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ABSTRACT 

A general purpose method for generating shadows using a polygonal coordinate data base is presented. 
The method is based on an object space polygon clipping hidden surface removal algorithm. Output from the 
program is in the same three-dimensional polygon format as the input. Thus, a shadowed data environment 
may be easily created and viewed from any observer position with no additional depth sorting time required 
for the hidden surface removal process. Shadows can also be cast by more than one light source. Since 
the shadows are generated in object space, the results can be used for both visual display and numerical 
analysis. 

COMPUTING REVIEWS CLASSIFICATION: 3.2, 4.9, 4.40, 4.41 
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I. INTRODUCTION 

A shadow is the darkness cast by an object inter- 
cepting light. It falls from the side opposite the 
source of light. Theoretically, when the obser- 
ver's position is coincident with that of the light 
source, no shadows are visible. Shadows become 
visible when the viewer's position moves away from 
the source of illumination. 

The addition of shadows to a perspective image 
vastly improves the depth perception of the display. 
Furthermore, shadows provide valuable positional 
information and improve the ability of the obser- 
ver to comprehend complex spatial environments. 
However, computation times and algorithmic complex- 
ity for shadow generation have prevented many im- 
plementations. The shadow creation method pre- 
sented is a natural extension of an object space 
hidden surface removal algorithm which uses poly- 
gon area sorting and is described in the third 
section. A major advantage of this method is that 
both the input and output are in the form of a 
three-dimensional polygon data structure. This 
characteristic means that the shadow definitions 
can be used for the purposes of both display and 
analysis. 

II. SURVEY OF EXISTING ALGORITHMS 

Several classes of algorithms for shadow generation 
have been previously presented. Each of these 
approaches has inherent limitations which may re- 
strict their application and use. The raster scan 
method for shadow image creation was f¼r~tTimple- 
mented in 1970 by Kelley and Bouknight 'J' al- 
though a similar procedure for line drawing images 
has been presented by Appel. 1 

Oriented to a raster type display scope, the Kelley 
and Bouknight method scans an object row by row to 
determine visibility. Each time a polygon boundary 
is crossed, a depth sort is made to determine which 
polygonal surface is nearest the observer (Figure 
i). Since the color of a polygon does not change 
across its surface, the only display information 
necessary is the location of the "key squares," 
those raster units in each row where a color change 
takes place. 

Shadows may be added to an image simply by running 
two concurrent scanning operations, one to deter- 
mine visible surfaces and one in image space to 
determine shadow existence. Before scanning, a 
list is created for each polygon linking it to any 
other polygon that might cast a shadow upon it. 

In 1973 Nishita and Kakamae presented a method for 
shadow generation based on a convex polyhedron 
clipping algorithm. 8 This program maintained some 
of the benefits of the raster scan display method 
while improving on the accuracy and versatility of 
the shadow definitions. 

The data input base consists of convex polyhedra, 
each of which may be composed of several convex 
polygons. Hidden surface removal from any chosen 
point of view is accomplished by determining the 
silhouette contours of each polyhedron and using 
them to define its clipping border. Objects which 
lay behind a selected polyhedron are clipped to the 
window defined by the polyhedron's outside boun- 
daries. 

The generation of shadowed images by this poly- 
hedron clipping method is accomplished in two basic 
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Raster scan used to 
determine visible surfaces. 

•• Concurrent scan used to 
determine shadow areas. 

Figure i. Concurrent scanning method of shadow display. 

steps (Figure 2). In the first step, a view is 
taken in the direction of the infinite light source. 
Using the polyhedron clipper, all the hidden sur- 
faces, which are surfaces that are in shadow, are 
found. The entire scene is then transformed to a 
selected view point, and all hidden surfaces are 
removed by a raster scan method similar to that 
used by Bouknight and Kelley. 

