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1 Introduction

This essay was motivated by work on Internet Congestion Control. I was very interested in
the concept of decentralized optimization for finding optimal flow rates of users in a network,
given the network contraints and each user’s level of demand for unit flow. Although the
decentralized model was essentially a dynamical system, I tried to avoid the control side
of it in terms of proving stability of the solution, I thought I was only interested in the
optimization side, of finding the actual solution. Consequently, I realized that I cannot
separate the two, optimization and control. My attention was caught by the basic tools
used in the proofs of stability and convergence of congestion control models—the Gradient
Method and Lyapunov Functions. Since I kept seeing them used interchangeably, I thought
they must be closely linked but was surprised not to find any explicit relationship drawn
between them in the existing literature. I realised subsequently that this is due to the fact
that the Gradient Method belongs strictly in the Optimization and Non-linear programming
literature (JAHU5S8],[Ber99]), as an established method for finding optima of constrained
and unconstrained problems, while Lyapunov Functions are a tool in Control Theory used
to prove stability of equilibria of dynamical systems ([Gle94]).

Although a relation can easily be drawn between these two fields of Applied Mathematics,
so far I have not found any book that treats them simultaneously. Consequently, in this essay
I decided to explore the connection between the Gradient Method and Lyapunov Functions
in greater detail, specifically as it relates to the problem that I was interested in originally,
that of Internet Congestion Control and more generally, in the context of decentralised
optimization.

Finding the optima of a function is a basic problem that is introduced as early as high-
school. If we wish to find the minima and maxima of a function F'(z), we know that we need
to set the function’s first derivative to zero,

F'(z) = 0.

When we solve this equation for z, we know that we have found a local minimum or maximum
if the second derivative of the function at the point in question is greater than or less than
zero respectively. If the second derivative is zero, then we do not have an optimum but an
inflection point instead.

In a control theoretic problem, we are generally given a dynamical system,

dx
)

or in short,
= f(z).

Here and elsewhere the dot over a variable will always stand for differentiation with respect
to time. The equilibrium, or stationary point of that system is given by & = 0 or equivalently,
by f(z) = 0. One of the fundamental questions addressed by control theory is to find the
equilibria of dynamical systems and classify them as stable or unstable, etc.

At first sight, the two problems posed above, that of finding the optimum of a function
and classifying the equilibrium of a dynamical system, are very distinct. However, if in the
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control theoretic problem we replace f(z) by the derivative of its integral function F(z) (that
is, define F'(x) to be such that F'(z) = f(x)), the differential equation above becomes

& = F'(z) (1)
and the stationary points are determined by
F'(z) =0,

so the problem now coincides with the optimization problem above.

This reveals the link between the two types of problems at one level, finding the sta-
tionary points of the dynamical system and the potential optimal (not by chance also called
stationary) points of the optimization problem. At a second level, classifying the equilibria
as stable or unstable will also relate to classifying the optimal points as minima or max-
ima. The connection between the gradient method and Lyapunov functions comes in at this
second level.

The necessity of the gradient method comes from the fact that it is often difficult to solve
F'(xz) = 0 in practice and find the optimal points analytically. The method arises from the
special property of a local optimum that the first derivative is zero at the optimum while its
sign changes from positive to negative or from negative to positive in the neighbourhoods
before and after the optimum. This intuition explains why we should expect a system of
the type (1), with reasonable conditions on F', to converge with time to a local optimum of
F. Equation (1) thus stands as a definition for one of the most straight-forward gradient
methods—the gradient descent method. Many variations and improvements from this basic
notion of the gradient method have been studied, and have been treated in detail in [Ber99].

On the other hand, the stationary points of F'(x) give the equilibrium points of the
dynamical system (1). The existence of a Lyapunov function, defined in Chapter 2, proves
that an equilibrium point is stable and the optima of the Lyapunov function gives precisely
the equilibrium point. We can see that stability of a stationary point Z, defined in essence
by the tendency of trajectories z(t) to it, is very closely related to convergence of these
trajectories to T as required by the gradient method in the search of an optimum point Z.

With this in mind, after introducing the basic theory of Lyapunov functions and the
gradient method, we look at examples where both methods can be used to the same purpose
or more precisely, the problems in which the two methods are used are equivalent to each
other and can in some sense be thought of as a primal and a dual problem. The dynamical
systems we look at stem mostly from Internet Congestion Control models ([Kel00], [JoT01],
[KMT98|) as well as similar decentralized optimization models from the economics literature,
in particular ([AHUS58]).

2 Lyapunov Functions

2.1 Stability

Consider the first-order differential equation

= f(z,t), z € R".
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Here and throughout this work, a dot over a variable will stand for differentiation of this
variable with respect to time. We want to study the stability of the equilibrium points of this
equation. The equilibrium points are defined by £ = 0. The definition of stability however
is not so straightforward. There are a number of different notions of stability, depending
on the type of problem and what we want to achieve. The main notions involve the ideas
that a point is stable if trajectories tend to it (asymptotic stability), or stay nearby if they
start nearby (Lyapunov stability). A third common notion is that of structural stability, in
which a system is stable if, when perturbed a little, it still has the same basic solution. The
following definitions are based on [Gle94].

