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Abstract 
A shading language provides a means to extend the shading and 
lighting formulae used by a rendering system. This paper 
discusses the design of a new shading language based on previous 
work of Cook and Perlin. This language has various types of 
shaders for light sources and surface reflectances, point and color 
data types, control flow constructs that support the casting of out- 
going and the integration of incident light, a clearly specified 
interface to the rendering system using global state variables, and 
a host of useful built-in functions. The design issues and their 
impact on the implementation are also discussed. 
CR Categories: 1.3.3 [Computer Graphics] Picture/Image 
Generation- Display algorithms; 1.3.5 [Computer Graphics] 
Three-Dimensional Graphics and Realism - Color, shading, sha- 
dowing and texture. 
Additional Keywords and Phrases: Shading language, little 
language, illumination, lighting, rendering 

1. Introduction 
The appearance of objects in computer generated imagery, 

whether they be realistic or artistic looking, depends both on their 
shape and shading. The shape of an object arises from the 
geometry of its surfaces and their position with respect to the 
camera. The shade or color of an object depends on its illumina- 
tion environment and its optical properties. In this paper the term 
shading refers to the combination of light, shade (as in shadows), 
texture and color that determine the appearance of an object. 
Many remarkable pictures can be created with objects having a 
simple shape and complex shading. A well-designed, modular 
rendering program provides clean interfaces between the 
geometric processing, which involves transformation, hidden sur- 
face removal, etc., and the optical processing, which involves the 
propagating and filtering of light. This paper describes a language 
for programming shading computations, and hence, extending the 
types of materials and light sources available to a rendering sys- 
tem. In Bentley's terminology it would be called a "little" 
language[3], since, because it is based on a simple subset of C, it 
easy to parse and implement, but, because it has many high-level 
features that customize it for shading and lighting calculations, it 
is easy to use. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy 
otherwise, or to republish, requires a fee and/or specific permission. 

Two major aspects of shading are the specification of sur- 
face reflectance and light source distribution functions. The earli- 
est surface reflectance models have terms for ambient, diffuse and 
specular reflection. More recent research has added anisotropic 
scattering terms[M, 16,21] and made explicit wavelength and 
polarization effects. Although not nearly as well publicized, 
many improvements have also been made in light source descrip- 
tion. The earliest light source models consisted of distant or point 
light sources, Verbeek and Greenberg[29] introduced a general 
framework for describing light sources which includes attaching 
them to geometric primitives and specifying their intensity distri- 
bution as a function of direction and wavelength. 

Light sources and surface reflectance functions are 
inherently local processes. However, many lighting effects arise 
because light rays traveling from light to surface are blocked by 
intervening surfaces or because light arriving at a surface comes 
indirectly via another surface. Turner Whitted termed these 
effects global illumination processes. Kajiya introduced the gen- 
eral light transport equation, which he aptly termed the rendering 
equation, and showed how all these techniques are tied 
together[15]. Most recent research in shading and lighting calcu- 
lations is now being focussed on making these global illumination 
algorithms efficient. Note that global and local illumination 
processes are independent aspects of the general illumination pro- 
cess. 

In parallel to the development of specific shading models is 
the development of shading systems. Most current systems imple- 
ment a single parameterized shading model. There are several 
problems with this approach. First, there is little agreement on 
what this shading model should be. Almost every rendering sys- 
tem written has used a slightly different shading model. Second, 
it seems unlikely that a single parametefized model could ever be 
sufficient. As mentioned earlier, the development of shading 
models is an active area of research and new material models are 
continually being developed. Shading also involves many tricks, 
one major example being texture mapping, and the use of render- 
ing tricks is completely open ended. Furthermore, the surface 
reflectance models of simple and composite materials are 
phenomenologically based and not derivable from first principles. 
Shading models that capture the effects of applying varnish or lac- 
quer to wood, or of adding an additional flap to a stage light, are 
much better expressed procedurally than as mathematical formu- 
lae. Another problem with this single parameterized model 
approach, is that simple shading formula carry the overhead of the 
most complicated ease. This overhead makes it more difficult for 
users to control, and more time consuming for the rendering 
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system to compute. 
Because of  these difficulties with the single shading model 

