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Abstract—Attention for transformers is a critical workload
that has recently received significant ‘attention’ as a target
for custom acceleration. Yet, while prior work succeeds in
reducing attention’s memory-bandwidth requirements, it creates
load imbalance between operators that comprise the attention
computation (resulting in severe compute under-utilization) and
requires on-chip memory that scales with sequence length (which
is expected to grow over time).

This paper ameliorates these issues, enabling attention with
nearly 100% compute utilization, no off-chip memory traffic
bottlenecks, and on-chip buffer size requirements that are inde-
pendent of sequence length. The main conceptual contribution is
to use a recently proposed abstraction—the cascade of Einsums—
to describe, formalize, and taxonomize the space of attention
algorithms that appear in the literature. In particular, we show
how Einsum cascades can be used to infer non-trivial lower
bounds on the number of passes a kernel must take through its
input data, which has implications for either required on-chip
buffer capacity or memory traffic. We show how this notion can
be used to meaningfully divide the space of attention algorithms
into several categories and use these categories to inform our
design process.

Based on the above characterization, we propose FuseMax—a
novel mapping and binding of attention onto a spatial array-style
architecture. On attention, in an iso-area comparison, FuseMax
achieves an average 6.7× speedup over the prior state-of-the-art,
FLAT, while using 79% of the energy. Similarly, on full end-to-
end transformer inference, FuseMax achieves an average 5.3×
speedup over FLAT using 83% of the energy.

Index Terms—Tensor algebra, Extended Einsums, Spatial ar-
chitectures, Attention

I. INTRODUCTION

Over the past few years, transformers [52] have emerged as
the model architecture of choice for a wide range of machine
learning applications, from natural language processing [13],
[17], [48], [49] to computer vision [18], [33] to speech
recognition [4], [26]. This rise has been accompanied by a
corresponding wave of proposals for accelerating transformers
in both software [12], [14], [15] and hardware [28], [62].
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Fortunately, many of the layers (projections, fully con-
nected layers, etc.) used by transformers look very similar to
prior generations of machine learning models. Their resource-
intensive tensor products can be described and evaluated with
existing tensor algebra accelerator modeling tools [29], [35],
[41], and many of the other layers (e.g., layer normalization)
have negligible impact on performance and can be safely
ignored.

However, the attention layer [52]—usually described as a
matrix multiplication, a softmax, and then another matrix
multiplication—does not fit into either of these boxes. For
example, the softmax is both memory intensive (featuring low
algorithmic reuse) and compute intensive (featuring exponen-
tiation and division). Furthermore, attention’s characteristics
preclude many “free lunches” often used to improve efficiency
in other DNN models. For example, because all tensors are
a function of the model inputs, there is no opportunity to
amortize memory access costs with an increased batch size.
Additionally, since none of the operands can be computed
before the inputs are given, compression/strength reduction
techniques (e.g., quantization [22], [60], sparsity [34], [46],
[53], etc.) must be applied dynamically, leading to more
complicated algorithms and hardware designs.

To illustrate the difficulty in accelerating attention, consider
the state-of-the-art accelerator for attention: FLAT [28]. FLAT
uses fusion to reduce attention memory bandwidth bottlenecks
on a spatial architecture (e.g., a TPU [27]). Specifically, FLAT
maps attention’s matrix multiplications to the 2D spatial array
and softmax operations to a separate 1D array. While FLAT’s
design does make attention compute bound, it becomes com-
pute bottlenecked in the 1D array (the softmax), causing
severe under utilization of the 2D array. While one could add
additional PEs to the 1D array, this results in corresponding
area costs.

Making matters worse, FLAT requires that the entire vector
over which the softmax is performed be buffered on chip.
This vector is proportional to the sequence length, which is
growing rapidly with time (e.g., Google reports 10 million



length sequences in research, which would require 100s of
MegaBytes to buffer [44]). When the vector/sequence length
grows beyond allowable buffer capacity, FLAT is forced
to spill, which contributes significantly to attention energy
consumption and can even make attention memory-bandwidth
bound.

This paper. We address the above challenges by propos-
ing a novel spatial architecture – FuseMax – to accelerate
attention, with particular emphasis on removing bottlenecks
imposed by the softmax. Our architecture addresses all of the
aforementioned issues associated with FLAT. Namely:

• FuseMax is compute bound, but provides almost 100%
utilization of both the 2D and 1D arrays throughout the
attention layer, without adding additional PEs to the 1D
array.

• FuseMax’s on-chip memory requirements are invariant
to sequence length and require no extra spills to memory
regardless of sequence length.

The paper’s technical core is split into three parts.
First, Section III demonstrates a novel analysis on kernels

that uses the recently proposed cascade of Einsums abstrac-
tion [35]. In a nutshell, an Einsum defines an iteration space
over tensors and what computation is done on and between
tensors at each point in the iteration space. A cascade of
Einsums is a sequence of dependent Einsums that can be used
to describe and specify a larger kernel.

While prior work [35], [39] provides a precise definition
for Einsums, a major contribution in our work is to show how
this definition can be leveraged to inform accelerator design.
Specifically, we recognize that the cascade makes explicit pre-
cisely what dependencies there are between Einsums. We show
how this can be used to make non-trivial deductions about a
kernel’s allowed fusion granularity and algorithmic minimum
per-tensor live footprint. The relationship between the live
footprint and the buffer capacity, in turn, has implications for
the required data movement.

In more detail, this analysis provides insight into the number
of passes an algorithm performs, i.e., the number of times a
given element of an input must be revisited after visiting every
other element of the input. Normally, one strives to choose
a dataflow that exploits maximal reuse in a given element
(or tile of elements) to avoid having frequently reload it.
However, some algorithms preclude this strategy. In this work,
we describe how to count the number of passes a cascade
requires and present two methods for reducing the number
of passes. In general, fewer passes is preferable; although,
interestingly, we find that decreasing the number of passes can
increase the required compute. Given that an Einsum cascade
is mapping/scheduling agnostic, this analysis provides insight
given any possible scheduling of the cascade onto hardware.

Next, Section IV applies the cascade of Einsums abstraction
to describe and formalize the attention kernel. Using the notion
of passes introduced in Section III, we taxonomize the space
of numerically stable attention proposals that appear in the
literature. For example, in a naı̈ve implementation of attention,
one must traverse the entire softmax input to build the softmax

denominator and only after that can one revisit and scale each
input (softmax numerator) by the denominator. Because this
analysis is performed on the cascade of Einsums, our lower
bounds on passes hold for any choice of mapping, including
applications of fusion. For example, despite using fusion,
FLAT employs a 3-pass cascade and its reliance on large on-
chip buffering is a symptom of trying to avoid three passes-
worth of DRAM traffic. We, then, show how transforming the
attention cascade reduces the number of passes required.

Additionally, we find that expressing attention as a cascade
of Einsums reveals that optimizations that were previously
conflated can actually be applied separately. We specifically
call out one that is used by 1-pass algorithms to eliminate the
need for a second pass after the final softmax denominator
has been calculated. We recognize that this optimization has
the added benefit of decreasing the required divisions, which
is not only useful for but can be applied to 2- and 3-pass
cascades as well.

Finally, Section V uses the insights from Section IV as a
starting point to develop a novel mapping and binding for
attention that can be lowered to a spatial architecture. We
call our architecture FuseMax. FuseMax adopts the 1-pass
attention cascade used in FlashAttention-2 [14]. However,
despite using the cascade from FlashAttention-2, binding this
cascade to a spatial architecture is non-trivial. In particular,
FlashAttention-2 binds the cascade onto a GPU, an archi-
tecture that features homogeneous PEs, each with relatively
large per-PE storage, and expensive inter-PE communication.
Spatial architectures feature opposite characteristics: heteroge-
neous PEs, each with smaller per-PE storage, and cheap (but
restricted) inter-PE communication. Specifically, the networks
that connect the PEs within the 2D array allow efficient
communication primarily between neighbors. We overcome
these differences and demonstrate a novel mapping and bind-
ing for the 1-pass cascade that achieves high utilization
for entire transformer layers. Our architecture requires only
minimal changes to a standard spatial architecture and is
performance/energy robust to long sequence lengths (e.g., 1M
tokens and beyond).