Definition 2.1 A trajectory of the differential equation

dx(t)
O _ fa)

starting at time ty, is defined by the curve x(t) with t > ty, such that it satisfies the given
differential equation. x(ty) is called the initial position of the trajectory; usually to = 0.

Definition 2.2 An equilibrium point is Lyapunov stable if all trajectories starting suffi-
ciently close to the equilibrium point remain close to it for all time. More formally, x is Lya-
punov stable iff for all e > 0 there exists § > 0 such that if |x—y| < § then |f(z,t)—f(y,t)| <€
for allt > 0.

Definition 2.3 An equilibrium point is attracting or quasi-asymptotically stable if all tra-
jectories that start near the equilibrium point, approach it as t — oo.

Definition 2.4 An equilibrium point is neutrally stable if it is Lyapunov stable but not
attracting.

Definition 2.5 An equilibrium point which is both Lyapunov stable and attracting is said
to be asymptotically stable. Similarly, a system is asymptotically stable in a region if all
trajectories in the region converge to a single equilibrium point.

Rather than convergence to a single point, we could as well talk about convergence to a
cycle in which case we call it a stable limit cycle. Stability is global if the initial position of
trajectories can be any point in the state space, and local if the initial position can only be
a point in a neighbourhood of the stable point.

2.2 Lyapunov’s method

Lyapunov’s method is used to study the stability of non-linear dynamical systems, without
solving the differential equations involved. [Jac74] refers to it as the ”second method”, as
opposed to the ”first method” of linearizing about singularities and considering eigenvalues
of the resulting linear equations. The linearization method can only prove local stability,
thus the Lyapunov’s method is preferred when we need global results.



The method is applied to systems of the form

& = f(z)

which have an equilibrium point at the origin. It considers a function of the state variables
z, called a Lyapunov function, whose values are a measure of distance to the equilibrium
point.

Definition 2.6 (/Gle94]) Suppose that the origin, x = 0, is an equilibrium point for the
differential equation © = f(x), x € R*. Let G be an open neighbourhood of 0 and

V:d(G) >R

be a continuously differentiable function. Then we can define the deriwative of V along
trajectories by differentiating V with respect to time using the chain rule, so

V(ac(t)) = % =i-VV=f-VV= Zfi(x)agij)

where the subscripts denote the components of f and x. Then V is a Lyapunov function on
G iff V is continuously differentiable on cl(G) and

(i) V(0) =0 and V(x) > 0 for all z € cl(G)\{0};

(ii) V <0 for all z € G.

A Lyapunov function resembles an energy function. The idea is that an equilibrium point
will be stable if the distance from it to the trajectories of the dynamical system tends to
decrease.

Lemma 2.1 (Bounding Lemma, [Gle94]) Suppose that G is some open bounded domain in
R™ with boundary 0G, and that V' : cl(G) — R is a Lyapunov function. If there exists xy € G
such that V(x) > V(xq) for all x € OG then

S(zo) ={z € c(G) | V(z) < V(xp)}
is a bounded set in G and f(zo,t) € S(xo) for all t > 0.

Proof Sketch: S(zo) is bounded and it is in G by definition. Now V(z) is decreasing with
time hence a trajectory starting at zo will stay in S(zo). O

Theorem 2.2 (Lyapunov’s First Stability Theorem, [Gle94]) Suppose that a Lyapunov func-
tion can be defined on a neighbourhood of the origin, x = 0, which is a stationary point of
the differential equation = f(x). Then the origin is Lyapunov stable.

The problem with Lyapunov functions is that there is no general method of finding them,
for general non-linear systems. Also, they would rarely exist on the whole state space; most
often we would only be able to find a Lyapunov function on a small neighbourhood of the
equilibrium point.



Once we find a Lyapunov function, however, not only does it let us prove stability of an
equilibrium point but it also helps find the largest invariant set to which trajectories tend
to, namely this is the largest invariant subset of

E={zeG|V(z) =0},
the set of points where the time derivative of the Lyapunov function vanishes.

Theorem 2.3 (La Salle’s Invariance Principle [Gle94]) Suppose that x = 0 is a stationary
point of = f(x) and V is a Lyapunov function on some neighbourhood G of x = 0. If
g € G has its forward trajectory, v*(zo), bounded with limit points in G and M is the
largest invariant subset of E, then

f(zo,t) &> M ast — oc.

By the theorems above, asymptotic stability will be achieved if the time derivative of the
Lyapunov function is strictly positive except at the stationary points.

Theorem 2.4 (Lyapunov’s Second Stability Theorem [Gle94]) Suppose x = 0 is a stationary
point for & = f(z) and let V' be a Lyapunov function on a neighbourhood G of v = 0. If
V(z) <0 for all z € G\{0}, then x = 0 is asymptotically stable.

