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Abstract
With the rising adoption of deep neural networks (DNNs) for com-
mercial and high-stakes applications that process sensitive user 
data and make critical decisions, security concerns are paramount. 
An adversary can undermine the confidentiality of user input or a 
DNN model, mislead a DNN to make wrong predictions, or even 
render a machine learning application unavailable to valid re-
quests. While security vulnerabilities that enable such exploits can 
exist across multiple levels of the technology stack that supports 

machine learning applications, the hardware-level vulnerabilities 
can be particularly problematic. In this article, we provide a com-
prehensive review of the hardware-level vulnerabilities affecting 
domain-specific DNN inference accelerators and recent progress 
in secure hardware design to address these. As domain-specific 
DNN accelerators have a number of differences compared to gen-
eral-purpose processors and cryptographic accelerators where the 
hardware-level vulnerabilities have been thoroughly investigated, 
there are unique challenges and opportunities for secure machine 
learning hardware. We first categorize the hardware-level vulner-
abilities into three scenarios based on an adversary’s capability: 
1) an adversary can only attack the off-chip components, such as 
the off-chip DRAM and the data bus; 2) an adversary can directly 
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attack the on-chip structures in a DNN accelerator; and 3) an ad-
versary can insert hardware trojans during the manufacturing and 
design process. For each category, we survey recent studies on 
attacks that pose practical security challenges to DNN accelera-
tors. Then, we present recent advances in the defense solutions 
for DNN accelerators, addressing those security challenges with 
circuit-, architecture-, and algorithm-level techniques.

Index Terms—Hardware security, DNN accelerators, side-
channel attacks, fault injection attacks, memory security, hard-
ware trojan.

I. Introduction

The past decade has witnessed the remarkable 
success of deep neural networks (DNNs) in a wide 
range of applications and benchmarks. Beyond 

the success in academia and research, DNNs have been 
adopted for numerous commercial and real-world appli-
cations, such as chatbots [1], medical imaging [2], drug 
discovery [3], autonomous driving [4], and circuit design 
[5]. However, with this wide usage, there is a growing 
concern over the security of DNNs, especially when they 
are deployed for high-stakes applications.

Security has three key aspects—confidentiality, integ-
rity, and availability—each of which has direct connec-
tions to machine learning 
applications (Fig. 1). First, 
confidentiality of user-pro-
vided input data is crucial 
to ensure data privacy. For 
example, in biomedical ap-
plications [2], user input 
data can contain private 
health information that 
should not be accessed by 
unauthorized users and is 
protected under govern-
ment regulations [6]. Also, 
confidentiality is impor-
tant for the intellectual 
property of proprietary 
DNNs. Developing modern 
DNNs can require signifi-
cant resources, such as a 
proprietary data set, high-
performance computing 

systems, and custom training algorithms [7]. Thus, the 
model architectures and parameters of DNNs can be im-
portant assets for the developers, and they can be the 
target of an adversary who attempts to create a func-
tional copy of the DNN.

Second, integrity of both user input data and DNN 
model parameters is essential for trustworthy AI appli-
cations. In order for a user to trust the prediction made 
by a DNN, there has to be a guarantee that both user-
provided data and DNN model parameters are authen-
tic. Recent work showed that the prediction of DNNs 
can be dramatically changed by the addition of a small 
amount of noise in either input data [8], [9] or model pa-
rameters [10], [11], [12], [13], illustrating the importance 
of integrity for DNNs. Furthermore, errors that are intro-
duced during the computation of a DNN, either random 
or adversarial, can also undermine the trustworthiness 
[14], [15], [16], [17].

Finally, availability of machine learning applications 
can be compromised when an adversary wages denial-
of-service attacks. By preventing the accelerator from 
performing necessary operations, the entire system 
can be slowed down or completely halted [18], [19]. For 
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Figure 1. Three aspects of security are confidentiality, integrity, and availability. Each aspect 
is crucial for secure machine learning and can be undermined by an adversary, as summa-
rized in this figure.
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latency-critical applications, such as autonomous driv-
ing, this can result in real harm from not being able to 
make decisions on-demand.

These security concerns pose novel challenges for 
domain-specific accelerators targeting machine learn-
ing applications. Crucially, hardware-level vulnerabilities 
can be exploited to undermine the security required for 
machine learning applications. Hardware-level vulner-
abilities often arise from inherent or intended charac-
teristics of hardware designs, such as data-dependent 
power consumption [20] or electromagnetic radiation 
[21], interference [22], [23] and remanence [24], [25] 
properties of memory cells, and resource sharing across 
multiple tenants and processes [26], [27], [28]. As they 
are inherent to hardware designs, not architecture- or 
implementation-level flaws, these vulnerabilities can-
not be simply removed. Furthermore, adversaries can 
embed hardware trojans in the manufacturing and de-
sign process of semiconductor chips [29], [30], [31], [32], 
[33], [34], [35], [36], [37], creating backdoor channels 
and causing malicious behavior without the knowledge 
of the original designer. These vulnerabilities motivate 
the need for secure DNN accelerators equipped with the 
appropriate defense solutions.

As such, there is a growing interest in securing DNN 
accelerators from hardware-level vulnerabilities. This 
article aims to provide a comprehensive overview of 
recent progress in secure machine learning hardware, 
specifically focusing on domain-specific accelerators 
targeting DNN inference. These accelerators service 
inference requests on user inputs with trained and 
fixed DNN model parameters, and all three aspects 
of security are pertinent to this scenario. In this ar-
ticle, we first categorize the source of hardware-level 
vulnerabilities in DNN accelerators and analyze the 
unique characteristics of DNN accelerators that affect 
hardware security (Section II). Then, we survey recent 
works exploiting hardware-level vulnerabilities to un-
dermine the security of DNN accelerators (Section III). 
Next, we discuss recent progress in secure DNN accel-
erator designs, covering diverse circuit-, architecture-, 
and algorithm-level techniques proposed for the secu-
rity (Section IV).

II. Understanding the Sources of Vulnerabilities
Hardware systems face various security vulnerabilities. 
The characteristics of underlying circuits, such as cur-
rents fluctuating depending on the data being processed 
[20], [21] and properties of memory bit cells [23], [38], 
can leak information or allow manipulation by an adver-
sary. Often, an adversary can insert hardware trojans. 
These hardware-level security vulnerabilities have been 

extensively studied for conventional general-purpose 
microprocessors or cryptographic accelerators.

Emerging domain-specific DNN accelerators [39], 
[40], [41], [42], [43], [44] share many of the conventional 
hardware-level vulnerabilities. However, it is important 
to recognize the characteristics of DNN accelerators 
that distinguish the attacks targeting them from con-
ventional hardware attacks. DNN accelerators employ 
high levels of parallelism for the arithmetic operations 
and typically have regular and predetermined data or-
chestration across their memory hierarchies [40], [45], 
[46], [47]. In this section, we first describe the sources 
of hardware-level vulnerabilities for DNN accelerators 
from the perspective of conventional hardware secu-
rity (Section II-A). Next, we discuss the implications of 
these unique characteristics of DNN accelerators on the 
hardware-level vulnerabilities and attacks (Section II-B).

While this paper primarily focuses on hardware-
level vulnerabilities affecting DNN accelerators, it is 
crucial to acknowledge vulnerabilities originating from 
the host processor when DNN accelerators are used 
as co-processors. A host processor with compromised 
system software, such as hypervisors or operating sys-
tems, can allow an adversary to gain root privileges 
[48], [49], [50], [51]. Similarly, hardware attacks target-
ing the host processor can enable privilege escalation 
[23], [27], [28], [52]. Since the host processor off-loads 
DNN workloads to accelerators, an adversary with root 
privileges can potentially access data originating from 
the host, without further sophisticated attacks targeting 
the accelerators we describe in this section. Thus, the 
security of the host processor and the potential for an 
adversary to gain root access represent another layer 
of vulnerabilities affecting the overall system. Although 
our discussion focuses on hardware-level vulnerabili-
ties specific to DNN accelerators, readers are directed 
to [23], [27], [28], [48], [51], [53], [54], and [55] for a com-
prehensive overview of host processor security issues 
and software-level vulnerabilities.

A. Conventional Taxonomy for Hardware-Level 
Vulnerabilities
We can categorize the hardware-level vulnerabilities 
according to the scope of what can be trusted in hard-
ware systems (Fig. 2). In the first scenario, an adversary 
cannot directly observe or manipulate a victim DNN ac-
celerator, thus the on-chip structures in a victim DNN 
accelerator can be trusted to be secure. However, the 
off-chip components, such as the main memory and 
peripherals that are connected to a victim DNN accel-
erator, can still be vulnerable to an adversary (Section 
II-A1). Alternatively, there can be a scenario where the 
on-chip structures are exposed to an adversary, and an 
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adversary can obtain direct information from a victim 
DNN accelerator (Section II-A2).

The above two scenarios assumed that a DNN accel-
erator is manufactured faithfully according to the origi-
nal design. This assumption fails when an adversary 
can insert hardware trojans to the design, such that the 
behavior of a victim DNN accelerator cannot be trusted 
(Section II-A3).

In the rest of this section, we provide an overview 
of vulnerabilities for each scenario. These vulnerabili-
ties have been conventionally investigated for general-
purpose CPUs/GPUs and cryptographic accelerators. 
As DNN accelerators share similar security challenges, 
where appropriate, we will also describe related work 
on CPUs, GPUs, and cryptographic accelerators that we 
believe will be applicable to DNN accelerators.