To summarize, we make the following contributions:

• We show how cascades of Einsums can be used to inform
accelerator design, both in terms of reasoning about
compute requirements and per-tensor live footprints. We
formalize lower bounds on the number of passes a cas-
cade imposes given any possible mapping of the cascade
onto hardware.

• We use cascades of Einsums, and the observation about
pass lower bounds, to provide a taxonomy and precise
specification of numerically stable attention algorithms
in the literature. Orthogonally, we show how previously
entangled attention optimizations can be applied across
attention algorithms.

• We propose a novel mapping and binding for attention
for a spatial architecture—which we call FuseMax—that
achieves high utilization for both 2D and 1D array PEs,



and has memory traffic requirements that are independent
of sequence length.

• We evaluate FuseMax on BERT [17], TrXL [13], T5 [49],
and XLM [13] and demonstrate a 6.7× speedup on
attention with 79% of the energy and a 5.3× speedup on
full end-to-end inference with 83% of the energy relative
to FLAT.

II. BACKGROUND

In this section, we describe the concepts and terminology
used in the remainder of the paper.

A. Tensors

This paper focuses on algebraic computations on tensors,
where a tensor is a multidimensional array. A tensor’s rank
refers to a specific dimension of the tensor, while the tensor’s
shape is the set of valid coordinates for each of the tensor’s
ranks. We use the notation N -tensor to denote a tensor with
N ranks, where a 0-tensor is a scalar, a 1-tensor is a vector,
a 2-tensor is a matrix, etc.

We adopt the format-agnostic fibertree abstraction of ten-
sors, where a tensor is represented as a tree of fibers, as
detailed in prior work [25], [35], [38], [43], [51], [55], [57],
[58], using the specific version described in TeAAL [35,
Section 2.1]. In this abstraction, a fiber consists of the set of
coordinates for a given rank with common coordinates for all
higher-level ranks. Each coordinate is coupled with a payload.
The payload may contain a reference to a fiber in the next
lower rank, or to a leaf data value.

B. Traditional Einsums

An Einsum expression defines a computation on a set of
tensor operands using an iteration space that specifies the set
of points where the computations are performed [35], [39]. For
example, we describe matrix-matrix multiplication (GEMM)
with the following Einsum:

Zm,n = Ak,m ×Bk,n (1)

where A and B are input 2-tensors of shape K × M and
K×N , respectively. Z is an output 2-tensor with shape M×N .
Throughout this paper, we use the same symbol for both the
shape and name of a rank (e.g., rank K in A has a shape of
K).

The iteration space of this Einsum is [0,K) × [0,M) ×
[0, N). An evaluation of this Einsum must: (1) walk every
(k,m, n) point in the iteration space; and, at each point (2)
project into the data space of all input tensors, (3) multiply
the corresponding data values, and (4) place the result at the
corresponding data point in Z. If a value already exists at an
(m,n) point in Z (due to computation at the same (m,n) point
for a different k in the iteration space), reduce the two values
together using addition. Note that the Einsum specifies what
to compute; it does not indicate the order in which one walks
the iteration space. These aspects are left to the mapping [9],
[35], [41].

We also note that we can view the iteration space itself as
a tensor. In the example above, this tensor has shape K ×
M × N . Therefore, we define a special fibertree—called the
iteration space fibertree or is-fibertree—that is the fibertree
representation of this iteration space tensor.

C. Extended Einsums

Traditional Einsums sufficiently express standard tensor
algebra, including those supported in Basic Linear Algebra
Subprograms (BLAS) [19], [30] and tensor network con-
tractions [1]. However, they cannot handle more complex
computations. The recently proposed Extended General Ein-
sums notation (EDGE) [39], extends Einsums to handle graph
algorithm computations. We find this abstraction useful for
also expressing complex tensor algebra computations and use
its notation throughout the paper. We now briefly summarize
the portions of EDGE that we leverage.

1) User-Defined Computations: EDGE separates computa-
tions into three “actions”: map (

∧
), reduce (

∨
), and populate

(=) [39]. Map specifies the pair-wise computation between the
shared ranks of two tensors, reduce specifies the computation
for the reduction step of an Einsum, and default populate (=)
places a computed value from the right-hand side (RHS) of
the Einsum to its location on the left-hand side (LHS).

Each map and reduce action contains two operations: merge
and compute. Compute defines the operation to apply between
two data values, and can be any user-defined function. Merge
specifies which regions of the iteration space to touch; execu-
tion will not need to access the data space corresponding to
culled points. Together, merge and compute precisely define
the computations in an Einsum. Common merge operations
include intersection (∩), which touches points with non-zero
values in both operands; and union (∪), which touches points
where at least one of the operands is non-zero.

The full EDGE specification for GEMM is then:

Zm,n = Ak,m ·Bk,n ::
∧
k

×(∩)
∨
k

+(∪), (2)

where
∧

k specifies a map action between A and B on the
k rank and the intersection merge operator (∩) culls k points
where at least one operand is zero. The compute operator (×)
multiplies the data values of coordinates surviving intersection.
The reduce action (

∨
k) on the k rank gathers all non-empty

points in the k rank and reduces them using addition (+).
In this work, we use three user-defined computations:
1) Maximum (max(∪)) takes the maximum of two values.

Suppose we have the following expression: Zm = Am ·
Bm ::

∧
m max(∪). The union merge operator (∪) filters

out any m coordinates where both operands contain 0
(and places 0 in the output). The max compute operator
then returns the maximum of the two operands.

2) Divide (÷(←)) divides two data values. Given the
following expression, Zm = Am · Bm ::

∧
m÷(←),

the merge operator (←) only touches m points where
there is a non-zero value in the B operand (see [39,



Appendix]), and the compute operator divides the data
value in A with the data value in B.

3) Subtraction and Exponentiation: To apply the expo-
nential to an expression that subtracts two tensors,
we use the following expression: Zm = Am ·
Bm ::

∧
m sub-then-exp(1). The user-defined operator

(sub-then-exp) performs Am minus Bm then applies
the exponential to the result. The merge operator, 1, is
EDGE’s “pass-through” operator, which touches all m
points in the iteration space.

In addition to map and reduce, EDGE enables the expression
of user-defined unary operations on tensors. For example, we
can express the application of the non-linear, sigmoid function
(σ) on each element of a tensor A as Zm = σ(Am).

2) Shorthand Notation: Throughout this paper, we take
advantage of EDGE’s shorthand notation [39] in the following
ways:

• We drop all reduce actions that consist of add and
union in the compute and merge operator, respectively
(
∨
+(∪)). Thus, Zm = Ak,m ::

∨
k +(∪) becomes

Zm = Ak,m.
• We express all map actions using infix notation; that is,

Ak,m ·Bk,n ::
∧

k ×(∩) becomes Ak,m ×Bk,n.
• When max is part of a map action (Am · Bm ::∧

m max(∪)), we replace it with the following shorthand:
max(Am, Bm).

• When ÷ is part of a map action (Am ·Bm ::
∧

m÷(←)),
we replace it with the following: Am/Bm.

• When sub-then-exp is part of the map action (Am ·Bm ::∧
m sub-then-exp(1)), we replace it with the shorthand

eAm−Bm .
• We can express rank variable expressions with only one

valid coordinate (e.g., Si:i=2) using just the coordinate
(in this case, S2).

