
POLYGON SHADOW GENERATION

by

Peter Atherton, Kevin Weiler and Donald Greenberg

Program of Computer Graphics

Cornell University

ABSTRACT

A general purpose method for generating shadows using a polygonal coordinate data base is presented.
The method is based on an object space polygon clipping hidden surface removal algorithm. Output from the
program is in the same three-dimensional polygon format as the input. Thus, a shadowed data environment
may be easily created and viewed from any observer position with no additional depth sorting time required
for the hidden surface removal process. Shadows can also be cast by more than one light source. Since
the shadows are generated in object space, the results can be used for both visual display and numerical
analysis.

COMPUTING REVIEWS CLASSIFICATION: 3.2, 4.9, 4.40, 4.41

KEYWORDS: Shadow Generation, Hidden Surface Removal, Polygon Clipping, Graphics

I. INTRODUCTION

A shadow is the darkness cast by an object inter-
cepting light. It falls from the side opposite the
source of light. Theoretically, when the obser-
ver's position is coincident with that of the light
source, no shadows are visible. Shadows become
visible when the viewer's position moves away from
the source of illumination.

The addition of shadows to a perspective image
vastly improves the depth perception of the display.
Furthermore, shadows provide valuable positional
information and improve the ability of the obser-
ver to comprehend complex spatial environments.
However, computation times and algorithmic complex-
ity for shadow generation have prevented many im-
plementations. The shadow creation method pre-
sented is a natural extension of an object space
hidden surface removal algorithm which uses poly-
gon area sorting and is described in the third
section. A major advantage of this method is that
both the input and output are in the form of a
three-dimensional polygon data structure. This
characteristic means that the shadow definitions
can be used for the purposes of both display and
analysis.

II. SURVEY OF EXISTING ALGORITHMS

Several classes of algorithms for shadow generation
have been previously presented. Each of these
approaches has inherent limitations which may re-
strict their application and use. The raster scan
method for shadow image creation was f¼r~tTimple-
mented in 1970 by Kelley and Bouknight 'J' al-
though a similar procedure for line drawing images
has been presented by Appel. 1

Oriented to a raster type display scope, the Kelley
and Bouknight method scans an object row by row to
determine visibility. Each time a polygon boundary
is crossed, a depth sort is made to determine which
polygonal surface is nearest the observer (Figure
i). Since the color of a polygon does not change
across its surface, the only display information
necessary is the location of the "key squares,"
those raster units in each row where a color change
takes place.

Shadows may be added to an image simply by running
two concurrent scanning operations, one to deter-
mine visible surfaces and one in image space to
determine shadow existence. Before scanning, a
list is created for each polygon linking it to any
other polygon that might cast a shadow upon it.

In 1973 Nishita and Kakamae presented a method for
shadow generation based on a convex polyhedron
clipping algorithm. 8 This program maintained some
of the benefits of the raster scan display method
while improving on the accuracy and versatility of
the shadow definitions.

The data input base consists of convex polyhedra,
each of which may be composed of several convex
polygons. Hidden surface removal from any chosen
point of view is accomplished by determining the
silhouette contours of each polyhedron and using
them to define its clipping border. Objects which
lay behind a selected polyhedron are clipped to the
window defined by the polyhedron's outside boun-
daries.

The generation of shadowed images by this poly-
hedron clipping method is accomplished in two basic

275

/
/

Raster scan used to
determine visible surfaces.

•• Concurrent scan used to
determine shadow areas.

Figure i. Concurrent scanning method of shadow display.

steps (Figure 2). In the first step, a view is
taken in the direction of the infinite light source.
Using the polyhedron clipper, all the hidden sur-
faces, which are surfaces that are in shadow, are
found. The entire scene is then transformed to a
selected view point, and all hidden surfaces are
removed by a raster scan method similar to that
used by Bouknight and Kelley.