A third algorithm for generating shadows is based 
on the concept of computing the surface defining 
the volume of space swept out by the shadow of an 
object, its umbra. The umbra surfaces are then 
added to the data and treated as invisible surfaces 
which, when pierced, cause a transition into or out 
of an object shadow. This shadow volume approach 
was presented by F. Crow in 1977. 6 

For any polyhedron, the shadow volume can be com- 
pletely described for a given light source posi- 

tion (Figure 3). The contour edges of the original 
object, as seen from the light source, are first 
computed. Then all planes defined by the light 
source and the contour edges constitute the bound- 
ing surface of the shadow volume. The "near" sur- 
face of the shadow volume is defined by the sil- 
houette edges of the object casting the shadow. 
The "far" surface is at an infinite distance. This 
volume is then clipped by the frustrum of vision 
(or viewbox) and added to the environment data base. 
Any hidden surface algorithm can then be used to 
create the display. The shadow data is treated in 
the same manner as the original data except that it 
is invisible. In the depth order calculations, any 
plane behind a front facing shadow surface is in 
shadow. The method can be coupled with several 
hidden surface algorithms and has the capability 
of effectively creating shadow volumes when the 
illuminating light source is placed within the ori- 
ginal environment. 

Polyhedra clipper from lightsource 
to determine the shadowed areas. 

deter~Line visible surfaces. 

Figure 2. Polyhedra clipper and raster scan method of shadow display. 
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There are several restrictions with the shadow 
image creation programs described. The major limi- 
tation of the double scanning method and the shadow 
volume method is that the shadow surfaces are not 
defined in object space. This precludes the use of 
the created shadows for accurate computational pur- 
poses. Furthermore, scan-line algorithms based on 
raster display devices determine their depth prior- 
ity in image space. This limits output portability 
(e.g., vector displays) and will become less effi- 
cient as the display resolution increases. Addi- 
tional problems, unique to the individual algorithms, 
are the imposed limitations on the environment des- 
cription, the potentially large increases in the 
environment data base, the required maintenance of 
non-visible polygons as possible shadow casting 
elements, and the necessity for recalculating sha- 
dows for each image. 

To overcome these difficulties, a different 
approach to shadow image generation based on our 
hidden surface removal method using polygon area 
sorting has been developed.2,10, II This can be 
accomplished with relative ease since the polygon 
form of the output is the same as the polygon form 
of the input. 

III. POLYGON AREA SORTING HIDDEN SURFACE REMOVAL 
ALGORITHM 

A program to remove hidden surfaces by polygon area 
sorting has been developed at Cornell's Laboratory 
of Computer Graphics.10, II The basic concept of a 
polygon sorting hidden surface removal algorithm is 
that all surfaces that lay behind each unique poly- 
gonal area and within its borders are removed. 
The algorithm proceeds from front to back across 
the transformed object space, producing portions 
of the final image along the way and temporarily 
reversing direction only when an initial depth 
sort error is detected. Output from the algorithm 
never overlaps on the vertical image plane since 
each visible area has had all polygons behind it 
removed. This polygonal area may itself be sub- 
divided recursively if there is an error in the 
initial depth sort. 

The hidden surface removal algorithm 
basic steps: 

involves ~our 

i) a preliminary rough depth sort 
2) a two-dimensional comparison of the currently 

most forward polygon, or template, to the 
remaining polygons 

3) removal of polygons that exist behind the tem- 
plate and within its borders 

4) a recursive comparison when an error in the 
preliminary depth sort has occurred. 

At the heart of the hidden surface removal process 
is a polygon clipper. This algorithm considers two 
polygons at a time, a template or clipping polygon 
and a subject polygon. The two polygons are com- 
pared and the surfaces of the subject polygon exist- 
ing within the borders of the clipping polygon are 
designated. Even though the polygon clipper works 
essentially in two dimensions, all depth informa- 
tion is accurately preserved maintaining the pre- 
cise three-dimensionality of the polygons. 

The polygon clipper is capable of clipping a con- 
cave subject polygon with holes to the borders of 
a concave clipping polygon with holes. This gener- 
ality is necessary since even when a scene is re- 
stricted to convex polygons, a clipping sequence 
could quickly yield concave areas and holes. Sur- 
face details such as texture or color differences 
can he described as polygons within the boundaries 
of a parent polygon. These surface details will 
have a minimal effect on the hidden surface removal 
process. 

IV. POLYGON SHADOW ALGORITHM 

The procedure for creating an image containing sha- 
dows consists of two major parts. The first is the 
creation of the shadow descriptions as dictated by 
the particular object orientations and light source 
position. The second is the determination of vis- 
ible surfaces with their associated shadow des- 
criptions and is dependent upon the observer's 
position. 

polygon Contour silhouette 

a convex solid. 