3) Filtering Rank Expressions: EDGE also enables express-
ing Einsums that touch only a subset of the data space of their
constituent tensors. For example, we may express the prefix
sum of a tensor Ak with the following Einsum:

Si+1 = Ak:k≤i

For each coordinate i, Si+1 is built by reducing together the
subset of A whose coordinates are ≤ i. Note that this definition
of prefix sum computes the entire sum for a given i without
iteratively reusing the previous sum.

4) Expressing Iterative Computations: EDGE expresses
recursion and iteration through generative/iterative ranks. We
use the term standard ranks to differentiate non-iterative ranks
from iterative ranks. We can express the iterative prefix sum
as follows:

Si+1 = Si +Ai (3)
⋄ : i ≥ K (4)

Here, S is a tensor with the iterative rank, I , ranging from 0
to K (inclusive). Statement 4 indicates the stopping condition
for the iterative expression (when i is greater than or equal to
K).

5) Cascades of Einsums: TeAAL [35] introduces the con-
cept of cascades of Einsums, which expresses directed acyclic
graphs (DAGs) of Einsum expressions as a sequence of sub-
Einsums. One can view the unrolled iterative expression in
Einsum 3 as a cascade:

S1 = S0 +A0

S2 = S1 +A1

...

SK = SK−1 +AK

Finally, we use the EDGE Initialization label to specify
computations that initialize tensors, which occur once. We use
the EDGE Extended Einsum(s) label to specify the computa-
tion that occurs on each iteration of a cascade of Einsums [39].
For example, see (Einsum) Cascade 5.

D. Mapping and Binding

While the cascade of Einsums specifies what computation
is required, the mapping and binding describe how it should
occur [9], [35], [41], [51]. We use the concept of logical tasks
to define these terms. A logical task is a grouping of points
in the iteration spaces of all Einsums. Tasks are defined such
that each point in the iteration spaces is assigned to exactly
one task. Logical tasks can be as small as a single point or as
large as an entire iteration space. In the final schedule, each
logical task must be assigned to exactly one compute unit that
finishes the given task before moving onto the next task.

The mapping, therefore, describes a task graph, a directed,
acyclic graph whose nodes are logical tasks and edges are
dependencies between the tasks. Mapping specifications typ-
ically include aspects such as loop order, partitioning, and
work scheduling (sequential vs. parallel operations) [35]. Thus,
the dependencies in the task graph can be true dependencies
(enforced by the cascade) or additional ordering constraints
imposed by the mapping specification.

The binding describes how the tasks are bound to the
actual hardware, including which compute unit each task is
associated with, when that task will be executed, and where
the inputs and outputs are stored in the memory hierarchy.
This binding must obey the dependencies present in the task
graph and the physical limitations of the architecture but is
otherwise unconstrained.

E. Tensor Algebra Accelerators

In recent years, the popularity of domain-specific tensor
algebra accelerators has increased. A typical accelerator based
on a spatial architecture consists of off-chip main memory,
an on-chip shared global buffer, various scratchpads, and
a 1D and/or 2D processing engine (PE) array where each
PE contains compute units [9], [27], [28], [38], [62]. This
design minimizes memory transfer latency while maximizing
compute utilization [7]–[9], [11], [27]. Various tools enable the
quick modeling and design space exploration of tensor algebra
accelerators, including Timeloop [41] and Accelergy [56],
GAMMA [61], and DOSA [23].



III. PASSES PERFORMED BY A CASCADE OF EINSUMS

Our first contribution is to demonstrate a novel analysis that
can be applied to a cascade of Einsums. The key insight is
that cascades of Einsums provide a precise description of the
iteration space for each Einsum and the data space for each
constituent tensor, enabling us to derive the algorithmic min-
imum live footprint for each tensor, with implications for the
allowed fusion schedules and required buffer capacity/memory
traffic. Because this analysis relies only on the cascade of
Einsums, it holds for any choice of mapping and binding.

A. Calculating the Number of Passes

We will apply our analysis to attention in Section IV.
To illustrate ideas, we first start with a simple pedagogical
example, shown in Cascade 1.

Y = Ak ×Bk (5)
Z = Y ×Ak (6)

Cascade 1: An example 2-pass cascade.

Einsum 5 performs a dot product between Ak and Bk, and
Einsum 6 multiplies the first Einsum’s result Y by Ak again
to produce Z. If we want to minimize data traffic of Ak, we
need to choose a dataflow for each Einsum that keeps Ak

stationary and fuses the two Einsums together. In other words,
the dataflow must finish using the first element of Ak before
moving onto the next. However, such a dataflow does not exist
for this cascade. Any implementation must visit every element
of Ak to compute Y before it can revisit any element of Ak

to compute Z.
We define a pass that a cascade performs over a particular

fiber of a particular rank and tensor to be a traversal of every
element of that fiber. Each time an element must be revisited
after visiting every other element of that fiber, there is an
additional pass. For example, Cascade 1 performs two passes
over the K rank of Ak.

Since an Einsum’s iteration space can also be represented as
a fibertree (i.e., an is-fibertree – see Section II-B), we extend
our definition of an iteration space for a cascade of Einsums
by considering its iteration space to be the sequence of the
is-fibertrees for each Einsum. Now, in a scenario where fibers
for a particular rank exist in multiple is-fibertrees; in each,
they project to the same tensor; and there is a dependency
such that all of the elements of the earlier is-fibertree’s fiber
must be read before any element can be read again by the
later is-fibertree (for all mappings of the cascade), we refer to
that read-read sequence as creating an additional pass. When
there is a sequence of N such read-read dependencies, we
say the cascade is an (N +1)-pass cascade. For our example,
Cascade 1 requires two passes of the K rank.

B. Implications of the Number of Passes

The number of passes a cascade performs is relevant be-
cause it restricts possible fusion schedules. Einsums within a

pass can be fused at will, producing and consuming a tile of the
intermediate at a time. Einsums in different passes cannot be
fused. Revisiting Cascade 1, Einsums 5 and 6 cannot be fused
on the K rank. Any implementation must visit all elements of
the K fiber of A to produce Y before it can visit any of the
elements of that fiber to produce Z.

This analysis also provides a non-trivial lower bound on the
tensors’ live footprints. For example, the algorithmic minimum
live footprint for tensor A is a fiber of shape K. In other words,
an architecture must either have enough buffer space to hold
an entire K fiber of A or spill and reload that fiber, incurring
memory traffic proportional to the shape of K. We note that
this analysis is mapping independent. There is no dataflow for
this cascade that enables a smaller live footprint.

C. Reducing the Number of Passes via Reassociation

Given the restrictions that multi-pass cascades place on
the allowed dataflows and tensor live footprints, it can be
beneficial to manipulate the cascade to reduce the number of
passes required. Crucially, these manipulations are functionally
equivalent and only change how Z is computed. In this section,
we will present two methods for doing so, though we leave
a full analysis of the space of pass-reduction approaches to
future work.

1) Deferring the Multiplication by Y : First, we recognize
that, by the distributive property, Einsum 6 can be factored to
perform the reduction of Ak first, before multiplying the result
by Y . Doing so, we get the following cascade:

Y = Ak ×Bk (7)
X = Ak (8)
Z = Y ×X (9)

Cascade 2: A reassociation of Cascade 1 that defers the Y× to compute Z
with 1-pass of the K rank.

Now, because there is no read-after-write dependency be-
tween Einsums 7 and 8, both Einsums can be included in
the same pass. In fact, because Einsum 8 reduces away the
K rank, Cascade 2 is a 1-pass cascade with respect to this
rank. This reassociation actually provides a second benefit over
Cascade 1: Einsum 9 now only requires one multiplication (as
opposed to K multiplications in Einsum 6).

