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Abstract—Deep neural networks (DNNs) are making their
way into safety-critical systems, but they can be vulnerable to
soft errors in hardware. Traditional duplication-based resilience
methods are too expensive. This work studies how DNN infer-
ence’s deployment parameters impact error resilience via fault
injection studies. Based on the error propagation analysis, it
proposes new, efficient protection techniques specifically for DNN
systems. This research laid the groundwork for further studies
in DNN application resilience and safety.

Index Terms—Resilience, Soft Errors, Deep Neural Networks

I. INTRODUCTION

Deep learning neural networks (DNNs) are becoming in-
creasingly prevalent in both cloud and edge applications.
Autonomous systems such as vehicles and robots are also
employing DNNs to perform complex tasks such as sensor
data processing, perception, localization, path prediction, and
even trajectory generation. While there has been significant
research on improving DNN performance, there have been few
studies on safety and reliability, which are paramount in such
systems. Thus, our knowledge is limited about the impact of
soft errors on DNN systems. This paper fills the critical gap in
our understanding of DNNs’ reliability under soft errors. Soft
errors, or hardware transient faults, are typically caused by
high-energy particles striking electronic devices causing them
to malfunction. They can lead to application failures and safety
violations. This is particularly concerning for safety-critical
systems like self-driving cars that process sensor data in real-
time to make driving decisions using an in-vehicle computer.
Figure 1 illustrates how a soft error in a DNN, when deployed
in an AV, can potentially result in a collision. The rate and
severity of errors could violate safety standards such as ISO
26262 for automotive vehicles [1].

This paper presents some of the first experiments to char-
acterize the propagation of soft errors from the hardware to
the application software of DNN systems. Based on these
results it devises highly effective, yet low-cost error mitigation
mechanisms in both software and hardware.

Traditional high-level replication-based methods that dupli-
cate or triplicate computations (e.g., Triple Modular Redun-
dancy or TMR) are effective, but incur high energy and area
overheads. These are both critical resources, especially in edge
real-time systems. Researchers have also proposed methods to
duplicate work at a finer granularity (thread- or instruction-
level) that offer lower overheads, but the overheads are still
high for practical real-time applications. Furthermore, these

Fig. 1: Nlustrative example of a Silent Data Corruption (SDC)
due to a soft-error in a classification DNN used for an
Autonomous Vehicle (AV).

techniques consider neither the error propagation characteris-
tics nor the architectures of DNN algorithms and accelerators.

This study first investigates the error propagation character-
istics of DNNs, and leverages these results to develop cost-
effective error mitigation solutions. The key findings are as
follows.

e SDC rate varies across different DNNs and data types.
However, the variation with the data type outweighs the
variation with the DNN type. For example, a floating-
point 32 bit data type with 21 bits for the exponent and
10 bits for the mantissa has a 260 higher SDC rate than
the one with 5 bits for the exponent and 26 bits for the
mantissa.

o The effect of a faulty bit in the higher-order exponent
bits is significantly greater in terms of SDC rates.

o Faulty values that highly deviate from zero in the DNN’s
intermediate layers are more likely to lead to SDCs.

o Faults in the later layers of the DNN are more likely
to lead to an SDC as they have a greater likelihood of
propagating to the DNN’s outputs and causing an SDC.

Further, we found that the FIT ! rates of DNNs of ac-
celerator platforms at the time of publishing of the original
work [2] exceeded those suggested by safety standards, and
hence, mitigation of errors was needed to meet the safety
standards. Consequently, we proposed both software and hard-
ware techniques to mitigate the effects of soft errors in DNN
accelerators.

'One FIT or Failures in Time is defined as one failure in a billion hours
of operation.
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Fig. 2: Architecture of general DNN Accelerators

II. SOFT ERRORS IN DNN ACCELERATORS

In this work, we study the error characteristics of con-
volutional neural networks (CNNs), a class of DNNs. A
CNN consists of multiple computation layers — convolutional
and fully-connected are the two main types of layers. Each
CONYV layer applies a kernel (or filter) on the input feature
maps (ifmaps) to extract underlying visual characteristics and
generate the corresponding output feature maps (ofmaps).
Each computation result is saved in an activation after being
processed by an activation function (e.g., ReLU), which in
turn, becomes the input to the next layer.