approach, several systems have been described that provide 
greater flexibility and extensibility. Whitted proposed that the 
rendering system have a collection of  built-in shaders accessible 
via a shader dispatch table[31]. Presumably, the interface to these 
shaders was well-defined so that experienced hackers with access 
to the source code could extend the system. Cook developed a 
model which separated the conceptually independent tasks of  light 
source specification, surface reflectance, and atmospheric 
effects[6]. The user could control each of these shading processes 
indepen.dently by giving a sequence of  expressions which were 
read in, parsed, and executed at run-time by the rendering system. 
Perlin's image synthesizer carried this idea further by providing a 
full language including conditional and looping constructs, func- 
tion and procedure definitions, and a full set of arithmetic and log- 
ical operators[24]. But Perlin abandoned the distinction between 
the shading processes proposed by Cook, and instead introduced a 
"pixel stream" model. In the pixel stream model, shading is a 
postprocess which occurs after visible surface calculations. 
Unfortunately, this makes his language hard to use within the con- 
text of a radiosity or ray-tracing program, where much of  the 
shading calculation is independent of surface visibility. 

In this paper, a new language is described which incor- 
porates features of  both Cook's and Perlin's systems. The goals 
in the design of the new language were to: 
• Develop an abstract shading model based on ray optics 

suitable for both global and local illumination models. It 
should also be abstract in the sense of  being independent of  
a specific algorithm or implementation in either hardware 
or software. 

• Define the interface between the rendering program and the 
shading modules. All the information that might logically 
be available to a built-in shading module should be made 
available to the user of the shading language. 

• Provide a high-level language which is easy to use. It 
should have features - point and color types and operators, 
integration statements, built-in functions - that allow shad- 
ing calculations to be expressed naturally and succinctly. 

A detailed description of  the shading language grammar is avail- 
able in the RenderMan interface specification[l], and many 
examples of  its use are contained in Upstill[28]. The intent of  this 
paper is to point out the features of the new language beyond 
those described by Perlin and Cook. The design of the new 
language also raised many subtle design and implementation 
issues whose resolution required a combination of  graphics and 
systems perspectives. The alternatives that were considered, and 
the factors that influenced the choices that were made are dis- 
cussed. Finally, we discuss some of the more interesting parts of 
the implementation, particularly those aspects where a combina- 
tion of techniques drawn from graphics, systems and compiler 
theory were used to improve performance. 

2.  M o d e l  o f  t h e  S h a d i n g  P r o c e s s  
Kajiya has pointed out that the rendering process can be 

modeled as a integral equation representing the transport of light 
through the environment[ 15]. 

i (x, x')=v (x, x') [I (x, x') + S r (x, x', x") i (x" ,x") dr"] 

The solution, i (x, x'), is the intensity of light at x which comes 
from x'. The integral computes the amount of light reflected from 
a surface at * as a function of the surface bidirectional reflectance 
function r(x, x/, x '3  and the incoming light intensity distribution 
i (x', x"). The term l (x, x') gives the amount of light emitted by 
light sources at x' in the direction towards x. The sum of these 

two terms is the amount of light initially traveling from x' to x, but 
not all that light makes it to x: some of  it may be scattered or 
blocked by an intervening material. The term v (x, x') gives the 
percentage of light that makes it from x'  to x. 

The shading language allows procedures, called shaders, to 
be written that compute the various terms in the above equation. 
Shaders implement the local processes involved in shading; all the 
global processes used in solving the rendering equation are con- 
trolled by the renderer. The three major types of shaders are: 
• Light Source Shaders. A light source shader calculates the 

term l (x, x'), the color and intensity of  light emitted from a 
particular point on a light source in a particular direction. 

• Surface Reflectance Shaders. A surface reflectance shader 
calculates the integral of the bidirectional reflectance func- 
tion r(x, x', x ' )  with the incoming light distribution 
i(x', x ' ) .  