A third algorithm for generating shadows is based
on the concept of computing the surface defining
the volume of space swept out by the shadow of an
object, its umbra. The umbra surfaces are then
added to the data and treated as invisible surfaces
which, when pierced, cause a transition into or out
of an object shadow. This shadow volume approach
was presented by F. Crow in 1977. 6

For any polyhedron, the shadow volume can be com-
pletely described for a given light source posi-

tion (Figure 3). The contour edges of the original
object, as seen from the light source, are first
computed. Then all planes defined by the light
source and the contour edges constitute the bound-
ing surface of the shadow volume. The "near" sur-
face of the shadow volume is defined by the sil-
houette edges of the object casting the shadow.
The "far" surface is at an infinite distance. This
volume is then clipped by the frustrum of vision
(or viewbox) and added to the environment data base.
Any hidden surface algorithm can then be used to
create the display. The shadow data is treated in
the same manner as the original data except that it
is invisible. In the depth order calculations, any
plane behind a front facing shadow surface is in
shadow. The method can be coupled with several
hidden surface algorithms and has the capability
of effectively creating shadow volumes when the
illuminating light source is placed within the ori-
ginal environment.

Polyhedra clipper from lightsource
to determine the shadowed areas.

deter~Line visible surfaces.

Figure 2. Polyhedra clipper and raster scan method of shadow display.

276

There are several restrictions with the shadow
image creation programs described. The major limi-
tation of the double scanning method and the shadow
volume method is that the shadow surfaces are not
defined in object space. This precludes the use of
the created shadows for accurate computational pur-
poses. Furthermore, scan-line algorithms based on
raster display devices determine their depth prior-
ity in image space. This limits output portability
(e.g., vector displays) and will become less effi-
cient as the display resolution increases. Addi-
tional problems, unique to the individual algorithms,
are the imposed limitations on the environment des-
cription, the potentially large increases in the
environment data base, the required maintenance of
non-visible polygons as possible shadow casting
elements, and the necessity for recalculating sha-
dows for each image.

To overcome these difficulties, a different
approach to shadow image generation based on our
hidden surface removal method using polygon area
sorting has been developed.2,10, II This can be
accomplished with relative ease since the polygon
form of the output is the same as the polygon form
of the input.

III. POLYGON AREA SORTING HIDDEN SURFACE REMOVAL
ALGORITHM

A program to remove hidden surfaces by polygon area
sorting has been developed at Cornell's Laboratory
of Computer Graphics.10, II The basic concept of a
polygon sorting hidden surface removal algorithm is
that all surfaces that lay behind each unique poly-
gonal area and within its borders are removed.
The algorithm proceeds from front to back across
the transformed object space, producing portions
of the final image along the way and temporarily
reversing direction only when an initial depth
sort error is detected. Output from the algorithm
never overlaps on the vertical image plane since
each visible area has had all polygons behind it
removed. This polygonal area may itself be sub-
divided recursively if there is an error in the
initial depth sort.

The hidden surface removal algorithm
basic steps:

involves ~our

i) a preliminary rough depth sort
2) a two-dimensional comparison of the currently

most forward polygon, or template, to the
remaining polygons

3) removal of polygons that exist behind the tem-
plate and within its borders

4) a recursive comparison when an error in the
preliminary depth sort has occurred.

At the heart of the hidden surface removal process
is a polygon clipper. This algorithm considers two
polygons at a time, a template or clipping polygon
and a subject polygon. The two polygons are com-
pared and the surfaces of the subject polygon exist-
ing within the borders of the clipping polygon are
designated. Even though the polygon clipper works
essentially in two dimensions, all depth informa-
tion is accurately preserved maintaining the pre-
cise three-dimensionality of the polygons.

The polygon clipper is capable of clipping a con-
cave subject polygon with holes to the borders of
a concave clipping polygon with holes. This gener-
ality is necessary since even when a scene is re-
stricted to convex polygons, a clipping sequence
could quickly yield concave areas and holes. Sur-
face details such as texture or color differences
can he described as polygons within the boundaries
of a parent polygon. These surface details will
have a minimal effect on the hidden surface removal
process.

IV. POLYGON SHADOW ALGORITHM

The procedure for creating an image containing sha-
dows consists of two major parts. The first is the
creation of the shadow descriptions as dictated by
the particular object orientations and light source
position. The second is the determination of vis-
ible surfaces with their associated shadow des-
criptions and is dependent upon the observer's
position.

polygon Contour silhouette

a convex solid.

J1

Ji

Limits of shadow volume are
defined by ~he s i l h o u e t ~ _ _ _ ~ ~ : : : : : ¥ I I
polygon and the v i e w 5 o ~ /

Figure 3. Shadow volume method of shadow display.

