is SRAM-dominated, it’s worth considering

alternative design points. WSE-2’s SRAM has somewhat lower

density than our estimate above, 2.6 MB/mm2 [39]. This is

likely because the WSE-2 SRAM is built from smaller (6KB)

banks to support two 128-bit reads and a write per cycle; even

using this SRAM, Azul would take 195 mm2, a reasonable area.

1 2 3 4
Network Hop

Latency (cycles)

0

2500

5000

7500

gm
ea
n
G
F
L
O
P
/s

Selected Other

Fig. 25: Network la-
tency sweep.

1 2 3 4
SRAM Access
Latency (cycles)

0

2500

5000

7500

gm
ea
n
G
F
L
O
P
/s

Selected Other

Fig. 26: SRAM access
latency sweep.

m
ul
ti

sin
gl
e

0

2500

5000

7500

gm
ea
n
G
F
L
O
P
/s

Selected Other

Fig. 27: Multithread-
ing.

nd
12
k
ho
od

Be
nE
lec
hi
1

th
er
m
al
2

m
sd
oo
r

af
sh
ell
8

in
lin
e
1

Fa
ul
t
63
9

af
1
k1
01
ld
oo
r

Em
ili
a
92
3

PF
lo
w
74
2

au
di
kw

1

G
eo
14
38

bo
ne
01
0

Se
re
na

H
oo
k
14
98

St
oc
F-
14
65

bu
nd
le
ad
j

0

10000

20000

30000

40000

G
F
L
O
P
/s

128 x 128 Tiles

Fits in 64 x 64 Tiles
Fits in 128 x 128 Tiles

nd
12
k
ho
od

Be
nE
lec
hi
1

th
er
m
al
2

Fa
ul
t
63
9
ld
oo
r

Em
ili
a
92
3

bo
ne
01
0

Fl
an
15
65

Bu
m
p
29
11

Q
ue
en
41
47

0

50000

100000

150000
G
F
L
O
P
/s

256 x 256 Tiles

Fits in 64 x 64 Tiles
Fits in 128 x 128 Tiles
Fits in 256 x 256 Tiles

Fig. 28: PCG performance for scaled up Azul systems.

F. Sensitivity to Hardware Parameters

To demonstrate Azul’s robustness to variations in hard-

ware implementation choices, we sweep the NoC hop latency

in Fig. 25 and SRAM access latency in Fig. 26. Increasing

NoC hop latency decreases in gmean throughput by 4% per

extra cycle, when simulating 1–4 cycles/hop. Increasing SRAM

latency decreases gmean throughput by 3% per extra cycle.

These show that Azul is barely sensitive to higher latencies.

In addition, we evaluate how much benefit our fine-grained

multithreading provides. Fig. 27 shows that multithreading

provides a 1.5× speedup over single-threaded PEs due to

avoiding stalls on data dependences, as described in Sec. V-A.

G. Scaling Up

One of Azul’s key limitations is that it can only accelerate

linear solves for matrices that fit in its distributed SRAM.

To solve larger problems, we must scale Azul up, moving to

multi-die or wafer-scale technologies. In Fig. 28 we show the

performance of running PCG on Azul configurations that are

4× and 16× larger than the default. We include matrices that

do not fit into the 64×64 tile version of Azul, as well as some

of the smaller system, to see how size affects scalability. The

16× larger system can fit all SuiteSparse matrices (Table IV).

In the 128×128-tile system, all but one matrix (nd12k) that

fit into the 64×64 tile system have a > 2× speedup. nd12k

is parallelism limited even on 4096 PEs, so it is not surprising

that its performance does not improve on larger systems.

Similarly, many matrices become parallelism limited when

moving from 128 × 128 to 256 × 256. Large matrices that

only fit into 256 × 256 tiles, however, achieve very high

throughput (up to 157 TFLOPs, 60% of peak), showing that

Azul’s techniques scale gracefully to large problem sizes.

VII. CONCLUSION

Iterative solvers for sparse linear systems of equations are an

important and performance-critical class of algorithms. However,

they are inefficient on existing architectures due to a lack of

intra-iteration data reuse and the need for low-latency fine-

grained synchronization. We have presented Azul, a hardware

accelerator with distributed on-chip memory that exploits reuse

across solver iterations and therefore overcomes the algorithms’

memory bottlenecks. To effectively utilize Azul’s hardware, we

also present novel parallelism- and communication-aware data

mapping algorithms. Through this hardware-software codesign,

Azul achieves 217× gmean speedup over a GPU baseline and

159× gmean speedup over a prior accelerator architecture.

