
DelayAVF: Calculating Architectural Vulnerability
Factors for Delay Faults

Peter W. Deutsch∗
MIT

Cambridge, USA
pwd@mit.edu

Vilas Sridharan
Advanced Micro Devices, Inc.

Boxborough, USA
vilas.sridharan@amd.com

Vincent Quentin Ulitzsch∗
MIT/TU Berlin

Berlin, Germany
viniul@mit.edu

Joel S. Emer
MIT

Cambridge, USA
emer@csail.mit.edu

∗Both authors contributed equally to this research.

Sudhanva Gurumurthi
Advanced Micro Devices, Inc.

Austin, USA
sudhanva.gurumurthi@amd.com

Mengjia Yan
MIT

Cambridge, USA
mengjiay@mit.edu

Abstract—Reliability is a key design consideration for modern
microprocessors. A surge of reports from major cloud vendors
describing new silent data corruption (SDC) behaviours at scale
suggest a recent change in the nature of faults in the wild. Recent
publications have suggested that one root cause of these SDCs
may be small delay faults (SDFs) induced by marginal defects that
increase a circuit’s propagation time by a small (sub-cycle) delay.
Reasoning about the effects of these faults early in the design of a
processor is thus of increasing importance for reliability at-scale.

Computer architects currently reason about the resilience of
microarchitectures against particle strike induced faults using
Architectural Vulnerability Factor (AVF) which describes the
probability that a particle strike impacting a particular microar-
chitectural structure results in a program-visible failure. In this
paper, we develop an AVF-like metric to quantify a processor’s
vulnerability to SDFs. We conduct a systematic analysis of the
potential impacts of SDFs and determine that particle strike AVF
is insufficient to reason about SDFs. Considering SDFs requires
additional reasoning about the timing characteristics of a circuit,
the state element(s) that experience an error due to a fault,
and whether the resulting state element errors cause a program-
visible failure.

In this paper we present DelayAVF, a metric that quantifies
microarchitectural vulnerability to small delay faults. We develop
a two-step methodology to analyze the DelayAVF of a hardware
design. We then analyze the DelayAVF of an open-source RISC-
V core, finding new architectural reliability insights that do not
present themselves through traditional AVF analysis. Finally, we
provide approximations for DelayAVF that allow for the reuse
of particle strike AVF data (for instance, from existing fault
injection studies).

I. INTRODUCTION

Reliability is a key design consideration for modern micro-
processors. A significant area of focus to improve reliability
has been in the study of particle strike-induced transient faults
(sometimes referred to as soft errors) caused by neutrons from
cosmic rays and alpha particles. These faults have posed a
particular threat to microprocessor reliability as they occur
randomly in the field and cannot be screened out at test time,
making them unpredictable and hard to reproduce. These faults
have been observed in the field, occurring on CPUs [34],

[46], [51], GPUs [21], [22], and devices such as FPGAs and
ASICs [6], [11].

It has recently become evident that particle strikes are
no longer the only major contributing factor to errors in
the field. Hyperscalers have recently observed an increase in
the number of silent data corruptions (SDCs) that cannot be
attributed solely to particle strike-induced transient faults [16],
[17], [24], [44], [53], leading to industry-wide concerns about
system correctness at-scale. Recent industry publications have
suggested that one root cause of these newly appearing faults
are marginal defects [20], [29], [30], [45], [48]. Marginal
defects result in additional signal propagation delays under
very specific (marginal) conditions, with the locations of
these defects and the conditions required for these defects to
trigger faulty behaviour being unknown during test time. These
marginal defects culminate in small delay faults (SDFs) which
increase the propagation delay of a signal for a fraction of a
clock period [28], [40], [52]. An SDF may in turn result in
incorrect values being latched by downstream state elements,
potentially resulting in program-visible failures.

Existing test methodologies that aim to root out defective
chips during manufacturing [4], [15], [41] are not sufficient
to detect all marginal defects, leading to chips with marginal
defects being shipped into the field. Chip designers therefore
must add resilience to the design to protect against faults
with the anticipation that some defects may escape testing.
This approach is similar to adding resilience to protect against
particle strike-induced transient faults, which inevitably occur
due to environmental effects.

Chip designers currently reason about the vulnerability
of microarchitectural structures to particle strike-induced
transient faults using Architectural Vulnerability Factor
(AVF) [33]. A structure’s AVF quantifies the probability that
a particle strike induced fault in that structure will result in a
program-visible failure, providing a metric that allows design-
ers to target resilience where it is most useful. To tractably
compute AVF early in the design process, computer architects

perform ACE analysis, determining the proportion of bits in
a structure whose correctness is required for architecturally
correct execution (i.e., are ACE) in each cycle.

An AVF for Small Delay Faults. In this paper we conduct
a systematic analysis of the impacts of SDFs across different
microarchitectural structures. This analysis reveals that AVF
for particle strikes does not provide transferable insights into
a structure’s vulnerability to SDFs. AVF analysis only reasons
about the system-level impact of a single error from a single
fault. However, this is insufficient to reason about the impact
of an SDF, which may not have a one-to-one mapping between
the fault and the resulting error. In contrast to particle strikes,
an SDF changes a circuit’s timing characteristics. While this
change may result in a single state element error, it is also
possible for no state element error to occur, e.g., if the delay
is too small or the delayed signal’s propagation is masked
out by combinational logic. In addition, a single SDF can
even result in multiple simultaneous state element errors.
As a consequence, a structure’s vulnerability towards small
delay faults cannot be estimated solely using traditional ACE
analysis, and a new approach that consider a circuit’s timing
and state is required.

In this paper we define DelayAVF, the probability that a
small delay fault in a microarchitectural structure results in a
program-visible failure. We define a circuit element (e.g., a
wire or gate) to be DelayACE in cycle i if a small delay fault
in that element during cycle i results in a program-visible
failure. The DelayAVF of a structure can then be stated as the
average proportion of the structure’s circuit elements which
are DelayACE during execution.

For DelayAVF to be useful in practice, the determination
of whether a circuit element is DelayACE must be com-
putationally tractable. This in itself can be challenging, as
examining the consequences of a small delay fault can require
computationally expensive timing-aware simulation to track
a delay’s propagation through a circuit. In this paper, we
present a method to determine whether a circuit element is
DelayACE in two sub-steps, minimizing the amount of timing-
aware simulation required to determine DelayACEness. In our
method, timing-aware simulation is only required to determine
the set of state elements that experience an error due to an
SDF. Determining whether the state element errors result in
a program-visible failure can be done in a timing-agnostic
manner, similarly to the work by Entrena et al. [18] and Hari
et al. [22]. In some cases there may be compounding effects
between multiple state element errors, such as when multiple
state element errors cancel each other out. In this paper we
explicitly enumerate these confounding effects, allowing us
to identify their impact. In cases where the impacts of these
effects is small, DelayAVF can be approximated by reusing
(particle strike) AVF data, which in many cases may already
be generated for a design.

As we will demonstrate, computer architects can use De-
layAVF to systematically study the impact of SDFs on real
hardware designs early on in the design process. DelayAVF

analysis provides key architectural insights that can be used to
identify structures which are particularly vulnerable to SDFs,
helping to guide targeted protections against these faults.

Key Contributions. The key contributions of this paper are:
1) DelayAVF, a methodology to measure the vulnera-

bility of architectural structures to small delay faults
(SDFs), capturing the intrinsic circuit and system-level
behaviours that result due to these faults.

2) A systematic methodology to compute DelayAVF for
real processor designs, utilizing a tractable two-step
derivation approach.

3) A case study analysis of the impact of SDFs on var-
ious microarchitectural structures in the Ibex RISC-V
core [2], revealing key architectural insights.

4) An approximation for DelayAVF which allows for the
reuse of existing data from fault injections or pre-
existing ACE analysis flows.

Experimental Insights. In studying the Ibex core we find
that:

1) Vulnerability to small delay faults can vary significantly
across different microarchitectural structures and bench-
marks, indicating a strong dependence on architectural
and program-level effects.

2) A structure’s path timing distribution is not sufficient to
reason about the impact of small delay faults. Instead,
while the level of vulnerability of a structure is domi-
nated by static circuit timing characteristics for shorter
duration SDFs, program and architectural characteristics
play a more prominent role for longer duration SDFs.

3) Mitigations that are effective in protecting hardware
structures against particle strikes may not be as effective
in protecting against SDFs.

4) Approximations to estimate DelayAVF can sometimes
provide useful insights, however care should be taken
when certain confounding multi-bit error interactions
may occur.

Paper Roadmap. Section II provides a background on
marginal defects, small delay faults, and existing vulnerability
measures and protections. Section III describes why existing
particle strike vulnerability measures are insufficient to reason
about SDFs, highlighting the need for DelayAVF. Section IV
describes how to model the circuit-level impacts of SDFs.
Using this model, we formally define DelayAVF and describe
how to compute it in Section V. We apply DelayAVF to study
the impact of SDFs on an open-source RISC-V core in Sec-
tion VI, and present a DelayAVF approximation leveraging
existing particle strike ACE data in Section VII.

II. BACKGROUND

A. Terminology

In this paper we use a terminology largely following that
of the original AVF work [33]. We begin by highlighting the
difference between a fault, defect, error, and failure. In this
work, a fault denotes an undesired change to the hardware’s

Marginal
Circuits

Marginal
Defects

At-Speed
Defects

Gross
Defects

Location of Defect Across Varying Dies

Certain
Location

Systematic
Locations

Random
Anywhere

Fa
ul

t T
rig

ge
r

C
on

di
tio

ns

All

Marginal Legend
Difficulty to Test

Hard

Moderate

Easy

Fig. 1. Characteristics of different circuit defects, adapted from [42]. Colors
represent the difficulty to detect the defect during testing. Stars represent
this paper’s defects of interest, which trigger faults under extremely specific
(marginal) operating conditions.

behaviour. For instance, a particle strike can result in a fault
wherein there is an unanticipated injection of charge at a given
node in a circuit. A fault may also be a result of a defect,
which is an underlying physical flaw in the hardware. For
example, a physical defect on a wire may result in a delay
fault, resulting in a signal propagation delay. A fault can result
in a state element error, causing the value held in a stateful
circuit element (e.g., a flip-flop) to be incorrect. For example, if
a signal is sufficiently delayed due to a delay fault, an incorrect
value may be latched in a downstream flip-flop.