2) Iteratively Constructing Y and Z: Alternatively, we can
iteratively construct Y and Z as we perform the pass through
Ak. To do so, we will take a similar approach to the prefix-
sum (see Sections II-C3-II-C4) and build intermediate Y s and
Zs.

RYi+1 = Ak:k≤i ×Bk:k≤i (16)
RZi+1 = RYi+1 ×Ak:k≤i (17)

Just like with the prefix sum, this version requires a lot of extra
compute, but, because Y = RYK and therefore Z = RZK ,
the final result is the same.



Initialization:

RYi:i=0 = 0 (10)
RZi:i=0 = 0 (11)

Extended Einsums:

RYi+1 = RYi +Ai ×Bi (12)

RZi+1 = RZi ×
RYi+1

RYi
+RYi+1 ×Ai (13)

Z = RZK (14)
⋄ : i ≥ K (15)

Cascade 3: A reassociation of Cascade 1 that iteratively constructs Y and Z
with 1-pass of the K rank.

We remove this extra work by making the I ranks of RYi+1

and RZi+1 iterative. This is shown in Cascade 3. Iterative
RYi+1 (Einsum 12) looks very similar to the iterative prefix-
sum. However, computing RZi+1 is a little more complicated.

To derive the expression for RZi+1, we start by introducing
one more intermediate Si, which is the prefix sum for Ak:

Si = Ak:k≤i−1 (18)

Now, we can combine Einsums 17 and 18 to write RZi in
terms of this prefix-sum:

RZi = RYi × Si (19)

Dividing both sides by RYi, we derive an alternate definition
for Si:

Si =
RZi

RYi

Si+1 can also be written using this alternative definition:

Si+1 =
RZi

RYi
+Ai (20)

We can combine Einsums 19 and 20 to compute RZi+1 in
terms of RZi (i.e., iteratively):

RZi+1 = RYi+1 ×
(
RZi

RYi
+Ai

)
Distributing RYi+1 and performing some reassociation, we get
Einsum 13.

Cascade 3 is also a 1-pass cascade, performing one pass of
the K rank of Ak (indexed with the variable i) and iteratively
building RYi+1 and RZi+1. Unfortunately, unlike Cascade 2,
Cascade 3 does require extra compute over the original Cas-
cade 1. However, memory bandwidth-limited workloads can
afford to trade off extra compute for reduced memory traffic,
and Cascade 3 may still provide benefit.
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Fig. 1: Overview of transformer encoder inference.

IV. TAXONOMIZING ATTENTION AS EINSUM CASCADES

Our second contribution is to apply the cascade of Einsums
abstraction and the notion of passes to transformer models to
describe, taxonomize, and highlight trade-offs in the space of
attention implementations. This section first looks at the trans-
former model as a whole, identifying attention as an important
kernel (Section IV-A). We then give an overview of attention
and a “straightforward” (but inefficient) algorithm for softmax
by writing them as cascades of Einsums (Sections IV-B-
IV-C). Finally, we show how optimizations to softmax can be
described by modifying the cascades and provide a taxonomy
of the space using the number of passes required by each
cascade (Sections IV-D-IV-E).

A. Transformers

Transformer models generally follow the architecture de-
fined in [52]. Our work, which addresses the impact of long
sequence lengths during self-attention, focuses on the encoder
architecture.1 Figure 1a gives an overview. The transformer
first projects the input (by multiplying it by weight tensors) to
form a query, key, and value. Self-attention is made up of three
operations: a matrix multiplication of the query and key, a
softmax on the result, and another matrix multiplication, which
combines the softmax output with the value. The attention
output is then deprojected (again, multiplying by a weight
tensor), normalized, passed through a two-layer feed-forward
neural network (FFN), and normalized once more.

As the sequence length grows, the relative importance of the
different operations changes. Figure 1b shows that at shorter
sequence lengths, the weight-times-activation “linear” layers
are a larger fraction of the total required compute, while at
long sequence lengths, the attention operation dominates. In
all cases, the additional non-linearities (e.g., the normalization,
the ReLU between the FFN layers, etc.) have negligible
impact. In the next section, we focus on describing attention
more precisely, and use our analysis to understand prior work
on efficient implementations.

1During the decoder phase, inference is severely bottlenecked on the
memory traffic required to read the KV cache [24], and therefore the on-
chip accelerator design has less impact on performance.



B. Redefining Attention’s “Matrix Multiplications”

In the original transformer paper [52], the kernel was
described with the following equation:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (21)

However, this equation says almost nothing about what the
inputs Q, K, and V look like or what iteration space needs
to be traversed. We clarify these points by rewriting the above
as a cascade of Einsums, with the exception of the softmax,
whose cascade we will explore in Section IV-C. The first step
is to give each of the ranks names: M and P are the sequence
lengths for Q and K/V , respectively, and E and F are the
embeddings for Q/K and V , respectively.

QKm,p =
1√
E
×Qe,p ×Ke,m (22)

Am,p = softmax(QKm,p) (23)
AVf,p = Am,p × Vf,m (24)

Here, Einsums 222,3 and 24 look like matrix multiplications.
Taking Einsum 24 as an example, for each point in the iteration
space F ×M×P , we perform a multiplication using elements
from two 2-tensors (Am,p and Vf,m) to produce a 2-tensor
output (AVf,p), which requires reducing across the inputs’
shared rank M . Einsums 22-24 can be modified to refer to
the full batched, multi-head self attention [52] by adding the
batch (B) and head (H) ranks to all tensors. This changes
the characteristics of the kernel. Adding the B and H ranks
means that Einsums 22 and 24 behave like many independent
matrix multiplications instead of one monolithic matrix multi-
plication. The challenges with attention, described in Section I,
still follow clearly from this modification. Because all tensors
contain a B rank, the matrix multiplications are all unique to
the specific batch’s inputs. Therefore, none of these tensors can
be computed before the inputs are given, and there is no data
sharing between the different elements in the batch. Hence, to
simplify notation, we assume the presence of the B and H
ranks but omit writing them throughout the rest of paper.

C. Softmax as a Cascade of Einsums

We now apply the same precise notation to the softmax. A
softmax [5] over a 1-tensor is traditionally expressed with the
following equation:

Am =
eIm∑
k e

Ik
(25)

2Einsums do not require the transpose, since this information is implicit in
the indices.

3In Einsum 22, we also substitute E for dk following the notation defined
in Section II-B, where the shape of a rank is also its rank name.

In the context of attention, this operation becomes two dimen-
sional and can be expressed using the following cascade with
input QKm,p:

SNm,p = eQKm,p (26)
SDp = SNm,p (27)
Am,p = SNm,p/SDp (28)

For each point in the iteration space (m, p), we exponentiate
QKm,p to generate the softmax numerator (SNm,p in Ein-
sum 26), reduce SNm,p with addition to produce the softmax
denominator (SDp in Einsum 27), and finally, divide the
numerator and denominator to produce the final result (Am,p

in Einsum 28).
1) Improving Numerical Stability: Because eQKm,p can

easily become extremely large, the above formulation suffers
from overflow. Therefore, practical implementations [2], [42]
often prefer the numerically stable variant that replaces Ein-
sum 26 with:

GMp = QKm,p ::
∨
m

max(∪) (29)

SNm,p = eQKm,p−GMp (30)

and drop the 1√
E

term when computing QKm,p.4 To compute
the global maximum5 GMp, we reduce QKm,p with the op-
erator max (instead of +). Notice that subtracting GMp from
QKm,p in the exponent is equivalent to dividing by eGMp , and
because the 1

eGMp
term appears in both the numerator (SNm,p

via Einsum 30) and denominator (SDp via Einsum 27), the
result (Am,p) stays the same. This construction improves
numerical stability by bounding the values of the softmax
numerator SNm,p to the range (0, 1].