J1 

Ji 

Limits of shadow volume are 
defined by ~he s i l h o u e t ~ _ _ _  ~ ~ : : : : : ¥  I I 
polygon and the v i e w 5 o ~ /  

Figure 3. Shadow volume method of shadow display. 
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By using the general purpose polygon clipping hid- 
den surface removal algorithm previously described, 
the process of generating shadowed images can be 
made relatively simple (Figure 4). Shadow descrip- 
tions are found by viewing the environment from the 
position of the light source. A hidden surface re- 
moved view from the light source position will 
delineate the illuminated polygons which are those 
areas not in shadow. Once defined, these illum- 
inated polygons are added to the original environ- 
ment and treated as surface details on their origi- 
nal source polygons. This general method is suit- 
able for both point light sources and parallel 
light sources. 

This approach has several distinct advantages. 
First, since the polygonal output of the hidden 
surface removal routines is the same as the input, 
the same logic can be used for the shadow genera- 
tion and the image display. Second, by maintaining 
the three-dimensional shadow polygon output, it is 
possible to compute shadow areas and thus their 
effect on such phenomena as energy utilization. 
Third, by adding the shadows to the data base in 
the form of details attached to "parent" planes, 
the computational time for the hidden surface re- 
moval sorting process does not increase. Fourth, 
many views can be generated requiring only one 
original shadow generation cycle. Lastly, shadow 
views with multiple light sources require only a 
single pass through the hidden surface removal pro- 
gram from the viewpoint of each light source. At 
present, the general polygon shadow generation pro- 
cedure is only limited by the requirement of a 
polygonal planar data base. It has proven to be 
flexible, device independent, and has run effi- 
ciently on a large variety of environments. 

For each display frame that is to be produced, 
there is a set of transformation matrices which are 
used to manipulate the environment coordinate data. 
These transformation matrices are of two types, 
view matrices and shadow matrices. The view 
matrices transform the environment to any selected 
view. There are two shadow matrices which are 
devoted to the creation of a shadow data base con- 
sisting of the original polygonal coordinate defin- 
itions and their associated lighted detail poly- 
gons (Figures 4 and 5). 

The first of these shadow matrices is used to trans- 
form the entire object environment to the viewpoint 
of the light source. A copy of the transformed 
environment is made for later use. Hidden surfaces 
are removed from the object environment leaving 
only the illuminated polygons. The second shadow 
matrix is then used to transform the entire copy of 
the object environment to any environment orienta- 
tion including the original orientation. The 
lighted polygons are also transformed by the second 
shadow matrix and then added to copied polygonal 
data as lighted details to derive a shadowed coor- 
dinate data file. Once the shadowed data file is 
created, only one view matrix is needed to trans- 
form it to any desirable viewing position. 

V. FITTING THE ENVIRONMENT INTO THE VIEWBOX 

In performing the computations for the display of 
shadows, it is important that the object be en- 

tirely contained by the frustrum of vision emanat- 
ing from the light source. Areas of the object 
that exist outside of the viewing area will be 
clipped and removed, and thus falsely interpreted 
to be in shadow. Therefore, the entire object must 
be within the boundaries of the viewing area. 

By performing shadow calculations in object space 
with the polygon clipping method of hidden surface 
removal, the precision may be extended to the 
machine limits, rather than the display limits. If 
the coordinate values are stored in integer format, 
the maximum accuracy of the shadow calculations can 
be obtained when the following three criteria are 
met: 

i) The boundaries of the viewbox of the frustrum 
of vision are set to correspond to the maxi- 
mum machine limits (e.g., for a 16 bit com- 
puter, this corresponds to !32,767). 

2) The object environment is centered within the 
viewbox. 

3) The object environment is then scaled as 
large as possible to fit within the viewbox. 

To accomplish this, the extreme three-dimensional 
coordinates of the original object are used to form 
the minimum rectangular solid containing the entire 
environment. The centroid of this volume is then 
centered in the viewbox and scaled as large as 
possible with the constraint that all portions of 
the bounding volume remain within the viewbox 
window. 