1) Vulnerabilities of the Off-Chip Components: Since 
DNNs have a large memory footprint for their model pa-
rameters and intermediate tensors, an off-chip memory 
element such as DRAM acts as the main memory for a 
DNN accelerator by holding the data that cannot fit on 
the limited on-chip memory [40], [46], [47]. However, 
this off-chip memory element and a bus connecting it to 
the DNN accelerator can be targets of an adversary [24], 
[25], [38]. Several works [25], [38] showed that an adver-
sary can read out data stored in a DRAM by executing an 
abnormal booting sequence or by physically removing a 
DRAM and connecting it to an adversary-controlled ma-
chine. These attacks are often referred to as “cold-boot” 
attacks, and they exploit the characteristic of a DRAM 
that data remains for a certain period of time even af-
ter the power is disconnected. These attacks undermine 
the confidentiality of data stored in off-chip memory.

Off-chip memory is also vulnerable to fault injection 
attacks that undermine integrity [11], [12], [22], [23]. An 
adversary with physical access to an off-chip memory 
can use electromagnetic pulses [56] and lasers [57] to 
induce bit flips in data stored in a DRAM. Furthermore, 
bit flips can be remotely induced by an adversary who 
exploits interference between bit cells in a DRAM, which 
causes one bit cell’s activity to affect its neighboring bit 
cells [22], [23]. For example, Rowhammer [22] is an at-
tack that induces predictable bit flips in a DRAM by re-
peatedly accessing the neighboring rows of the victim 
bit cells, without physical access to a DRAM.

As an off-chip memory is on a separate die and some-
times a separate package from the DNN accelerator, a 
bus connecting those two can be susceptible to both 
confidentiality and integrity breaches. An adversary 
who can probe this bus can monitor and modify the data 
traffic and the metadata such as addresses and request 
types (e.g., read or write) for each transaction [58], 
[59], [60]. Therefore, even when an adversary lacks the 

capability to directly attack a victim DNN accelerator, 
the off-chip components can be vulnerable to attacks 
undermining confidentiality and integrity.

We briefly note that the emerging trend of 2.5D/3D 
integration for off-chip memory elements can reduce 
some of the vulnerabilities associated with traditional 
off-chip DRAMs [61], [62], [63]. 3D integration allows 
stacking memory elements and processors vertically 
within the same package. From the security perspec-
tive, memory elements residing in the same package re-
duce the attack surface as bus snooping and tampering 
attacks are not applicable. As such, some threat models 
for GPUs that use HBMs assume that the on-package 
HBMs can be considered trusted, similar to the on-chip 
structures [61], [64], unlike conventional assumptions 
on off-chip memory elements.

2) Vulnerabilities of the On-Chip Structures: Data-
dependent characteristics of a victim DNN accelerator, 
such as the power consumption [20], timing informa-
tion [65], and electromagnetic radiation [21] of an ac-
celerator can act as side-channels that leak information. 
An adversary exploits the fact that these characteris-
tics often have a strong correlation with data and op-
erations of the accelerator. For example, the power 
consumption of an electronic circuit depends on the 
activity factor and thus the data being processed, and 
an adversary who can observe the power consumption 
of an accelerator can reverse-engineer the data [20]. 
Similarly, timing information can be exploited if in-
structions have conditional branches that require dif-
ferent number of cycles to complete an operation (e.g., 
multiplications, nonlinear functions) depending on the 

Figure 2. The sources of hardware-level vulnerabilities 
affecting DNN accelerators.

Authorized licensed use limited to: MIT. Downloaded on March 16,2025 at 19:02:35 UTC from IEEE Xplore.  Restrictions apply. 



12  IEEE CIRCUITS AND SYSTEMS MAGAZINE   FIRST QUARTER 2025

data [66], [67], [68]. Spatially distributed currents can 
also induce electromagnetic radiation that can be mea-
sured non-invasively [69].

An adversary can learn about confidential data, such 
as user inputs [70], [71] and model parameters [72], 
[73], [74], [75], using these side-channel leakages. When 
fine-grained side-channel leakages, such as those at the 
single instruction level, are available, an adversary can 
obtain powerful insights into exact data values being 
processed. However, such fine-grained information can 
be challenging to be obtained in some scenarios. For 
example, many computations are performed in parallel 
across several arithmetic units in GPUs (also similarly 
in DNN accelerators), and often an adversary can only 
observe aggregate features, such as memory allocation 
sizes and hardware counter values [76], [77]. Still, these 
coarse-grained leakages can pose significant security 
risks as we elaborate in Section III-B1 of this article.

Moreover, an adversary can manipulate the power or 
clock supply to the device to induce faulty operations 
in a DNN accelerator [15], [16], [17]. Clock glitches can 
induce skipping of instructions in microprocessors [78] 
or timing violations in combinatorial logic [15]. Glitches 
in the power supply can also cause timing violations 
[16], [17] as the timing requirement of a circuit depends 
on the supply voltage [16]. High-precision electromag-
netic pulses and lasers can cause bit flips in the internal 
state of an accelerator [56], [79]. As faults induced by 
these physical manipulation methods alter the result 
of operations, they can undermine the integrity of DNN 
accelerators.

Fully invasive attacks can also affect the privacy and 
integrity of these accelerators. Attacks such as voltage 
microprobing [80] can allow attackers to find the values 
stored in specific memory locations or communicated 
in buses. Furthermore, IC delayering and imaging [81] 
can give full knowledge of the integrated circuit layout, 
which has successfully been used to recover the entire 
design.

Often, these attacks on a DNN accelerator require an 
adversary to have physical access to an accelerator to 
measure the side-channel leakages or interfere with the 
hardware. However, recent work demonstrated these at-
tacks can be waged remotely by leveraging a software 
interface developed for power monitoring [82], micro-
architectural side-channels available from resource 
sharing [83], or a monitoring circuit that is co-located 
with a victim DNN accelerator when multiple users share 
a remote FPGA [16], [17], [84], [85], [86], [87]. Thus, the 
security of the on-chip structures is relevant for both 
edge and cloud environments.

Finally, on-chip memory elements, such as SRAMs 
that act as buffers and scratchpad memory in DNN 

accelerators, can be also subjected to data readout at-
tacks similar to the off-chip memory. Recent work from 
[88] showed that an adversary can exploit the power 
domain separation in a processor (i.e., SRAMs have a 
different supply voltage from other on-chip components 
for energy-efficiency) to induce data retention of SRAMs 
similar to the cold-boot attacks against the off-chip 
DRAM. Also, another work [89] demonstrated that a se-
cret stored in the on-chip SRAM can be imprinted to the 
bit cells, causing it to be leaked. While these exploits are 
only demonstrated for general-purpose microproces-
sors, the same methodology can be potentially applied 
to on-chip SRAMs of DNN accelerators.

3) Hardware Trojans: Finally, an adversary can in-
sert hardware trojans, which are circuits that cause 
malicious effects on the operation of a DNN accelerator 
without knowledge of the original designer [29], [30], 
[31]. These hardware trojans can operate as backdoor 
channels to leak information [90], [91], induce bit flips 
and rewire logic gates to generate faulty outputs [30], 
[37], and drain the battery of a victim accelerator to 
make it unavailable to users [92]. Thus, hardware tro-
jans are powerful attacks that can broadly undermine 
the confidentiality, integrity, and availability of a DNN 
accelerator.

An adversary can insert hardware trojans at various 
stages throughout the design and fabrication process of 
a DNN accelerator. As the semiconductor supply chain 
gets more complex, with third-party hardware IP blocks 
and fabrication processes outsourced to foundries, the 
risk of hardware trojans is also increasing [93], [94]. 
While normal functional testing after the fabrication of 
a semiconductor chip exists, a carefully designed hard-
ware trojan can evade such tests by only rarely trigger-
ing its malicious behavior [29], [32], [34].

B. Unique Characteristics of DNN Accelerators
While the conventional taxonomy for hardware security 
provides an excellent primer to understanding various 
hardware-level vulnerabilities affecting a DNN accelera-
tor, it is important to recognize the unique characteris-
tics of DNN accelerators and their ramifications on the 
vulnerabilities. These unique characteristics often make 
exploiting hardware-level vulnerabilities more challeng-
ing to an adversary targeting DNN accelerators.

First, DNN accelerators generally use predetermined 
and structured control across their memory hierarchy 
and processing elements, without using conditional 
branches in their instructions [39], [40], [47]. For ex-
ample, the timing variation observed for floating-point 
arithmetic operations and ReLU activation functions 
(i.e., negative values are clipped to zero) in some micro-
controllers [68] is not present in DNN accelerators as 
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they can be implemented with a dedicated circuit that 
completes in a fixed number of cycles. As a result, tim-
ing side-channel leakages are limited to coarse-grained 
patterns, such as the total cycles required to process a 
single layer in a DNN workload [95], and obtaining fine-
grained timing information for each arithmetic opera-
tion or data access is challenging. Thus, an adversary 
has a much more limited opportunity for exploiting tim-
ing side channels in DNN accelerators.

Second, DNN accelerators have many processing el-
ements that perform arithmetic operations running in 
parallel. An adversary observes the mixture of power 
consumption or electromagnetic radiation patterns 
from multiple processing elements that compute with 
different input and weight pairs. This large amount of 
parallelism can be an obstacle for an adversary trying 
to exploit side-channel leakages, especially when an 
adversary does not know the exact architecture and 
scheduling of operations in the accelerator [73], [74].