• Volume or Atmosphere Shaders. Volume shaders compute 
the term v (x, x'). Only scattering effects need be com- 
puted; the effects of light rays intersecting other surfaces 
are handled by the renderer. 

A surface shader shades an infinitesimal surface element given the 
incoming light distribution and all the local properties of the sur- 
face element. A surface shader assumes nothing about how this 
incoming light distribution was calculated, or whether the incom- 
ing light came directly from light sources or indirectly via other 
surfaces. A surface shader can be bound to any geometric primi- 
tive. The rendering program is responsible for evaluating the 
geometry, and provides enough information to characterize the 
infinitesimal surface element. Similarly, when a light source 
shader computes the emitted light, it makes no assumptions about 
what surfaces that light may fall on, or whether the light will be 
blocked before it reaches the surface. A light source shader also 
makes no assumptions about whether it is bound to a geometric 
primitive to form an area light. 

Kajiya has shown how standard rendering techniques can 
be viewed as approximate solutions of  the rendering equation. 
The simplest approximation assumes that light is scattered only 
once. A ray is emitted from a light source, reflected by a surface, 
and modulated on its way towards the eye. This is often referred 
to as local shading, in contrast to global shading, because no 
information about other objects is used when shading an object. 
This shading model is what is used by most real-time graphics 
hardware and is easily accommodated by the shading language. 
Whitted's ray tracing algorithm[30] considers these direct tran- 
sport paths, plus light transported from surfaces intersected by 
reflected and refracted rays. This can also be accommodated by 
the shading language by recursively calling light source and sur- 
face shaders. 

To summarize, the abstraction used by the shading 
language provides a way of specifying all the local interactions of 
light, without assuming how the rendering program solves the 
light transport equation. Thus, shaders written in the shading 
language can be used by many different types of rendering algo- 
rithms. 

3.  L a n g u a g e  F e a t u r e s  
The shading language is modeled after C[17], much like 

many other programming languages developed under UNIX. The 
specification of the syntax and grammar is available in the 
specification[l] and examples of  its use are described in a recent 
book[28]. In the following sections the novel features of  the shad- 
ing language are discussed. The emphasis is on the high-level 
design issues that influenced each feature, and the implementation 
problems that they posed. The features discussed include the 
semantics of the color and point data types, the meta types 
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uniform and varying, the classes and subclasses of shaders 
and how shaders are attached to geometry, the intrinsic state infor- 
mation which is provided by the rendering system, the special 
control constructs for integrating incoming light in surface shaders 
and for casting outgoing light in light source shaders, some of  the 
more unusual built-in functions, and support for texture mapping. 

3 .1 .  T y p e s  
The shading language supports a very small set of fixed 

data types: floats, strings, colors, and points. Since points and 
colors are the fundamental objects passed between shaders and the 
renderer, these are supported at a high level in the shading 
language. No facilities exists to define new types or data struc- 
tures. 

3 .1 .1 .  C o l o r s  
The physical basis of color is a spectrum of light. The 

spectrum describes the amount of  light energy as a continuous 
function of wavelength. Since calculations involving continuous 
spectra are generally not feasible, spectra are represented with a 
fixed number of samples. Different methods for sampling spectra 
are described in Hall[12, 13]. In the shading language, color is an 
abstract data type which represents a sampled spectra. The 
number of color samples per color can be set before rendering to 
control the precision of  the color computations. One sample 
implies a monochrome color space; three samples a triaxial color 
space; and more samples are available for more precise color 
computations. There is no support for sampling or resampling 
spectra; this is assumed to be done by the modeling program driv- 
ing the renderer or the output program generating the final 
display. 