ACKNOWLEDGMENTS

We thank Hyun Ryong Lee, Nikola Samardzic, Shabnam

Sheikha, Fares Elsabbagh, Maggie Du, Alex Krastev, Taewoo

Han, and our anonymous reviewers for their feedback on the

paper. We also thank Andrew Ilyas and Alex Cohen for their

valuable input on partitioning algorithms and Mark Hamilton

for his help with benchmarking. This work was funded in part

by the National Science Foundation under grant CCF-2217099,

and by a Wistron research grant.

REFERENCES

[1] D. Abts, J. Kim, G. Kimmell, M. Boyd, K. Kang, S. Parmar, A. Ling,
A. Bitar, I. Ahmed, and J. Ross, “The Groq software-defined scale-out
tensor streaming multiprocessor: From chips-to-systems architectural
overview,” in 2022 IEEE Hot Chips 34 Symposium (HCS), 2022.

[2] L. M. Adams and H. F. Jordan, “Is SOR color-blind?” SIAM Journal on

Scientific and Statistical Computing, 1986.
[3] H. Anzt, T. Cojean, G. Flegar, F. Göbel, T. Grützmacher, P. Nayak,

T. Ribizel, Y. M. Tsai, and E. S. Quintana-Ortı́, “Ginkgo: A modern
linear operator algebra framework for high performance computing,” ACM

Transactions on Mathematical Software (TOMS), 2022.
[4] B. Asgari, R. Hadidi, T. Krishna, H. Kim, and S. Yalamanchili, “AL-

RESCHA: A lightweight reconfigurable sparse-computation accelerator,”
in Proc. HPCA-26, 2020.

[5] O. Axelsson, “A generalized SSOR method,” BIT Numerical Mathematics,
1972.

[6] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and

Code Optimization (TACO), 2017.
[7] J. Balfour, W. Dally, D. Black-Schaffer, V. Parikh, and J. Park, “An energy-

efficient processor architecture for embedded systems,” IEEE Computer

Architecture Letters, 2008.
[8] J. Barbic, “Course notes FEM simulation of 3D deformable solids: A

practitioner’s guide to theory, discretization and model reduction. part 2:
Model reduction (version: August 4, 2012),” in SIGGRAPH, 2012.

[9] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the

solution of linear systems: Building blocks for iterative methods. SIAM,
1994.

[10] E. Bavier, M. Hoemmen, S. Rajamanickam, and H. Thornquist, “Amesos2
and Belos: Direct and iterative solvers for large sparse linear systems,”
Scientific Programming, 2012.

[11] J. Brown, “Efficient nonlinear solvers for nodal high-order finite elements
in 3D,” Journal of Scientific Computing, 2010.

[12] Ü. V. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs).” 2011.

[13] Cerebras Systems Inc., “The second generation wafer scale en-
gine,” https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-
Whitepaper.pdf, 2021.

[14] E. Chow, “Massive asynchronous parallelization of sparse matrix factor-
izations,” U.S. Dept. of Energy, Tech. Rep., 2018.

https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf
https://cerebras.net/wp-content/uploads/2021/04/Cerebras-CS-2-Whitepaper.pdf

[15] E. Chow and Y. Saad, “Experimental study of ILU preconditioners for
indefinite matrices,” J. Comput. Appl. Math., 1997.

[16] L. T. Clark, V. Vashishtha, D. M. Harris, S. Dietrich, and Z. Wang,
“Design flows and collateral for the ASAP7 7nm FinFET predictive
process design kit,” in Proc. of the 2017 IEEE International Conference

on Microelectronic Systems Education (MSE), 2017.
[17] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,

C. Ramamurthy, and G. Yeric, “ASAP7: A 7-nm FinFET predictive
process design kit,” Microelectronics Journal, 2016.

[18] S. Dasgupta, T. Singh, A. Jain, S. Naffziger, D. John, C. Bisht, and
P. Jayaraman, “Radeon RX 5700 series: The AMD 7nm energy-efficient
high-performance GPUs,” in Proc. of the IEEE International Solid-State

Circuits Conference (ISSCC), 2020.
[19] T. A. Davis and Y. Hu, “The University of Florida sparse matrix collection,”

ACM Transactions on Mathematical Software (TOMS), 2011.
[20] B. D. de Dinechin, “Kalray MPPA®: Massively parallel processor array:

Revisiting DSP acceleration with the kalray MPPA manycore processor,”
in 2015 IEEE Hot Chips 27 Symposium (HCS), 2015.