The above discussion was mainly about first-order systems, i.e., systems of the form
% — f(x), where z and f(x) are vectors. It is naturally extended to second-order systems,
the latter being defined as

dx dy
E_f(xay)a E_g(xay)a

again with z, y, f(z,y), g(x,y) being vectors of appropriate dimensions.

2.3 A Special Class of Lyapunov Functions

As we noted above, it is in general difficult and there are no methods to find Lyapunov
Functions. However, based on [KMT98], we have noted a special class of Lyapunov Functions
which can be found in a straighforward manner. Let F(x,y) be a function of z and y with
F, and F, denoting its partial derivatives with respect to z and y accordingly. Consider a
system of the form

=R ©)
Y~ B 3)

Then F(z,y) offers a possible Lyapunov function for the system (2)-(3) since

dF 0Fde OFdy ., .,
= 4 241 2> 4
it ord Tayar e ti 20 (4)
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Note, in the definition of a Lyapunov function (see definition 2.6) we require that its
time derivative be non-positive and the function have a global minimum at the equilibrium
point. This is simply a matter of convention and we can easily invert the definition to require
that the time derivative be non-negative and the function have a global maximum at the
equilibrium point. While the former helps our intuition by associating Lyapunov functions
with energy functions, the latter is more suited in an economics or optimization setting where
we prefer to talk of maximizing profits and revenues. In light of this, we offer an alternate
definition of a Lyapunov function.

Definition 2.7 Suppose that (z,y) = (a,b) is an equilibrium point for the system of differ-
ential equations

T = f(:r;,y), Y= g(:z:,y),

where © € R* and y € R™. Let G be an open neighbourhood of (a,b) and V : cl(G) — R be a
continuously differentiable function. Then we can define the derivative of V' along trajectories
by differentiating V with respect to time using the chain rule, so

. dV oV ov
i j

where the subscripts denote the components of x, y, f and g. Then 'V is a Lyapunov function
on G iff V is continuously differentiable on cl(G) and

(i) (a,b) is a unique mazimum of V on G;

(ii) V > 0 for all (z,y) € G.

Note, we stated this definition with respect to a second-order system of differential equa-
tions but it can readily be adapted to refer to a first or higher order system. Now we can
prove the result suggested above, with appropriate constraints on F'(z,y).

Theorem 2.5 Let F : cl(G) — R where G € R* x R™ is some open ball, be a continuously
differentiable function, with a unique mazimum at (z,5) € G. Then F is a Lyapunov
function for the system of differential equations (2)-(8) and its mazimizing value is the
equilibrium point of the system.

Proof: Condition (i) of definition 2.7 is automatically satisfied. Condition (ii) follows from
what we established above, namely that

dF

_ 2 g2
T =E+E >0
Therefore, F(z,y) is a Lyapunov function for the system (2)-(3). Its maximizing value (Z, 7)
is obtained by setting F,, = % and F,, = g—j to zero. This gives precisely the equilibrium
i j

point of the system. O

Naturally, any condition on F(z,y) above which guarantees the unique maximum of
F' can replace the latter. Often, decentralized optimization problems will involve strictly
concave functions on the non-negative reals with interior maxima.



3 The Gradient Method

3.1 Basic Concept

The gradient method is a way of finding the local optimum of a function assuming that the
function gradient can be computed. In simplest terms, the method solves

&= [f'(z)
in the case of a local maximum, and
z=—f'(z)

in the case of a local minimum, where 1 is differentiation with respect to time. In the discrete
time case, the method consists of iterating

T =+ f(2)

until the sequence x; converges and the point of convergence gives the desired optimum. We
will only work in the continuous time case here.

3.2 The Gradient Method for Concave Programming

In resource allocation models, we are often interested in finding the maximum of a function
f(z), say utility, production or profit, subject to constraints g(z) > 0. We solve the problem
by considering the Lagrangian

L(z,y) = f(z) +y g()

where y?, the Lagrangian multipliers, find the natural interpretation of shadow prices of
the resources to be allocated. Here, z = (z1,29,...,x,) and y = (Y1, Y2, -, Ym)- f(x) will
usually be concave in z, and thus L(z,y) is concave in z and linear or convex in y. We
are thus interested particularly in gradient method theorems for finding saddle points of
concave-convex functions L(z,y), restricted to x > 0 and y > 0. The gradient method to
problems of that type is given by the following system of differential equations.

z, =0 if L,, <0and z; =0
Z; = Ly, otherwise
y; =0 it L, <0 and y; =0
y; = Ly, otherwise

where Ly, = 2L and L, = g_yp_ We can rewrite the above system in a more concise form as
i j

follows.
Tj = Oy, Ly, (5)

Yj = Oy; Ly, (6)

Here, d;;, = 0 whenever x; = 0 and L;; < 0 and d,, = 1 otherwise. Similarly for 4,,.
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We call a solution (z(t),y(t)) of a system regular ([AHU58]) if whenever z;(t,) = 0 (or
y;(t,) = 0) for some sequence {¢,},en such that ¢, > 0 and lim,_,« ¢, = 0, then there is a
positive number ¢ > 0 such that z;(¢) = 0 (or respectively y;(t) = 0) for 0 < ¢ < t.