VI. DISPLAY OF SHADOWED IMAGES 

Since the three-dimensional polygon coordinate data 
is maintained to the limits of machine precision, 
images created by the hidden surface removal system 
can be displayed accurately on many different per- 
ipheral devices. The two basic types of displays 
used are hidden line removed vector displays and 
hidden surface removed halftone displays (Figure 4). 

The vector displays are only concerned with drawing 
the lines or borders of each polygon and are inher- 
ently faster than the halftone displays. Further- 
more, the display is more accurate due to the avail- 
able resolution of the standard vector displays. 
Details may be visualized easily, but the depth 
perception is not nearly as effective as with the 
halftone displays. 

For color raster displays, all visible surfaces of 
the environment must be rendered. This is achieved 
with the aid of a set of software routines which 
can render an arbitrary concave polygon with holes 
with a selected color. Colors and shades can be 
interactively selected or automatically computed 
for each polygon surface. For black and white 
images, the shade of gray selected for a particular 
polygon is dependent upon the angle between a ray 
extending from the light source to the polygon and 
the normal of the polygon. Strictly speaking, sha- 
dowed surfaces would be rendered black. To aid in 
image visualization, the shadowed surfaces utilize 
a darker gray range of the gray scale than that 
used for the lighted surfaces. To produce a color 
image, the same type of intensity scale is applied 
to the particular ratio of basic hues (red, green 
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Figure 4. Shadow Creation and Display Process. 
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Figures 6. Shadowed Image Displays with Two Light Sources at Different Locations. 

Figures 7. Shadowed Image Displays with Three and Four Distinct Light Sources. 

Figures 8. Visual Examination of Simulated Shadowed Site from Two Observer Positions. 
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surface. Attempts to do this were not very 
sucessful. The images usually looked like smooth 
surfaces with photographs of wrinkles glued on. 
The main reason for this is that the light source 
direction when making the texture photograph was 
rarely the sane as that used when synthesizing the 
image. In fact, if the surface (and thus the 
mapped texture pattern) is curved, the angle of 
the light source vector with the surface is not 
even the sane at different locations on the patch. 

2. NORMAL VECTOR PERTURBATION 

To best generate images of macroscopic 
surface wrinkles and irregularities we must 
actually model them as such. Modelling each 
surface wrinkle as a separate patch would probably 
be prohibitively expensive. We are saved from 
this fate by the realization that the effect of 
wrinkles on the perceived intensity is primarily 
due to their effect on the direction of the 
surface normal (and thus the light reflected) 
rather than their effect on the position of the 
surface. We can expect, therefore, to get a good 
effect from having a texturing function which 
performs a small perturbation on the direction of 
the surface normal before using it in the 
intensity formula. This is similar to the 
technique used by Batson et al. [i] to synthesize 
aerial picutres of mountain ranges from 
topographic data. 

The normal vector perturbation is defined in 
terms of a function which gives the displacement 
of the irregular surface from the ideal smooth 
one. We will call this function F(u,v). On the 
wrinkled patch the position of a point is 
displaced in the direction of the surface normal 
by an amount equal to the value of F(u,v). The 
new position vector can then be written as: 

P' = ~ + F N/INI 

This is shown in cross section in figure 2. 

u. 

Figure 2 - Mapping Bump Function 

The normal vector to this new surface is 
by taking the cross product of its 
derivatives. 

~' =~u' x~v' 

derived 
partial 

The partial derivatives involved are evaluated by 
the chain rule. So 

Pu' = d/du P' = d/du(~ + F N/INI) 
= Pu + Fu N/INI + F (N/INl)u 

Pv' = d/dv P' = d/dv(P + m N/mNI) 
= Pv + Fv N/INI + F (N/mNm)v 

The formulation of the normal to the wrinkled 
surface is now in terms of the original surface 
definition functions, their derivatives, and the 
bump function, F, and its derivatives. It is, 
however, rather canplicated. We can simplify 
matters considerably by invoking the approximation 
that the value of F is negligably small. This is 
reasonable for the types of surface irregularities 
for which this process is intended where the 
height of the wrinkles in a surface is small 
compared to the extent of the surface. With this 
simplification we have 