D. Optimizing Softmax Compute

We now describe an optimization to attention that reduces
compute requirements, specifically division. This optimization
was used in FlashAttention-2 [14]. We point out that it can
be applied more broadly, i.e., to any cascade we discuss in
Section IV-E. Einsum 28 requires M×P divisions. While this
is the best we can do for an independent softmax, we note that
attention does not use the softmax in isolation [52]. Instead, it
subsequently multiplies the result, Am,p, and another tensor,
Vf,m, per Einsum 24, reproduced here:

AVf,p = Am,p × Vf,m

To optimize the full attention cascade, we can refactor Ein-
sums 28 and 24 by, instead, first combining SNm,p and
Vf,m (Einsum 31) and reducing across the M rank and then
performing the division (Einsum 32), as follows:

SNVf,p = SNm,p × Vf,m (31)
AVf,p = SNVf,p/SDp (32)

4The 1√
E

term was introduced to bound the magnitude of SNm,p [52].
Because the numerically stable softmax variant already accomplishes this, the
scaling is often omitted [12], [14], [15].

5“Global” here refers to over the entire M fiber.



3-pass 2-pass 1-pass
PyTorch [42] TileFlow [62] FlashAttention [15]

TensorFlow [2] Choi et al. [12] FlashAttention-2 [14]
FLAT [28] Rabe and Staats [47]

E.T. [6]

TABLE I: Classifying prior attention algorithms.

This reassociation does F × P divisions instead of M × P
divisions. Since M is the sequence length and F is an em-
bedding dimension (i.e., M ≫ F ), this reassociation reduces
the required divisions (by a factor of M

F ).

E. Optimizing Softmax Live Footprint and Memory Traffic

We now apply the analysis described in Section III to
analyze attention’s live footprint and memory traffic. We
consider the exact attention literature, omitting works that
either do not model/evaluate the softmax or include approx-
imation strategies that improve performance at the cost of
reduced accuracy (increased perplexity). We discuss the latter
in Section VII.

We find that existing approaches to attention can be clas-
sified as either 3-pass, 2-pass, or 1-pass cascades, where an
N -pass cascade performs N passes of a given M fiber. See
Table I. Next, we describe the key ideas of each.

1) 3-Pass Attention Cascades: The 3-pass cascade is the
straightforward, numerically stable cascade that we already
discussed in Section IV-C1, namely Einsums 29-30 followed
by Einsums 27-28, reproduced in Cascade 4 for clarity.

QKm,p = Qe,p ×Ke,m /* Pass 1 */ (33)

GMp = QKm,p ::
∨
m

max(∪) (34)

SNm,p = eQKm,p−GMp /* Pass 2 */ (35)
SDp = SNm,p (36)
Am,p = SNm,p/SDp /* Pass 3 */ (37)
AVf,p = Am,p × Vf,m (38)

Cascade 4: The 3-pass attention cascade.

In Pass 1, we compute QKm,p and GMp; in Pass 2, we
compute SNm,p and SDp; and in Pass 3, we compute Am,p

and AVf,p. Notice that we must finish an entire M fiber of
Einsum 34 (reading an entire M fiber of QKm,p) before
GMp is ready to start Einsum 35 (where we must read the
same M fiber of QKm,p again). Similarly, we must finish an
entire M fiber of Einsum 36 (reading an entire M fiber of
SNm,p) before SDp is ready to start Einsum 37 (where we
must read the same M fiber of SNm,p again). To summarize,
as a consequence of the dependencies between Einsums, this
cascade must perform three passes over each M fiber. This
holds for any choice of mapping (including ones that perform
fusion).

2) 2-Pass Attention Cascades: We now briefly summarize
the 2-pass cascade, deferring details due to space. Rather than
computing the global max and then starting the softmax (as

in the 3-pass cascade), the 2-pass cascade first partitions the
input, computes a per-partition local max and applies it to form
a variant of SNm,p whose elements are likewise partitioned
and adjusted by the local max. Analogously, each partition gets
a local denominator (also adjusted by the same local max).
While this is occurring, it builds the global max from the
local max values. Next, in a second pass, it uses the global
max to correct the per-partition numerators and denominators
and compute the softmax output.

3) 1-Pass Attention Cascades: While prior work proposes
multiple different 1-pass cascades [14], [15], [47], the main
ideas are the same in each. Rather than using the per-partition
local max to compute the local numerator and denominator,
instead keep a running max that represents the max value seen
so far. Each time a new running max is computed, also adjust
previous results (e.g., numerator-times-V , denominator, etc.)
with this max.

This transformation can be described more precisely using
the reassociations presented in Section III-C. First, we modify
Cascade 4 to multiply the softmax numerator-times-V and
then compute the division (as described in Section IV-D).
This reassociation combines the second and third passes of
Cascade 4 (see Section III-C1). To ensure numerical stability,
we cannot use the same strategy to combine the first and
second passes. So we instead use the iterative approach (see
Section III-C2).

We are now ready to describe FlashAttention-2’s 1-pass
cascade (shown as Cascade 5). We later use it to build
FuseMax. Note the evidently increased compute relative to
the 3-pass cascade. We will carefully design the binding in
Section V to hide these overheads on a spatial architecture.

We will start by expressing the partitioning of both of
the inputs Ke,m and Vf,m into M1 chunks of M0 elements
each (Einsums 39-40). After computing BQKm1,m0,p, this
allows us to perform operations like maximum on individual
M0 fibers, rather than on the whole tensor (Einsum 45).
The problem is, of course, that the local maximum is not
necessarily the same for all M0 fibers and so will not just
cancel nicely like the global maximum.

We resolve this by instead using the running maximum
(RMm1,p)—the global maximum of all inputs seen so far—
instead of the local maximum. We recognize that M1 can also
serve as an iterative rank, and iteratively build up RMm1,p.
After initializing RMm1:m1=0,p to −∞ (Einsum 41), we com-
pute a new running maximum RMm1+1,p using the running
maximum computed in the previous iteration RMm1,p and the
new local maximum LMm1,p (Einsum 46).

We can now use the running maximum to compute a local
numerator SLNm1,m0,p (Einsum 47), a local denominator
SLDm1,p (Einsum 48), and even the softmax numerator-
times-V SLNVf,m1,p (Einsum 49) using the partitioned
BVf,m1,m0 (Einsum 40).

Now consider the softmax denominator. Eventually, we
would like to reduce SLDm1,p into a 1-tensor, but because
its values may have been computed with different maximums,
we cannot simply use addition. Instead, by introducing a



Initialization:

BKe,m1,m0 = Ke,m1×M0+m0 (39)
BVf,m1,m0 = Vf,m1×M0+m0 (40)

RMm1:m1=0,p = −∞ (41)
RDm1:m1=0,p = 0 (42)

RNVm1:m1=0,p = 0 (43)

Extended Einsums:

BQKm1,m0,p = Qe,p ×BKe,m1,m0 (44)

LMm1,p = BQKm1,m0,p ::
∨
m0

max(∪) (45)

RMm1+1,p = max(RMm1,p, LMm1,p) (46)

SLNm1,m0,p = eBQKm1,m0,p−RMm1+1,p (47)
SLDm1,p = SLNm1,m0,p (48)

SLNVf,m1,p = SLNm1,m0,p ×BVf,m1,m0 (49)

PRMm1,p = eRMm1,p−RMm1+1,p (50)
SPDm1,p = RDm1,p × PRMm1,p (51)
RDm1+1,p = SLDm1,p + SPDm1,p (52)

SPNVf,m1,p = RNVf,m1,p × PRMm1,p (53)
RNVf,m1+1,p = SLNVf,m1,p + SPNVf,m1,p (54)