The program-level consequence of a state element error
depends on the chip’s design and state. A state element error
may result in a change in program output, we denote this case
as a program-visible failure. A state element error may alter-
natively result in no change to the program’s output, resulting
in architecturally correct execution, if the state element error
is corrected or masked at the circuit/architecture levels.

A program-visible failure can be classified as a silent data
corruption (SDC) if the program’s output is incorrect without
any notification by the hardware. Alternatively, a program-
visible failure can be a detected unrecoverable error (DUE),
where the program does not complete successfully but does
not produce an incorrect output.

B. Circuit Defects

Defects which result in delay faults under marginal circum-
stances are a rising concern in industry, and are suspected to
be a root cause of recently-documented reliability issues at
scale [20], [29], [30], [45], [48]. A delay fault causes a signal
on a wire or gate to experience an additional delay (beyond its
normal delay) as it propagates through the circuit. In contrast
to particle strike induced faults, delay faults can be caused
by an underlying defect in the circuit. Circuit defects can
be attributed to a wide variety of underlying physical root-
causes, including lithographic errors [23], cracks [14], and
delamination [13]. At a high level, circuit defects can broadly
be classified by two factors: where they occur and under which
conditions they cause a fault. A summary of circuit defect
classes from [42] is reproduced in Figure 1.

x

y

b)

z

Clk

Trap

d'

0

1

0 1

0 1

0

x

y

c)

z

Clk

Trap 0

0

0

0

d' 1d' x

y

d)

z

Trap 0

1

0

0

Clk

x
Divide

By Zero
Signal

Divider
Circuit

Trap
Enable TrapA

y z

Undefined
ResultB

Delay
Fault

x

y

a)

z

Clk

Trap

d

0 1

1

0 1

0 1d

Fig. 2. Example circuit which can experience a state element error due to a
small delay fault. a) an added delay d on x results in no error, b) a larger
delay d′ on x results in an error in A, c) the larger delay d′ resulting in no
error due to logical masking, d) the signal does not change resulting in no
error.

First, defects can be classified based on where they occur
across different chips. Defects may occur in the same circuit
location across different manufactured chips due to a system-
atic production error (Figure 1 left) or may exist in random
chip locations (Figure 1 right).

Second, defects can be further classified under which oper-
ating conditions they induce a fault. Some defects may result
in faults under all operating conditions (i.e., a permanent fault,
Figure 1 bottom). Other defects may only result in a fault
under certain operating conditions, such as specific voltages,
frequencies, temperatures, and workload patterns (Figure 1
top). Testing for defects which only result in faults under these
marginal conditions can be challenging due to the difficulty
to replicate the exact (and often unknown) conditions required
for a fault to occur.

Randomly located defects which only occur under spe-
cific operating conditions are referred to as marginal defects
(highlighted as the starred region in Figure 1). Identifying
all marginal defects at test time requires testing all paths in
every circuit at all operating conditions. This may entail years
of test time for every chip produced, making such testing
economically and practically infeasible. Thus, it is likely that
some chips deemed good at test time will in fact contain
marginal defects that can cause program-visible failures in the
field.

C. Small Delay Faults Resulting from Marginal Defects

Marginal defects can manifest in small delay faults (SDFs),
resulting in a signal’s propagation delay increasing by a small
(sub-cycle) duration [28], [52]. To observe the circuit-level
impact of an SDF, consider the circuit in Figure 2. This
example circuit consists of wires (x, y, and z), an AND
gate, and clocked state elements (A and B). Signals propagate
through the circuit from the inputs, and these signals have
some amount of propagation delay through the circuit. The
length of these delays is a function of the physical circuit (e.g.

RC parameters and the strength of the driving gates). Under
normal operation, the input signals will propagate through the
circuit and arrive at the state elements before the next clock
cycle.

A delay fault increases the propagation delay of a signal
along a wire, or the output of a gate. Consider some possible
outcomes of adding an additional delay on wire x in Figure 2.
If the delay is small, the correct signal might still arrive in
time (2a). If the delay is larger, the signal may not arrive in
time (2b), resulting in an incorrect value being latched in A (a
state element error). Despite the delay being large, the signal
may be logically masked (2c) resulting in no state element
error. Finally, a delay fault cannot affect the correctness of
the signal if the signal does not change (2d).

D. Protecting Against Faults

To reduce the impact of a fault, resiliency can be added at
both the circuit and architectural levels. At the circuit level, the
driving strength of transistors and the layout of the circuit’s
elements can be changed to reduce the likelihood that a state
element error occurs due to a circuit defect. The impact of state
element errors can further be mitigated by applying a combi-
nation of three architectural strategies: spatial, temporal, and
informational redundancy. Spatial redundancy uses duplicated
components on the chip to perform the same operation (e.g.,
using Razor [19]). Temporal redundancy repeats an operation
multiple times, reducing the latency/throughput of the system
in exchange for reliability. Informational redundancy encodes
data in a redundant way, computing on both the raw and
redundant forms of the data. Well-established techniques exist
to protect storage structures and interconnect, e.g., Ham-
ming codes and Cyclic Redundancy Check codes [26], [49],
[55], while arithmetic/logic operations can be protected using
residue codes [27], [32], [37].

E. Architectural Vulnerability Factor

A key goal of resilient design is to efficiently protect
hardware against faults. The Architectural Vulnerability Factor
(AVF) [33] methodology is commonly used to quantify the
efficiency of protection for particle strike-induced transient
faults. A structure’s AVF denotes the probability that a particle
strike induced fault in that structure results in a program-
visible failure. If the correctness of a specific state element in
a given cycle is required for architecturally correct execution
(i.e., correct program output), that state element is said to
be ACE. Using this notion of ACEness, the architectural
vulnerability factor of a hardware structure H containing a
total of B bits running for N cycles is expressed as:

AV F (H) =

∑N
i=1[# of ACE bits in H at cycle i]

B ·N
(1)

Computing the AVF for different microarchitectural struc-
tures allows computer architects to examine the relative con-
tributions of these structures towards a system’s overall failure
rate due to particle strikes, and to identify the most cost-
effective areas to add resilience. Follow-on work has looked

to extend ACE analysis to study broader contexts, including
multi-bit transient faults [39], [54], intermittent faults [36],
and permanent faults [8]. A full discussion of prior work is
presented in Section VIII.

III. MOTIVATION

The emergence of small delay faults as a greater threat to
industry-wide reliability calls for methods to evaluate their
impact on system-level resilience. In this section we will first
outline why methods which reason about the impact of particle
strikes do not transfer to study the impact of SDFs. We then
systematically reason about the conditions under which an
SDF can result in a program-visible failure in Section III-B,
leading to a natural definition for DelayAV F .

A. Inability of Existing Measures to Study the Impact of SDFs

We will now examine why vulnerability measures that
assume a particle strike fault model (such as AVF) are in-
sufficient to reason about vulnerability to small delay faults.
Recall that SDFs only change a circuit’s timing behavior,
while particle strikes result in an immediate bit-flip at the
site of the fault. This results in key differences which can be
exemplified in the circuit depicted in Figure 2. In this example,
if the attached divider circuit detects a divide-by-zero event,
it forwards a signal to the core that the computed result is
undefined (via Register B). Further, if the trap enable setting
is enabled by the core, a divide-by-zero event will signal the
core to hang by setting Register A.

For an SDF to cause a state element error, first observe
that it must cause the input of downstream state element(s) to
transition incorrectly. Assume that in the example circuit the
trap enable setting is never enabled by the core and therefore
the value stored in Register A (and its corresponding input
signal) will never change (‘toggle’) during execution. In such
a case, an SDF on wire x, y, or z can never result in a state
element error in A (as A will always latch a 0 due to the AND
gate) and thus the state element A should not be considered
vulnerable to an SDF. This toggle-dependent error behaviour is
not captured under a particle strike model however, as Register
A could flip if it is struck, regardless of the value of the trap
enable signal. In this scenario Register A could be considered
ACE under a particle strike fault model (and contribute to
the structure’s AVF) while not being vulnerable to SDFs. This
behaviour still holds if we additionally consider particle strikes
which cause signal bit-flips on wires/gates (such as on wire
z).

Second, observe that the delay duration and timing char-
acteristics of a circuit can play a large role in a structure’s
vulnerability, influencing which state elements could experi-
ence a state element error. Let’s now consider the case when
the trap enable bit is set and again examine the consequences
of an SDF on wire x. If the delay is too small, it is possible
that no state element errors occur. For a larger delay duration,
B may latch a correct value while A latches an incorrect value
(due to the additional delay caused by the AND gate), possibly

No State
Element
Error(s)

x

Delay
Fault

x
Program
Output
Still

Correct

x
At Least One
State Element

Error

Program
Output
Incorrect

Program
Output
Still

Correct

Errors in
Non-ACE
Elements

Errors in
ACE

Elements

Ⓐ

Ⓑ

Fig. 3. The conditions required for a small delay fault to result in a program-
visible failure.

resulting in an inconsistent architectural state. Particle strike
fault models do not describe such a timing-dependent behavior.