~u' ~ ~u+Fu~/INl 

The new normal is then 

N' = (Pu + Fu N/INI) x (Pv + Fv N/IN)) 

= (~u x ~v) + Fu (~ x ~v)/)N) 

+ Fv (Pu x N)/INI + FU Fv (NxN)/INm z 

The first term of this is, by definition, N. The 
last term is identically zero. The net expression 
for the perturbed normal vector is then 

where D = ( Fu (N x Pv) -Fv (N x Pu) ) / INm 

This can be interpreted geometrically by observing 
that (N x Pv) and (N x Pu) are two vectors in the 
tangent plane to the surface. An anount of each 
of them proportional to the u and v derivatives of 
F are added to the original, unperturbed normal 
vector. See figure 3 

/ N 

W 
w; 

" ' "  N~P, 

Figure 3 - Perturbed Normal Vector 

Another geometric interpretation is that the 
vector N' comes from rotating the original vector 
N about some axis in the tangent plane to the 
surface. This axis vector can be found as the 
cross product of N and N'. 
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x ~' = ~ x (~+5) = ~ x 

Fu (3 x (N x~v)) - Fv (~ x (3 x ~u)) 

Invoking the vector identity Qx(RxS) = R(Q.S) - 
S(Q.R) and the fact that N.Pu = N.Pv = 0 this axis 
of rotation reduces to 

NxN' = INI(FvPu - Fu Pv) =_ INI 

This vector, A, is just the perpendicular to the 
gradient vector of F, (Fu,Fv) when expressed in 
the tangent plane coordinate system with basis 
vectors Pu and Pv. Thus the perturbed normal 
vector will be tipped "downhill" frcm the slope 
due to F. Note that, since NxD=INI A and since 
N is perpendicular to D then 

so 
INxDI = INI IDI 

IDI = IAI 

Next, since the vectors N, D and N' form a 
right triangle, the effective angle of rotation is 

tang= IDI/INI 

this is illustrated in figure 4. 

Figure 4 - Rotated Normal Vector 

In summary, we can now calculate the 
perturbed normal vector, N', at any desired u and 
v parameter value. This vector must still be 
scaled to a length of 1 by dividing by its length. 
The result is then passed to the intensity 
calculation routines in place of the actual normal 
N. 

3. TEXTURE FUNCTION DEFINITION 

The formulation of the perturbed normal 
vector is in terms of the position functions X, Y, 
and Z and the bump displacement function F. To 
perform calculations we only need a means of 
evaluating the u and v derivatives of F(u,v) at 
any required parameter value. In this section we 
discuss some ways that such functions have been 
defined, means of evaluatihg them and show some 
resultant pictures. 

The function F could, of course, be defined 
analytically as a bivar iate polynomial or 
bivariate Fourier series. In order to generate a 
function with a sufficient amount of complexity to 
be interesting, however, an excessive number of 
coefficients are required. A much simpler way to 
define ccmplex functions is by a table lookup. 
Since F has two parameters, this table takes the 
form of a doubly indexed array of values of F at 

various fractional parameter values. If the array 
is 64 by 64 elements and the parameters are 
between 0 and 1 a simple means of evaluating F 
(using Fortran style indexing) at u and v would be 

FUNCTION FVAL (U ,V) 
IU = IFIX(64*U) 
IV = IFIX(64*V) 
FVAL = FARRAY (IU+I, IV+I ) 

(We will duscuss the probl~m of overflow of the 
indices shortly). This will yield a function made 
of a checkerboard of constant valued squares 1/64 
on a side. A smoother function can be obtained by 
interpolating values between table entries. The 
simplest interpolation technique is bilinear 
interpolation. Such an algorithm would look like 

FUNCTION FVAL (U ,V) 
IU=IFIX(64*U) 
DU=64*U - IU 
IV=IFIX (64"V) 
DV=64*V - IV 
F00 = FARRAY (IU+I, IV+I) 
FI0 = FARRAY(IU+2,IV+I) 
F01 = FARRAY (IU+I, IV+2) 
FII = FARRAY (IU+2,IV+2) 
FU0 = F00 + DU* (FI0-F00) 
FUI = F01 + DU*(FII-F01) 
FVAL= FU0 + DV* (FUI-FU0) 