AVf,p = RNVf,M1,p/RDM1,p (55)
⋄ : m1 ≥M1 (56)

Cascade 5: A 1-pass attention cascade. Note that M1 is used as a standard
rank (e.g., to access BQKm1,m0,p) and as an iterative rank (e.g., to access
RMm1,p). The stopping condition for all iterative ranks is m1 ≥ M1
(Statement 56).

new running denominator RDm1,p with iterative rank M1,
we can correct the old denominator RDm1,p to the new
running maximum RMm1+1,p and then perform the addition.
We start by initializing the running denominator at the start
of the computation to 0 (Einsum 42). Then, at each point
m1, the correction factor PRMm1,p allows us to correct the
previous running denominator RDm1,p with the new maxi-
mum (Einsum 51). In other words, RDm1,p is downscaled
by eRMm1,p . SPDm1,p “switches” the downscaling factor on
RDm1,p to eRMm1+1,p by multiplying RDm1,p by eRMm1,p

eRMm1+1,p

(PRMm1,p). Once SLDm1,p and SPDm1,p have the same
maximum, they can be combined to produce the new running
denominator RDm1+1,p (Einsum 52). We can do the same to
compute the running numerator-times-V (Einsums 43, 53-54).

Finally, AVf,p can be computed by dividing the final
numerator-times-V by the final denominator. By construction,
at this point, RNVf,M1,p and RDM1,p are both downscaled
by the same maximum RMM1,p (conveniently, also the global
maximum) and can be correctly combined.

V. MAPPING AND BINDING ATTENTION

Based on the framework from Section IV, we now describe
FuseMax, an efficient mapping and binding of an attention
algorithm (specifically the 1-pass cascade in Cascade 5) to a
spatial array-style architecture. To enable maximum flexibility
while binding, FuseMax’s mapping places each iteration space
point in its own logical task.

The goal when binding a cascade onto hardware is to fully
utilize all available compute units. In our evaluation of prior
work (Figure 6 and Section VI-B), we observe that at short
sequence lengths, the 2D PE array is under-utilized because
it must wait for the 1D PE array to compute the softmax. At
longer sequence lengths, both arrays are under-utilized since
the workload becomes memory-bandwidth limited.

FuseMax’s binding addresses these issues to achieve full
utilization on both the 1D and 2D PE arrays. First, we decrease
the compute performed by the 1D array by (1) applying
the division reduction optimization (Section IV-D) and (2)
sharing the other operations (sum/max/exp) between the 1D
and 2D arrays. Similarly, we ensure that the workload is never
memory-bandwidth limited by deeply fusing all Einsums in
the cascade to restrict the live footprint to only what can be
buffered on-chip. No matter the sequence length, our dataflow
is never forced to spill any of its intermediates off-chip.

Architecture. FuseMax is a spatial array architecture based
on the TPUv2/TPUv3 [37, Figure 1(e)]. The off-chip DRAM
and a large global buffer both feed data to connected 2D and
1D arrays (see Figure 2). We set parameters to match the cloud
configuration in prior work [28].

2D PE Array
(+, x, max)

1D PE Array 
(+, x, max, /)

Global 
buffer 

(16 MB)

256

25
6

400 
GB/sec

Fig. 2: Spatial array architecture assumed for FuseMax.

Figure 3 shows the evolution of the 2D PE array archi-
tecture, from a fixed-dataflow multiply-accumulate TPU PE
(Figure 3a) to a flexible-dataflow multiply-accumulate PE
(Figure 3b) to a FuseMax PE (Figure 3c). Note, although both
the 1D and 2D PE arrays in FuseMax perform exponentiation,
we implement exponentiation with 6 sequential multiply-
accumulate operations [36], [53] and therefore do not require
a dedicated exponentiation unit.

Mapping. Prior attention accelerators [28], [62] explore
fusing many of attention’s loop nests together. However,
because these accelerators all use multi-pass cascades, the
algorithmic minimum live footprint of some tensors (e.g.,
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Fig. 3: 2D PE architecture evolution.

QKm,p) is O(M), meaning that for long sequence lengths,
intermediates cannot be buffered on chip.

FuseMax leverages fusion in conjunction with the 1-pass
cascade to eliminate the memory traffic of these tensors,
regardless of the sequence length. Specifically, we partition
on both M and P (forming M1,M0 and P2, P1, P0), and
maximally fuse all levels in the attention loopnest as shown
in Mapping 1. That is, all Einsums in Cascade 5 are fused
except for the last (which is fused to the rest only on P2).

for p2 ...:
for m1 ...:
for p1 ...:

parallel_for p0 ...:
parallel_for m0 ...:
(RNV[:, m1 + 1, p2, p1, p0],
RD[m1 + 1, p2, p1, p0]) =

ComputeRNVTile(
Q[:, p2, p1, p0],
K[:, m1, m0], V[:, m1, m0])

for p1 ...:
parallel_for p0 ...:

AV[:, p2, p1, p0] =
ComputeAVTile(
RNV[:, m1 + 1, p2, p1, p0],
RD[m1 + 1, p2, p1, p0])

Mapping 1: The FuseMax mapping as a loopnest. We partition on both
M and P and map the innermost ranks M0 and P0 to the spatial
array PEs. ComputeRNVTile performs Einsums 44-54 from Cascade 5.
ComputeAVTile performs Einsum 55. Note that each Einsum represents
a loopnest: by writing all Einsums in ComputeRNVTile under a single
loopnest, we mean that we are maximally fusing those loopnests. Outer loops
over B and H (if performing batched multihead attention) are not shown.

While prior work implementing attention in hardware [28],
[62] does utilize the 2D spatial array for the tensor products, it
fails to do so for the softmax, choosing instead to use the 1D
array. Because there are far fewer total PEs in the 1D array
than the 2D array, the softmax becomes a bottleneck. FuseMax
improves utilization of the 2D spatial array by using it for
both the tensor products and the exponentiation operator in the
softmax. FuseMax parallelizes across the M0 and P0 ranks
throughout the attention kernel (see Mapping 1). We set M0×
P0 = # 2D Array PEs. The large spatial reductions required
when parallelizing across the M0 rank are easily handled by
the low-cost inter-PE communication network.

Binding. The dependencies between different Einsums in
our cascade necessitate a binding that implements fine-grain

pipeline parallelism to achieve high utilization of both the 1D
and 2D spatial arrays. Figure 4 shows the waterfall diagram
for FuseMax in the steady state. Time is broken into epochs.
Each epoch performs the same set of tile-granular operations
at specific tile-relative coordinates (given by a, b, c, d in the
figure). Across all epochs, the kernel evaluates all tiles and
each Einsum in Cascade 5 is mapped to either the 2D or 1D
array for all epochs (as shown in the figure).

A major design consideration when binding the attention
kernel is how to overcome the latency of fills and drains
to/from the spatial array. Consider a tile of QKm,p of shape
M0 × P0. Per Einsum 22, the iteration space to evaluate
this tile is E × M0 × P0 which becomes E cycles on the
spatial array. For the networks we evaluate, E = 64 or 128.
Assume E = 64. Using an output stationary dataflow, while
each PE performs 64 MACCs, it takes ∼ 256 cycles to both fill
and drain the spatial array. Without careful interleaving, this
combination of parameters causes low utilization because, for
example, the running max RMm1+1,p1,: cannot be computed
until a tile of QKm1,:,p1,: is completed and spatially reduced
(drained) to form the local max LMm1,p1,: (Einsums 45-46).