The main theorem proved in [AHUS58| gives global stability of the system (5)-(6) in the
strictly concave case.

Theorem 3.1 [AHU58] Let L(x,y) be strictly concave and continuously twice-differentiable
in n-vector x > 0, convex and continuously twice-differentiable in m-vector y > 0, such that
the system (5)-(6) has a regular solution with respect to the initial position x° > 0, y° >
0. Then there is a unique regqular solution (z(t),y(t);z° y°) of with any initial position
(z°,y%) > 0.

Furthermore, if L(xz,y) possesses a saddle-point (z,7y) under the constraints x > 0 and
y > 0, the x-component T of any saddle point is uniquely determined and the x-component
z(t) of the solution of (5)-(6) with an arbitrary initial position (z°,y°) > 0 converges to 7.

Arrow and Hurwicz subsequently extend Uzawa’s results in Theorem 3.1 to include con-
vergence in the second variable.

Theorem 3.2 [AHU58] If L(x,y) is strictly concave in x for each y and convex in y for
each x, then the gradient process converges in both x and y.

3.3 The Gradient Method for a Concave-Concave Function

Suppose we were given a function L(z,y) of two variable vectors which is concave in both.
We will prove a similar theorem to theorem 3.1 for the gradient method in this case. First, let
us define the gradient method. Similarly to the sadde point case, we aim to find a maximum
for L, on x > 0, y > 0. Suppose the maximum is at (Z,g), with Z > 0, § > 0, i.e. it is a
solution of

£>0,7>0 (7)

L(z,y) > L(z,y) for allz > 0, y > 0. (8)
If L(z,y) is concave in both variables and continuously differentiable with respect to
both, condition (8) becomes equivalent to conditions (9) and (10) below.
Ly, <0 (9)
with equality for 4 whenever £; > 0 and where L, stands for %, evaluated at ;.

L, <0 (10)

with equality for ;7 whenever y; > 0.
Then the maximum point (Z, ) is a singular point of the following system of differential
equations which we call the gradient method:

Gi = 0p, Lo, (11)
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?Jj = 5yj Lyj (12)

where 6, = 0 for z; = 0 and L,;, < 0 and it is 1 otherwise, similarly for ¢, .

Theorem 3.3 Let L(x,y) be strictly concave and continuously twice-differentiable in n-
vector x > 0, concave and continuously twice-differentiable in m-vector y > 0, such that
the system (11)-(12) has a regular solution with respect to the initial position z° > 0, y° > 0.
Then there is a unique reqular solution (x(t),y(t); z° y°) of (11)-(12) with any initial position
(2% y°) > 0.

Furthermore, if L(x,y) possesses a unique global maximum (Z,y) under the constraints
x>0 andy > 0, the z-component z(t) of the solution of (11)-(12) with an arbitrary initial
position (z°,y°) > 0 converges to .

Remark 3.4 Note, unlike the original theorem for saddle points, this one requires a nec-
essary condition that the global mazimum of L(x,y) be unique. To see why, consider for
example the function f(x,y) = —(x — y)?, which is strictly concave in both x and y and is
bounded above by 0. This function has infinitely many global maxima, all along the diagonal

T =1y.

Proof: This proof is a modified version of the one given in [AHU58| to Theorem 3.1, which
considers the case of a saddle point.

There are three parts to the proof. The first one establishes existence, uniqueness and
continuity of the solution. The second part shows that the distance from the solution to the
maximum point strictly decreases with time except when we have reached the maximum.
The third part of the proof establishes the convergence of the solution to the maximum, for
any initial position (z°,y°).

(a) This part is exactly the same as in [AHU58] since it is not related to the concavity
properties of L(z,y). We include the argument for completeness.

Let z = (21,29, .-y 21) = (T1, ey Tyy Y1, -vy Ym), With I = n + m. Let also

Li(z) =Ly, for1 <i<n
Lj(z) = Ly,, for 1 < j <m.
Divide the indices 1, 2, ..., [ into three sets:
S%=i: 20 >0, 0r z) =0 and L;(2°) > 0
T’ =i: 22 =0 and L;(z°) =0
R’ =i: 2) =0and L;(2°) <0
Define the (S° T°, R%)-system to be the following system of differential equations:

Li(2) for 1 € S°
z; = { max|0, L;(2)] for i € T° (13)
0 for i € RY
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If Li(2), ... Ly(z) are continuously differentiable, then (13) has a solution z(¢; 2°) which
is unique and continuous with respect to any initial condition 2z° > 0. Let ¢! be the smallest
upper bound of ¢ such that for all 0 < o < ¢,

zi(o) >0 for 1 € S°
zi(0) = 0 or L;(2(0)) is always positive  for ¢ € T°
Li(z(0)) <0 for i € R°.