This yields a function which is continuous in 
value but discontinuous in derivative. Since the 
function F appears in the calculation only in 
terms of its derivative we should use a higher 
order interpolation scheme which is continuous in 
derivative. Otherwise the lines between function 
samples may show up as creases in the surface. 
Third order interpolation schemes (e.g. 
B-splines) are the standard solution to such a 
situation, but their generality is not really 
needed here. A cheaper, continuous interpolation 
scheme for derivatives consists of differencing 
the (bilinearly interpolated) function along the 
parametric directions. The increment between 
which differencing occurs is the distance between 
function sample values. The function generated by 
this interpolation scheme has continuity of 
derivative but not of value. The values of F are 
not used anyway. Thus 

E = 1/64. 
FU = (FVAL(U+E,V)-FVAL(U-E,V )) / (2*E) 
FV = (FVAL(U ,V+E)-FVAL(U ,V-E)) / (2*E) 

This is the form used in the pictures shown here. 
It is about as simple as can be obtained and has 
proven to be qufte adequate. 

In the above examples, the integer part of 
the scaled up parameter values were used directly 
as indices into the F array. In practive, one 
should protect against array overflow occurring 
when the parameter happens to be slightly less 
than 0 or greater than I. In fact, for the 
bilinear interpolation case, all parameter values 
between 63/64 and I will attempt to interpolate to 
a table entry at index 65. The question of what 
is the function value at parameters outside the 
range of the table can be answered in a variety of 
ways. A simple method is to make the function 
periodic, with the table defining one period. 
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This is easily accomplished by masking off all but 
the low 6 bits of the IU and IV values. This also 
makes it easy to have the table represent a unit 
cell pattern to be replicated many times per 
patch. The function values U and V are merely 
scaled up by the replication count before being 
passed to FVAL. 

Now that we know what to do with the table 
entries we turn to the question of how to generate 
them in the first place. Some simple geometric 
patterns can be generated algorit/~nically. One 
such is a gridwork of high and low values. The 
table entries of the F function for such a grid 
are shown plotted as a 3D line drawing in figure 
5. The result when mapped onto a flat patch with 
one corner bent back is also shown. 

Another method of generating bump functions 
derives from image synthesis algorit~ns which use 
Z-buffers or depth buffers to perform the hidden 
surface comparisons [5]. The actual Z values left 
in the depth buffer after running such an 
algorithm can be used to define the table entries 
for a bump function. In figure 7 an image of a 
sphere was generated using such an algoritlTn and 
the resultant Z-buffer replicated several times to 
generate the rivet-like pattern. This is the 
pattern mapped onto the cube on the cover logo. 
Similarly, a 3D character set was used with a 
Z-buffer algorithm to generate the pattern showing 
the date also in figure 7. This was used on the 
ribbon on the cover. 

Figure 7 - Z-Buffer Patterns 

Figure 5 - Simple Grid Pattern 

Embossed letters can begenerated by using a 
bit-map character set as used to display text on a 
raster scan display. Such a texture array appears 
in figure 6. This pattern was used to make the 
title on the ribbon on the logo of the cover of 
these proceedings. 

Figure 6 - Embossed Letter Pattern 

The most general method of generating bump 
functions relies on video frame buffer technology 
and its standard tool, the painting program. 
Briefly, a frame buffer is a large digital memory 
with one word per picture element of an image. A 
video signal is continually synthesized from this 
memory so that the screen displays an image of 
what is in memory. A painting program utilizes a 
digitizing tablet to control the alteration of the 
values in the memory to achieve the effect of 
painting on the screen. By utilizing a region of 
the frame buffer as the defining table of the F 
function, a user can actually paint in the 
function values. The interpretation of the image 
will be such that black areas produce s~all values 
of F and white areas produce large values. Since 
only the derivatives of F are used in the normal 
vector perturbation, any area of constant 
intensity will look smooth on the final image. 
However, places where the image becomes darker 
will appear as dents and places where it becomes 
brighter will appear as bumps. (This 
correspondance will be reversed if the base patch 
is rotated to view the back side). The generation 
of interesting patterns which fit together 
end-to-end to form a continuous join between 
patches then becomes primarily an artistic effort 
on the part of the drawer. Figure 8 shows some 
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sample results that can be achieved with this 
technique. The first pattern, a hand drawn unit 
cell of bricks was mapped onto the sphere on the 
cover. 