[21] J. W. Demmel, Applied numerical linear algebra. SIAM, 1997.
[22] A. Feldmann and D. Sanchez, “Spatula: A hardware accelerator for sparse

matrix factorization,” in Proc. MICRO-56, 2023.
[23] C. Giannoula, I. Fernandez, J. G. Luna, N. Koziris, G. Goumas, and

O. Mutlu, “SparseP: Towards efficient sparse matrix vector multiplication
on real processing-in-memory architectures,” Proc. of the ACM on

Measurement and Analysis of Computing Systems (SIGMETRICS), 2022.
[24] G. H. Golub and H. A. van der Vorst, “Closer to the solutions: Iterative

linear solvers,” The state of the art in numerical analysis, 1997.
[25] G. H. Golub and C. F. Van Loan, Matrix computations, 4th ed. Johns

Hopkins University Press, 2013.
[26] Y. Gui and G. Zhang, “An improved implementation of preconditioned

conjugate gradient method on GPU,” Journal of Software, 2012.
[27] A. Gupta, “WSMP: Watson sparse matrix package part iii: Iterative

solution of sparse systems version 7.11,” IBM, Tech. Rep., 1997.
[28] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,

“OpenRAM: An open-source memory compiler,” in Proc. ICCAD, 2016.
[29] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure,

dynamics, and function using NetworkX,” Los Alamos National Lab,
Tech. Rep., 2008.

[30] M. T. Heath, Scientific computing: an introductory survey, 2nd ed.
McGraw-Hill, 2018.

[31] M. A. Heroux, J. Dongarra, and P. Luszczek, “HPCG benchmark technical
specification,” Sandia National Lab, Tech. Rep., 2013.

[32] M. Joshi, A. Gupta, G. Karypis, and V. Kumar, “A high performance
two dimensional scalable parallel algorithm for solving sparse triangular
systems,” in Proc. of the Fourth International Conference on High-

Performance Computing, 1997.
[33] N. P. Jouppi, D. H. Yoon, M. Ashcraft, M. Gottscho, T. B. Jablin,

G. Kurian, J. Laudon, S. Li, P. Ma, X. Ma, T. Norrie, N. Patil, S. Prasad,
C. Young, Z. Zhou, and D. Patterson, “Ten lessons from three generations
shaped Google’s TPUv4i: Industrial product,” in Proc. ISCA-48, 2021.

[34] G. Karypis, “hMETIS 1.5: A hypergraph partitioning package,” http:
//www.cs.umn.edu/∼metis, 1998.

[35] C. T. Kelley, Iterative methods for linear and nonlinear equations. SIAM,
1995.

[36] D. S. Kershaw, “The incomplete Cholesky–conjugate gradient method
for the iterative solution of systems of linear equations,” Journal of

computational physics, 1978.
[37] F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda, D. Chen,

E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe,
“SimIt: A language for physical simulation,” ACM Transactions on

Graphics, 2016.
[38] J. Li, Y. Zhang, H. Zheng, and K. Wang, “FDMAX: an elastic accelerator

architecture for solving partial differential equations,” in Proc. ISCA-50,
2023.

[39] S. Lie, “Cerebras architecture deep dive: First look inside the hw/sw
co-design for deep learning : Cerebras systems,” in IEEE Hot Chips 34

Symposium (HCS), 2022.
[40] Y. Liu, M. Jacquelin, P. Ghysels, and X. S. Li, “Highly scalable distributed-

memory sparse triangular solution algorithms,” in Proc. of the SIAM

Workshop on Combinatorial Scientific Computing (CSC), 2018.
[41] R. T. Mills, M. F. Adams, S. Balay, J. Brown, and A. Dener, “Toward

performance-portable PETSc for GPU-based exascale systems,” Parallel

Computing, 2021.
[42] M. D. Noakes, D. A. Wallach, and W. J. Dally, “The J-Machine

multicomputer: An architectural evaluation,” in Proc. ISCA-20, 1993.

[43] D. P. O’Leary, “Ordering schemes for parallel processing of certain mesh
problems,” SIAM Journal on Scientific and Statistical Computing, 1984.

[44] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Dalorex:
A data-local program execution and architecture for memory-bound
applications,” in Proc. HPCA-29, 2023.

[45] M. Orenes-Vera, E. Tureci, D. Wentzlaff, and M. Martonosi, “Tascade:
Hardware support for atomic-free, asynchronous and efficient reduction
trees,” arXiv preprint arXiv:2311.15810, 2023.

[46] B. A. Page and P. M. Kogge, “Scalability of hybrid sparse matrix dense
vector (SpMV) multiplication,” in Proc. of the 2018 intl. conf. on High

Performance Computing & Simulation (HPCS), 2018.
[47] A. Parashar, M. Pellauer, M. Adler, B. Ahsan, N. Crago, D. Lustig,

V. Pavlov, A. Zhai, M. Gambhir, A. Jaleel, R. Allmon, R. Rayess,
S. Maresh, and J. Emer, “Triggered instructions: A control paradigm
for spatially-programmed architectures,” in Proc. ISCA-40, 2013.