Third, as DNNs have a large memory footprint, the 
amount of secrets that an adversary has to recover from 
DNN accelerators is much larger than the 128 -bit or 256 
-bit secret keys in cryptographic accelerators [20], [96]. 
Combined with the two above-mentioned characteris-
tics that limit exploitable side-channel leakages in DNN 
accelerators, it is practically challenging to fully recover 
the fine-grained information of a victim DNN accelerator. 
Instead, many attacks on DNN accelerators target high-
level features such as the model architecture of a victim 
DNN instead of every single weight parameter [95], [97], 
[87], [98], and the class information of user input instead 
of the exact input features [99]. These high-level fea-
tures still present significant security challenges. DNN 
model architectures are often core intellectual property 
for developers, while input class information can be sen-
sitive, particularly in biomedical applications where a 
DNN classification might involve detecting health con-
ditions or diseases, making the class information itself 
personal health information that has to be protected.

Fourth, the robustness of DNNs to small random per-
turbations can increase the difficulty of fault injection 
attacks. In cryptographic accelerators, even a single 
bit flip in a secret key has an avalanche effect across 
all operations using the perturbed key [100], [101]. Of-
ten, a bit flip in the most significant bit (MSB) of the 
exponent field in a floating-point number can also have 
detrimental impacts on DNNs [12]. However, in general, 
the performance of a DNN is not significantly affected 
by small random noise added to its model parameters 
or input data [8], [10], [102], which is a characteristic 
often leveraged to design efficient hardware accelera-
tors using approximate [103], [104] or analog computing 
[105], [106], [107], [108]. Therefore, an adversary must 

algorithmically identify the worst-case faults for its vic-
tim DNN, as random faults can be less effective [10], [13].

Finally, an adversary’s prior knowledge about a vic-
tim DNN has to be carefully considered. Cryptographic 
accelerators usually implement a standardized cipher 
(i.e., AES [109]) whose algorithm is publicly known. 
Thus, the adversary can compute the expected results 
given known inputs to perform statistical side-channel 
analysis [20]. However, DNNs have a wide variety of mod-
el architectures [110], [111], [112], [113], numerical preci-
sion [114], [115], [116], [117], [118], and sparsity patterns 
[119], [120], [121], [122], and there is no single “standard” 
DNN algorithm. Thus, an adversary who has no knowl-
edge about a victim DNN (i.e., “blackbox” attack) has to 
identify this high-level information before attempting to 
recover the model parameters [70], [71], [73]. Also, some 
fault-injection attacks require full knowledge of a victim 
DNN, including its model parameters (i.e., “whitebox” 
attack) [10], [13], [123]. Therefore, an adversary’s prior 
knowledge of a victim DNN becomes a key component 
of a threat model.

III. Recent Advances in Attacks Targeting DNN 
Accelerators

In this section, we provide a comprehensive survey of 
recent advances in attack methodologies exploiting 
hardware-level vulnerabilities of DNN accelerators. For 
each category of vulnerabilities introduced in Section 
II-A, we outline how attacks can undermine confiden-
tiality, integrity, and availability aspects of DNN appli-
cations. These advances demonstrate that hardware-
level vulnerabilities can be a significant threat to DNN 
accelerators.

A. Attacks on the Off-Chip Memory and Bus
1) Confidentiality Attacks: Cold-boot attacks [124], [125] 
are a well-known methodology for extracting the data 
stored in an off-chip memory element. When a DNN ac-
celerator uses an off-chip memory as its main memory, 
this attack methodology can be applied to steal a vic-
tim DNN’s model architecture and parameters. A recent 
study [25] performed cold-boot attacks on a commer-
cially available edge DNN accelerator. The attack targets 
the RAM on the host processor using low temperatures 
(utilizing the fact that data remains for a longer period 
of time when the temperature is low) and the abnormal 
booting sequence of the host processor. In this attack 
demonstration, key prior knowledge required for an ad-
versary is the storage format of a victim DNN’s model 
architecture and parameters, which can be publicly 
available if a DNN accelerator uses an open-source pro-
tocol to interface with the host processor [126]. Then, 
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an adversary can leverage this knowledge to determine 
bits corresponding to the model architecture and the 
parameters, and correct bit errors to reconstruct a func-
tional DNN.

Furthermore, the metadata of off-chip memory traf-
fic, such as the requested addresses, types (i.e., read or 
write), and timestamps, can act as a side-channel that 
an adversary can use to reverse engineer a victim DNN’s 
model architecture [58], [59], [60]. Recall that DNN ac-
celerators use structured and predetermined control for 
accessing their off-chip memories. While this character-
istic can reduce fine-grained timing side-channel leak-
ages (Section II-B), the off-chip memory access pattern 
still leaks relevant coarse-grained information about a 
victim DNN. For example, one layer’s output tensor is 
used as the next layer’s input tensor in many DNNs, and 
identifying the read-after-write dependencies across the 
off-chip memory access patterns can reveal the inter-
mediate tensor size and the timing “boundary” of when 
one layer starts and ends [58]. Combined with another 
property of a DNN that the model parameters are usu-
ally read-only during the inference, [58], [60] showed 
that reverse engineering of a DNN’s model architecture 
is feasible with only the memory traffic patterns.

2) Integrity Attacks: Fault Injections: DNNs are general-
ly robust to small amounts of random noise, with some 
exceptions on the exponent field of a floating-point num-
ber [12]. Thus, fault injection attacks have to be more 
precise in terms of which bits to target (Section II-B). Re-
cent studies proposed approaches to identify the most 

harmful bit flips in the model parameters of a DNN [10], 
[13], [123] and showed that only a handful of bit flips is 
sufficient to completely degrade the performance of a 
victim DNN. Reference [10] used the gradient informa-
tion of each weight parameter to determine the most 
important bits in a linearly quantized DNN. Reference 
[10] chose the bits with a large magnitude of gradients 
and showed that only 10-20 bit flips are required to de-
grade the performance of a victim DNN to the random 
guess level. Reference [13] leveraged the characteris-
tics of sparse matrices and the compressed storage for-
mats to attack pruned DNNs with fine-grained sparsity 
in their weights. In particular, [13] exploited that the 
compressed storage formats for sparse matrices sepa-
rately store the nonzero values and their positions in 
the original matrices, and that a bit flip in the positions 
leads to rewiring of the connections while not changing 
the nonzero value directly (Fig. 3). Reference [13] also 
showed that flipping only a small percentage of the to-
tal memory footprint, less than 0.00005%, of the com-
pressed model parameters is sufficient to cause signifi-
cant performance degradation as illustrated in Fig. 3(b). 
Note that these algorithms do require an adversary to 
have full knowledge of a victim DNN, such as the model 
architecture, parameters, and storage format.

Using these algorithms to identify a few worst-case 
bit flip targets, an adversary can use fault injection 
methodologies against the off-chip main memory of a 
DNN accelerator. Recent works [11], [12] showed that 
Rowhammer can be practically utilized to induce bit 
flips in the target bit cells in a DRAM storing the model 
parameters of a victim DNN. For example, in [11], flip-
ping ∼20 bits took ≤ 100 seconds, demonstrating that 
Rowhammer can be a practical threat for the off-chip 
DRAM. Finally, the faults in an off-chip memory ele-
ment can be used to induce targeted misclassifica-
tion only for certain inputs, making the attack more 
stealthy [123].

These integrity attacks are particularly challenging 
for inference accelerators. Inference accelerators typi-
cally do not update the parameters of DNNs they are 
servicing, and corrupted bits in the parameters can 
impact all subsequent inference requests if there is no 
mechanism to detect these attacks. In contrast, DNN 
training accelerators that update the parameters can of-
ten recover from corrupted bits, and the impact of integ-
rity attacks can be less damaging [127].

B. Attacks on the On-Chip Structures of a DNN 
Accelerator
1) Confidentiality Attacks: Side-channel Attacks (SCAs): As 
we discussed in Section II-B, timing side-channels are lim-
ited for DNN accelerators that do not have data-dependent 

Figure 3. (a) In [13], the position of nonzero values in a sparse 
matrix is subjected to bit flip attacks, resulting in rewiring of 
connections in a victim DNN. (b) The original object detec-
tion model correctly predicts that there are a human and a 
horse in an input sample. However, after flipping 30 bits using 
[13], the model wrongly predicts that there is a chair in this 
example. This image is reproduced from [13] (© IEEE 2022).
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branch instructions. As such, many works on side-chan-
nel attacks (SCAs) on DNN accelerators focused on other 
types of physical side-channel leakages, such as power 
consumption and electromagnetic radiation from a vic-
tim DNN accelerator. After an adversary collects those 
traces, an adversary uses statistics or pattern recognition 
algorithms to reverse-engineer secrets from those traces 
(Fig. 4). For example, a Simple Power Analysis (SPA) pas-
sively monitors the magnitude and peaks in the traces to 
infer high-level secrets like the DNN model architecture 
[87], [95], [97], [98], [128], [129] [Fig. 4(a)]. Another type of 
statistical analysis is a Correlation Power Analysis (CPA) 
[130], [131] [Fig. 4(b)]. For a CPA attack, an adversary 
algorithmically computes the power model of a victim 
circuit for several candidate values for the secret. Then, 
an adversary correlates the actual side-channel traces 
with an algorithmic model using statistical analysis and 
chooses the candidate value that has the highest correla-
tion. Compared to a SPA attack, a CPA attack generally 
requires more information for an adversary, such as the 
inputs given to a victim circuit to generate the traces.

Recently, some SCAs leveraged powerful pattern 
recognition capabilities of DNNs to strengthen their at-
tacks [132], [133], [134], [135] [Fig. 4(c)]. For example, 
[132] used deep learning to predict the key of AES cryp-
tographic implementations with a much smaller attack 
time compared to traditional attack methods like CPA 
attacks. Furthermore, this was applicable across mul-
tiple devices, where the power SCA variation between 
devices is much higher than that between different key 
values on the same device. Similarly, [133] used neural 
networks to predict the data being converted in an ana-
log to digital converter (ADC) based on power SCA data. 
Both multilayer perceptrons and convolutional neural 
networks (CNNs) were highly successful at learning the 
relationship between time-series spikes in power con-
sumption from capacitors charging and discharging to 
the output digital bits, with over 99% accuracy for all 12 
bits of an unprotected commercial ADC. In [133], CNNs 
could even reverse-engineer some information from an 
ADC equipped with protection mechanisms.