Figure 8 - Hand Drawn Bump Functions 
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4. [EP~DANCE ON SCALE 

One feature of the perturbation calculation 
is that the perturbation amount is not invariant 
with the scale at which the object is drawn. If 
the X, Y, and Z surface definiton functions are 
scaled ~p by 2 then the normal vector length, INl, 
is scaled up by a factor of 4 while the 
perturbation amount, IDI, is only scaled by 2. 
This effect is due to the fact that the object is 
being scaled but the displacement function F is 
not. (Scale changes due to the object moving 
nearer or farther from the viewer in perspective 
apace do not affect the size of the wrinkles, only 
scale shanges applied directly to the object.) The 
net effect of this is that if an object is scaled 
up, the wrinkles flatten out. This is illustrated 
in figure 9. 

rLot-rn~ s~re~che~ 

Figure 9 - Stretched Bump Texture 

This effect might be desirable for some 
applications but undesirable for others. A scale 
invariant perturbation, D', must scale at the same 
rate as N. An obvious choice for this is 

O' = a O INl/IOl 

so ID' I = a INI 

where a is independant of scales in P. The value 
of a is then the tangent of the effective rotation 
angle. 

tanG' = ID'I/INI = a 

This can be defined in various ways. One simple 
choice is a generalization from the simple, flat 
unit square patch 

X(u,v) = u 
Y(u,v) = v 
Z(u,v) = 0 

For this patch the original 
perturbation gives 

normal vector 

N = (0,0,I) 

D = (-Fu,-Fv,0) 
tan@ = sqrt(Fu2+Fv ~ ) 

Here the value of a is purely a function of F. 
Use of the same function for arbitrary patches 
corresponds to a perturbation of 

a = sqrt (Fu=+Fv z) 
m' = a D INI/IDI 
N" = N + D' 

The texture defining function F is now no longer 
being used as an actual displacement added to the 
position of the surface. It just serves to 
provide (in the form if its derivatives) a means 
of defining the rotation axis and angle as 
functions of u and v. 

5. ALIASING 

In an earlier paper [2], the author described 
the effect of aliasing on images made with color 
texture mapping. The same problems can arise with 
this new form. That is, undesirable artifacts can 
enter the image in regions where the texture 
pattern maps into a small screen region. The 
solution applied to color textures was to average 
the texture pattern over the region corresponding 
to each picture element in the final image. The 
bump texture definition function, however, does 
not have a linear relationship to the intensity of 
the final image. If the bump texture is averaged 
the effect will be to smooth out the bumps rather 
than average the intensities. The correct 
solution to this problem would be to compute the 
intensities at some high sub-pixel resolution and 
average th~n. Simply filtering the bump function 
can, however, reduce the more offensive artifacts 
of aliasing. Figure i0 shows the result of such 
an operation. 

Before After 

Figure i0 - Filtering Bump Texture 
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6 .RESULTS 

Surfaces appearing in images made with this 
technique look quite convincingly wrinkled. An 
especially nice effect is the interaction of the 
bumps with calculated highlights. We must 
realize, however, that the wrinkles are purely 
illusory. They only come from some playing with 
the parameters used in intensity calculations. 
They do not, for example, alter the smooth 
silhouette edges of the object. A useful test of 
any image generation algoritha is to see how well 
the objects look as they move in animation 
sequences. Same sample frames from such an 
animation sequence appear in figure II. The 
illusion of wrinkles continues to be convincing 
and the smoothness of the silhouette edges is not 
overly bothersome. 

Some simple timing measur~ents indicate that 
bump mapping takes about 4 times as long as Phong 
shading and about 2 times as long as color texture 
mapping. The pictures in this paper took from 3 
to 7 minutes each to produce. 

The author would like to thank Lance Willians 
and the New York Institute of Technology Computer 
Graphics Laboratory for providing some of the 
artwork and assistance in preparing the logo on 
the cover made with the techniques described in 
this paper. 
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Figure Ii - Rotating Textured Sphere 
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