From the regularity condition on the solution, t' > 0. Hence z(¢; 2°) is a solution of the
system (11)-(12) in the interval [0,#!]. On the other hand, if (11)-(12) has a regular solution
with initial condition 2°, this solution must coincide with the solution of the (S°,7° RP)-
system in [0,#']. Since the latter is unique and continuous, the solution to (11)-(12) is also
unique and continuous with respect to 2% in [0, !].

Define similarly an (S*, 7", R')-system with initial condition z' = z(¢'). Denote the
solution z(¢; 2'). Define also t* for z(t; z') similarly to the way ¢' was defined for z(¢; 29).
The curve

z(t'zo):{ 2(t; 2°) for 0 <t < ¢!
’ 2(t —th 2Y) for t! <t <t!+¢
is a solution of the system (11)-(12) in [0,¢! + ¢?]. Repeating in this way, we obtain a
sequence of times ¢!, 2, ..., t* > 0 and a curve z(¢; 2°) which is a solution to the system
(11)-(12) in [0,¢' + ... + "] for v =1,2, ....
Next, denote
t* = lim t' + ... +t".

V—00

We will show that t* cannot be finite. Suppose the contrary, that ¢t* < oo. Then the set
2’ ;v =1,2,... is bounded, where z¥ = 2(t'; 2). Also there exists a constant C such that

Li(z) <C  forall z=z(t), 0<t<th

Then ; .
|zi(t)—zi(t')|=|/ z'idt|§/ Li(2)|dt < Clt — 1.
t t

!

Thus, there exists z* with
lim z(t) = 2*. (14)

t—t*

Define
S* =i 2zl >0,0r zf =0and L;(z*) > 0
T* =i z; =0and Li(2*) =0
R*=1i: 2z =0and L;(2") < 0.

Then by (14) we cannot have the case z; = 0 and L;(2*) > 0. Therefore we can find v such
that for all 7,

<<t
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zi(T) >0 fori € S*
zi(T) =0or z;(r) >0 and L;(2(7)) <0 forieT”
Li(2(1)) <0 fori € R".
Constructing the (S?,T%, R")-system at 2" yields

S - (e 1Y)

which is a contradiction with the fact that ¢! +---+¢"*! < ¢t*. Therefore lim,_,o t' + ... +t*

is infinite, that is the solution of (11)-(12) is unique and continuous over the entire positive
time axis.

(b) Next, let z(t; 2°) be a solution with any initial condition 2°. Define the distance from
the solution to the maximum point z = (Z, y) to be

D(#) = %|z(t) _ 2P

We will show that

D) <0 for any z(t)
where equality is achieved only for z(¢) such that z(t) = Z.
D =4(t)- («(t) - 2)
=L, - (x—Z)+Ly-0y-(y—7) (15)
=Ly (zr — 1) + Ly - (y1 — ¥r)-

The variables appearing above are defined as

Ly = (Lgy,..; Ly,)7, L, = (Ly,.... L, )";

8s, 0 0 8, 0 0
5 0 4y, 0 = p 8y, 0

0 0 . 0 0 Sy

Xr = 0g - & = (0z, L1, -y Oz, Tnr), T =2 —X1

Tr =10y -7 = (03,%1, ., 0, Tn), Tir=7T— I;.

Note that Z; and Z;; are dependent on ¢ since d, depends on t. We define y;, y77, ¥ and
yrr similarly to the corresponding z-variables.
By strict concavity of L(x,y) in z and non-strict concavity in y,

L,-(z—x)>0 forz #

and
Ly-(g—y)>0 fory # 7y

14



Therefore
L, - (z—z)+L, - (g—y)>0.

Substituting 2y = x — ;7 and y; = y — yy7 in (15), we obtain

DZLz'(l‘—f)‘i‘Ly‘(y—g)_Lw'(xll—ffll)—Ly‘(?JH—ﬂH)
< Ly-Zrr+Ly-yir <0

for (z,y) with x # Z. This establishes what we wanted to show, that

D(t) <0 for any z(t)

with equality only for z(t) such that z(¢) = .

(c) This last part of the proof of the theorem shows convergence of z(¢) to z. It does not
use the concavity properties of L and is the same as in [AHU58|. Again, we include it for
completeness.