Finally, an SDF can result in multiple simultaneous failing
state elements, and the group of failing state elements cannot
be determined a priori based on their physical positioning since
the timing and state of the circuit must also be considered. In
the example circuit, it may also be the case that both Register
A and Register B hold incorrect values due to an SDF on x,
causing the circuit to fail to catch the effects of the divide-
by-zero signal entirely. Follow-on work to AVF [54] attempts
to reason about simultaneous spatially-adjacent state element
errors (e.g., those caused by a single particle strike hitting two
or more physically adjacent state elements) in memory arrays.
However, while a group of simultaneous spatially-adjacent
state element errors can be determined a-priori, the set of
failing state elements due to an SDF can change per cycle
depending on the circuit’s timing and input.

B. Systematically Reasoning About SDFs

The example in Section III-A motivates the need for a
dedicated metric that can quantify a structure’s vulnerability
towards SDFs. To this end, we need to examine the conditions
under which an SDF results in a program-visible failure – we
summarize the conditions required for this to occur in Figure 3.

First, for a program-visible failure to occur, at least one state
element error must occur (Figure 3 A). For an SDF to result
in an error in a given state element, two sub-conditions must
hold. First, the additional delay must induce a path leading to
that state element to exceed the clock period in length. Not
every SDF which results in a path length exceeding the clock
period will result in a state element error. For instance, recall
from Figure 2 that logical masking effects can prevent a state
element error. Therefore, to result in a state element error, the
additional delay must also result in an incorrect value being
latched by the state element. Note that a single SDF can affect
multiple paths, and therefore potentially result in multiple state
element errors. The resultant state element error(s) must then
culminate in a failure visible at the program level (Figure 3
B).

DelayACE and DelayAVF. To quantitatively reason about
vulnerability under the conditions above, we cannot solely
reason about whether individual state elements are ACE.
Rather, in this paper we will define a new notion of ACEness
which allows us to reason about an individual circuit element’s
(e.g., wire’s or gate’s) vulnerability to SDFs, which we coin
DelayACE. Leveraging this notion of DelayACE, we can nat-
urally compute a structure’s DelayAVF as the average number
of circuit elements in a structure H which are DelayACE
across all N cycles of a program’s execution, as shown in
Equation (2).

DelayAV F (H) =∑N
i=1[# of DelayACE elements in H at cycle i]

of circuit-elements in H ·N
(2)

Using DelayAVF we can identify structures which are par-
ticularly vulnerable to SDFs, and deploy targeted mitigations.
Analogous to AVF, to estimate the failure rate of a structure,
DelayAVF can be multiplied with the rate at which a given
structure experiences a small delay fault.

IV. MODELING SMALL DELAY FAULTS

Prior to formally defining DelayAVF and DelayACE, we
now describe the underlying small delay fault model that
we will assume throughout the paper. To this end, in the
following subsections we will describe how we model 1) a
circuit’s timing behaviour, 2) when SDFs can manifest due to
a marginal defect, and 3) how SDFs can affect the circuit’s
timing.

A. Circuit Timing Model

In this paper we model a circuit as being composed of
clocked state elements, logic elements (e.g., AND, NOR
gates), and a set of wires, E, which connect these elements
together. This circuit executes a given workload (with fixed
inputs) over the course of N cycles. We associate each wire
(defined to be between two circuit elements) with a wire-
specific signal propagation delay. The signal propagation delay
for a wire e is a function of the strength of the circuit element
which is driving that wire and the capacitive load that the
wire is driving (e.g., the downstream circuit elements). Without
loss of generality, we assume that a wire’s propagation delay
is a fixed data-independent value. Our model is not limited
to this assumption and can account for this factor through
using state-of-the-art (proprietary) EDA tools such as static
timing analysis toolchains. In cases where the varying circuit
operating conditions can result in different wire delays (such
as when examining different process corners), our model can
be repeatedly applied to study fault behaviours across these
different delay behaviours.

While our model internally represents delays as being
associated with wires, it can easily be utilized to consider
faults on gates or state element outputs. To consider SDFs
on a circuit element’s output (e.g., at the output of a gate or
state element), one can introduce a single additional wire x
at the output of the element. This wire is connected to the

gate’s downstream elements via additional wires which are
connected to x. The additional wire will be modeled to have
the SDF’s delay duration, affecting the propagation delay of
the signal to all downstream components. As wire-level delays
are a generalization of gate- and state element-level delays, we
focus our analysis on wire-level delays for the remainder of
the paper.

B. Manifestation of Small Delay Faults

Marginal defects occur in random circuit components and
only briefly manifest in SDFs under very specific operating
conditions [42]. In studying the effects of marginal defects,
we leverage the fact that these defects are non-deterministic
in space and time. Since marginal defects do not systematically
affect circuits in the same location, we model marginal defects
as occurring randomly across the circuit’s wires. We make
the assumption that a circuit will have a single defect which
evaded testing, in line with standard reliability methodolo-
gies [3]. There is an extreme sensitivity of marginal defects to
specific operating conditions [42]. As such, it is unlikely that
the conditions required for a fault hold for longer than the
clock period. Therefore, we model SDFs which result from
these defects to only affect the circuit for a single cycle.

C. Delay Characteristics of SDFs

Upon an SDF on a wire, we assume a wire’s propagation
delay experiences an additional delay lasting for less than one
cycle. We denote the duration of the added delay as d, where
d is a small delay adding less than a clock period of additional
delay. If a wire’s value does not change (i.e., ‘toggle’) when
a fault occurs, the added d has no effect. If a state element
latches an incorrect value due to an added delay, we denote this
case as a state element error. It may be the case that a single
delay results in multiple state element errors – for instance, if
one wire is on multiple paths to different state elements.

The consideration of delay duration d is an important factor
as it affects the set of downstream state elements which
can experience errors. If a chip designer does not know
an appropriate value of d ahead of time (e.g., if they are
designing for a new process node) they can examine the
entire space of d (ranging from 0% − 100% of the clock
period) to see how different delays may manifest in program-
visible failures. A chip designer may also be able to ascertain
an appropriate value of d via the examination of defect-
induced delays on existing defective chips. To do so, soft
defect localization (SDL) techniques can be used to identify
actual delay defects in silicon, using techniques such as optical
analysis [9] and laser stimulation [12]. These SDL techniques
can be used in conjunction with additional testing data to
reproduce the conditions under which the part failed. The
resistance associated with the identified defect can then be
derived and mapped to a delay magnitude d.

V. DELAYAVF: A DELAY FAULT-AWARE AVF

Equipped with a model of the timing characteristics of
a circuit and the SDFs that can occur, we now formalize

Approximations
§VII

Impact of an
SDF?

Circuit-Level
Errors Observed

Dynamically
Reachable Set

DelayACE?
Change in
Program
Output?

Step #1
Dynamically

Reachable Set
Generation

Timing Aware
Simulation
(1 cycle)

Step #2
GroupACE
Derivation

Timing Agnostic
Simulation
(N cycles)

§V.A - Formally Defining DelayACE and DelayAVF

§V.B - Computing DelayACE and DelayAVF

DelayAVF

Aggregate over all
cycles and wires

in structure H

Fig. 4. Our two-step approach to determine if a circuit element is DelayACE,
leading to a derivation of DelayAVF.

the definition and computation of DelayACE and DelayAVF.
In Section V-A, we provide a definition for when a circuit
element is DelayACE, and how to use this notion to compute
a structure’s DelayAVF. In Section V-B we then present a two-
step approach to tractably compute these metrics.

A. Formally Defining DelayACE and DelayAVF

We begin by defining what it means for a circuit element to
be DelayACE. As reasoning about wires allows us to reason
about delays at arbitrary circuit elements (as described in Sec-
tion IV-A), we will focus on determining the DelayACEness
of wires for the remainder of the paper.

Definition 1: A wire e is DelayACE in cycle i if a small
delay fault adding an additional delay of duration d on that
wire in cycle i results in a program-visible failure.

Given the definition of DelayACE, the DelayAVF of a
structure naturally follows from Equation (2). Recall that the
DelayAVF describes the average number of DelayACE wires
in a given microarchitectural structure over all N cycles of a
program’s execution. For a structure H , we let E be the set of
wires associated with the structure. The structure’s DelayAVF
can then be formulated as:

DelayAV F d(E) =

∑N
i=1

∑
e∈E DelayACEd(e, i)

N · |E|
(3)

where DelayACEd(e, i) evaluates to 1 if wire e is DelayACE
in cycle i with respect to an SDF of duration d, and 0
otherwise.

B. Computing DelayACE and DelayAVF

One strategy to determine whether a wire is DelayACE
is to perform a full timing-aware circuit simulation (e.g.,
via SPICE). Using this simulation, we can study whether an
additional delay d on wire e in cycle i results in a change
to the program-level output. This strategy is computationally
intractable however, as one has to simulate the circuit in a
timing-aware fashion for the entire execution.

To make the computation more efficient, the determination
of whether a wire is DelayACE can be further broken down
into two sub-steps, as shown in Figure 4. First, in a timing-
aware step, the set of state element errors which occur due
to the SDF (the dynamically reachable set) is determined.
Second, in a timing-agnostic step, we determine whether the
resulting state element errors actually result in a program-
visible failure (i.e., whether the dynamically reachable set is
GroupACE). This two-step approach to computing DelayACE
can be encapsulated using the following formula:

DelayACEd(e, i) =

GroupACE(DynamicReachabled(e, i), i+ 1) (4)

In other words, a wire e is DelayACE if the set of state
elements which is dynamically reachable due an SDF on e
in cycle i is GroupACE in cycle i + 1. Using the two-step
approach is an exact way to determine whether a wire is
DelayACE, and is not a heuristic. We now describe the two
components in this formula in more detail.