277

By using the general purpose polygon clipping hid-
den surface removal algorithm previously described,
the process of generating shadowed images can be
made relatively simple (Figure 4). Shadow descrip-
tions are found by viewing the environment from the
position of the light source. A hidden surface re-
moved view from the light source position will
delineate the illuminated polygons which are those
areas not in shadow. Once defined, these illum-
inated polygons are added to the original environ-
ment and treated as surface details on their origi-
nal source polygons. This general method is suit-
able for both point light sources and parallel
light sources.

This approach has several distinct advantages.
First, since the polygonal output of the hidden
surface removal routines is the same as the input,
the same logic can be used for the shadow genera-
tion and the image display. Second, by maintaining
the three-dimensional shadow polygon output, it is
possible to compute shadow areas and thus their
effect on such phenomena as energy utilization.
Third, by adding the shadows to the data base in
the form of details attached to "parent" planes,
the computational time for the hidden surface re-
moval sorting process does not increase. Fourth,
many views can be generated requiring only one
original shadow generation cycle. Lastly, shadow
views with multiple light sources require only a
single pass through the hidden surface removal pro-
gram from the viewpoint of each light source. At
present, the general polygon shadow generation pro-
cedure is only limited by the requirement of a
polygonal planar data base. It has proven to be
flexible, device independent, and has run effi-
ciently on a large variety of environments.

For each display frame that is to be produced,
there is a set of transformation matrices which are
used to manipulate the environment coordinate data.
These transformation matrices are of two types,
view matrices and shadow matrices. The view
matrices transform the environment to any selected
view. There are two shadow matrices which are
devoted to the creation of a shadow data base con-
sisting of the original polygonal coordinate defin-
itions and their associated lighted detail poly-
gons (Figures 4 and 5).

The first of these shadow matrices is used to trans-
form the entire object environment to the viewpoint
of the light source. A copy of the transformed
environment is made for later use. Hidden surfaces
are removed from the object environment leaving
only the illuminated polygons. The second shadow
matrix is then used to transform the entire copy of
the object environment to any environment orienta-
tion including the original orientation. The
lighted polygons are also transformed by the second
shadow matrix and then added to copied polygonal
data as lighted details to derive a shadowed coor-
dinate data file. Once the shadowed data file is
created, only one view matrix is needed to trans-
form it to any desirable viewing position.

V. FITTING THE ENVIRONMENT INTO THE VIEWBOX

In performing the computations for the display of
shadows, it is important that the object be en-

tirely contained by the frustrum of vision emanat-
ing from the light source. Areas of the object
that exist outside of the viewing area will be
clipped and removed, and thus falsely interpreted
to be in shadow. Therefore, the entire object must
be within the boundaries of the viewing area.

By performing shadow calculations in object space
with the polygon clipping method of hidden surface
removal, the precision may be extended to the
machine limits, rather than the display limits. If
the coordinate values are stored in integer format,
the maximum accuracy of the shadow calculations can
be obtained when the following three criteria are
met:

i) The boundaries of the viewbox of the frustrum
of vision are set to correspond to the maxi-
mum machine limits (e.g., for a 16 bit com-
puter, this corresponds to !32,767).

2) The object environment is centered within the
viewbox.

3) The object environment is then scaled as
large as possible to fit within the viewbox.

To accomplish this, the extreme three-dimensional
coordinates of the original object are used to form
the minimum rectangular solid containing the entire
environment. The centroid of this volume is then
centered in the viewbox and scaled as large as
possible with the constraint that all portions of
the bounding volume remain within the viewbox
window.

VI. DISPLAY OF SHADOWED IMAGES

Since the three-dimensional polygon coordinate data
is maintained to the limits of machine precision,
images created by the hidden surface removal system
can be displayed accurately on many different per-
ipheral devices. The two basic types of displays
used are hidden line removed vector displays and
hidden surface removed halftone displays (Figure 4).

The vector displays are only concerned with drawing
the lines or borders of each polygon and are inher-
ently faster than the halftone displays. Further-
more, the display is more accurate due to the avail-
able resolution of the standard vector displays.
Details may be visualized easily, but the depth
perception is not nearly as effective as with the
halftone displays.