Within the spectral color space model there are two impor- 
tant operations involved in shading calculations: additive light 
combination, where the result is the spectrum formed by combin- 
ing multiple sources of light, and~ltering, where the result is the 
spectrum produced after light interacts with some material. These 
operations are mapped into the language by overloading the stan- 
dard addition and multiplication operators ( " + "  and " * " ) ,  
respectively. All color computations in the language are 
expressed with these operators, so that they are independent of  the 
actual number of samples. A typical color computation might be 
expressed as 

CO * (La + Ld) + Cs * Ls + Ct * Lt 

where Cd and Cs are the diffuse and specular colors of a 
material, La,  Ld, and Ls,  are the amount of ambient, diffuse, 
and specular light reflected from the surface, and Ct  and L t  are 
the transparency and amount of  light transmitted through the 
material. Note that transparency is treated just like any other 
color, that is, it has the same number of color components. Many 
rendering systems make the mistake of modeling transparency 
with a single number. This is presumably motivated by the use of 
RGBA color models[26] where o~ which was originally developed 
to represent coverage is treated as an opacity (equal to one minus 
the transparency). 

We considered having two types of color, one for light 
spectra and another for material absorption spectra, and to restrict 
the values of light spectra samples to always be positive, since 
they represent energy which must be positive, and the values of 
mate~ai spectra to always be between 0 and 1, since they 
represent percent absorption. However, this was thought to be too 
restrictive - for example, negative light sources are sometimes 
used for faking shadows, and reflective colors greater than 1 are 
used for modeling stimulated emission. For similar reasons, we 
also allowed other arithmetic operators between colors, although 
they are very seldomly used. In our experience, it is very con- 
venient to think of color as light and hence, not to clamp it to 

some maximum value. 
Eventually, after all shading computations have been per- 

formed, the light "exposes"  film using a non-linear remapping 
from light intensities to output pixel colors. After this process, a 
pixel color value of 1 is treated as the maximum display intensity. 

Since the addition and multiplication of colors is performed 
on a component by component basis, the shading language makes 
no assumptions about what. physical color each sample actually 
represents. Also, if only color operators are used to combine 
colors inside a shader, an arbitrary linear transformation can be 
applied to the input or output colors without affecting the results. 
This gives the modeling program driving the renderer complete 
control over what spectral color space the renderer is computing 
in. One advantage of this is that color computations can per- 
formed in absolute or calibrated color spaces, just by transforming 
the input or output color space. 

There are many other color spaces used in computer graph- 
ics for defining colors. We refer to these as modeling color 
spaces to distinguish them from spectral rendering color spaces. 
In general, adding and multiplying colors in these other color 
spaces has no physical basis, and hence executing shaders with 
colors in non-spectral color spaces can lead to unpredictable 
results. The language supports the use of modeling color spaces 
by providing built-in functions which immediately convert con- 
stant colors defined in these color spaces to the current rendering 
color space. 

3.1.2. Points. 
The type point is used to represent a three component vec- 

tor. The arithmetic operators are overloaded so that when they 
involve points they are treated in the standard vector algebra 
sense. New operators were added to implement the operations of 
dot product C.") and cross product C^"). Using this syntax, a 
Lambertion shading formula can be expressed on one line. 

C * max( O, L.N ) 

where L and N are tile light and normal vectors, and C is a 
color. The main advantage of having built-in vector operations is 
that the standard shading formulae can be expressed in a succinct 
and natural way, often just by copying them right from the litera- 
ture. 

Another advantage of  expressing shading calculations 
using vector arithmetic is that they are then expressed in a 
coordinate-free way, which means that the shader could be 
evaluated in different coordinate systems. Care must be taken in 
applying this idea since, in general, transformations between coor- 
dinate systems do not preserve metric properties such as angles 
and distances. Since the physics underlying shading calculations 
are based on these metric quantities, the results of shading calcu- 
lations will be different in coordinate systems which do not 
preserve them. For this reason shading calculations are defined 
" to  appear" as if they took place in the world coordinate system, 
but it is permissible for the renderer to shade in other coordinate 
systems that are isometric to the world coordinate system. A 
common example of this is shading in "camera"  or " e y e "  space 
instead of world space. 