These DNN-methods use a profiled form of attack 
[136], where training data is required with the SCA traces 
corresponding to a particular known computation rath-
er than just a simplified power model as in conventional 
SPA and CPA attacks. On the other hand, much less data 
is required during the actual attack [137], which can 
even be done in real-time without having active control 
over an input to repeat the operation enough times for 
successful statistical analysis as in CPA attacks [130], 
[131]. This tradeoff is valuable for an attacker, who has 
the ability to buy a device that is nominally identical to 
the target through regular commercial channels, and 

train a model that can apply with high accuracy even 
with process variations.

While physical SCAs have been well studied in cryp-
tographic circuits [138], [139], [140], [141], their presence 
in DNN accelerators [142], [143], [144] has only been 
considered in the last decade. In this subsection, we in-
troduce recent advances in physical SCAs against DNN 
accelerators, which aim to reverse-engineer user input 
data, DNN model parameters, and architectures.

Recovering User Input Data Recent studies [70], 
[71] demonstrated the use of physical SCAs to recover 
user input data for simple image processing workloads 
such as MNIST [145]. Such attacks can be particularly 
relevant in machine learning systems where an on-chip 
sensor and ADC generates the inputs for the accelera-
tor, rather than being transmitted from off-chip. They 
leverage the first layer of a DNN that directly operates 
on user input data and note any significant changes of 
the power consumption during the processing of this 
first layer. These changes correlate to large differences 
between nearby pixels in a user input, which reveals the 
silhouette of the image. Note that an adversary requires 
the knowledge of a victim DNN’s model architecture 

Figure 4. Physical side-channel attacks analyze the physical-
layer leakages of a victim DNN accelerator, such as its power 
traces or electromagnetic radiations. An adversary can use 
statistics and pattern recognition algorithms to reverse-engi-
neer secrets from the leakages, such as (a) a Simple Power 
Analysis (SPA), (b) a Correlation Power Analysis (CPA), and 
(c) a DNN.
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to determine when an accelerator processes the first 
layer, but not the model parameters. This attack is cur-
rently limited to relatively simple user input data, such 
as MNIST or medical images that have a simple image 
on top of a plain background [70]. However, the success 
rate of this attack has been shown to be higher if an ad-
versary can actively collect power traces from a DNN 
accelerator with known input data to build a template, 
which is then used to reconstruct secret user input data 
[70]. Furthermore, similar attacks can be applied to oth-
er layers of a DNN. While the intermediate activations 
might not directly leak the user input, they can be lever-
aged to infer the DNN model parameters.

Recovering Model Parameters The next type of at-
tack attempts to recover the DNN model parameters 
[72], [73], [74], [75]. The threat model for these attacks 
assume that a victim DNN’s model architecture is known 
to an adversary, and an adversary can wage CPA attacks 
with the known input data to a victim DNN accelerator.

In [73], a proof-of-concept CPA attack on a DNN ac-
celerator using a spatial architecture using an array 
of processing elements [44] was demonstrated. This 
work computed the correlation after observing a chain 
of sequential computations in one processing element 
within the array, which improves the attack accuracy. 
However, this attack was demonstrated on a relatively 
simple accelerator architecture compared to commer-
cial accelerators. Perhaps most importantly, [74] is the 
first to consider realistic hardware architectures, by at-
tempting to perform SCA on a commercially available 
edge DNN accelerator, whose accelerator architecture 
is unknown. While this attack is not entirely successful 
even on very basic neural network structures, it reveals 
a real threat that could be further exploited with more 
complex analysis methods. In summary, many of these 
demonstrated attacks have difficulties in recovering in-
puts and model parameters with high accuracy without 
very limiting assumptions.

Recovering Model Architecture Instead, many re-
cent works focused solely on recovering the DNN model 
architecture [87], [95], [97], [98]. Unlike CPA attacks 
described above, these attacks utilize SPA attacks that 
only require passive SCA measurements without any 
control over inputs and weights, and can even be per-
formed remotely [87], [98] or on larger scale commercial 
accelerators [95], [98].

For example, [97] used electromagnetic radiation 
measurements to recover the number of layers and the 
number of parameters in each layer in a victim DNN. 
More recent works [87], [95], [98] trained machine learn-
ing models that infer a victim DNN’s model architecture, 
including the number of layers and tensor shapes in each 
layer, from the side-channel measurements. While these 

attacks do not have 100% accuracy, they can be com-
bined with prior knowledge of typical architecture hy-
perparameters (e.g., for image processing applications, 
convolutional neural networks with 2-dimensional ker-
nels are typically used) and some fine tuning [87], [97] to 
achieve similar accuracy to the original network. Finally, 
we note that these attacks on recovering the model archi-
tecture can be combined with the above-mentioned at-
tacks on recovering the model parameters to reconstruct 
the entire DNN model without any prior knowledge [146].

In-memory computing (IMC) So far, we discussed 
physical SCAs affecting DNN accelerators with conven-
tional architectures, which have computing processing 
elements that interact with each other and a separate 
central bank of memory. However, DNN accelerators 
using the emerging in-memory computing (IMC) tech-
nique [147], [148], also referred to as compute in memory 
(CIM) have been proposed. These have unique sources 
of SCA vulnerabilities [149], [150], [151], as discussed in 
this section. 

First, IMC accelerators depend on intrinsic analog 
properties of SRAM or non-volatile memory (NVM) bit 
cells to perform multiply-and-accumulate operations. 
This is in contrast to near memory compute accelera-
tors, where the memory is placed close to the compute 
through methods such as 3D stacking [152]. While the 
computation itself is in the analog domain, IMC accelera-
tors can also have side-channel leakages from the ad-
ditional required peripheral analog-to-digital converter 
(ADC) components [133].

Second, unlike logic gates, the memory bit cells in 
IMC accelerators have a regular structure, which makes 
the electromagnetic side-channel leakages easier to ob-
tain [153]. Also, this regular structure can easily reveal 
which regions of the memory are operating for a specific 
DNN layer, and prior work showed that the model archi-
tecture can be reverse-engineered using laser imaging 
of an IMC accelerator [154], [155].

Finally, the physical and circuit properties specific to 
the memory cells can be exploited to recover the data 
values. For example, the difference in currents when 
reading and writing 0 s and 1 s to the memory bit cells 
can be significantly large for some NVM types [156], 
[157], [158], allowing an adversary to easily distinguish 
the data values. Another example is memristor devices, 
where leakage currents of cells depend on the nearby 
stored data values [159].

2) Confidentiality Attacks: Invasive Readout: Aside 
from observing side-channel leakages, invasive attacks 
that directly tamper with the packaged devices can 
cause harm to data confidentiality. Voltage micro-prob-
ing can be used to directly tap memory cells or buses 
on the top metal layers of the IC after decapsulating the 
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circuit [80], [160]. This is particularly harmful for non-
volatile memory based accelerators which will hold the 
model parameters even after powering off for the pack-
aging removal process [161]. Furthermore, the entire 
design of an accelerator can be reconstructed by an at-
tacker to either gain knowledge of the architecture or 
to produce counterfeit products. This is done through 
successive delayering and imaging of the IC, after which 
image processing tools reconstruct the netlist from GDS 
information [81], [162], [163], [164].

3) Integrity Attacks: Fault Injections: Fault injection 
attacks on DNN accelerators can cause malfunctioning 
of a victim DNN [15], [16], [17]. For example, [15] used 
clock glitches to induce timing violation in the logic of 
a DNN accelerator implemented with an FPGA. Even 
without prior knowledge of a victim DNN model, they 
showed that a small amount of glitches (e.g., affecting 
0.1% of clock cycles) can significantly degrade the ac-
curacy. Other works [16], [17] further demonstrated the 
possibility of remote power glitch attacks for a cloud 
FPGA that hosts multiple users. When an adversary can 
co-locate the malicious circuit with a victim DNN accel-
erator, remote power glitches can induce either random 
faults or duplication faults, both resulting in erroneous 
computation results [16], [17]. Other modalities such as 
laser fault injection can also be used for targeted attacks 
on portions of the circuitry [165].

Another potential attack model leverages physical 
fault injection attacks to reverse-engineer DNN model 
parameters [166]. When an adversary has prior knowl-
edge of a victim DNN’s model architecture and can ob-
serve the computation results of an accelerator, [168] 
showed that an adversary can compare the computa-
tion result using the original input and the fault injected 
data to obtain model parameters. Therefore, while integ-
rity is the primary concern for fault injection attacks, 
confidentiality can also be undermined.

C. Inserting Hardware Trojans
Hardware trojans are circuits added to cause malicious 
effects on the operation without the knowledge of the 
original designer and can be inserted in DNN accelera-
tors to target various 
operations (Fig. 5). 
They generally con-
tain a trigger, which 
waits for some rare 
event to start the 
harmful operation 
while escaping detec-
tion during normal 
functional testing. In 
addition, the payload 

can have a variety of harmful effects like leaking infor-
mation, draining the battery, or rewiring logic gates. 
As opposed to neural trojans that are implemented at 
a software level on the trained model, here we survey 
trojans specific to the hardware implementation.