Since D < 0, D* = lim,_,, D(t) exists. On the other hand, the set (z(t;2°),v = 1,2, ...)
is bounded for all sequences t¥ with lim; ., t¥ = oo. Hence this set has an accumulation
point x* say and further we can find a subsequence t% : k =1, 2, ... of ¥, such that

lim z(t; 2°) = Z*,
k—o00
where z* = (z*,y*) for an appropriate y*. By (a) there exists a unique solution for any

initial condition and in particular z¥ = z(t; 2¥) is a unique solution with the initial condition
2% = 2(t%; 2°). Therefore, z(t;2°) = z(t + tY; 2°). Then

D*(t) = D(t;2*) = lim D(t; 2%) = kILHOIO D(t +t%; 2°) = D*,

k—o0

since z and D are continuous with respect to t. Therefore

D=0 at z = 2*.

By (c), z* = Z. Therefore z(t") converges to Z, for any sequence t” which tends to co. Hence

tli)rc?o z(t) = Z.

O

Note, the rather involved proof in part (a) of the theorem is only required because of
the constraints x > 0, y > 0. If these restrictions were removed, the proof of the theorem
would proceed much like the above, only part (a) would become unnecessary and part (b)
would become much simpler as well. In addition, by a symmetry argument we can extend
the convergence of the gradient method to y as well if the function L(z,y) is strictly concave
in y as it is in z.

Corollary 3.5 If L(x,y) is strictly concave in both x and y, then the gradient process con-
verges in both x and y.
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3.4 Application of the Gradient Method to a Resource Allocation
Model

We follow the description of a resource allocation model in [AHUS58]. Let z be a vector of
activity levels, g(x) a vector of net output of desired goods and h(z) a vector of primary
goods. Let y be a vector of the desired goods consumption, and f(y) be the corresponding
utility function of that consumption.

We assume that f(y) is a strictly concave and strictly increasing function of y and that
g(x) and h(z) are concave functions of z. We then need the following constraints:

9(x) =y >0, h(z) >0.
We would like to maximize utility subject to these constraints:

max f(y) subject to g(z) —y >0,
0,

z > 0,
y > 0.

The Lagrangian for this problem is
L(z,y;p,9) = f(y) + Plg(z) — y] + ¢'h(z).

Theorem 3.6 ([AHU58]) Suppose f(y) is strictly concave and strictly increasing, g(x) and
h(z) concave, and (z,y) mazimizes f(y) subject to the constraints g(x) —y > 0, h(z) > 0.
Let p be the vector of Lagrangian multipliers associated with the constraints g(x) —y > 0.
Then the solution of the gradient method has the properties:

(o) lim y(t) = 5;
(b) if g; > 0, then tlim pi(t) = p; and tlim gilz ()] = 7.
— 00 — 00

4 Use of the Gradient Method vs Lyapunov Functions

4.1 Proving Stability in a Simple Example

Consider a simple example of a second-order system from [Dra92]

dx

= ar — 1
g =Ty (16)
dy

= 1
7 cx + ay (17)

where a < 0.
We can prove that (x = 0,y = 0) is a stable equilibrium point of the system both through
the use of the gradient method and of Lyapunov functions.
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When we want to show asymptotic stability, we look for a Lyapunov function L(z,y)
which is strictly concave and has a positive time derivative except at the equilibrium point
where the time derivative is zero. Since

d OLdr OLdy
27 g8y
") = oo T ey ar

a general strategy is to try and find L such that 2L 52 18 proportional to dt, and similarly for
y since then iL(av y) will be a sum of squares and hence positive as necessary.

In our concrete example, we set L(z,y) to be the sum of the integrated right-hand-sides
of (16)-(17), with respect to z and y:

Claim 4.1 L(z,y) = taz? — cxy + cxy + 3ay* = %(2* + y?) provides a Lyapunov function
for the system (16)-(17).

Proof: Since a < 0, L(z,y) is strictly concave in both z and y. Next,

d oL d oL d

dtL( ) = F df 8_yd_g1i = az(ax — cy) + ay(cz + ay) = a*(2* + y?).
So L > () as desired and this concludes the proof. Moreover, equality is achieved precisely
at (O 0) hence this is the unique asymptotically stable equilibrium point of the system. O

Next, we turn to the gradient method. We would like to use Theorem 3.1 to show
convergence of the gradient method to a stable equilibrium. Thus, we would like to fit our
system (16)-(17) to the form

dz 0
prin af(x,y) (18)
dy 0
i —a—yf(%y) (19)

where .Z (z,y) is a function which is strictly concave in z and convex in y.

Claim 4.2 There is a unique regular solution (z(t),y(t); 2%, y°) to (16)-(17), with any initial
position (z°,y°). Furthermore, this solution converges to (0,0) in both x and y.