For color raster displays, all visible surfaces of
the environment must be rendered. This is achieved
with the aid of a set of software routines which
can render an arbitrary concave polygon with holes
with a selected color. Colors and shades can be
interactively selected or automatically computed
for each polygon surface. For black and white
images, the shade of gray selected for a particular
polygon is dependent upon the angle between a ray
extending from the light source to the polygon and
the normal of the polygon. Strictly speaking, sha-
dowed surfaces would be rendered black. To aid in
image visualization, the shadowed surfaces utilize
a darker gray range of the gray scale than that
used for the lighted surfaces. To produce a color
image, the same type of intensity scale is applied
to the particular ratio of basic hues (red, green

278

Figure 4. Shadow Creation and Display Process.

• :.:.,-:,:* ~%,:,, ,,: ~ ~"

l iA ~-..l.o..e,,~ £~.1

iililiiiiii~i~i~ ili iii
,<::~ .:::::

[:+,,,,,,,,, Viewpoint :1

~::::~::~::::~:.-:~ ~$.%'.,

':.::':.::.:C ":~.::.:::':.'~:.:::: ::::'::" llalfl:oae
~!ii, ~- , - ,~ N~il

liiiii~" Ridden Line :.iiii!i

liiiiii!" Hidden Line :!

i

~:~:~

,-....i

< !L
<

Figure 5.

~J

Shadow Creation and Display Process (key).

I iii iiiiii iiii
Shadow Hatrix #2

!: S u r f a c e s :i::![i::!::::ii::i i{ii{{!j~: E n v i ronmentii
i}i~! . t C h o ~ e . <-.:~i~ ::i:#:i::~ . t C h o ~ .

:iiiii::iii !i!iiiiiiii °*~-~a~o-il
.-.-.v.-.-.-.

~ j ! : : ! Complete i~i::!::ii::!i::

279

Figures 6. Shadowed Image Displays with Two Light Sources at Different Locations.

Figures 7. Shadowed Image Displays with Three and Four Distinct Light Sources.

Figures 8. Visual Examination of Simulated Shadowed Site from Two Observer Positions.

280

surface. Attempts to do this were not very
sucessful. The images usually looked like smooth
surfaces with photographs of wrinkles glued on.
The main reason for this is that the light source
direction when making the texture photograph was
rarely the sane as that used when synthesizing the
image. In fact, if the surface (and thus the
mapped texture pattern) is curved, the angle of
the light source vector with the surface is not
even the sane at different locations on the patch.

2. NORMAL VECTOR PERTURBATION

To best generate images of macroscopic
surface wrinkles and irregularities we must
actually model them as such. Modelling each
surface wrinkle as a separate patch would probably
be prohibitively expensive. We are saved from
this fate by the realization that the effect of
wrinkles on the perceived intensity is primarily
due to their effect on the direction of the
surface normal (and thus the light reflected)
rather than their effect on the position of the
surface. We can expect, therefore, to get a good
effect from having a texturing function which
performs a small perturbation on the direction of
the surface normal before using it in the
intensity formula. This is similar to the
technique used by Batson et al. [i] to synthesize
aerial picutres of mountain ranges from
topographic data.

The normal vector perturbation is defined in
terms of a function which gives the displacement
of the irregular surface from the ideal smooth
one. We will call this function F(u,v). On the
wrinkled patch the position of a point is
displaced in the direction of the surface normal
by an amount equal to the value of F(u,v). The
new position vector can then be written as:

P' = ~ + F N/INI

This is shown in cross section in figure 2.

u.

Figure 2 - Mapping Bump Function

The normal vector to this new surface is
by taking the cross product of its
derivatives.

~' =~u' x~v'

derived
partial

The partial derivatives involved are evaluated by
the chain rule. So

Pu' = d/du P' = d/du(~ + F N/INI)
= Pu + Fu N/INI + F (N/INl)u

Pv' = d/dv P' = d/dv(P + m N/mNI)
= Pv + Fv N/INI + F (N/mNm)v

The formulation of the normal to the wrinkled
surface is now in terms of the original surface
definition functions, their derivatives, and the
bump function, F, and its derivatives. It is,
however, rather canplicated. We can simplify
matters considerably by invoking the approximation
that the value of F is negligably small. This is
reasonable for the types of surface irregularities
for which this process is intended where the
height of the wrinkles in a surface is small
compared to the extent of the surface. With this
simplification we have

~u' ~ ~u+Fu~/INl

The new normal is then

N' = (Pu + Fu N/INI) x (Pv + Fv N/IN))