Step #1: Identifying the Dynamically Reachable Set. Our
first step is to determine which state elements experience an
error due to an SDF. For a state element error to occur, an
added delay must induce at least one path in the circuit to
have a propagation delay which statically exceeds the clock
period.

Definition 2: A state element is statically reachable with
respect to an SDF of duration d on wire e in cycle i if it
terminates a path exceeding the clock period as a result of
the SDF. We call the set of state elements that are statically
reachable with respect to an SDF that SDF’s statically
reachable set.

Further, an additional requirement for a state element error to
occur is that the state element latches a wrong value due to
the delay. We denote the set of state elements which latch an
incorrect value as a result of an SDF as dynamically reachable.

Definition 3: The dynamically reachable set S of an SDF
of duration d on wire e in cycle i is the set of state elements
which are statically reachable and also latch an incorrect
value due to the SDF (S = DynamicReachabled(e, i)).

Note that not all state elements which are statically reach-
able by a fault are necessarily dynamically reachable – for
instance, an incorrect signal may not propagate to a state
element due to masking (recall Figure 2).

Step #2: Identifying Program-Visible Failures. Once the
dynamically reachable set S for a given SDF is identified, we
then need to determine whether the combined effect of the
errors described in S results in a program-visible failure.

Definition 4: A set of state elements S is GroupACE in
cycle i if a simultaneous error in all state elements s ∈ S
in that cycle results in a program-visible failure.

Recall that a single delay fault can result in multiple simulta-
neous state element errors. As such, it is important to note that
GroupACE must consider the system-level impact of multiple
simultaneous state element errors. For such an analysis to
be exact, GroupACE must reason about the combined effect
of these state element errors, as the following confounding
effects can occur. First, ACE compounding occurs when no
state element s ∈ S is individually ACE, but the state elements
together are GroupACE. In contrast, ACE interference [54]
occurs when a group of state elements s ∈ S are individually
ACE but the state element errors negate each other, resulting
in the group not being GroupACE.
Computational Complexity of the Two-Step Approach.
The two-step derivation of DelayACE lends itself to efficient
computation, minimizing the need for expensive timing-aware
simulations. To compute the dynamically reachable set of
a wire e in cycle i, it is sufficient to reason about signal
propagation from one state element to another within the single
cycle. As such, only cycle i needs to be simulated in an
expensive timing-aware manner. All other required simulations
(including to determine the state at the beginning of cycle i)
can be conducted in a timing-agnostic manner.

Importantly, identifying whether state element errors prop-
agate to program-visible failures can be done without con-
sidering the circuit’s sub-cycle timing behaviour. Computing
whether a set of state elements is GroupACE in a given
cycle requires the simulation of N total cycles to observe the
eventual program output. Together, computing the DelayAVF
of a structure H containing |E| wires with respect to a
workload running for N cycles requires simulating O(|E| ·N)
cycles in a timing-aware fashion, and O(|E| ·N2) cycles (i.e.,
N separate simulations each of length |E| · N cycles) in a
timing-agnostic fashion. We note that these simulations are
heavily parallelizable in practice.

C. Further Optimizations and Possible Heuristics

While the two-step approach already significantly reduces
computational complexity, further optimizations can be imple-
mented in practice to allow for the computation of DelayAVF
for large cores. The simplest way to reduce the total num-
ber of timing-aware and agnostic simulations is to employ
temporal sampling, only considering a statistical subset of
cycles in which to inject SDFs. Evaluating DelayAVF on sub-
structures/macros (e.g., examining the adder instead of the
entire ALU all at once) can also reduce the total number of
simulations, which scales linearly with the number of wires in
the examined structure (rather than in the whole core).

Further implementation optimizations can be made to the
timing-aware simulation. Recall that the timing-aware simula-
tion aims to determine the set of state elements experiencing
errors. As such, the timing-aware simulation only needs to
track the propagation of signals from state elements feeding
into the statically reachable set of an affected wire, and there-
fore only needs to simulate a subset of the circuit. Further, state
elements which are not statically reachable will trivially latch
the correct value, and as such do not need to be considered.

Additionally, if the state elements feeding into the statically
reachable set do not toggle, the timing-aware simulation step
can be skipped entirely as the dynamically reachable set is
trivially empty. Finally, the result of timing-aware simulations
for the same circuit, input, and delay condition pairs can
be cached. All of the above optimizations retain fidelity.
Note that the computational complexity of the timing-aware
simulation also scales linearly in the number of wires |E| of
the examined structure, again allowing for scalability gains
through evaluating smaller sub-structures.

The timing-agnostic step can also be optimized, albeit by
trading accuracy for performance. Observe that given an SDF’s
dynamically reachable set S, determining whether the set is
also GroupACE holds similarities to traditional ACE analysis.
As such, methodologies which allow for the computation (or
approximation [39]) of the ACEness or AVF of individual
state elements can be used to approximate GroupACEness.
Re-using particle strike ACE data to estimate whether a group
of state elements is GroupACE poses a trade-off between com-
putation complexity and accuracy. We evaluate the accuracy
of one possible approximation method in Section VII.

VI. EMPIRICAL CASE STUDY

We now use DelayAV F to examine the effects of small
delay faults on a real hardware implementation. As reasoning
about small delay faults requires reasoning about circuit tim-
ing information, we implement an RTL-level fault injection
framework to compute the DelayACE and DelayAVF metrics.

A. Experimental Setup

In this evaluation we study Ibex [2], a pipelined in-order
RISC-V core. Ibex is an open-source core which has seen mul-
tiple tape-outs, including in the OpenTitan root of trust [31].
In the following analysis we study five structures from Ibex:
the register file, ALU, decoder, load-store queue (LSQ), and
prefetcher. The core’s register file is an state element array
structure to which we have added optional single-error cor-
rection ECC (without any double-error detection capabilities).
The core’s decoder and ALU are logic-heavy structures which
themselves contain no state elements, but affect the values
stored in state elements outside of their boundary. The core’s
load-store queue and prefetch buffer are ancillary structures
which are smaller than the other structures considered. For
each structure we define the structure H as a set of circuit
elements which are associated with the examined chip func-
tionality. To assess the vulnerability of a particular structure
to SDFs, we solely examine the impact of delays on the wires
E in the microarchitectural structure H .

To derive the DelayAVF for each of Ibex’s structures we
implement a statistical delay fault injection framework, shown
in Figure 5. The framework leverages knowledge of the core’s
gate and state element level timing characteristics. As the
impact of an SDF is dependent on the program executing on
the core we study five benchmark applications from the Beebs
benchmark suite [35]: md5, bubblesort, libstrstr, matmult, and
libfibcall. For a specified Ibex microarchitectural structure H ,

Core RTL

Technology
Library

(NanGate 45nm)

Delay Fault
Scenario

Netlist
Synthesis
(YoSys)

Logical
Masking
Analysis

Correct
Benchmark Output

Timing-Aware
Delay Analysis

List of
Erroneous

State Elements

Core
Simulation
(Verilator)

Benchmark
Application

Incorrect
Output?

→ Erroneous
State Elements
are GroupACE

Timing-Agnostic
Failure Analysis

Fig. 5. Simulation flow overview. Toolchains in parentheses are chosen for
this case study, but are not strictly required for our modeling approach.

TABLE I
STATISTICS ABOUT THE EXAMINED STRUCTURES

Structure # Injected Wires (E)

ALU 3668
Decoder 1007
Regfile 17816
Regfile (ECC) 19611
LSU 2027
Prefetch 3249

our experimental framework determines whether each wire
e ∈ E is DelayACE for a subset of faulty cycles. In the
following experiments, the injection points were chosen to be
equally spaced out throughout the whole program execution,
injecting faults on each wire and 4% of all execution cycles.
Tables I and II list statistics about the structures and bench-
marks examined, respectively.

For each fault-injection cycle examined, our framework
simulates the circuit according to the two-step approach out-
lined in Section V-B. First, a timing-aware stage analyzes
the circuit-level impact of an SDF. This stage takes in the
core’s RTL and a technology library describing the delays
of each gate in the design. In this evaluation, we use the
open-source NanGate 45nm technology library [1]. Using
this timing information, this stage simulates the injection of
an SDF of duration d in a given cycle, and outputs the
resultant state element errors. Second, a timing-agnostic stage
determines whether a set of state element errors results in
a program-visible failure. This stage simulates the impact of
state element errors by injecting faults into a Verilator [50]
simulation. Any deviation with the fault-free simulation output
indicates that the state elements are GroupACE.

TABLE II
NUMBER OF CYCLES EXECUTED PER BENCHMARK

Benchmark # Cycles (N)

md5 1720
libbubblesort 3829
libstrstr 1051
libfibcall 2448
matmult 8903

0.0 0.4 0.8
0.00
0.04
0.08
0.12

Pr
op

or
tio

n
of

 P
at

hs Decoder

0.0 0.4 0.8
0.00
0.04
0.08
0.12

ALU

0.0 0.4 0.8
0.00
0.04
0.08
0.12

Regfile

Proportion of Clock Period

Fig. 6. Path length distributions for different structures in the Ibex core.

Decoder Regfile ALU
0.0

0.2

0.4

0.6

0.8

1.0

a)

0 0 0

a)

0.
00

35

0.
00

32

0

a)

0.
03

53

0.
01

13

0.
04

54

a)

0.
08

8

0.
02

07 0.
13

93

a)

0.
12

36

0.
03

21

0.
30

02

a)

0.
2

0.
04

62

0.
51

55

a)

0.
30

2

0.
11

21

0.
77

55

a)

0.
77

93

0.
15

42

1

a)

0.
78

9

0.
18

35

0.
99

56

No
rm

al
ize

d
De

la
yA

VF
 V

al
ue

s

Delay Duration (% of Clock Cycle)
10 20 30 40 50 60 70 80 90

Fig. 7. Normalized geomean DelayAVF values across different Ibex microar-
chitectural structures (geometric mean of Beebs benchmark suite results).