1) Harmful Payloads Affecting Confidentiality, Integrity, 
and Availability: Many attacks [29], [30], [31] implement 
targeted changes to the weight parameter value at the 
circuit level similar to the bit flip attacks from RowHam-
mer [23]. Others have similar effects to changing weights 
but instead target the computation logic circuitry or the 
input/output of the block [32], [33], [34], [35]. All of these 
can severely affect the integrity of the accelerator, espe-
cially if the model is known and can be used to create 
strong adversarial attacks. Other targets of the trojan 
that can cause integrity or availability issues include 
intentional glitches in the clock [36] to cause timing 
violations or reconfiguring the inter-processing element 
connections of the network-on-chip [37] to change the 
network structure.

Furthermore, trojan payloads can be targeted to al-
ternate architectures such as IMC, where the analog 
properties can be utilized to cause failures. For exam-
ple, internal voltages can be modified to break the sense 
amplifier margin, or transient bounces on the ground 
or power rail can cause read and write failures [167], 
[168]. In other cases, the analog IMC structure can be 
exploited to affect confidentiality, by directly relating 
the power consumption of large blocks such as the ADC 
to secret weight parameter information [169]. In addi-
tion, these payloads can target peripheral portions of 
the accelerator such as the memory controller, where 
the layer output activations being written back to off-
chip DRAM can be modified [170].

2) Triggers: For all these payloads, there needs to be 
a method to determine when the trojan should start its 
operation. While some of the trojans are always on [31] 
and [33], this is rare since the RTL IP and post-fabrication 
functionality tests are likely to see the effect of any such 
attack. These specific works get past this issue by having 
a limited payload that only targets certain input images. 
Otherwise, many works focus on a trigger from specific 

Figure 5. Steps of DNN accelerator production where hardware trojan insertion can occur.
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neural network inputs, since we assume the attacker has 
some control over this. Thus, they utilize a specific rare 
data value or input image that is unlikely to occur dur-
ing standard testing and can be accurately detected but 
still does not seem obviously malicious [29], [30], [36], 
[37], [167], [170]. This undetectability during testing can 
be strengthened by relying on a sequence of such rare 
inputs [32]. At the same time, other works generate a 
trojan trigger based on accelerator control signals. For 
example, while typical accelerators will cycle between 
different addresses and have a standardized memory ac-
cess pattern based on the chosen dataflow, some triggers 
can depend on the same address being accessed many 
times [34], [168]. While digital accelerators would need 
to detect this using dedicated circuitry in the timing con-
trol logic, analog IMC adds further motivation for such 
attacks. Since RRAM resistances drift with many reads, 
the effect of repeated accesses can be directly read out 
as a change in delay or voltage of the readout [168].

IV. Recent Advances in Designing Secure DNN 
Accelerators

In this section, we present recent progress in defend-
ing DNN accelerators from various hardware-level ex-
ploits discussed in Section III. We present protections 
that provide security for the off-chip memory (Section 
IV-A), counter physical side-channel attacks (Section 
IV-B) and detect fault injections (Section IV-C) on the 
on-chip structures, and detect hardware trojans (Sec-
tion IV-E). In addition, we present defense solutions for 
emerging in-memory computing accelerators (Section 
IV-D), which have their unique challenges compared to 
conventional accelerator architectures. Finally, we pres-
ent a brief description of Fully Homomorphic Encryp-
tion (FHE) technology (Section IV-F), which ensures the 

privacy of both model parameters and input data by 
performing computations on encrypted data, without 
having to trust any hardware components.

A. Providing Security for the Off-Chip Memory
1) Authenticated Encryption for the Off-Chip Memory: 
One approach to defending an off-chip memory element 
from data readout attacks (e.g., cold-boot attack [124], 
[125] discussed in Section III-A1) and fault injection at-
tacks (Section III-A2) is to encrypt and authenticate all 
data stored in an off-chip memory element using cryp-
tographic primitives (Fig. 6). This approach is adopted 
for memory security in a trusted execution environment 
(TEE) for general-purpose CPUs [55], [171], [172], [173], 
[174], [175], [176], [177] and GPUs [61], which provides 
a secure “enclave” in the memory. Encrypting the off-
chip data using strong cryptographic primitives, such 
as AES [109], prevents an adversary from recovering the 
actual plaintext data even if data readout attacks suc-
cessfully extract the data. Furthermore, authenticating 
all data transfers with cryptographic hashes enables in-
tegrity verification to detect any bit flips in the off-chip 
data, since the computed hashes for perturbed data will 
not match the original values [171]. Adding the “time-
stamp” information (also known as “counters”), such as 
the number of updates performed on a certain address, 
when generating cryptographic hashes also prevents an 
adversary from ‘replaying’ the old data and hashes [171]. 
Note that the security of this authenticated encryption 
approach depends on the confidentiality of a secret key 
used for cryptographic operations, which can be stored 
on a special register on-chip.

Recent studies investigated adapting TEEs for DNN 
accelerators [178], [179], [180], [181], [182]. The struc-
tured and predetermined data access patterns of DNN 
accelerators are leveraged to reduce the overhead of 

Figure 6. Authenticated encryption can provide confidentiality and integrity of the off-chip data. The data is always encrypted 
before being written to the off-chip memory, and a cryptographic hash is assigned for a block of data for integrity verification.
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supporting a TEE in these works [178], [180]. A key ob-
servation was that managing the timestamps, which 
used to be a major source of performance overhead in 
CPUs, can be simplified with this structured data ac-
cess pattern. As a result, the major overhead of this 
approach reduces to cryptographic encryption and au-
thentication operations required for all off-chip data. In 
addition, recent work from [182] proposed a software-
defined approach to tailor a TEE for diverse DNN accel-
erator deployment conditions.

For authentication, a cryptographic hash is computed 
for a block of data and all data in this authentication block 
is needed for integrity verification. This can lead to ad-
ditional off-chip data traffic when we only need a portion 
of data in one authentication block. In DNN accelerators, 
this property introduces a challenge when authentication 
blocks misalign with ‘tiles’ of data tensors, where a tile is 
a basic granularity of data movement in DNN accelerators 
chosen to optimize the data reuse and performance.  All 
data in authentication blocks need to be fetched although 
they do not belong to a tile a DNN accelerator requested, 
causing performance degradation due to the additional 
off -chip data traffic and cryptographic operations.

Reference [181] pointed out that cross-layer dependen-
cy in a DNN (i.e., one layer’s output is the next layer’s input) 
complicates the optimal authentication block assignment 
that minimizes the additional off-chip traffic.   Convention-
ally, tile assignment is typically done independently for 
each layer. Consequently, the same tensor data can have 
different tile assignments when it is used as an output ten-
sor of one layer [e.g., 1 × 3 tiles in Fig. 7(a)] and an input 
tensor of the next layer [e.g., 2 × 2 tiles in Fig. 7(a)]. Sup-
pose we use each tile in an output tensor as an authentica-
tion block when we compute the first layer. Then, when 
the accelerator requests one tile in an input tensor to be 
fetched for processing the next layer, two output tensor 
tiles need to be fetched due to authentication, incurring a 
large amount of redundant reads [Fig. 7(b)].

To overcome this challenge, [181] proposed an algo-
rithm that determines the optimal authentication block 
and tile assignment for DNN accelerators. In order to 
identify the optimal authentication block assignment, 
[181] applied an exhaustive search and analytically com-
puted the amount of the additional off-chip traffic for 
each configuration. Reference [181] showed that even for 
the same DNN accelerator architecture, the performance 
can be improved by up to 33% with the optimal assign-
ment. In summary, several works [178], [179], [180], [181] 
proposed techniques to reduce the overhead of encrypt-
ing and authenticating all off-chip data, which provides a 
strong hardware-level security guarantee.

Comparison with GPU TEEs TEEs for GPUs and 
DNN accelerators share some key similarities in their 

security requirements [61], [64]. Both must establish 
secure communication channels with their host proces-
sors, even when the host processor’s system software 
can be compromised. Also, they need to protect against 
bus snooping and tampering when they are connected 
to the host processor using PCIe.

There can be differences regarding the assumptions 
of off-chip memory security. GPUs often integrate off-
chip memory elements within the same package using 
vertical integration, and some work on TEEs for GPUs 
consider this on-package memory to be trusted [61]. 
However, this assumption cannot be shared among all 
GPUs, when many consumer-grade GPUs opt for con-
ventional DRAMs on separate packages. As such, other 
work on GPU TEEs [183] considered hardware-level off-
chip memory protection, similar to CPUs and DNN ac-
celerators. Although DNN accelerators can benefit from 
similar vertical integration in the future, especially for 
high-performance datacenters [44], DNN accelerators 
also choose to use separate off-package DRAMs and 

Figure 7. Cross-layer dependency in a DNN complicates the 
authentication block assignment. (a) An intermediate activa-
tion tensor can have different tiling strategies when it is gen-
erated as an output tensor of one layer versus when it is used 
as an input tensor of the next layer. (b) Redundant reads are 
incurred when each output tile is assigned as an authentica-
tion block. Combined with hashes that correspond to authen-
tication blocks, there can be significant additional traffic due 
to cross-layer dependency.
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low-power DRAMs, which require TEEs to provide off-
chip memory security.

Finally, DNN accelerators are still evolving, with re-
cent active research into multi-tenancy and virtualiza-
tion [182], [184], and TEEs for DNN accelerators may 
need to address new challenges for memory manage-
ment in the future. For example, TEEs for GPUs require 
complex virtual-physical address translation to ensure 
memory allocated for a secure process is isolated [61]. 
While current DNN accelerators use simple memory 
control based on regular patterns, future accelerator de-
signs might have to adopt more complex memory man-
agement under TEEs.