= (~u x ~v) + Fu (~ x ~v)/)N)

+ Fv (Pu x N)/INI + FU Fv (NxN)/INm z

The first term of this is, by definition, N. The
last term is identically zero. The net expression
for the perturbed normal vector is then

where D = (Fu (N x Pv) -Fv (N x Pu)) / INm

This can be interpreted geometrically by observing
that (N x Pv) and (N x Pu) are two vectors in the
tangent plane to the surface. An anount of each
of them proportional to the u and v derivatives of
F are added to the original, unperturbed normal
vector. See figure 3

/ N

W
w;

" ' " N~P,

Figure 3 - Perturbed Normal Vector

Another geometric interpretation is that the
vector N' comes from rotating the original vector
N about some axis in the tangent plane to the
surface. This axis vector can be found as the
cross product of N and N'.

287

x ~' = ~ x (~+5) = ~ x

Fu (3 x (N x~v)) - Fv (~ x (3 x ~u))

Invoking the vector identity Qx(RxS) = R(Q.S) -
S(Q.R) and the fact that N.Pu = N.Pv = 0 this axis
of rotation reduces to

NxN' = INI(FvPu - Fu Pv) =_ INI

This vector, A, is just the perpendicular to the
gradient vector of F, (Fu,Fv) when expressed in
the tangent plane coordinate system with basis
vectors Pu and Pv. Thus the perturbed normal
vector will be tipped "downhill" frcm the slope
due to F. Note that, since NxD=INI A and since
N is perpendicular to D then

so
INxDI = INI IDI

IDI = IAI

Next, since the vectors N, D and N' form a
right triangle, the effective angle of rotation is

tang= IDI/INI

this is illustrated in figure 4.

Figure 4 - Rotated Normal Vector

In summary, we can now calculate the
perturbed normal vector, N', at any desired u and
v parameter value. This vector must still be
scaled to a length of 1 by dividing by its length.
The result is then passed to the intensity
calculation routines in place of the actual normal
N.

3. TEXTURE FUNCTION DEFINITION

The formulation of the perturbed normal
vector is in terms of the position functions X, Y,
and Z and the bump displacement function F. To
perform calculations we only need a means of
evaluating the u and v derivatives of F(u,v) at
any required parameter value. In this section we
discuss some ways that such functions have been
defined, means of evaluatihg them and show some
resultant pictures.

The function F could, of course, be defined
analytically as a bivar iate polynomial or
bivariate Fourier series. In order to generate a
function with a sufficient amount of complexity to
be interesting, however, an excessive number of
coefficients are required. A much simpler way to
define ccmplex functions is by a table lookup.
Since F has two parameters, this table takes the
form of a doubly indexed array of values of F at

various fractional parameter values. If the array
is 64 by 64 elements and the parameters are
between 0 and 1 a simple means of evaluating F
(using Fortran style indexing) at u and v would be

FUNCTION FVAL (U ,V)
IU = IFIX(64*U)
IV = IFIX(64*V)
FVAL = FARRAY (IU+I, IV+I)

(We will duscuss the probl~m of overflow of the
indices shortly). This will yield a function made
of a checkerboard of constant valued squares 1/64
on a side. A smoother function can be obtained by
interpolating values between table entries. The
simplest interpolation technique is bilinear
interpolation. Such an algorithm would look like

FUNCTION FVAL (U ,V)
IU=IFIX(64*U)
DU=64*U - IU
IV=IFIX (64"V)
DV=64*V - IV
F00 = FARRAY (IU+I, IV+I)
FI0 = FARRAY(IU+2,IV+I)
F01 = FARRAY (IU+I, IV+2)
FII = FARRAY (IU+2,IV+2)
FU0 = F00 + DU* (FI0-F00)
FUI = F01 + DU*(FII-F01)
FVAL= FU0 + DV* (FUI-FU0)

This yields a function which is continuous in
value but discontinuous in derivative. Since the
function F appears in the calculation only in
terms of its derivative we should use a higher
order interpolation scheme which is continuous in
derivative. Otherwise the lines between function
samples may show up as creases in the surface.
Third order interpolation schemes (e.g.
B-splines) are the standard solution to such a
situation, but their generality is not really
needed here. A cheaper, continuous interpolation
scheme for derivatives consists of differencing
the (bilinearly interpolated) function along the
parametric directions. The increment between
which differencing occurs is the distance between
function sample values. The function generated by
this interpolation scheme has continuity of
derivative but not of value. The values of F are
not used anyway. Thus

E = 1/64.
FU = (FVAL(U+E,V)-FVAL(U-E,V)) / (2*E)
FV = (FVAL(U ,V+E)-FVAL(U ,V-E)) / (2*E)

This is the form used in the pictures shown here.
It is about as simple as can be obtained and has
proven to be qufte adequate.