Modeling Delays. In this evaluation we model delays on
wires, where a single wire is defined to connect two circuit
elements. The delay on a wire is computed based on the
timing characteristics of the source circuit element and the
capacitive load of the circuit elements downstream of the
source element. We do not consider the added capacitive load
of the interconnect itself (in line with pre-layout static timing
analysis workflows [7]) and further assume data-independent
propagation delays. While timing behaviours may change after
the place+route and post-silicon stages, note that logic heavy
structures (similar to those studied) are typically dominated
by gate delays, with interconnect delays having little effect on
overall timing behaviour [38]. These assumptions do not limit
the use of DelayAVF in studying more realistic circuit timing
models. If desired, DelayAVF could be (re)calculated when
more accurate timing information is available to the designer,
or with state-of-the-art commercial EDA tools.

Ibex Path Distributions. The path length distributions
for Ibex’s synthesized microarchitectural structures is shown
in Figure 6. The clock period of the Ibex core is set to equal
the length of the longest path in the entire design.

B. Evaluating DelayAVF for Different Structures and Delays

We begin by examining the DelayAVF behaviours for Ibex’s
most consequential microarchitectural structures: the decoder,
register file, and ALU. The DelayAVF for these structures
is shown in Figure 7. For each structure, we evaluate the
DelayAVF of that structure for varying durations of d, ranging
from 10% to 90% of the system’s clock period, geometrically
averaged over the benchmarks considered (and further normal-
ized to facilitate comparison between structures).

25 50 75
Delay

0
20
40
60
80

100

Pe
rc

en
ta

ge
 o

f W
ire

s

a)

libstrstr, ALU

25 50 75
Delay

b)

libstrstr, Regfile

25 50 75
Delay

c)

md5, ALU
Static Reach Dynamic Reach GroupACE

Fig. 8. DelayAVF components for selected structures and benchmarks. Static
Reach is the % of delayed wires which result in at least one observed statically
reachable state element. Dynamic Reach is the % of delayed wires which result
in at least one observed state element error. GroupACE is the % of delayed
wires which result in at least one observed program-visible failure.

Observation 1: The average vulnerability of a microar-
chitectural structure to small delay faults can vary signifi-
cantly, with the ALU having upwards of 5× the DelayAVF
compared to the register file.

As observed in Figure 7, across each delay (with few ex-
ceptions), the Ibex’s ALU has the highest average DelayAVF,
followed by the decoder and the register file. To understand
why the DelayAVF behaviours differ significantly across dif-
ferent structures, we revisit the factors which contribute to
a circuit element being DelayACE in Figure 8. For a circuit
element to be DelayACE, recall that a delay on that circuit
element must result in:

1) Path length(s) to downstream state elements statically
exceeding the clock period (i.e., being statically reach-
able).

2) State element(s) latching an incorrect value (i.e., being
dynamically reachable).

3) These state element errors propagating to a program-
visible failure (i.e., being GroupACE).

Consider the DelayAVF behaviour of the ALU and register
file under the libstrstr benchmark, shown in Figure 8a)
and b) respectively. As seen in both examples, a delay of
50% of the clock period results in at least one statically
reachable state element on 85% and 100% of the wires in
the ALU and register file respectively. Despite the fact that
delays in the register file result in more instances where a state
element is statically reachable, far fewer of the SDFs result
in at least one state element becoming dynamically reachable
(i.e., experiencing a state element error). This low dynamic
reachability (and low DelayAVF) can be attributed to the lower
toggle rate experienced by the register file’s state elements.

To see why the register file has a low toggle rate, con-
sider SDFs on word-lines within a similar memory structure
in Figure 11. Only two rows can experience a correctness
issue due to an SDF in a given cycle: the row which is being
activated (signal 0 → 1), and the row that is being deactivated
(1 → 0). Delays on the remaining majority of wordlines
(0 → 0) cannot result in any state elements being dynamically

reachable, resulting in an overall low DelayAV F .

Reasoning about DelayAVF’s Dependence on Delay. As
shown in Figure 7, the DelayAVF highly depends on the SDF
duration d examined. To better understand the behaviour of
DelayAVF across varying delay durations, we again examine
the DelayAVF behaviours shown in Figure 8.

Observation 2: Vulnerability to program-visible failures
caused by SDFs is dominated by the circuit’s static timing
characteristics for small durations of d, with program and
architectural-level effects playing a more prominent role
for larger delay durations.

For small durations of d, there are few instances where
an SDF can result in a path statically exceeding the clock
period (and thus no state element errors nor program-visible
failures can ever occur due to such a fault). Observe that the
static reachability of a state element is solely a function of the
circuit’s structure, and is independent of any masking at the
logical or architectural levels. As the delay duration considered
is increased, the number of SDFs that result in at least one
statically reachable state element increases. This does not nec-
essarily translate into a corresponding increase in DelayAVF,
however, as circuit-level or architectural masking effects can
still prevent a program-visible failure. We highlight that the
strength of these masking effects are not represented in the cir-
cuit path distributions (Figure 6), emphasizing the importance
of comprehensive DelayAVF analysis. These observations
further suggest that for cores with tighter timing/significantly
more critical paths (as seen in highly-optimized cores [5]),
and therefore greater proportions of statically reachable state
elements for smaller delays, the prominence of program and
architectural-level effects is further increased.

Our analysis indicates that multi-bit state element errors are
common. Averaged across all benchmarks and all structures,
half of the SDFs that induce at least one state element error
introduce multi-bit state element errors. The smallest observed
fraction of multi-bit state element errors occurs at d = 10%,
where an average of 21% of state element errors are multi-bit
errors. For all other examined delay durations d, the fraction
of multi-bit state element errors fluctuated around 50%, with
no clear trend over different values of d.

While the DelayAVF typically increases as the delay du-
ration d is increased, a DelayAVF considering a larger delay
d does not necessarily upper bound one with a smaller delay
d for the same structure and benchmark. It may be the case
that a larger delay sometimes results in smaller dynamically
reachable sets of state elements (e.g., if a larger delay induces
a state element to latch a correct value due to glitching effects).

Dependence on Benchmarks. In addition to being influenced
by circuit-level and microarchitectural characteristics, the De-
layAVF of a microarchitectural structure is also influenced
by the application running on the core. Figure 9 shows the
detailed breakdown of the ALU’s DelayAVF characteristics of
the Beebs benchmarks considered.

md5 libbubblesort libstrstr libfibcall matmult
0.0

0.2

0.4

0.6

0.8

1.0

0 0 0 0 00.
00

65

0 0.
02

52

0 0.
00

53

0.
02

13

0.
01 0.

09
01

0.
02

34

0.
01

94

0.
05

38

0.
05

96 0.
20

08

0.
06

77

0.
05

43

0.
12

27

0.
10

7

0.
29

72

0.
17

71

0.
15

9

0.
34

64

0.
14

0.
38

33

0.
28

77

0.
30

71

0.
73

62

0.
24

74 0.
39

96

0.
38

19

0.
45

51

1

0.
40

69

0.
41

19

0.
46

81 0.
57

47

0.
98

26

0.
38

51

0.
44

63

0.
44

84 0.
58

25

No
rm

al
ize

d
De

la
yA

VF
 V

al
ue

s

Delay Duration (% of Clock Cycle)
10 20 30 40 50 60 70 80 90

Fig. 9. Normalized DelayAVF values for the Ibex ALU across each Beebs
benchmark examined.

Regfile LSQ PrefetchRegfile-ecc
0.00

0.25

0.50

0.75

1.00

0 0 0 00.
00

9

0 0 0.
00

11

0.
03

14

0 0 0.
01

78

0.
05

74

0 0 0.
04

4

0.
08

91

0 0

0.
05

91

0.
12

83

0 0.
02

64

0.
08

81

0.
31

13

0

0.
11

29 0.
19

91

0.
42

82

0.
07

68

0.
37

07

0.
13

14

0.
50

98

0.
11

54

1

0.
13

37

DelayAVF

Regfile LSQ Prefetch Regfile-ecc

1

0.
28

26

0.
56

59

0

sAVF

No
rm

al
ize

d
AV

F
Va

lu
es

Delay Duration (% of Clock Cycle)
10 20 30 40 50 60 70 80 90

Fig. 10. Normalized geomean sAV F and DelayAV F values for stateful
structures in the Ibex core. Values are normalized to the largest sAV F and
DelayAV F values observed, respectively.

Observation 3: The DelayAVF of a microarchitectural
structure can vary considerably across different bench-
marks, further indicating a strong dependence on archi-
tectural and program-level effects.

Variations of DelayAVF across different benchmarks can
be associated to differences in the rates of state element
errors (e.g., due to data-dependent masking), resilience at
the architectural level, or the resilience of the benchmark
itself to faults at the program-level. The difference between
the ALU’s DelayAVF behaviours across benchmarks is fur-
ther highlighted when contrasting the libstrstr and md5
benchmarks, shown in Figure 8a) and c) respectively. md5
computes hash values (which are highly random in nature),
while libstrstr performs string comparisons which oper-
ate on very regular data. The highly random-looking nature
of operations in md5 entail a higher toggle rate in the ALU,
resulting in high dynamic reachability and overall consequent
DelayAVF as seen in Figure 8c) and Figure 9.

C. Comparing Delay vs. Particle Strike Vulnerability Factors

We now further illuminate the difference between the in-
sights gained using DelayAVF compared to standard AVF
(which we denote as sAVF), as originally highlighted in Sec-
tion III-A. The DelayAVF and sAVF computed for Ibex’s state-
ful microarchitectural structures (including a comparison of

Input (LSB)

Input (MSB)

W
ord Lines

Bit Lines

...