While many specialized accelerators have been proposed
for inferencing, all DNN accelerators perform multiply-and-
accumulate (MAC) operations for each feature map leveraging
parallel compute, and exploit temporal and spatial localities in
data within and across each feature map to allow the data to
be reused. DNN accelerators employ an array of processing
engines (PEs), each of which computes MACs. Figure 2
shows the architecture of a general DNN accelerator. The
accelerator is connected to DRAM and the data is cached on-
chip in a global buffer. Each PE consists of a multiplier and
an adder as execution units to perform MACs. Researchers
propose accelerators with different data reuse characteristics
(weight, input, and output reuse) offering different trade-offs.
Eyeriss [3] considers all of the three data localities in its
dataflow by implementing Filter SRAM, Img REG and PSum
REG in each PE for data reuse. We adopted the original Eyeriss
microarchitectural parameters at 65nm and projected them to
16nm technology node. Based on this assumption, we calculate
the number of PEs and buffer sizes by keeping the total area
constant.

ISO 26262 deals with the functional safety of road vehi-
cles [1] and offers multiple levels of certification. ASIL-D
(strictest) requires the System on Chip (SoC) running DNN
inferencing to have a soft error FIT rate less than 10 FIT. A
DNN accelerator should be a fraction of the total area of the
SoC.

III. EVALUATION METHODOLOGY

We use fault injection to understand the effect of soft-errors
on DNN accelerators and applications. We consider faults
that occur in the data paths (latches) and buffers (SRAMs
and latch-arrays) of each PE. We inject single bit-flip faults
in the sequential elements. We use four commonly deployed
pre-trained DNNs for classification (at the time of original

publication) and datasets — ConvNet with CIFAR-10 and
AlexNet, CaffeNet, and NiN with ImageNet. We consider
six data types that offer trade-offs between representable
value ranges, precision, and implementation overhead. The
considered data types are double (FP64, E11M52?), float
(FP32, E8M23), floatl6 (FP16, ESM10), FxP_32_26 (32-bit
fixed point datatype with 26 fractional bits and 5 integer bits),
FxP_32_10, and FxP_16_10.

Some of the results are conducted using error injections
using an open-source C++-based DNN simulator called Tiny-
CNN. The loop-nest in the simulator was modified to capture
the Eyeriss micro-architecture (by adding levels for re-use
buffers). 3000 random faults were injected in each of the hard-
ware components during the inference, one fault per execution,
resulting in an error bar between 0.11% and 0.34%. If an
error injection experiment corrupts the output of the network,
the severity of the corruption will have a different effect on
the outcome. Therefore, we define Silent Data Corruption
(SDC) based on the classification’s outcome. Whenever the
top-ranked element predicted by the DNN is different from
that predicted by its fault-free execution, we call it SDC-1.
If it is not among the top five predicted elements, we call
it SDC-5. If the confidence score of the top-ranked element
varies by >10% or >20%, we call it SDC-10%or SDC-20%,
respectively.

IV. CHARACTARIZATION RESULTS
A. Datapath Faults

Models trained with ImageNet dataset exhibit little differ-
ence in the SDC probability for the four different types of
SDCs. Since these models output 1000 dimensions, whenever
the top-ranked output is changed by the error, the new ranking
is mostly outside of the top five elements and the confidence
score changes >20%. Since we observed little difference
between the SDC types, we focus on SDC-1moving forward.

SDC probabilities vary considerably across data types. We
observed higher SDC probability for data types with larger
ranges. We investigate this by studying the SDC probability
based on the bit-position of the injected fault for a given data
type. Figure 3 shows the results for NiN using FP16 data
type. Results for other models and data types follow the same
trend — the corruptions in high-order exponent bits are likely
to cause SDCs, but not the mantissa and sign bits. We also
observed that bit-flips that go from O to 1 in the high-order
exponent bits are more likely to cause SDCs than those going
from 1 to 0. We also observe that the data type with limited
range offers more resilience. For example, FP16 NiN observed
significantly lower SDC probability than FP32 NiN.

We investigate the corrupted neuron values by comparing
them to the fault-free values. We randomly sampled a set of
activations while running AlexNet using FP16, and compared

2n-bit floating-point data type with & number of exponent bits and b number
of mantissa bits is shown as FPn, EaMb. n-bits fixed-point data type with
a bits for the integer part and f bits for the fractional part is shown as
FxP_n_f. Both the data types assume a sign bit, not shown in the respective
representation.
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Fig. 3: SDC probabilities (y-axis) based on the corrupted bit
position (x-axis) for FP16 data type in NiN are shown here.
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Fig. 4: Values before (green dots) and after (red dots) error
occurrence in AlexNet using FP16. X-axis shows the activa-
tions’ values.

their values before (in green) and after (in red) error injections.
The results are grouped based on the inference outcome — SDC
or benign (no change in the outcome) shown in Figures 4a
and 4b, respectively. The results show that a large deviation
in an activation’s value due to an error is likely to cause an
SDC. More than 80% of errors that lead to a large deviation
lead to an SDC in Figure 4a. On the other hand, only 2% of
errors that cause large deviations do not affect the inference
outcome (stay benign). This is likely because large deviations
make it harder for values to converge back to their fault-free
values.