In the above examples, the integer part of
the scaled up parameter values were used directly
as indices into the F array. In practive, one
should protect against array overflow occurring
when the parameter happens to be slightly less
than 0 or greater than I. In fact, for the
bilinear interpolation case, all parameter values
between 63/64 and I will attempt to interpolate to
a table entry at index 65. The question of what
is the function value at parameters outside the
range of the table can be answered in a variety of
ways. A simple method is to make the function
periodic, with the table defining one period.

288

This is easily accomplished by masking off all but
the low 6 bits of the IU and IV values. This also
makes it easy to have the table represent a unit
cell pattern to be replicated many times per
patch. The function values U and V are merely
scaled up by the replication count before being
passed to FVAL.

Now that we know what to do with the table
entries we turn to the question of how to generate
them in the first place. Some simple geometric
patterns can be generated algorit/~nically. One
such is a gridwork of high and low values. The
table entries of the F function for such a grid
are shown plotted as a 3D line drawing in figure
5. The result when mapped onto a flat patch with
one corner bent back is also shown.

Another method of generating bump functions
derives from image synthesis algorit~ns which use
Z-buffers or depth buffers to perform the hidden
surface comparisons [5]. The actual Z values left
in the depth buffer after running such an
algorithm can be used to define the table entries
for a bump function. In figure 7 an image of a
sphere was generated using such an algoritlTn and
the resultant Z-buffer replicated several times to
generate the rivet-like pattern. This is the
pattern mapped onto the cube on the cover logo.
Similarly, a 3D character set was used with a
Z-buffer algorithm to generate the pattern showing
the date also in figure 7. This was used on the
ribbon on the cover.

Figure 7 - Z-Buffer Patterns

Figure 5 - Simple Grid Pattern

Embossed letters can begenerated by using a
bit-map character set as used to display text on a
raster scan display. Such a texture array appears
in figure 6. This pattern was used to make the
title on the ribbon on the logo of the cover of
these proceedings.

Figure 6 - Embossed Letter Pattern

The most general method of generating bump
functions relies on video frame buffer technology
and its standard tool, the painting program.
Briefly, a frame buffer is a large digital memory
with one word per picture element of an image. A
video signal is continually synthesized from this
memory so that the screen displays an image of
what is in memory. A painting program utilizes a
digitizing tablet to control the alteration of the
values in the memory to achieve the effect of
painting on the screen. By utilizing a region of
the frame buffer as the defining table of the F
function, a user can actually paint in the
function values. The interpretation of the image
will be such that black areas produce s~all values
of F and white areas produce large values. Since
only the derivatives of F are used in the normal
vector perturbation, any area of constant
intensity will look smooth on the final image.
However, places where the image becomes darker
will appear as dents and places where it becomes
brighter will appear as bumps. (This
correspondance will be reversed if the base patch
is rotated to view the back side). The generation
of interesting patterns which fit together
end-to-end to form a continuous join between
patches then becomes primarily an artistic effort
on the part of the drawer. Figure 8 shows some

289

sample results that can be achieved with this
technique. The first pattern, a hand drawn unit
cell of bricks was mapped onto the sphere on the
cover.