...

...

...Sense Amplifiers 0 1 2 3 ECC

x ①

②

Fig. 11. Example of a memory which is vulnerable to both particle strikes
and delay faults. The effects of a particle strikes on a state element (e.g., 1⃝),
which can be protected by adding a single-error correct ECC. A small delay
fault in x (2⃝) may still result in a state element error, even with ECC.

the register file with and without single-error ECC protection)
is shown in Figure 10.

Observation 4: Ranking structural vulnerability via
DelayAV F reveals different rank-orderings than particle
strike AVF.

In some cases, some structures may simultaneously have a
high DelayAVF and sAVF. For instance, the Ibex prefetcher
is vulnerable to both particle strikes (the prefetcher has an
internal buffer to store lines before they are passed to the
pipeline) and SDFs. It can also be the case that the DelayAVF
and sAVF do not correlate. For instance, we experimentally
observe that adding a single-error correcting ECC to the
register file reduces its sAVF to zero, while does not result
in an equivalent reduction in DelayAVF.

Observation 5: Protections added to structures which are
effective in protecting against particle strikes may not be
as effective in protecting against SDFs.

To better illuminate why a memory array may have a
different sAVF and DelayAVF, again consider Figure 11. For
the purposes of this example, assume that the correctness of
data stored in the memory is always required for program-level
correctness. This will result in the memory’s sAVF being 1, as
a particle strike in any of the memory’s state elements (e.g., at
1) will result in a program-visible failure. Adding a single-

error correction ECC reduces the sAVF of the memory array to
0, however observe that ECC does not correspondingly reduce
the DelayAVF to 0. Consider an SDF 2 on wire x, which
drives the word line associated with address 01. Assume that
in cycle i− 1 the core reads from address 00 and reads from
01 in cycle i. If a SDF occurs on x in cycle i, the wordline
associated with 01 will have a delayed activation, resulting in
the sense amplifiers re-latching the previously read values from
address 00. If the data at address 00 and 01 is not identical,
this SDF will result in at least one state element error. Despite

TABLE III
MAXIMUM AND AVERAGE OCCURRENCE OF ACE INTERFERENCE AND

COMPOUNDING BEHAVIOUR FOR IBEX’S STRUCTURES, AS PERCENTAGE
OF ALL DYNAMICALLY REACHABLE SETS OBSERVED (AGGREGATED OVER
ALL BENCHMARKS AND ASSUMING AN ADDED DELAY d OF 90% OF THE
CLOCK PERIOD). THE EFFECTS ARE CONTRASTED WITH THE MAXIMUM

AND AVERAGE RELATIVE CHANGE BETWEEN THE DELAYAVF AND
ORDELAYAVF.

Structure Max
ACE
Int.
(%)

Avg.
ACE
Int.
(%)

Max
ACE
Comp.
(%)

Avg.
ACE
Comp.
(%)

Max
Rel.
Change
(%)

Avg.
Rel.
Change
(%)

ALU 0.98 0.58 0.17 0.09 3.00 1.73
Decoder 13.03 6.73 2.47 1.14 21.80 10.45
Regfile 0.13 0.07 0.17 0.07 0.69 0.30
Regfile (ECC) 0.13 0.07 21.95 11.57 92.45 50.38

these state element error(s) the ECC checks will still pass (as
the core has read valid data from another address), and ECC
will therefore not detect or correct these errors, leading to a
non-zero DelayAVF.

VII. USING APPROXIMATIONS TO ESTIMATE DELAYAVF

In cases where existing fault-injection or state element
(particle strike) ACE data is available, it may be desirable
to re-use this data to estimate DelayAVF to reduce required
simulation during design time. To this end, we look towards
computing the GroupACEness of a set of state elements using
each state element’s individual (particle strike) ACEness.

Recall from Section V-B that there are two confounding
effects when considering the impact of multiple simultaneous
state element errors that forced us to reason about these errors
in conjunction: ACE compounding and ACE interference.
Without the presence of these two effects, we can compute
the GroupACEness of a set of state elements through the state
elements’ individual ACEness. To do so, we use the notion of
ORACE:

Definition 5: A set of state elements S is ORACE if any
state element s ∈ S is individually ACE [54].

In practice, we observe that ACE compounding and inter-
ference do exist, making the use of ORACE an approximation.

Definition 6: The DelayAVF approximation computed
by using ORACE instead of GroupACE is denoted as
OrDelayAVF.

To understand the fidelity of the OrDelayAVF approxima-
tion, we evaluate the rates of ACE interference and ACE
compounding across the different hardware structures exam-
ined. We present these rates and the resulting relative change
between DelayAVF and OrDelayAVF in Table III. The impor-
tance of an accurate computation of GroupACEness increases
as the proportion of SDFs which result in multiple state
element errors increases. We therefore evaluated OrDelayAVF
with respect to a delay of 90% of the clock period.

Observation 6: Care should be taken to avoid the usage
of OrDelayAVF on structures with substantial ACE inter-
ference or compounding rates.

For the examined structures, the ORACE approximation
works well on average. However, two cases stand out where
the ORACE approximation falls short:

First, the decoder experiences a higher degree of ACE inter-
ference. This can be partially explained through architectural
effects. For example, in some cases multi-bit state element
errors result in the core’s program counter to rewind by several
instructions, while single-bit state element errors cause the
program counter to rewind by a single instruction. In some
cases, replaying the last instruction may cause a program-
visible failure, while replaying several older instructions in
sequence may result in no error.

Second, the ECC protected register file experiences a high
degree of ACE compounding. This can be directly attributed to
the use of single-error-correcting ECC: While a multi-bit state
element error is not correctable by the implemented ECC and
therefore is GroupACE, the state elements are not individually
ACE. ORACE does not account for this compounding effect
and therefore under-approximates DelayAVF.

VIII. RELATED WORK

Wilkening et al. [54] examine the impact of spatially
adjacent multi-bit faults caused by a single particle strike.
When considering small delay faults, a key difference arises
compared to the spatial multi-bit model presented in [54].
Under the spatial multi-bit fault model, the group of state
elements that fail in conjunction can be pre-determined based
on their spatial locality. When considering the impact of SDFs
the group of state elements that fail in conjunction cannot be
determined a priori based on their physical positioning, as the
timing and state of the circuit must also be considered.

Pan et al. [36] present intermittent vulnerability factor
(IVF): a methodology to estimate architectural vulnerability to
intermittent fault models, including delay faults. IVF performs
a coarse-grained evaluation of a structure’s delay fault vulner-
ability, assuming that any delay fault during the structure’s
“write operation” always results in a state element error. IVF
thus fails to identify whether the circuit’s internal state masks
the delay fault. IVF further does not reason about structures
without well-defined write operations (e.g., the decoder). IVF
further ignores both compounding and interference effects.

Chang et al. [10] reason about the potential effects of timing
errors at an instruction-level, and leverage this analysis to
reason about when instruction-level errors may propagate to
program-visible failures. Chang et al. only consider timing
errors in arithmetic units that result in instruction output errors,
and cannot systematically reason about the vulnerability of
other microarchitectural structures (such as the decoder or
register file) to delay faults. Varius [43] estimates the rate
of delay-induced state element errors resulting from standard
manufacturing variations. Varius does not model logical mask-
ing, nor the architectural impact of erroneous state elements.

Shivakumar et al. [47] estimate microprocessor error rates
due to particle strikes onto combinational logic gates. Shiv-
akumar et al. do not reason about the circuit’s state and
timing behavior (required to reason about delay faults), and
ignore logical masking effects. Raasch et al. [39] propose
an analytical model which approximates the vulnerability of
RTL-defined state elements to particle strikes via the AVF of
a structure’s read and write ports. While [39] is focused on
particle strikes and does not provide a method to reason about
SDFs, its techniques to approximate AVF could potentially be
used to derive ORACE (as discussed in Section V-C).

Entrena et al. [18] and Hari et al. [22] present two-
stage models to determine whether particle-induced faults
(at the gate- and state element-levels, respectively) result in
a program-visible failure. These works first identify state
element errors, and perform a faster simulation (at the
RTL- or architecture-levels, respectively) to determine whether
a program-visible failure occurs. While the approaches taken
by these two works to reduce simulation complexity are similar
to our two-step approach, both again solely consider the
behaviour of particle strikes (which are distinct from SDFs).

Further efforts exist to improve the likelihood of catch-
ing SDFs during test time. Czutro et al. [15] evaluate the
effectiveness of scan-chain tests by simulating whether a
given test pattern can induce at least one state element error
due an SDF on a studied wire. This paper also presents an
analytical approach to estimate the delay from a resistive
defect, offering an additional approach to parameterize d.
Ahmed et al. [4] leverage information about a circuit’s timing
to prioritize ATPG tests which exercise the circuit’s most
critical paths (increasing the likelihood of detecting an SDF).
Riefert et al. [41] employ bounded model checking to generate
functional programs that are likely to sensitize a given path
and propagate potential state element errors to an output. We
highlight that the marginal nature of the defects considered
in this paper can still result in test escapes despite employing
such testing strategies, requiring us to reason about structural
vulnerability using DelayAVF when such a test escape occurs.

In this paper we have focused on the use of DelayAVF to
assess the relative vulnerability of different microarchitectural
structures to SDFs. However, DelayAVF may also be useful
in generating functional tests that are particularly suited to
increase the observability of SDFs for a given hardware design.
This approach could be applied within hardware-aware func-
tional test generation frameworks such as Harpocrates [25].