In certain situations, it is necessary for a calculation involv- 
ing a point to be performed in a specific coordinate system. For 
example, all surface shaders accessing a solid texture need to 
access the texture in the solid texture's coordinate system. This is 
supported by providing a procedure which transforms points 
between named coordinate systems. The standard named coordi- 
nate systems are " ras ter" ,  "screen" ,  "camera" ,  "wor ld"  and 
"object" .  In our system it is also possible to mark other coordi- 
nate systems, and then to refer to them within shaders. 
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3.2. Uniform and Varying Variables 
All variables in the shading language fall into one of two 

general classes: uniform and varying, uniform variables are those 
whose values are independent of position, and hence, constant 
once all the properties have been bound; varying variables are 
those whose values are allowed to change as a function of posi- 
tion. 

Varying variables come about in two ways. First, 
geometric properties of the surface usually change across the sur- 
face. Two examples are surface parameters and the position of a. 
point on a surface. The normal changes on a curved surface such 
as a bicubic patch, but remains constant if the surface is a planar 
polygon. Second, variables attached to polygon vertices or to 
comers of a parametric surface are automatically interpolated 
across the surface by the rendering program, and hence are vary- 
ing. The best examples of varying variables attached to polygons 
are vertex colors in Gouraud shading and vertex normals in Phong 
shading. The concept of  interpolating arbitrary variables during 
scan conversion was first introduced by Whitted and Weimer[31]. 

The concept of uniform and varying variables allows the 
shading language compiler to make significant optimizations. If 
the shader contains an expression or subexpression involving only 
constants and uniform variables, then that expression need only be 
evaluated once, and not every time the shader is executed. This is 
similar to constant folding at compile time, but differs in that a 
different uniform subexpression may occur each time a new 
instance of a shader is created, or each time a shader is bound to a 
surface. Because shading calculations are so expensive, a folklore 
has developed over hand coding these types of optimizations. For 
example, if  the viewing transformation is a parallel projection, 
meaning the eye is at infinity, and a planar polygon is being 
shaded, the incoming direction, the normal, and hence the direc- 
tion of  the reflection vector are all constant and need only be com- 
puted once per polygon. A similar situation occurs with local and 
distant lights. The advantage of using uniform variables and hav- 
ing the compiler look for uniform expressions is that these optimi- 
zations are done automatically. 

3 .3 .  S h a d e r  Classes and i n s t a n c e s  
It is often convenient to think of shaders in an object- 

oriented way. There are several major subclasses of shaders, 
corresponding to the set of methods required by the rendering sys- 
tem. The most general class of shading procedures is a shader, 
and there are subclasses for light sources, surface reflectance func- 
tions, and volume scattering. A shader for a specific subclass is 
created by prefixing its definition by a keyword: s u r f a c e  for a 
surface shader, l i g h t  for a light shader, and v o l u m e  for a 
volume shader'~. Surface shaders describe different types of 
material such as metal and plastic; and light source shaders dif- 
ferent classes of lights such as spotlights and bulbs. 

Shader definitions are similar to procedure definitions in 
that they contain a formal argument list. The arguments tO a 
shader, however, are very different than the arguments to a shad- 
ing language function. Calling a shader to perform its task is 
under the control of the rendering system, and all information 
from the renderer is passed to the shader through external vari- 
ables and not via its arguments (see Section 3.4). Shaders are 
never called from other shaders or from other functions in the 
shading language. 

"~ Actually the following types also exist: displacement, 
transformation, and imaqer. 

The shader arguments define the shader's instance vari- 
ables and are used to set the properties of a shader when the user 
adds the shader to the graphics state or attaches it to a geometric 
primitive. All  instance variables have default values that must be 
specified as part of the definition of the shader. However, the 
defaults can easily be overridden when creating an instance. This 
is done by giving a list of name-value pairs; the name refers to 
which instance variable is being set, and the value to its new 
value. This method of defaulting makes it easy to use compli- 
cated shaders with many parameters. For example, the shader 
m e t a l  is declared in the shading language as 

surface 
metal( float Ka=l, Ks=l, roughness=.l ) 

and is attached to the surface with the following procedure call. 
RiSurface( "metal", "Ka", 0.5 ); 

This instance of  " m e t a l "  has a different Ka than the default 
instance. 