[48] Rambus Inc., “White paper: HBM2E and GDDR6: Memory solutions
for AI,” 2020.

[49] J. W. Ruge and K. Stüben, “Algebraic multigrid,” in Multigrid methods,
1987.

[50] Y. Saad and M. H. Schultz, “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM Journal on

scientific and statistical computing, 1986.
[51] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.
[52] S. Schlag, T. Heuer, L. Gottesbüren, Y. Akhremtsev, C. Schulz, and

P. Sanders, “High-quality hypergraph partitioning,” ACM Journal of

Experimental Algorithmics, 2023.
[53] G. L. Sleijpen, H. A. Van der Vorst, and D. R. Fokkema, “BiCGstab(l)

and other hybrid Bi-CG methods,” Numerical Algorithms, 1994.
[54] J. Solomon, Numerical algorithms: methods for computer vision, machine

learning, and graphics. CRC Press, 2015.
[55] E. M. Stewart and L. Anand, “Magneto-viscoelasticity of hard-magnetic

soft-elastomers: Application to modeling the dynamic snap-through
behavior of a bistable arch,” Journal of the Mechanics and Physics of

Solids, 2023.
[56] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh,

and V. Stojanovic, “DSENT: A tool connecting emerging photonics with
electronics for opto-electronic networks-on-chip modeling,” in Proc. of

the 2012 IEEE/ACM Sixth International Symposium on Networks-on-Chip

(NOCS), 2012.
[57] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, Efficient processing of

deep neural networks. Morgan & Claypool, 2020.
[58] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan,

P. Iyer, A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and
N. Borkar, “An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS,”
in Proc. ISSCC, 2007.

[59] J. Verley, E. R. Keiter, and H. K. Thornquist, “Xyce: Open source
simulation for large-scale circuits.” Sandia National Lab, Tech. Rep.,
2018.

[60] T. Von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active
messages: a mechanism for integrated communication and computation,”
in Proc. ISCA-19, 1992.

[61] E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. Lee, V. Lee, J. Kim,
M. Frank, P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to software: Raw machines,” Computer, 1997.

[62] M. Wang, I. McInerney, B. Stellato, S. Boyd, and H. K.-H. So, “RSQP:
Problem-specific architectural customization for accelerated convex
quadratic optimization,” in Proc. ISCA-50, 2023.

[63] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey,
M. Mattina, C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip
interconnection architecture of the tile processor,” IEEE Micro, vol. 27,
no. 5, Sep 2007.

[64] M. Woo, T. Jordan, R. Schreiber, I. Sharapov, S. Muhammad, A. Koneru,
M. James, and D. Van Essendelft, “Disruptive changes in field equation
modeling: A simple interface for wafer scale engines,” arXiv preprint

arXiv:2209.13768, 2022.
[65] Y. Yokoyama, M. Tanaka, K. Tanaka, M. Morimoto, M. Yabuuchi, Y. Ishii,

and S. Tanaka, “A 29.2 mb/mm2 ultra high density SRAM macro using
7nm FinFET technology with dual-edge driven wordline/bitline and
write/read-assist circuit,” in Proc. of the 2020 IEEE Symposium on VLSI

Circuits (VLSI), 2020.
[66] A. Yoo, A. H. Baker, and R. Pearce, “A scalable eigensolver for large

scale-free graphs using 2d graph partitioning,” in Proc. of the 2011

International Conference for High Performance Computing, Networking,

Storage and Analysis (SC), 2011.

http://www.cs.umn.edu/~metis
http://www.cs.umn.edu/~metis

	Introduction
	Background
	Preconditioned Conjugate Gradients (PCG) Solvers
	Other Solvers
	Understanding End-to-End Applications of Solvers

	Sparse Iterative Solvers are Ill-Suited to Prior Architectures
	Azul Data Mapping Algorithm
	Dataflow Execution of Azul Kernels
	Data Mapping Problem Formulation
	Extensions for Limited Parallelism
	Generating Communication Patterns
	Hypergraph Partitioning in High-Performance Computing

	Azul Microarchitecture
	Azul Tile
	On-chip Network

	Evaluation
	Experimental Methodology
	Performance Analysis
	Azul Data Mappings
	Data Mapping Algorithm Costs
	Area and Power Estimation
	Sensitivity to Hardware Parameters
	Scaling Up

	Conclusion
	References