2) Alternative Approaches to Memory Encryption: In-
stead of encrypting and authenticating all off-chip data, 
alternative approaches have been proposed to selec-
tively encrypt a few important weights [185], [186], [187]. 
While the rest of the model parameters and intermedi-
ate tensors that are not encrypted are vulnerable to an 
adversary, a few encrypted values prevent an adversary 
from reconstructing a functional DNN with comparable 
performance to the original victim DNN.

Another approach is to shuffle elements in weight ten-
sors of a DNN and use shuffling information as a secret 
to provide the confidentiality of DNN model parameters 
[188], [189], [190]. To reduce the overhead of decrypting 
the shuffled data, shuffling can be performed coarsely by 
swapping rows and columns in a matrix [189], [190] or 
selectively applied to important layers [188]. These ap-
proaches benefit applications requiring the confidential-
ity of DNN model parameters with low-cost protection, 
although it does not provide the confidentiality of user 
input data or protection against fault injection attacks.

Finally, [191] proposed a low overhead authentication 
technique using algorithmic/parity checksums [192], 
[193], [194]. Compared to cryptographic hashes, algo-
rithmic/parity checksums can have low computational 
and storage overhead. For example, [192] set the sum 
of weight parameters in a row as a checksum, without 
using more sophisticated cryptographic operations. 
Reference [193] incorporated parity-based checksums 
where the least significant bit of each model parameter 
acts as a parity bit. This approach eliminates the stor-
age overhead for hashes, while its impact on the per-
formance of a DNN is negligible. Similarly, [194] used 
a 2-bit algorithmic checksum for each group of model 
parameters. Conventionally, algorithmic and parity 
checksums [192], [193], [195] can be susceptible to an 
adversary who can flip multiple bits or flip the check-
sum bits. Reference [191] addressed this susceptibility 
by encrypting the model parameters along with a pari-
ty-based checksum [193], reducing the probability of an 
adversary successfully counter-feiting checksums. Note 

that the overhead of these checksums also depends on 
the precision used for DNN inference. For example, the 
overhead of a single- or 2-bit checksum can potentially 
become more expensive for lower precision weight pa-
rameters and inputs.

3) Hiding Memory Traffic Patterns: Recall that an adver-
sary can reverse-engineer a victim DNN’s model architec-
ture, such as the number of layers and tensor shapes in 
each layer, by observing the metadata like addresses and 
request types of the off-chip traffic [58], [59], [60] (Section 
III-A1). Since the metadata is still visible to an adversary 
even when all off-chip data is encrypted, different protec-
tion mechanisms are needed for this attack. In general-
purpose processors, Oblivious RAM [195], [196] was pro-
posed to hide the data access pattern of a program. While 
this technique provides a theoretical guarantee that the 
resulting data access pattern is independent of the true 
pattern, it incurs a large overhead in the off-chip access 
latency and bandwidth requirement [195], [196].

In DNN accelerators, recent works [189], [197], [198] 
instead proposed more lightweight defenses that aim to 
obfuscate the read-after-write dependency of the inter-
mediate tensors and the total number of data accesses 
that reveal the tensor sizes, instead of completely ano-
nymizing the data access pattern as in Oblivious RAM. 
For example, [197] shuffles all data accesses around lay-
er boundaries (i.e., when a DNN accelerator completes 
processing one layer and moves on to the next layer) 
so that an adversary cannot observe the actual start 
and end of each layer. Reference [189] breaks a layer in 
a DNN into multiple smaller sub-layers such that an ad-
versary is misled to observe a wrong number of layers 
in a DNN. Reference [189] also proposes a mechanism to 
reduce or increase the total number of accesses, by ei-
ther partially caching the intermediate tensors (i.e., the 
cached data does not have to be written and read back 
from the off-chip memory) or issuing dummy requests.

Another approach is entirely algorithm dependent, 
where an obfuscated DNN that preserves the functional-
ity of the original DNN but with a different model archi-
tecture is designed [199]. Reference [199] used a careful 
search algorithm to ensure that the obfuscated DNN ar-
chitecture has a small hardware performance overhead 
(e.g., the total number of computations). Overall, these 
works [189], [197], [198], [199] showed that an adversary 
is misled to the wrong DNN model architecture and ends 
up with a reconstructed DNN with worse performance 
than the original victim DNN.

4) Limitations: There are many potential research top-
ics related to the memory security of DNN accelerators. 
First, the performance of a DNN accelerator using mem-
ory encryption and authentication (Section IV-A1) can 
be throttled by cryptographic operations required for all 

Authorized licensed use limited to: MIT. Downloaded on March 16,2025 at 19:02:35 UTC from IEEE Xplore.  Restrictions apply. 



FIRST QUARTER 2025   IEEE CIRCUITS AND SYSTEMS MAGAZINE 21

data traffic. While [178], [179], [180], [181] proposed sev-
eral techniques to minimize the overhead and optimize 
the trade-off considering cryptographic operations, scal-
ing this approach to future memory technologies offer-
ing a substantially higher bandwidth can be challenging. 
For example, having multiple cryptographic accelerators 
running in parallel to match a high off-chip memory band-
width can prevent the performance slowdown at a signifi-
cant cost for area and energy. As DNNs can be memory-
intensive and memory technologies are rapidly improving, 
scaling the defense solution is an important challenge.

Second, many approaches with non-cryptographic de-
fenses often lack the theoretical guarantee of security. Al-
though they have a low hardware overhead for defenses, 
such a benefit should be understood in the context of a 
trade-off with the security level. While the empirical re-
sults can provide a practical demonstration of security 
[192], [193], [194], [200], [201], [202], a well-principled analy-
sis on those approaches will be useful for future research.

B. Physical-Layer Side-Channel Attack (SCA) 
Protections
As physical SCAs broadly affect the confidentiality of 
DNN accelerators (Section III-B1), there is a growing 
interest in defending DNN accelerators from physical 
SCAs. The core idea for the defense is to decorrelate 
the circuit currents from the data so that side-channel 
leakages (e.g., power consumption, electromagnetic ra-
diation) do not contain any information about the data 
being processed. There are two proposed approaches 
to achieve this decorrelation, masking [75], [203], [204], 
[205], [206], [207] and shuffling [207], [208].

1) Masking: Masking splits up data into multiple 
shares, each of which is independently unrelated to 
the original value [209], [210], [211]. Here we denote the 
original value as x̄, and n independent shares as x1, x2, 
…, xn. In order to recover the original value, all n shares 
are needed, and an adversary who only knows ≤ n − 1 
shares cannot recover the true value. Computing on 
these shares is performed in such a way that every out-
put value generated during the computation is indepen-
dent of at least one input share, so the power consump-
tion for each function is unrelated to the original data x̄.

There are two sharing techniques investigated in re-
cent works. First, arithmetic masking [212] uses modu-
lar summation to split up each data value, where K is a 
modulus:

 x1 + x2 + … + xn mod K ≡ x̄ (1)

Note that simple linear arithmetic operations like ad-
ditions can be performed over each share separately 
without having to combine them in intermediate steps.

Alternatively, Boolean masking [209], [210], [213] 
uses bitwise exclusive OR (XOR) operations:

 x1 ⊕ x2 … ⊕ xn = x̄ (2)

Unlike arithmetic sharing, Boolean masking is more 
geared towards operations requiring bit-wise manipula-
tions, such as comparing sign bits. However, Boolean 
masking can result in more complicated implementa-
tions for arithmetic operations [206], [207], since each 
bit-level logic gate has to be modified.

Recent work adopted Boolean sharing or chose to 
use a combination of techniques for different functions 
(e.g., arithmetic masking for multiply-and-accumulate 
operations but Boolean masking for sign bit compari-
son) [203], [205]. While the latter can be more opti-
mized for each function, it requires secure conversion 
between the two types of sharing and incurs additional 
cost [214], [215].

Recently, the first SCA defense for a binary neural 
network accelerator was proposed, which does not re-
quire multiplications and only needs to support addi-
tions [75]. They used arithmetic masking to split input 
tensors into two independent shares, which are passed 
to two adder trees separately to compute the results 
for each share. However, recall that arithmetic sharing 
involves modular operations (Eq. (1)), while additions 
required for DNN computations are standard arithme-
tic. This difference results in the leakage of the sign 
bit in [75]’s approach, and [75] augmented arithmetic 
sharing with a circuit-level technique that equalizes the 
power consumption regardless of the data for sign bit 
computations. Furthermore, the ReLU activation func-
tion that clips negative values to zero requires compar-
ing the sign bits of data, which can be better supported 
using Boolean masking. Thus, [75] alternates between 
arithmetic masking for additions and Boolean masking 
for the ReLU function, with an additional overhead for 
secure conversion.

More recent work [203], [204], [205] tried to push the 
limitations of [75]. References [203] and [204] modified a 
DNN algorithm to use modular arithmetic for computa-
tions such that arithmetic sharing can be directly ap-
plied without the leakage issue, but they require care-
ful selection of the modulus K and significant algorithm 
modifications. Reference [205] further extended the 
arithmetic masking solutions to multi-bit fixed point pre-
cision, thus improving the practicality of SCA defenses.

Other recent studies instead adopted Boolean 
masking for all computations, including multiply-and-
accumulate operations, in DNN accelerators [206], [207], 
[216]. However, as we discussed earlier, Boolean mask-
ing requires all arithmetic units to be modified due to 
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bit-level sharing and incurs a large performance, energy, 
and area overhead. For example, Boolean masking in-
creases the energy consumption of a DNN accelerator 
by 37.9 x when Threshold Implementation (TI), a type 
of Boolean masking that split data into three indepen-
dent shares to guarantee a high-level of security [210], 
is used for the multiply-and-accumulate circuitry [207] 
(Fig. 8). So far, these works target a binarized neural 
network that does not require multipliers [206] or limit 
the model parameters of a DNN to be powers-of-2 (e.g., 
20, 21, …) [207]. In particular, the power-of-2 approach of 
[207] reduces a multiply-and-accumulate operation to a 
shift and XOR operation, which is linear at the bit-level 
and easy to implement with Boolean masking. Further-
more, limiting the model parameters to powers-of-2 has 
negligible impact on the classification accuracy of DNN 
models for applications such as ECG arrhythmia detec-
tion or epileptic seizure recognition.