Our binding address the above issues with two levels of
interleaving. First, we interleave the construction of dependent
tiles across epochs. This is reminiscent of software pipelining.
For example, in Figure 4 the d-th tile of BQK and LM are
completed in Epoch i (as they correspond to a fill followed
by a drain and can be easily pipelined). The RM (which has
to wait for the drain) for tile d takes place in a later epoch.
Instead, Epoch i computes an earlier tile’s running maximum
RM [c].

Second, we interleave the construction of certain tiles within
an epoch at a fine (e.g., cycle-by-cycle) granularity. See the
notation ‘A|B’ in Figure 4. This is to ensure high utilization
of both the 2D and 1D PE arrays at all times. To make
this more clear, Figure 5 shows the start up and steady-state
interleaving of SLNV and BQK in the 2D array and SPNV
and RNV in the 1D array. In each cycle, a given PE in the
2D array computes a value for either BQK or SLNV and
this alternates cycle by cycle. Each neighbor-neighbor link in
the array is active in every cycle—carrying data for one of the
two operation types. By interleaving SLNV with BQK, the
1D PEs can concurrently compute SPNV and RNV .

Putting everything together, as Section VI-B will show, the
above enables high utilization of all 2D and 1D array PEs.

FuseMax on GPUs. FuseMax’s mapping and binding
cannot be directly applied to GPUs. FuseMax’s architec-
ture features heterogeneous PEs, each with smaller per-PE
storage, and cheap (but restricted) inter-PE communication.
Specifically, the networks that connect the PEs within the 2D
array allow efficient, fixed-latency communication primarily
between neighbors, including between the bottom of the
2D array and the 1D array. However, the GPU architecture
features opposite characteristics: homogeneous PEs, each with
relatively large per-PE storage, and expensive, loosely coupled
inter-PE communication. While concurrent work [50] has
explored using the GPU’s Tensor Cores to compute BQK and
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SLNV and using software pipelining to hide the latency of the
other compute, the GPU’s loosely coupled threads require fre-
quent synchronization to maintain correctness. FuseMax takes
advantage of the tight coupling between the 2D and 1D arrays
to statically schedule compute between the arrays, enabling
high utilization across the board without sychronization.

VI. EVALUATION

In this section, we demonstrate how FuseMax’s cascade, ar-
chitecture, and binding work together to achieve improvements
in both performance and energy relative to the state of the art,
for both attention and end-to-end transformer inference.

A. Experimental Set-Up

First, we present the experimental setup details common to
all following subsections.

Workloads. We evaluate all accelerators and configurations
using the same transformer models used by FLAT [28]: BERT-
Base [17] (BERT), TrXL-wt103 [13] (TrXL), T5-small [49]
(T5), and XLM [13]. We omit FlauBERT [31] because it uses
the same hyperparameters as TrXL. We also note that though
T5 is an encoder-decoder model, we only evaluate the encoder
in this work. Following FLAT, we use a batch size B = 64
for all evaluations.
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Fig. 6: Utilization of the different PE arrays on the unfused baseline, FLAT, and three configurations building up FuseMax.

FL +C +A +B

1K

0.0
0.2
0.4
0.6
0.8
1.0

Pr
op

or
tio

n 
Ac

tiv
e

FL +C +A +B

4K

FL +C +A +B

16K

FL +C +A +B

64K

FL +C +A +B

256K

FL +C +A +B

1M

QK
LM
SLN
SLD
SLNV/AV

Fig. 7: 2D array utilization by Einsum across different configurations—FLAT (FL), +Cascade (+C), +Architecture (+A), and +Binding (+B)—and sequence
lengths on BERT.

1K 4K 16K 64K 256K 1M
 BERT

0

5

10

Sp
ee

du
p

1K 4K 16K 64K 256K 1M
 TrXL

1K 4K 16K 64K 256K 1M
 T5

1K 4K 16K 64K 256K 1M
 XLM

Unfused
FLAT
FuseMax
+Cascade
+Architecture
+Binding

Fig. 8: Speedup of attention for FLAT and three configurations building up FuseMax over an unfused baseline.
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Fig. 9: Energy consumption of attention for FLAT and three configurations building up FuseMax over an unfused baseline.
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Fig. 10: Speedup of transformer inference on FLAT and three configurations building up FuseMax over an unfused baseline.
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Fig. 11: Energy consumption of transformer inference on FLAT and three configurations building up FuseMax over an unfused baseline.

Modeling with Timeloop and Accelergy. We perform
our evaluation using two tools for tensor algebra accelerator
modeling and design space exploration: Timeloop [41] and
Accelergy [56]. We use these tools to build models of the
accelerator architectures at a 45nm technology node and
evaluate each Einsum individually. Results from individual
Einsums are combined using heuristics presented in prior work
for evaluating full cascades [35]. Together, these tools allow us
to evaluate execution time, energy, and area for all our designs.
We perform floating-point division using the design in Xia et
al. [59], scaled down to a 45nm technology node [56].

Unfused Baseline. We build the unfused baseline by com-
bining the costs of three phases: QK (Einsum 22), the 3-pass
softmax (Cascade 4), and AV (Einsum 24). Because this base-
line is unfused, each phase can be scheduled independently,
but proceed sequentially and require outputs to be written
to memory between phases. We use Timeloop to search for
efficient mappings to perform QK and AV . Additionally, we
model the softmax for the unfused baseline by allowing the
accelerator to load the M fibers of the input on-chip one-by-
one (spilling if there is not enough space) before performing
the compute. We model the memory traffic, compute, and
energy required to perform all Einsums required for attention.

FLAT Baseline. Our main baseline is the state-of-the-
art attention accelerator FLAT [28]. Though we started with
the FLAT authors’ original code, we found and corrected a
number of bugs. Through private correspondence with the
FLAT authors, we verified the bugs were indeed bugs. We
also discovered a couple of larger conceptual errors, which
the authors told us to avoid by restricting FLAT to only search
through configurations without these issues.

Beyond correcting the FLAT codebase, we created and
validated a Timeloop model that reproduces the FLAT authors’
(corrected) code to within < 1% error. However, the FLAT
codebase does not model the cost to perform the softmax.
Specifically, their model ignores the cost of the data transfers
required for the softmax (between any levels of the memory
hierarchy) and uses 230 1D PEs for compute. When comparing
FuseMax and FLAT in this work, we augment our Timeloop
model to model softmax correctly per the 3-pass cascade
implicitly assumed by FLAT using only 256 1D PEs.

FuseMax Configurations. To demonstrate the sources of
the improvements achieved by FuseMax, we present three
configurations, one associated with each of the major changes
we propose: +Cascade uses the 1-pass cascade on the FLAT
architecture, +Architecture adds the FuseMax architecture but

implements a binding that fully produces and consumes one
M0×P0 tile of BQK before starting the next, and +Binding
adds FuseMax’s pipelined/interleaved binding.

Hardware parameters. Figure 2 shows the selected hard-
ware parameters. We chose the PE array dimension to match
FLAT’s cloud accelerator and then set the global buffer ca-
pacity so that the overall chip area was as close to FLAT’s as
possible. Also following FLAT, we use a 940 MHz frequency.
We use Accelergy to model the area of both designs and find
that FuseMax is 6.4% smaller.

B. Evaluating Attention

We now evaluate FuseMax to demonstrate the benefits it
provides on the attention kernel by comparing it to the two
baselines.

Utilization. Figure 6a shows the utilization of the 1D PE
array when performing attention. FLAT’s utilization drops for
sequence lengths ≥ 256K—it becomes memory bandwidth
limited because it must spill the QK and A tensors to memory.
By using a 1-pass cascade (+Cascade), FuseMax’s utilization
becomes independent of sequence length. We also note that
without the FuseMax binding (+Architecture), the 1D array is
forced to stall and utilization drops. Adding in this binding
(+Binding) enables FuseMax to fully utilize the 1D array
again.