Proof: The above discussion suggests us to consider the function .# (z,y) = %:EQ —cxy— %y2.
The gradient method (18)-(19) is then precisely our original system (16)-(17). Since a < 0,
Z 1is strictly concave in z and strictly convex in y and it is continuously-twice differentiable
in both variables, with a unique saddle point (0,0). Applying Theorem 3.1 and Theorem 3.2
about the gradient method in the case of saddle points gives the result. O

It is worth noting that in this example the Lyapunov function and the Gradient method
function are not the same. One may want to explore in what class of problems the two
coincide. In such case we can define a primal and a dual problem where the primal optimizes
a given function while the dual looks at the induced system of differential equations, trying
to answer questions about its equilibrity points and stability.
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Consider a modified version of system (16)-(17):

dx
E = ax + Ccy (20)
dy
A 21
= + ay (21)

where a < ¢ < 0.
Here, for the gradient method we need to take the function

a a
Y (z,y) = —2° + cvy + ~y°.
2 2
This function is strictly concave both in z and y and it is continuously twice-differentiable
in both variables. Also, it has a unique global maximum (0, 0) which we can see by writing
¢ in the form

Co G—C 4, C 9

5 Tt 5y +§(x+y).

Applying Theorem 3.3 and Corollary 3.5 then shows that the gradient method defined by
(20)-(21) converges to the global maximum. Hence (0,0) is a stable point of the system
(20)-(21).

Further, note that ¥ satisfies the conditions of a Lyapunov function by Definition 2.7,
so this provides a second proof for the stability of the unique equilibrium point (0,0). The
relationship between ¥ and the system (20)-(21) which enables the equivalent use of the two
methods is that

¥ (2,y) = -

de o0V
o7 22
dt o0z (22)
dy oV

This last system defines a class of problems where the gradient method coincides with
the use of Lyapunov functions.

4.2 Duality of the Gradient Method and Lyapunov Functions

Suppose we are given a function V' (z,y) which takes values in the real numbers and is strictly
concave in both x € R" and y € R™. We wish to find the maximum of that function on
x > 0, y > 0. This formulates a primal problem:

PRIMAL
max Viz,y) (24)
subject to z >0

y > 0.
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If we know that V(z,y) has a unique global maximum then we can use the gradient
method to find that maximum. The gradient method induces a system of differential equa-
tions which we will call the DUAL problem.

DUAL
dei .
pri 0, Vo, (2, 9) (1=1,..,n) (25)
dy; .
d—tj :5yj‘/;l/j(x7y) (J = 17-'-7m)
where V;, = §° and V,,, = 3~ Also
5 — 0 for x; =0 and V,, <0,
o1 otherwise.
and
5 = 0 for y; =0 and V,,, <0,
i1 1 otherwise.

The goal of the DUAL problem is to find the equilibrium points of the system (25) and
to determine their stability.

Theorem 4.3 Let V(z,y) : R* X R™ — oo be twice continuously-differentiable and strictly
concave in x and y, such that it has a unique global mazimum (Z,y) over z > 0, y > 0.
Then

(a) the mazimum of V which is the solution to PRIMAL, coincides with the unique
equilibrium point of DUAL and can be found by the gradient method;

(b) V provides a Lyapunov function for DUAL and hence the equilibrium of DUAL is
stable.

Proof: (a) The maximum (Z, ) of V is the unique solution to the system
05,V =0, 6y; Vy; =0

and so is the equilibrium point of DUAL. Hence (Z, §) is precisely the equilibrium of DUAL.
By Theorem 3.3 and Corollary 3.5, the gradient method converges to the maximum (Z, 7).

(b)
dV oV d oV d
E:Zaxid_f+28_yjd_gzzszi+2% =
7 J J

i

Therefore, since (Z,%) is the unique maximum of V', V' is a Lyapunov function for DUAL.
Hence the equilibrium of DUAL is stable. O
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4.3 Application to Internet Resource Allocation and Congestion
Control

4.3.1 Basic Model

We describe the mathematical model of the Internet after [KMT98], [Kel00] and [LPDO01].
Let J be a set of resources or links, R a set of routes or users. A route r is a subset of links,
r € J. Let A be the link-route incidence matrix, that is

1 ifjer
Ajr = { 0 otherwise (26)

For a link j € J, define its capacity by C;. As we stated above, we can use the terms
routes and users interchangeably since we assume each route to be associated with a unique
user and vice versa. A rate z, on route r induces utility U,(x,) to the corresponding user.
We assume utility functions to be increasing, strictly concave and continuously differentiable
on [0,00). For convenience, denote C = (Cj,j € J), the vector of capacities and also,
x = (x,,r € R), the vector of all users.

The problems in resource allocation can be posed at several levels. At a general system
level, the problem is

SYSTEM PROBLEM (U, 4,C)

max Z U (x,) (27)

reR
subject to Ax < C
over z>0

The problem with this formulation is that the network does not always know the utility
functions of the users and there is no central server which knows the link-route matrix A.
Thus, we need to decentralize the problem. Consequently, we can formulate an equivalent
problem at the user level:

USER, PROBLEM (U,; \,)

w
max Ur(=) — wy (28)
Ar
over w, > 0
Here, w, is the price that user r is willing to pay per unit time, to receive a flow of z, = 1/‘\’—:

for some constant of proportionality A,. We can also define a third problem at a network
level which is similar to the system problem, only here the utility functions are assumed to
be logarithmic with the price w, as above input by each user.
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NETWORK PROBLEM (4, C;w)

max Z w, log x, (29)
reR

subject to Az < C

over x>0

Kelly proves in [Kel97] that there exist vectors A = (A, r € R), w = (w,, 7 € R) and
x = (x,, r € R) such that w, = \,z,, w, solves USER,.(U,, A.) and z solves the NETWORK
problem and consequently the SYSTEM problem if U, (z,) = w, log z,.