Nevertheless, implementing a multi-bit accumulator 
with TI introduces several challenges. The TI require-
ments stipulate that the Boolean shares of data should 
be uniformly distributed and mutually independent of 
each other [217], [218], [219]. However, the intermediate 
computation results of the shift and accumulate opera-
tions can violate this. Reference [207] carefully designed 
its accumulator circuit to not combine shares that are 

not jointly uniform and to add fresh randomness when 
combining dependent shares is unavoidable. Random 
bits are supplied using a lightweight cipher that is also 
implemented with the TI methodology. Overall, these 
techniques reduced the overhead of Boolean masking 
to only 64% more area and a 5.5x increase in the energy 
consumption for a DNN accelerator supporting multi-bit 
precision in [207].

2) Shuffling: Another approach to decorrelate side-
channel measurements from the actual data is to shuf-
fle the computations temporally and spatially [208]. A 
random sequence generator determines the temporal 
order of the multiplications in a DNN accelerator, and 
an adversary who does not know this random sequence 
cannot recover the true order of the data. Also, the 
spatial allocation of multiplications to each processing 
element in a DNN accelerator is randomly determined, 
such that an adversary utilizing high-resolution electro-
magnetic side-channel observations can be deterred as 
well. In addition to this randomization, [208] introduces 
a compensation mechanism to achieve overall constant 
power consumption, using a regression model that esti-
mates the dynamic and static power of the processing 
elements. Similarly, [207] also takes advantage of tem-
poral shuffling for input security when activations are 
processed by a DSP unit before MAC computations.

3) Limitations: While 
this set of works shows 
a promising start to se-
curing DNN accelerators 
from physical SCA, there 
remains significant nec-
essary progress. Many of 
the accelerator defenses 
incur significant over-
heads, at around 2 x or 
higher area and power for 
iso-latency [203], [206], 
[208]. The masking and 
shuffling schemes also 
depend on a constant 
supply of random bits, 
necessitating an on-chip 
pseudo-random number 
generator. While works 
like [205] and [207] start 
to address the reduc-
tion of this requirement 
through careful design 
and reuse of randomness, 
further exploration is nec-
essary into the security 
trade-offs.

Figure 8. An AND gate using Threshold Implementation (TI) that splits the data into three 
Boolean shares. TI is adopted for a side-channel secure DNN accelerator implementation in 
[207]. This figure is reproduced from [207] (© IEEE 2023).
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Furthermore, as with the side-channel attack re-
search, the prior work mostly focuses on smaller archi-
tectures and models, particularly those implemented 
on an FPGA. We can not expect the overheads and opti-
mizations to directly scale to more practical and larger 
designs with floating point precision. Particularly, some 
requirements such as constant conversion between the 
arithmetic and Boolean masking domains may become 
prohibitively expensive with many DNN layers of larger 
sizes.

C. On-Chip Fault Injection Detection
When an adversary attacks the power and clock supply 
to an accelerator chip, all modules in this chip sharing 
the same power and clock supply will be affected. Simi-
larly, electromagnetic pulses with low spatial resolution 
will affect many modules in a chip. Using this property, 
[191] used an on-chip cryptographic engine performing 
encryptions and decryptions as a sensor to detect clock 
glitches and electromagnetic faults. They observed 
that cryptographic ciphers are highly sensitive to faults 
[220], and any glitch that affects a DNN accelerator will 
most likely also affect an on-chip cryptographic engine.

A lightweight Craft cipher [221] was used to sequen-
tially perform encryption and decryption over an in-
ternal state, such that the internal state looped back 
to the original value after a certain number of encryp-
tion-decryption cycles (Fig. 9). If the internal state does 
not match the original value, it is likely to indicate an 
anomaly due to faults and processing can be halted. Ref-
erence [191] demonstrated that their detection method 
only incurs an area overhead of 5.9% and successfully 
identifies all 3 × 106 clock glitches and 0.1 × 106 electro-
magnetic glitches during testing.

1) Limitations: While 
[191] proposed an effec-
tive detection method for 
physical fault injection 
attacks that affect mul-
tiple modules in an ac-
celerator, it cannot detect 
faults with higher spatial 
resolution that precisely 
target a victim compo-
nent without affecting a 
detection circuit. Differ-
ent detection methods 
have been studied in the 
context of cryptographic 
accelerators [222], [223], 
[224], [225], which can be 
further explored for DNN 
accelerators. In addition 

to detecting faults, correcting errors due to fault injec-
tion attacks can be necessary for applications requiring 
real-time processing without interruptions.

D. Defense Solutions for In-Memory Compute (IMC)
1) Side-Channel Defenses for IMC: IMC accelerators often 
have thousands or millions of parallel multiply-and-
accumulate operations, and the overhead of securing 
these systems can be significant. Unfortunately, there 
has not been as much research in securing IMC acceler-
ators from physical SCAs, and these are mostly limited 
to qualitative descriptions of potential defenses when 
novel attacks were proposed [150], [156]. For example, 
[150] suggests using dummy memristors and data to 
hide the DNN model architecture during operation at 
the expense of significant area, power, and latency.
Reference [226] demonstrated the first thorough de-
fense for digital IMC accelerators using Boolean sharing. 
Recall that Boolean sharing can be efficiently imple-
mented for operations that are bit-wise linear, such as 
XOR and XNOR. Reference [226] leveraged linear XNOR 
gates for multiplication instead of the conventional AND 
gates to reduce the overhead of Boolean sharing. Addi-
tionally, for the adder logic, [226] observed that full ad-
ders have better uniformity of outputs compared to half 
adders. Since uniformity is a key requirement of Bool-
ean sharing and fresh randomness is required if it is not 
satisfied, utilizing full adders instead of half adders can 
improve efficiency and security. To this end, [226] used 
carrysave addition in the adder trees and bit-serial ac-
cumulators to eliminate half adder logic.

2) Data Remanence in IMC: IMC accelerators have a 
unique problem with data readout attacks when they 
use NVM cells that retain the data even after the system 

Figure 9. An on-chip Craft cryptographic engine as a fault detection sensor for EM fault 
injections and clock glitches [191]. The figure is reproduced from [191] (© IEEE 2023).
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has been powered off. An adversary can simply read 
all the data stored in NVM cells with cold-boot attacks 
[123], [124]. Furthermore, even for volatile memories, 
IMC accelerators store the model parameters for long 
periods of time in regular structures on-chip, and they 
are susceptible to voltage microprobing attacks [81], 
[227], [228].

What further complicates the defense solutions for 
IMC accelerators is that compute and memory are no 
longer separable. Thus, while the data has to be stored 
in encrypted ciphertexts for memory security, we can-
not simply decrypt the data before the computation 
(e.g., when the data is fetched from the off-chip memory) 
as in conventional DNN accelerators. Recent works pro-
posed several approaches to address challenges with 
memory encryption in IMC accelerators.

The first approach is to integrate decryption with the 
computation with a simple encryption scheme [200], 
[201], [202], [229], [230]. For example, [229], [230] XOR-
ed the model parameters with secrets before storing 
them in the bit cells of an IMC accelerator. Then, the 
inverse of those secrets is applied to the input tensors 
before the computation, such that the secrets will be 
canceled out in the computation outputs. Thus, these 
works can perform decryption on the fly without hav-
ing to explicitly do this operation on the model param-
eters. However, the major source of overhead in this 
scheme is generating those secrets that have the same 
size as the model parameters of the entire DNN, which 
was achieved by using a stream cipher in [230]. Instead 
of generating highly-secure secrets that are only used 
once as in [230], other works often used less secure but 
more efficient schemes to generate secrets, such as us-
ing the intrinsic startup value of bit cells as secrets [200] 
and flipping entire rows and columns of the memory in-
stead of XOR-ing the data with secrets [201], [202].

The second approach is to leverage arithmetic shar-
ing such that IMC accelerators store and compute only 
one share of the model parameters [231]. The host se-
cure processor operates on the other share of the model 
parameters and combines the computation results of 
the IMC accelerator to obtain the final outputs [231]. 
However, this approach incurs the overhead of twice the 
compute, as the computations have to be performed on 
two arithmetic shares.

Third, similarly to its use in physical SCA defenses 
(Section IV-B2), shuffling can also be applied to IMC ac-
celerators for security [161], [232], [233]. The model pa-
rameters can be mapped to IMC bit cells in a permuted 
manner, and the computation can correct the permuta-
tion at the final step.

Lastly, some works [232], [234] leveraged the intrin-
sic physical characteristics of the analog components 

in IMC accelerators, such as the circuit offsets [232] and 
retention limitations [234], to provide the security. For 
example, [232] proposed fine-tuning a per-chip model 
that reflects the unavoidable analog-to-digital converter 
offset, such that the model parameters are specific to 
each chip and an adversary cannot achieve the same 
performance in another chip using the extracted model 
parameters.

3) Limitations: The defense solutions for IMC acceler-
ators are limited except for very recent work on a digital 
IMC accelerator [226], and analysis of how such protec-
tions translate to more traditional analog IMC accelera-
tors without affecting compute SNR and performance 
remains an open question.