IX. CONCLUSION

We have presented a novel methodology to reason about
the impact of small delay faults. Transferring the notion of
ACEness to SDFs, we can derive and tractably compute
DelayAVF, a metric that quantifies the vulnerability of a
hardware structure to SDFs. In a case-study on the open-
source Ibex core, we demonstrate the practical efficacy of
our methods, providing insights into the factors influencing
DelayAVF. Finally, we identify an approximation that can be
used to leverage existing ACE data to determine DelayAVF.

ACKNOWLEDGMENT

The authors thank Divya Prasad (AMD), Jeff Rearick
(AMD), Jean-Pierre Seifert (TU Berlin), and the anonymous
MICRO reviewers for their assistance. The authors acknowl-
edge the financial support of the MIT AI Hardware Program,
the Google Research Scholar Program, and the Federal Min-
istry of Education and Research of Germany in the program
“Souverän. Digital. Vernetzt.” Joint project 6G-RIC, project
identification number: 16KISK030. Further funding was pro-
vided by NSF under grant CCF 2217099; by ACE, one of
the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

©2024 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo, and combinations thereof are
trademarks of Advanced Micro Devices, Inc. Other product
names used in this publication are for identification purposes
only and may be trademarks of their respective companies.
This paper reflects collaborative work between the authors.

APPENDIX

A. Abstract

Our artifact contains the SDF evaluation framework used
to derive the results outlined in Section VI. In particular,
the provided framework includes scripts to synthesize the
Ibex core and perform a timing analysis, yielding DelayAVF
estimates for various submodules in the Ibex design. The
source code for the Beebs benchmarks and the timing libraries
used are both included in this artifact. All experiments are run
in a Dockerfile for convenience.

This artifact can be used in the future to evaluate the
DelayAVF of the Ibex core for new benchmarks, and offers a
template to calculate DelayAVF on different cores.

B. Artifact check-list (meta-information)
• Algorithm: DelayAVF calculation for the Ibex core under the

Beebs benchmark suite.
• Program: Workflow includes Yosys, RTL to JSON parsers, a

custom SDF-injection framework (used to generate dynamically
reachable sets), and Verilator.

• Run-time environment: Docker.
• Hardware: No particular requirements, however a server with

48+ cores is recommended to reduce overall runtime.
• Output: DelayAVF values for a specific core, benchmark, and

delay range.
• How much disk space required (approximately)?: 10 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 30 minutes.
• How much time is needed to complete experiments (approx-

imately)?: 24 hours.
• Publicly available?: Yes, available at https://github.com/viniul/

micro-artifact.
• Code licenses (if publicly available)?: DelayAVF framework

under MIT license, various licenses for dependencies.
• Archived (provide DOI)?: 10.5281/zenodo.13743439

C. Description

How to access. Our DelayAVF infrastructure is available at
https://github.com/viniul/micro-artifact.

D. Installation

Our infrastructure is available in a Docker container.
To build and launch the docker environment, clone the git
repository (including submodules through git submodule
init; git submodule update) then run:

./build_and_run_docker.sh

E. Experiment workflow

To compute the DelayAVF of a given Ibex struc-
ture with respect to a certain benchmark, the framework
must first be configured appropriately using a configu-
ration json. Example configuration jsons are stored in
tests/ibex/testbench/configs/beeps/. The con-
figuration file contains the following parameters:

• synth file and sub synth file: The output location of the
synthesized top-level and submodule verilog files.

• submodule name and short submodule name: The RTL
structure to be examined.

• pdk path: The location of the timing library (PDK).
• top path and clk path: The RTL paths to the top module and

the system clock.
• hex payload: The benchmark/payload to run.
• delay range: The lengths of small delay faults to simulate.
• percent sampled cycles delay: The sampling rate of the De-

layAVF simulation (i.e., what percentage of cycles to inject
delays).

• percent sampled cycles particle: The sampling rate of the
sAVF simulation (i.e., what percentage of cycles to inject bit-
flips).

• ecc on: Whether to enable the single-error correct ECC.
• output dir: The directory to output results.

F. Evaluation and expected results

The workflow will output the DelayAVF results for the
structure, benchmark, and delays defined in the configuration
file. The entire workflow can be launched by passing a
configuration file to the run_all.sh script. For instance,
to compute the ALU’s’s DelayAVF for the MD5 benchmark
under varying delays (as in Figure 9), execute the following
commands in the Docker environment:

cd /current_dir/tests/ibex/testbench/

./run_all.sh configs/beeps/md5_alu.dict

The above command will generate the DelayAVF infor-
mation for the MD5 group in Figure 9. For the remaining
benchmarks (if desired), follow a similar approach, calling
./run_all.sh for each Beebs configuration in the figure.

Once all the simulations have completed, call the plotting
script to obtain a plot similar to Figure 9:

python3 ../../../util_scripts/plot_beeps.py

G. Notes

Additional details on the flow are described in the reposi-
tory’s README file.

https://github.com/viniul/micro-artifact
https://github.com/viniul/micro-artifact
https://github.com/viniul/micro-artifact

H. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-

review-badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] “FreePDK45 and the Nangate Open Cell Library — mflowgen
documentation.” [Online]. Available: https://mflowgen.readthedocs.io/
en/latest/stdlib-freepdk45.html

[2] “Ibex: An embedded 32 bit RISC-V CPU core.” [Online]. Available:
https://ibex-core.readthedocs.io/en/latest/

[3] M. Abramovici, M. A. Breuer, A. D. Friedman et al., Digital systems
testing and testable design. Computer science press New York, 1990,
vol. 2.

[4] N. Ahmed, M. Tehranipoor, and V. Jayaram, “Timing-based delay test
for screening small delay defects,” in 2006 43rd ACM/IEEE Design
Automation Conference, 2006, pp. 320–325.

[5] R. Aitken, V. Chandra, and D. Pietromonaco, “Implications of variability
on resilient design,” in 2015 IEEE International Electron Devices
Meeting (IEDM), 2015, pp. 20.8.1–20.8.3.

[6] H. Asadi, M. B. Tahoori, B. Mullins, D. Kaeli, and K. Granlund, “Soft
error susceptibility analysis of sram-based fpgas in high-performance
information systems,” IEEE Transactions on Nuclear Science, vol. 54,
no. 6, pp. 2714–2726, 2007.

[7] J. Bhasker and R. Chadha, Static timing analysis for nanometer designs:
A practical approach. Springer Science & Business Media, 2009.

[8] F. A. Bower, D. Hower, M. Yilmaz, D. J. Sorin, and S. Ozev, “Applying
architectural vulnerability analysis to hard faults in the microprocessor,”
SIGMETRICS Perform. Eval. Rev., vol. 34, no. 1, p. 375–376, jun 2006.

[9] M. Bruce, V. Bruce, D. Eppes, J. Wilcox, E. Cole, P. Tangyunyong,
C. Hawkins, and R. Ring, “Soft defect localization (sdl) in integrated
circuits using laser scanning microscopy,” in The 16th Annual Meeting of
the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003., vol. 2,
2003, pp. 662–663 vol.2.

[10] C.-K. Chang, W. Yin, and M. Erez, “Assessing the impact of timing er-
rors on hpc applications,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2019, pp. 1–19.

[11] C.-H. Chen, P. Knag, and Z. Zhang, “Characterization of heavy-ion-
induced single-event effects in 65 nm bulk cmos asic test chips,” IEEE
Transactions on Nuclear Science, vol. 61, no. 5, pp. 2694–2701, 2014.

[12] E. J. Cole, P. Tangyunyong, and D. Barton, “Backside localization
of open and shorted ic interconnections,” in 1998 IEEE Interna-
tional Reliability Physics Symposium Proceedings. 36th Annual (Cat.
No.98CH36173), 1998, pp. 129–136.

[13] C. Constantinescu, “Impact of intermittent faults on nanocomputing
devices,” in DSN 2007 Workshop on Dependable and Secure Nanocom-
puting, 2007.

[14] C. Constantinescu, “Intermittent faults and effects on reliability of
integrated circuits,” in 2008 Annual Reliability and Maintainability
Symposium. IEEE, 2008, pp. 370–374.

[15] A. Czutro, N. Houarche, P. Engelke, I. Polian, M. Comte, M. Renovell,
and B. Becker, “A simulator of small-delay faults caused by resistive-
open defects,” in 2008 13th European Test Symposium. IEEE, 2008,
pp. 113–118.

[16] H. D. Dixit, L. Boyle, G. Vunnam, S. Pendharkar, M. Beadon, and
S. Sankar, “Detecting silent data corruptions in the wild,” arXiv preprint
arXiv:2203.08989, 2022.

[17] H. D. Dixit, S. Pendharkar, M. Beadon, C. Mason, T. Chakravarthy,
B. Muthiah, and S. Sankar, “Silent data corruptions at scale,” arXiv
preprint arXiv:2102.11245, 2021.

[18] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso,
M. Portela, and C. Lopez-Ongil, “Soft Error Sensitivity Evaluation of
Microprocessors by Multilevel Emulation-Based Fault Injection,” IEEE
Transactions on Computers, vol. 61, no. 3, pp. 313–322, Mar. 2012.
[Online]. Available: https://ieeexplore.ieee.org/document/5669284/

[19] D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim,
and K. Flautner, “Razor: circuit-level correction of timing errors for
low-power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[20] S. Gurumurthi, V. Sridharan, and S. Gurumurthy, “Emerging
Fault Modes: Challenges and Research Opportunities,” Jul. 2023.
[Online]. Available: https://www.sigarch.org/emerging-fault-modes-
challenges-and-research-opportunities/

[21] I. S. Haque and V. S. Pande, “Hard data on soft errors: A large-scale
assessment of real-world error rates in gpgpu,” in 2010 10th IEEE/ACM
International Conference on Cluster, Cloud and Grid Computing. IEEE,
2010, pp. 691–696.