The proof finds the optimal rate z by defining the Lagrangian for the NETWORK prob-
lem:

Lpetwork = Z w, log x, + ,uT(C’ — Az — 2) (30)

ré€ER

where z is a vector of slack variables and p is a vector of Lagrangian multipliers or shadow
prices on the resources. The first order conditions

9 . _w
der Lnetwork(xa 2 :U’) - zc_: o Zjer Hij
Ozj network \T, 23 ) = ,U']

determine the optimal rate:
Wy
Zj er /J’j ’
where p > 0, Ar < C and u” (C'— Az) = 0. Therefore the maximized value of the Lagrangian
is

Ty =

max Lyework (T, 2; 1) Zwr log + ,LLTC,
20 Z]E’r J

I,z
r€ER

from where we infer the dual to the NETWORK problem:

DUAL NETWORK (4, C;w)

max  U(p) =Y wlogd pi— Y uCy (31)

reR JEr jeJ
over u > 0.
4.3.2 Congestion Control

The NETWORK and DUAL NETWORK problems above give a way of fairly ([Kel00])
allocating the network resources to all users based on user needs and network capacities.
However, a centralised solution may be difficult and is undesirable. A decentralised algorithm
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for the DUAL NETWORK problem is given by the first-order system (slightly modified from
the dual algorithm in [KMT98], to exclude stochastic perturbations)

@t = 5y (3 (1) — ) (32

s:jEs
Wy

where k; are positive constants to regulate the rate of convergence. This algorithm converges
to a unique stable equilibrium point as established in the following theorem.

T, (t) = (33)

Theorem 4.4 The function % (i Zws log Z,u, ch,uj 1s a Lyapunov function
SER 1ES jeJ

for the system of equations (32)-(33).

Proof: The function % is strictly concave on p > 0. This, together with the assumptions
on wy > 0 and ¢; > 0 ensures that it has a unique interior maximum on the state space. The
partial derivatives are

5 ) = S (34
hence
_ Z OU dy;
P o dt
=3 Zzesuz — )i () m(t) — ¢))

jE€J s:j€s

_Z“J ZZ

JjeJ S:JESs

sjEs

— C;
J
€S Hi

So 4% (u(t)) > 0, with equality at the unique maximizing point i attained by setting
the partial derivatives (34) to 0. Hence % (u(t)) is strictly increasing with time except at
fi. Thus % () is a Lyapunov function for the system (32)-(33), which concludes the proof.
O

Note, the % (1) function from Theorem 4.4 is precisely the same as the function we wanted
to maximize in the DUAL NETWORK problem (31). This is not surprising from the duality
between the gradient method and Lyapunov functions which we established in Section 4.2.
Indeed, the algorithm given by the system (32)-(33) is the gradient method applied to the
function % (1) which we want to maximize in the DUAL NETWORK problem. While this
algorithm is essentially a congestion control algorithm, by solving DUAL NETWORK it is
also a fair resource allocation algorithm. Thus we see that the problems of congestion control
and decentralized resource allocation coincide.
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5 Conclusion

The recent boom in Internet Congestion Control has provided a bridge between two mature
fields, Optimization and Control theory. Although the concepts and tools used to study
Internet Congestion Control are not novel and to a large extent this new area of research
can be viewed as an instance of the general area of Resource Allocation in Economics, there
is a novel link which necessarily emerges from the requirement that the algorithms searching
for optimal allocations of flow rates must be decentralized and stable.

Remarkably, the idea that a complex multidimensional optimization problem may be
solved more easily if it is decentralized, dates back at least to 1950-ies studies of Resource
Allocation for Economic policy (JAHUS58|). In a sense, it was coincidentally discovered that
the gradient method—the main computational mechanism to achieve optimum allocation of
scarce resources, was offering "for free” a decentralized solution. In those early Economic
studies emphasis was placed on theoretical solutions and not on practical implementation,
and so the decentralized solution was perhaps not so highly appreciated and the problems
remained strictly within the Optimization area of research.

The decentralized feature of the gradient method however has come as a blessing in to-
day’s pressing problems on fair allocation of network flow since the immensity of network
data and its partial, decentralized knowledge makes a central computation impossible. An-
other lucky coincidence has been that the problems of network flow allocation and congestion
control have turned out equivalent. The fast and stable algorithms required to avoid con-
gestion are essentially gradient algorithms which solve the network optimization problems.
This essay has provided an insight as to why these lucky coincidences as not so coincidental,
and the key to this insight is the discovered duality between optimization and control.
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