We also investigate how errors in different layers propagate
through the model. For AlexNet and CaffeNet, we observed
that the SDC probability increases with the layer count. We
observe that the use of Local Response Normalization (LRN)
normalizes the faulty values and helps to mitigate the effect of

large deviations. NiN does not employ a normalization layer,
and hence, it has a relatively flat SDC probability across the
layers.

B. Error propagation through CNNs

This work motivated several follow-up studies that also aim
to quantify the probability with which low-level errors prop-
agate to the output of the CNNs conducting perception tasks.
These perception tasks include processing the per-sensor data
in AVs using DNNs. These studies computed this probability
for each frame processing (we refer to it as Poyn) [2], [4]-
[6]. The follow-up studies use more recent models and larger
datasets. These studies also injected transient errors. The errors
were either injected in simulated hardware or real silicon using
software tools, or via high-energy particle experiments. We
summarize the findings in Table I. While the errors were not
injected using same fault model or data type during inference,
the compiled results show that the CNNs are naturally highly
resilient, i.e., only a small fraction of the injected faults will
propagate to the output.

V. Low-coST DNN ERROR MITIGATION
A. Symptom-based Error Detectors (SED)

A symptom-based detector catches errors by leveraging
application-specific anomalies and failure symptoms. Unusual
(anomalous) variable values, loop iteration count, or addresses
are a few examples of a symptom. For the DNNs, we propose
a value range-based symptom that uses the value ranges of
activations and looks for anomalous values to avoid SDCs
during inferences. This detector follows our observation that
an error which makes the magnitude of an activation very large
is likely to cause an SDC.

First, we need to determine the usual fault-free value ranges
[-X, Y] of the neurons in each of the layers of the model under
study for representative inputs. We can then use these value
ranges as the bounds for the detector. To account for unseen
inputs, we apply a 10% margin on the per-layer value ranges [-
1.1¥X, 1.1*Y] for symptom detection. The ranges are obtained
only once before the model is deployed. To lower the cost of
error detection, the activations can be streamed to the host to
perform the range checks in parallel. The checks can also be
merged with the activation function.

After deploying the symptom-error detector, we measure its
coverage using fault injections in each hardware component,
using all three FP data types in AlexNet, CaffeNet, and NiN.
We measured precision (the number of benign faults detected /
the number of injected faults injected), and recall: (the number
of detected SDC-causing faults / the number of total SDC-
causing faults). The average precision and recall were high—
90.2% and 92.5%, respectively.

In subsequent work, we enhance the technique by lever-
aging key insights and introducing Ranger [7], a low-cost
fault correction mechanism. Ranger mitigates transient fault-
induced errors without requiring re-computation. While DNNs
exhibit natural resilience to benign faults that do not affect
output integrity, they remain vulnerable to critical faults,
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Problem Dataset Model Precision Injection level Pecnn Source
Classification ImageNet NiN FP32/FP16 | Flip-flops and SRAMs | 0.0162/0.0028 [2]
Classification ImageNet AlexNet FP32/FP16 | Flip-flops and SRAMs | 0.0038/0.0032 [2]
Classification CIFAR-10 AlexNet FxP_32 Neuron output 0.0032 [5]
Classification ImageNet AlexNet INTS Neuron output 0.008 [4]
Classification ImageNet GoogleNet/ResNet50 INTS Neuron output 0.003/0.0025 [4]
Classification ImageNet ShuffleNet/SqueezeNet INTS Neuron output 0.007/0.0035 [4]
Classification ImageNet VGG19 INTS8 Neuron output 0.0015 [4]
Classification ImageNet VGG16 FxP_32 Neuron output 0.0104 [5]
Classification Traffic Sign VGG11 FxP_32 Neuron output 0.001 [5]

Detection/Driving Driving DAVE/Common.ai FxP_32 Neuron output 0.0012/0.00092 [5]

Detection Driving A DriveWorks model N/S Flip-flops and SRAMs Very low [6]

TABLE I: Estimates of the probabilities with which a low-level transient error propagates to different CNN outputs.

which can produce erroneous outputs. Ranger automatically
transforms DNNs to selectively constrain value ranges, ef-
fectively converting large deviations caused by critical faults
into benign faults. This enables the DNNs to utilize their
inherent fault tolerance. Our evaluation across eight DNNs
shows that Ranger improves error resilience by 3x to 50x,
with no accuracy loss and negligible performance overhead.