Figure 8 - Hand Drawn Bump Functions

290

4. [EP~DANCE ON SCALE

One feature of the perturbation calculation
is that the perturbation amount is not invariant
with the scale at which the object is drawn. If
the X, Y, and Z surface definiton functions are
scaled ~p by 2 then the normal vector length, INl,
is scaled up by a factor of 4 while the
perturbation amount, IDI, is only scaled by 2.
This effect is due to the fact that the object is
being scaled but the displacement function F is
not. (Scale changes due to the object moving
nearer or farther from the viewer in perspective
apace do not affect the size of the wrinkles, only
scale shanges applied directly to the object.) The
net effect of this is that if an object is scaled
up, the wrinkles flatten out. This is illustrated
in figure 9.

rLot-rn~ s~re~che~

Figure 9 - Stretched Bump Texture

This effect might be desirable for some
applications but undesirable for others. A scale
invariant perturbation, D', must scale at the same
rate as N. An obvious choice for this is

O' = a O INl/IOl

so ID' I = a INI

where a is independant of scales in P. The value
of a is then the tangent of the effective rotation
angle.

tanG' = ID'I/INI = a

This can be defined in various ways. One simple
choice is a generalization from the simple, flat
unit square patch

X(u,v) = u
Y(u,v) = v
Z(u,v) = 0

For this patch the original
perturbation gives

normal vector

N = (0,0,I)

D = (-Fu,-Fv,0)
tan@ = sqrt(Fu2+Fv ~)

Here the value of a is purely a function of F.
Use of the same function for arbitrary patches
corresponds to a perturbation of

a = sqrt (Fu=+Fv z)
m' = a D INI/IDI
N" = N + D'

The texture defining function F is now no longer
being used as an actual displacement added to the
position of the surface. It just serves to
provide (in the form if its derivatives) a means
of defining the rotation axis and angle as
functions of u and v.

5. ALIASING

In an earlier paper [2], the author described
the effect of aliasing on images made with color
texture mapping. The same problems can arise with
this new form. That is, undesirable artifacts can
enter the image in regions where the texture
pattern maps into a small screen region. The
solution applied to color textures was to average
the texture pattern over the region corresponding
to each picture element in the final image. The
bump texture definition function, however, does
not have a linear relationship to the intensity of
the final image. If the bump texture is averaged
the effect will be to smooth out the bumps rather
than average the intensities. The correct
solution to this problem would be to compute the
intensities at some high sub-pixel resolution and
average th~n. Simply filtering the bump function
can, however, reduce the more offensive artifacts
of aliasing. Figure i0 shows the result of such
an operation.

Before After

Figure i0 - Filtering Bump Texture

291

6 .RESULTS

Surfaces appearing in images made with this
technique look quite convincingly wrinkled. An
especially nice effect is the interaction of the
bumps with calculated highlights. We must
realize, however, that the wrinkles are purely
illusory. They only come from some playing with
the parameters used in intensity calculations.
They do not, for example, alter the smooth
silhouette edges of the object. A useful test of
any image generation algoritha is to see how well
the objects look as they move in animation
sequences. Same sample frames from such an
animation sequence appear in figure II. The
illusion of wrinkles continues to be convincing
and the smoothness of the silhouette edges is not
overly bothersome.

Some simple timing measur~ents indicate that
bump mapping takes about 4 times as long as Phong
shading and about 2 times as long as color texture
mapping. The pictures in this paper took from 3
to 7 minutes each to produce.

The author would like to thank Lance Willians
and the New York Institute of Technology Computer
Graphics Laboratory for providing some of the
artwork and assistance in preparing the logo on
the cover made with the techniques described in
this paper.

REFERENCES

[I] Batson, R. M., Edwards, E. and Eliason, E.
M. "Computer Generated Shaded Relief
Images", Jour, Research U.S. Geol. Survey,
Vol. 3, No. 4, July-Aug 1975, p. 401-408.

[2] Blinn, J. F., and Newell, M. E., "Texture
and Reflection in Computer Generated Images",
CACM 19, I0, Oct 1976, pp 542-547.

[3] Blinn, J. F., "Models of Light Reflection for
Computer Synthesized Pictures", Proc. 4th
Conference on Computer Graphics and
Interactive Techniques, 1977.

[4] Blinn, J. F., "A Scan Line Algorithm for
Displaying Parametrically Defined Surfaces",
Proc. 5th Conference on Computer Graphics
and Interactive Techniques, 1978.

[5] Catmull, E. E., "Computer Display of Curved
Surfaces", Proc. IEEE Conf. on Computer
Graphics, Pattern Recognition and Data
Structures, Los Angeles (May 1975)11.

[6] Whitted, J. T., "A Scan Line Algorithm for
Computer Display of Curved Surfaces", Proc.
5th Conference on Computer Graphics ond
Interactive Techniques, 1978.

Figure Ii - Rotating Textured Sphere

292