Similarly, Figure 6b shows the utilization of the 2D array.
Because of the large amount of compute required for the
softmax, most configurations achieve poor utilization of this
array. In fact, because the 1-pass cascade increases the com-
pute required, +Cascade’s 2D array utilization is lower than
FLAT’s at short sequence lengths. On the other hand, FuseMax
(+Binding) achieves high utilization across the board and, at
long sequence lengths, reaches almost 100% utilization. Both
baselines achieve slightly higher utilization on XLM, which
can be attributed to the higher intensity caused by a larger
embedding dimension (E/F ).

Figure 7 explores this phenomenon in more detail, breaking
down the utilization by Einsum. FuseMax effectively hides
both the costs of the memory traffic and softmax compute,
allowing it to achieve high 2D array utilization while spending
most of the cycles on the tensor products.

Speedup. Figure 8 shows that FuseMax achieves an average
speedup of 10× over the unfused baseline and 6.7× over
FLAT. We note FuseMax achieves lower speedup on XLM
only because the baselines are able to achieve higher utilization
of the 2D array on this transformer (Figure 6b).
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Fig. 12: Pareto-optimal curves for FuseMax at sequence length 256K.

Energy. Figure 9 shows that FuseMax uses 77% the energy
of the unfused baseline and 79% the energy of FLAT.6 The
energy use of the unfused baseline and FLAT are dominated
by the DRAM access energy, the global buffer access energy,
and the QK and AV (Einsums 22 and 24) compute energy.
FuseMax achieves its energy savings by significantly reducing
the DRAM and global buffer access energies. In fact, ≥ 95%
of the energy used by FuseMax across all models and se-
quence lengths goes to the compute performed by the MACC
functional units in the 2D array.

C. Evaluating Transformer Inference

To evaluate the benefits of FuseMax on end-to-end trans-
former inference, we include the other required linear lay-
ers (Section IV-A). We use Timeloop to search for optimal
mappings for these linear layers and use the same mappings
for all three accelerator configurations. The attention modeling
remains the same as Section VI-B.

Speedup. Figure 10 shows the performance improvement
achieved by FuseMax. Across the sequence lengths tested,
FuseMax achieves an average speedup of 7.6× over the
unfused baseline and 5.3× over FLAT. As discussed in Sec-
tion IV-A, as sequence length grows, attention becomes a
larger fraction of the total required compute. Therefore, at 1M
tokens, FuseMax achieves an average 10× speedup over the
unfused baseline and 7.5× speedup over FLAT.

Energy. Figure 11 shows the energy reduction achieved by
FuseMax. Here, we see similar results: as attention becomes
a larger fraction of the kernel, the energy reduction increases.
FuseMax uses 82% of the unfused baseline and 83% of
FLAT’s energy during end-to-end inference.

D. Pareto-Optimality of FuseMax

We further observe that by varying the size of the PE array
(between 16×16 and 512×512) and setting the global and per-

6FLAT reports larger energy savings over the unfused baseline because it
only reports energy associated with DRAM traffic during the tensor products.

PE buffers to accommodate the resulting pipelined/interleaved
binding, we generate a family of designs for efficient trans-
former inference.

VII. RELATED WORK

Spatial architectures have been applied successfully to a
variety of domains in academia [9], [10], [40], [45] and
industry [3], [27]. Beyond FLAT [28] (discussed in the main
body of the paper), TileFlow [62] is a framework for modeling
and searching for efficient fused dataflows (including for atten-
tion) on spatial architectures. Though TileFlow does explore
a broader space of dataflows than FLAT, even implementing
the 2-pass softmax cascade (Section IV-E2), its dataflows
remain softmax-compute limited. Recent work has explored
the scheduling/compilation of a multi-Einsum kernels [21],
[54], [62]. However, these works explore a limited set of
transformations, making FuseMax’s inter-Einsum interleaving
not discoverable.

Quantization and sparsity have also been successfully ap-
plied to reduce the transformer inference compute and live
footprint. We view these schemes as complementary to our
work. GPTQ [20], AWQ [32], and LLM.int8() [16] quan-
tize model weights to 4 or 8 bits without significant ac-
curacy degradation. Outlier-aware quantization schemes like
GOBO [60] and OliVe [22] quantize both weights and ac-
tivations to a low-bit precision on specific hardware designs.
SpAtten [53] prunes entire tokens and heads, while Sanger [34]
and DOTA [46] use quantized or low-rank projected Q and K
tensors to estimate which values of QK and A can be safely
pruned. All of these algorithms are expressible as cascades of
Einsums, and therefore, may be combined with FuseMax to
improve performance and energy efficiency, though we leave
their specification and implementation to future work.

VIII. CONCLUSION

This paper advanced the state of the art in spatial accelerator
design for transformer inference. To do so, we expressed
attention and its variants as cascades of Einsums. We used
these cascades to reason about attention’s characteristics, in-
dependent of its mapping/scheduling. Using these principles,
we proposed FuseMax—an accelerator that uses deep fusion
and fine-grain pipelining to map attention onto a spatial
architecture. FuseMax achieves ∼ 100% utilization of both
PE arrays, demonstrating 6.7× speedup over the prior state-
of-the-art (FLAT) using 79% of the energy on attention and
5.3× speedup over FLAT using 83% of the energy on end-to-
end inference.

Our work shows that cascades of Einsums provide a
powerful abstraction for representing and analyzing domain-
specific kernels. Future work may explore their application
to other attention variants (e.g., those exploiting quantization
and sparsity) or even other domains (e.g., fully homomorphic
encryption, scientific computing, relational algebra, etc.). Do-
ing so enables mapping-agnostic analysis and may elucidate
previously undiscovered cascades and schedules for these
algorithms.
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APPENDIX

A. Abstract

In this artifact, we provide Timeloop and Accelergy models
of the accelerator FuseMax, an accelerator for encoder-style
transformer inference. For ease-of-use, we provide a Docker
container and a set of Jupyter notebooks through which to run
the experiments. This artifact can be evaluated on an x86-84
machine with 5 GB of disk space.

B. Artifact check-list (meta-information)
• Algorithm: Timeloop/Accelergy model of the FuseMax accel-

erator and the baselines it was evaluated against
• Program: Python, Timeloop, Accelergy
• Run-time environment: Docker, Jupyter
• Hardware: x86-64 machine
• Output: Plots generated from scripts
• Experiments: Modeling of the five different accelerator design

points via Timeloop and Accelergy models
• How much disk space required (approximately)?: 5GB
• How much time is needed to prepare workflow (approxi-

mately)?: 20 minutes
• How much time is needed to complete experiments (approx-

imately)?: 9 hours
• Publicly available?: Yes
• Archived (provide DOI)?: Provided after evaluation

C. Description - How to access

The artifact is hosted on Github at https://github.com/
FPSG-UIUC/micro24-fusemax-artifact. Following the in-
structions in this repository will allow you to install
the relevant dependences, run the experiments, and dis-
play the graphs. System requirements can be found
at https://github.com/FPSG-UIUC/micro24-fusemax-artifact/
blob/main/README.md#system-requirements.

D. Installation

Installation instructions can be found at https:
//github.com/FPSG-UIUC/micro24-fusemax-artifact/blob/
main/README.md#installation.

E. Evaluation

Evaluation instructions can be found at https:
//github.com/FPSG-UIUC/micro24-fusemax-artifact/blob/
main/README.md#run-experiments.

F. Expected Results

Graphs will be displayed within
the Jupyter notebook and/or found in
workspace/outputs/generated/<timestamp
or default>/figs/. They can be compared with
Figures 6-12 in the paper or the corresponding figures in
workspace/outputs/pregenerated/figs/.

G. Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/

artifact-review-and-badging-current
• https://cTuning.org/ae
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