B. Selective Latch Hardening (SLH)

Protecting the latches in the datapath can be vital for highly
dependable systems as they become the reliability bottleneck
once all buffers are protected (e.g., by ECCs). There have been
several hardened latch designs that differ in their overheads
and levels of protection. For example, Strike Suppression
(RCC) technique provides 6.3 x FIT reduction with 1.15x area
overhead. Reundant Node (SEUT) and Triplicated (TMR) are
two other techniques that offer 37x and 1,000,000 x protection
with 2x and 3.5x area overhead, respectively.

Since we observed and characterized asymmetric SDC
sensitivity in different bits, we can leverage this model to
selectively harden each latch using the most efficient hardening
technique to achieve sufficient error coverage at a low cost.
Our experiments real a super-linear FIT rate reduction by
protecting a faction of the latches in the design, i.e., we get
a high enough FIT reduction by protecting a smaller fraction
of the latches. When we employ the use of different latch
hardening methods that offer different protection vs. per-latch
overhead characteristics, we observed even better results. For
example, applying the three hardening techniques together can
reduce the latch FIT rate by 100x, while incurring only about
20% latch area overheads.

Additionally, the non-uniform vulnerability of individual
bits provides insights into the monotonicity of SDC locality.
In our follow-up work, we observe that widely-used ML
computations often exhibit monotonic behavior. Building on
this, we introduce BinFI [8], an efficient fault injector designed
to identify safety-critical bits in ML applications. This allows
us to approximate the error propagation behavior of an ML
application as a monotonic function. BinFI employs a binary
search-like fault injection technique to efficiently pinpoint
safety-critical bits while assessing overall resilience. Our re-
sults show that BinFI identifies 99.56% of safety-critical bits

with 99.63% precision, significantly outperforming random
fault injection techniques at much lower cost.

VI. IMPACT

The original publication [2] has been cited over 599 times
as of October 2024, according to Google Scholar, making it
one of the top 10 most cited papers in the history of the SC
conference within just seven years of its release, as per ACM
statistics [9]. This work has had a significant impact on the
following four areas of research.

Resilience Studies of DNN accelerators and applica-
tions: Prior to our work, it was believed that DNNs were
largely resilient to soft errors due to their built-in tolerance
to perturbations. We demonstrated in our work that this is
not necessarily the case, and even a single transient fault can
cause safety violations in DNNs. Our work has inspired several
follow-up studies that have examined the error resilience of
DNN accelerators from various perspectives, considering dif-
ferent applications and fault models. For example, ARES [10]
systematically characterized the impact of DNN accelerator
parameters on resilience. Other studies have explored the
effects of transient and permanent faults on accelerators [11]
and sensor faults in DNN applications deployed in AVs [12].
Moreover, research has confirmed that a single transient fault
can lead to safety violations in DNNs [13]. Finally, other
studies [14]-[16] have also underscored the critical need to
assess the reliability of AI/ML platforms.

Fault Injection Techniques for DNNs: Another area of
research that was spawned by our paper is fault injection
(FD) into DNN accelerators and applications. Our work was
among the first to perform FI into DNN accelerators running
real DNN workloads. Subsequently, several specialized tools
and techniques for performing FI into DNN frameworks and
applications have been developed. PyTorhcFI, TensorFI, and
BinFI are few such examples. Many of these techniques
leverage specific properties of DNNs to optimize the fault
space, which can be probibitively large. Our work was the
first to propose optimization techniques for FI into DNNs.

Hardware Techniques for DNN Resilience: Another novel
aspect of our paper was the use of selective latch hardening
techniques to protect critical latches in the DNN accelerator.
Our FI experiments allowed us to identify the critical latches,
i.e., the latch elements that are most sensitive to soft errors.
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We then employed latch hardening techniques to them subject
to a total area overhead bound. We found that we were able
to reduce the FIT rate by 37 x with a 2x area overhead. This
result has influenced other publications (e.g., [17]), and the
design of commercial products as well (details are confiden-
tial).

Software Techniques for DNN Resilience: Finally, our
technique has influenced the design of software-based tech-
niques for DNN resilience. In our paper [2], we had proposed
symptom-based detectors to identify SDC-causing errors in
intermediate layers of the DNN. Our work has influenced other
work such as Clipper [18], Ranger [7] and FT-ClipACT [19],
which aim to provide protection from Rowhammer attacks,
transient faults and permanent faults respectively for DNN
applications. The common theme in these techniques is to
leverage the properties of the DNN’s intermediate values being
bounded (as our study found), and check for conformance
to these properties at runtime to detect faults. Schorn et
al. [20] designed error resilient DNN accelerators based on our
observation that network structure influences error resilience.
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