[22] S. K. S. Hari, P. Rech, T. Tsai, M. Stephenson, A. Zulfiqar, M. Sullivan,
P. Shirvani, P. Racunas, J. Emer, and S. W. Keckler, “Estimating
silent data corruption rates using a two-level model,” arXiv preprint
arXiv:2005.01445, 2020.

[23] C. Hawkins, A. Keshavarzi, and J. Segura, “Parametric timing failures
and defect-based testing in nanotechnology cmos digital ics,” in Proc.
of NASA Symp. Citeseer, 2003.

[24] P. H. Hochschild, P. Turner, J. C. Mogul, R. Govindaraju, P. Ran-
ganathan, D. E. Culler, and A. Vahdat, “Cores that don’t count,” in
Proceedings of the Workshop on Hot Topics in Operating Systems, 2021,
pp. 9–16.

[25] N. Karystinos, O. Chatzopoulos, G.-M. Fragkoulis, G. Papadimitriou,
D. Gizopoulos, and S. Gurumurthi, “Harpocrates: Breaking the silence
of cpu faults through hardware-in-the-loop program generation,” in
2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), 2024, pp. 516–531.

[26] S. Lin and J. D. Costello, Error Control Coding. Peason Prenticle Hall,
1983.

[27] D. Lipetz and E. Schwarz, “Self checking in current floating-point units,”
in 2011 IEEE 20th Symposium on Computer Arithmetic, 2011, pp. 73–
76.

[28] J. Mahmod, S. Millican, U. Guin, and V. Agrawal, “Special session:
Delay fault testing - present and future,” in 2019 IEEE 37th VLSI Test
Symposium (VTS), 2019, pp. 1–10.

[29] A. Meixner, “Screening For Silent Data Errors,” Jan. 2023. [Online].
Available: https://semiengineering.com/screening-for-silent-data-errors/

[30] A. Meixner, “Strategies for Detecting Sources of Silent Data
Corruption,” 2024. [Online]. Available: https://semiengineering.com/
strategies-for-detecting-sources-of-silent-data-corruption/

[31] A. Meza, F. Restuccia, J. Oberg, D. Rizzo, and R. Kastner, “Security
verification of the opentitan hardware root of trust,” IEEE Security &
Privacy, 2023.

[32] S. Mukherjee, Architecture design for soft errors. Morgan Kaufmann,
2011.

[33] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
systematic methodology to compute the architectural vulnerability fac-
tors for a high-performance microprocessor,” in Proceedings. 36th An-
nual IEEE/ACM International Symposium on Microarchitecture, 2003.
MICRO-36., 2003, pp. 29–40.

[34] E. Normand, “Single event upset at ground level,” IEEE Transactions
on Nuclear Science, vol. 43, no. 6, pp. 2742–2750, 1996.

[35] J. Pallister, S. Hollis, and J. Bennett, “Beebs: Open benchmarks
for energy measurements on embedded platforms,” arXiv preprint
arXiv:1308.5174, 2013.

[36] S. Pan, Y. Hu, and X. Li, “IVF: Characterizing the Vulnerability of
Microprocessor Structures to Intermittent Faults,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 5,
pp. 777–790, May 2012. [Online]. Available: http://ieeexplore.ieee.org/
document/5752262/

[37] S. Payer, C. Lichtenau, M. Klein, K. Schelm, P. Leber, N. Hofmann,
and T. Babinsky, “Simd multi format floating-point unit on the ibm z15
(tm),” in 2020 IEEE 27th Symposium on Computer Arithmetic (ARITH).
IEEE, 2020, pp. 125–128.

[38] D. Prasad, S. Sinha, B. Cline, S. Moore, and A. Naeemi, “Accurate
processor-level wirelength distribution model for technology pathfinding
using a modernized interpretation of rent’s rule,” in Proceedings of
the 55th Annual Design Automation Conference, ser. DAC ’18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online].
Available: https://doi.org/10.1145/3195970.3195980

[39] S. Raasch, A. Biswas, J. Stephan, P. Racunas, and J. Emer, “A fast and
accurate analytical technique to compute the avf of sequential bits in
a processor,” in Proceedings of the 48th International Symposium on
Microarchitecture, 2015, pp. 738–749.

[40] J. Rajski, V. Chickermane, J.-F. Côté, S. Eggersglüß, N. Mukherjee,
and J. Tyszer, “The future of design for test and silicon lifecycle
management,” IEEE Design & Test, pp. 1–1, 2023.

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://mflowgen.readthedocs.io/en/latest/stdlib-freepdk45.html
https://mflowgen.readthedocs.io/en/latest/stdlib-freepdk45.html
https://ibex-core.readthedocs.io/en/latest/
https://ieeexplore.ieee.org/document/5669284/
https://www.sigarch.org/emerging-fault-modes-challenges-and-research-opportunities/
https://www.sigarch.org/emerging-fault-modes-challenges-and-research-opportunities/
https://semiengineering.com/screening-for-silent-data-errors/
https://semiengineering.com/strategies-for-detecting-sources-of-silent-data-corruption/
https://semiengineering.com/strategies-for-detecting-sources-of-silent-data-corruption/
http://ieeexplore.ieee.org/document/5752262/
http://ieeexplore.ieee.org/document/5752262/
https://doi.org/10.1145/3195970.3195980

[41] A. Riefert, L. Ciganda, M. Sauer, P. Bernardi, M. S. Reorda, and
B. Becker, “An effective approach to automatic functional processor
test generation for small-delay faults,” in 2014 Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2014, pp. 1–6.

[42] P. G. Ryan, I. Aziz, W. B. Howell, T. K. Janczak, and D. J. Lu,
“Process defect trends and strategic test gaps,” in 2014 International
Test Conference. Seattle, WA, USA: IEEE, Oct. 2014, pp. 1–8.
[Online]. Available: http://ieeexplore.ieee.org/document/7035276/

[43] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari,
and J. Torrellas, “Varius: A model of process variation and resulting
timing errors for microarchitects,” IEEE Transactions on Semiconductor
Manufacturing, vol. 21, no. 1, pp. 3–13, 2008.

[44] K. Serebryany, M. Lifantsev, K. Shtoyk, D. Kwan, and P. Hochschild,
“Silifuzz: Fuzzing cpus by proxy,” arXiv preprint arXiv:2110.11519,
2021.

[45] M. Shamsa and D. Lerner, “Defect mechanisms responsible for silent
data errors,” in 2024 IEEE International Reliability Physics Symposium
(IRPS). IEEE, 2024, pp. 1–5.

[46] S. Z. Shazli, M. Abdul-Aziz, M. B. Tahoori, and D. R. Kaeli, “A field
analysis of system-level effects of soft errors occurring in micropro-
cessors used in information systems,” in 2008 IEEE International Test
Conference, 2008, pp. 1–10.

[47] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model-
ing the effect of technology trends on the soft error rate of combinational
logic,” in Proceedings International Conference on Dependable Systems
and Networks, 2002, pp. 389–398.

[48] A. Singh, S. Chakravarty, G. Papadimitriou, and D. Gizopoulos, “Silent
data errors: Sources, detection, and modeling,” in 2023 IEEE 41st VLSI
Test Symposium (VTS). IEEE, 2023, pp. 1–12.

[49] C. Slayman, “Cache and memory error detection, correction, and
reduction techniques for terrestrial servers and workstations,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp.
397–404, 2005.

[50] W. Snyder, “Verilator and systemperl,” in North American SystemC
Users’ Group, Design Automation Conference, 2004.

[51] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, and S. Guru-
murthi, “Feng shui of supercomputer memory positional effects in dram
and sram faults,” in SC ’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis,
2013, pp. 1–11.

[52] M. Tehranipoor, K. Peng, and K. Chakrabarty, Test and diagnosis for
small-delay defects. Springer, 2011.

[53] S. Wang, G. Zhang, J. Wei, Y. Wang, J. Wu, and Q. Luo, “Understanding
silent data corruptions in a large production cpu population,” in Proceed-
ings of the 29th Symposium on Operating Systems Principles, 2023, pp.
216–230.

[54] M. Wilkening, V. Sridharan, S. Li, F. Previlon, S. Gurumurthi, and
D. R. Kaeli, “Calculating architectural vulnerability factors for spatial
multi-bit transient faults,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 293–305.

[55] D. H. Yoon and M. Erez, “Virtualized and flexible ecc for main
memory,” SIGARCH Comput. Archit. News, vol. 38, no. 1, p. 397–408,
mar 2010. [Online]. Available: https://doi-org.libproxy.mit.edu/10.1145/
1735970.1736064

http://ieeexplore.ieee.org/document/7035276/
https://doi-org.libproxy.mit.edu/10.1145/1735970.1736064
https://doi-org.libproxy.mit.edu/10.1145/1735970.1736064

	Introduction
	Background
	Terminology
	Circuit Defects
	Small Delay Faults Resulting from Marginal Defects
	Protecting Against Faults
	Architectural Vulnerability Factor

	Motivation
	Inability of Existing Measures to Study the Impact of SDFs
	Systematically Reasoning About SDFs

	Modeling Small Delay Faults
	Circuit Timing Model
	Manifestation of Small Delay Faults
	Delay Characteristics of SDFs

	DelayAVF: A Delay Fault-Aware AVF
	Formally Defining DelayACE and DelayAVF
	Computing DelayACE and DelayAVF
	Further Optimizations and Possible Heuristics

	Empirical Case Study
	Experimental Setup
	Evaluating DelayAVF for Different Structures and Delays
	Comparing Delay vs. Particle Strike Vulnerability Factors

	Using Approximations to Estimate DelayAVF
	Related Work
	Conclusion
	Appendix
	Abstract
	Artifact check-list (meta-information)
	Description
	Installation
	Experiment workflow
	Evaluation and expected results
	Notes
	Methodology

	References