E. Hardware Trojan Detection
There have been many methods proposed for hardware 
trojan detection. At a high level, these utilize methods 
such as functional or side-channel testing to detect the 
existence of the trojan, or modify the design to make tro-
jan insertion difficult through methods such as redun-
dancy and operation obfuscation.

Functional testing is likely to find trojans that have a 
high probability of being triggered with a payload that 
has an obvious impact on the chip’s operation [235], 
[236], [237]. However, more complex trigger designs that 
aim for a low chance of accidental triggering will also 
make it unlikely for it to be detected with this form of 
testing.

On the other hand, side-channel testing uses unin-
tentional effects of the addition of trigger and payload 
circuitry on the power consumption and currents to de-
tect the presence of this additional circuitry [238], [239], 
[240], [241], [242]. However, since it is quite difficult to 
have an accurate power model for complex CMOS cir-
cuits, many such methods depend on a golden circuit 
that is guaranteed to be trojan-free to compare against. 
Prior work has shown the possibility of combining high 
spatial resolution and wide field of view novel sensing 
methods with unsupervised deep learning for unbiased 
and golden circuit-free trojan detection at high sensitiv-
ity [243].

Many of the accelerator trojan triggers and payloads 
have quite small footprints while also being rare enough 
to escape detection via traditional functional verifica-
tion. However, some work has considered how to find 
such trojans in the context of machine learning accel-
erators [155], [244]. For example, some trojan triggers 
specifically wait for data around the three-sigma limit 
of the input distribution, which is learned based on the 
validation dataset provided to the hardware user for 
functional verification [35], [245]. One low overhead 
but not fool-proof method to avoid this changes the 
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distribution of the inputs in the validation set from that 
of the expected data [245].

In addition, redundancy can be used for trojan detec-
tion by having an additional processing element that is 
nominally identical to each of the regular elements at 
different times [246]. Thus, any deviation between two 
outputs indicates some malicious change. However, sim-
ilarly to ECC [247], [248], the amount of redundancy cre-
ates an obvious tradeoff between the significant over-
heads and the number of errors it can detect or correct.

Similarly, obfuscation can be used to shuffle images 
at the pixel and block levels and to apply random map-
ping between pixel values to hide the input image data 
[249]. Thus, triggers that depend on specific patterns of 
data in a certain order or location are difficult to target 
by an attacker, but this does not apply to triggers that 
just detect a certain value.

1) Limitations: Most importantly, many of these se-
curity or detection mechanisms are incumbent on a 
specific type of trigger or payload being present, which 
cannot be known a priori. A general technique that can 
apply to many varieties of trojans is necessary. One so-
lution that has been explored is a verifiable ASIC, which 
provides a computationally secure way to detect any 
trojan that causes a change in the outputs [250]. By 
providing an interactive proof specialized for matrix 
multiplication [251] and non-linear activations, there is 
a negligible chance that a trojan-inserted chip can give 
the correct response to all the verifier’s queries [250]. 
Some optimizations can be added to exploit neural 
network-specific parameters such as high sparsity and 
reuse of existing convolutional operations for the proof 
[250], but this does still add overheads to the original 
chip design. Furthermore, we need a detection scheme 
that is also verifiable against attacks with effects other 
than modifying the final outputs. To this end, a hybrid 
solution of functional and side-channel testing, which 
has minimal dependence on on-chip detection circuitry 
seems most appropriate.

F. Fully Homomorphic Encryption for Privacy-
Preserving Computing
Fully Homomorphic Encryption (FHE) has emerged as a 
mainstream technology in privacy-preserving comput-
ing over the past decade. FHE enables cloud operators 
to perform computations on encrypted data without ever 
requiring to decrypt it. The result of such computation 

is also in an encrypted form. This encrypted result can 
only be decrypted by the data owner who holds the pri-
vate/secret key. An illustrative use case of how a data 
owner can outsource computation on private data to an 
untrusted third-party cloud platform is shown in Figure 
10.

Since the data remains encrypted throughout the 
computation process, physical SCAs (Section III-B1) 
on a processor or data readout attacks on an accelera-
tor memory (Section III-A1) fail to disclose meaningful 
information about the plaintext data or intermediate 
computations. To guarantee the confidentiality of data, 
FHE does not require any trusted hardware, such as a 
trusted execution environment (Section IV-A1) either.

However, despite its robust data privacy guarantees, 
FHE is not widely adopted. This is primarily due to its 
inherent slowness when performing computations on en-
crypted data, which stems from its compute and memory-
intensive nature [252], [253], [254]. This performance is-
sue persists across different FHE schemes, including BGV 
[255], BFV [256], CKKS [257], and TFHE [258]. All of these 
schemes, by mathematical construction, support opera-
tions on either integers, real numbers, or bits, which en-
ables a wide variety of real-world applications.

The CKKS scheme is currently the most popular FHE 
scheme for DNNs. While the CKKS scheme can support 
DNNs, it does require an expensive operation known as 
bootstrapping to be performed frequently. The noise 
added from the FHE scheme grows with each homomor-
phic encryption being performed. Once it grows beyond 
a certain level, it is impossible to continue computing 
any further with correctness. This bootstrapping opera-
tion de-noises the ciphertext and depending upon the 
scheme parameters, can take several seconds [259] to 
several minutes [254].

Figure 10. Third-party cloud platform with outsourced FHE-
based computing. The figure is reproduced from [252].

The CKKS scheme is currently the most popular FHE scheme for DNNs. While the 
CKKS scheme can support DNNs, it does require an expensive operation known as 

bootstrapping to be performed frequently.
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There have been many recent algorithmic [260], 
[261], [262], [263], software [259], [264], [265], and hard-
ware [266], [267], [268], [269], [270], [272] optimizations 
to the CKKS primitive and bootstrapping operations to 
help reduce the bootstrapping execution time. However, 
bootstrapping remains a performance bottleneck as it 
consumes up to 95% of the total application execution 
time [259], [271] when performing deep neural network 
training and inference. This underscores the critical 
need for accelerating bootstrapping to improve the 
performance of deep neural networks while performing 
training and inference using encrypted data.

There have been initiatives to accelerate CKKS on 
both FPGA and ASIC platforms. HEAX [272] emerged 
as an early FPGA-based accelerator for FHE which ac-
celerated only CKKS encrypted multiplication, while 
all other operations were delegated to a host proces-
sor. One of the more recent FPGA implementations, 
FAB [266], implemented packed CKKS bootstrapping 
for the first time on an FPGA with support for practical 
parameter sets. The FAB design balances the compute 
and memory requirements of the encrypted deep neural 
networks, while being cognizant of the compute and on-
chip memory constraints of the underlying FPGA. Even 
though FAB outperforms all prior CPU/GPU implementa-
tions by 9.5× to 456×, the performance was still limited 
by the bootstrapping implementation, which could not 
be parallelized on multiple FPGAs.

The first ASIC design was proposed by Samardzic 
et al. [267], and further optimized in their subsequent 
work, CraterLake [269]. In parallel, Kim et al. proposed 
three other ASIC designs namely BTS [268], ARK [270], 
and SHARP [271]. These designs incorporate various 
optimizations and have demonstrated remarkable per-
formance in bootstrapping. These ASIC solutions are 
promising as they outperform CPU/GPU/FPGA imple-
mentations and narrow the gap between the perfor-
mance of computing on plaintext vs. ciphertext when 
evaluating encrypted deep neural networks.

However, to achieve this performance improvement, 
they make use of a large number of custom modular mul-
tipliers, large register files, and large on-chip memory. 
To enable such architectures, these ASIC implementa-
tions must use expensive advanced technology nodes 
like 7 nm or 12 nm, making these solutions extremely 
expensive.

1) Limitations: All the aforementioned research 
works contribute to ongoing efforts aimed at improv-
ing the practicality and scalability of FHE schemes, 
particularly in the context of deep neural networks. 
Further FHE algorithmic improvements will play a sig-
nificant role in this direction, demonstrating promis-
ing progress towards making secure computations 

on encrypted data more efficient and viable for real-
world applications.

V. Future Work and Conclusion
Looking forward, the security of DNN accelerators will 
continue to be an important challenge. Also, as DNNs 
are rapidly evolving, new challenges and vulnerabilities 
can arise.

One particular topic for future research can be on the 
impact of large language models (LLMs) on hardware se-
curity. On one hand, LLMs can be exploited by adversaries 
to automate attacks, such as generating hardware trojans 
when provided with the source RTL code [273]. However, 
LLMs can also offer potential benefits to hardware design-
ers. For example, they can be used to automatically iden-
tify vulnerabilities in hardware designs [274], [275].

Rapidly evolving DNN workloads that have increas-
ingly large model sizes, such as LLMs, also present a 
dual challenge for DNN accelerators. DNN accelerators 
should not only be secured from hardware-level vulner-
abilities, but should also provide efficient support for in-
creasingly compute- and memory-intensive workloads. 
As such, the scalability of current defense solutions 
can become a critical challenge, as they have to protect 
more complex models without significant sacrifice in 
performance.

In summary, this article provide a comprehensive 
survey into recent advances in hardware security of 
DNN accelerators. Compared to general-purpose mi-
croprocessors or cryptographic accelerators for which 
hardware security has been thoroughly investigated, 
DNN accelerators have similarities (Section II-A) and 
unique differences (Section II-B) in their hardware-level 
vulnerabilities. We provide a comprehensive review of 
recent advances in attacking DNN accelerators exploit-
ing those vulnerabilities (Section III) and defense solu-
tions for DNN accelerators (Section IV). In addition to 
recent progress, there are many potential future direc-
tions spanning across circuits, architecture, and algo-
rithms for secure machine learning hardware that satis-
fies confidentiality, integrity, and availability.
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