The arguments, or instance variables, of a shader are typi- 
cally uniform variables because they describe overall properties of 
the surface or light source. User-defined interpolated variables are 
created in the shading language by declaring an argument to a 
shader to be a varying variable. The interpolated value is made 
available to the shader via that shading language variable. 
Finally, it is possible to pass point variables as instance variables 
to a shader. As a convenience, these points are interpreted to be 
in the current coordinate system, and transformed automatically to 
the coordinate system in which the shading calculation is being 
performed. For example, p o i n t l i g h t  has as part of its 
declaration. 

light 
pointlight ( . . . ; 

point from = point "shader" (0,0,0); 
... ) 

The "shader"  coordinate system is the one in effect when the 
shader was instanced. In the above example the light is placed at 
the origin of  this coordinate system. Note how the transforma- 
tions apply to default points as well as points supplied when 
instancing. 

3 .4 .  I n t r i n s i c  S t a t e  
When a shader is bound to a geometric primitive, it inherits 

a set of  varying variables that describe the geometry of the surface 
of the geometric primitive. All shaders also inherit the color and 
opacity of the primitive and the local illumination environment 
described as a set of light rays. This information is made avail- 
able to a shader as variables which are bound to the correct values 
by the rendering system before the shader is evaluated. A shader 
is very much like a function closure, which contains pointers to 
the appropriate variables based on the scoping rules for that func- 
tion[27]. The names and types of the major external variables are 
shown in Figures 1 and 2. 

These external variables, along with a few built-in func- 
tions, specify exactly what information is passed between the 
rendering system and the shading system, Because this is the only 
way these modules communicate, determining these variables was 
one of the most difficult aspects of the design of the shading 
language. Two general principles were followed: (i) the material 
information should be minimal, but extensible, and (ii) the 
geometric and optical information should be complete. A simpler 
interface between the shading and geometry is specified in 
Fleischer and Witkin[ 10]. 

292 



¢ Computer Graphics, Volume 24, Number 4, August 1990 

\ I L/ghti Source 

Vantage Point • 

z,~._ N ~: I[luminance Cone 
x . .  ";; "'" ," 

,-% 

I dlPdv Primitive Surface 

~ _  urface Element 
to Illuminate 

. . . .  . . . . . . . . . . . .  - - - - - -  " ......_.:.:i 
<i . . . . . . . . . . . . . . . .  l 
"""" '~~'~~~ !1 ///'llluminateCone 

Figure  1. Surface shader  state. F igure  2. Light  source shader  state. 

Since one of  the major goals of the shading language is to 
extend the types of materials used by the rendering system, it is 
important to be able to assign arbitrary properties to new materi- 
als. The only material properties assumed to always be present, 
and hence made available as global variables, are color and opa- 
city. All other material properties are explicitly declared as argu- 
ments to the shader. Since there is no resttriction, in principle, to 
the number or types of arguments to a shader, the properties of 
materials can involve any amount of information. 

The rendering system may perform shading calculations at 
many points on the surface of a geometric primitive, It provides 
enough geometric information to characterize The surface element 
in the neighborhood of the point being shaded. Most shading for- 
mulae involve only the position P and normal N of the surface. 
When doing texture mapping it is often necessary to provide the 
surface parameters. More advanced shading methods, such as 
bump mapping[5] or tangent bundle mapping[14] require the 
parametric derivatives of the position vector. From a mathemati- 
cal point of view, to completely characterize a surface at a point 
requires knowledge of all its parametric derivatives and cross 
derivatives at the point. Other intrinsic surface properties, such as 
Gaussian curvature, can be computed from this information. 
There are CAD and mathematical applications which require 
methods to visualize local properties of the surface geometry[9]. 
Providing all these derivatives of position through global variables 
would be unwieldy, so functions were provided to take derivatives 
of position with respect to the surface parameters. This derivative 
function is discussed in more detail below (see Section 3.7). 

It is expensive for the rendering system to compute all this 
information, and this is wasted computation if it is not being used 
by the shader. Unnecessary calculation can be prevented by hav- 
ing the shaders provide a bitmask indicating which external vari- 
ables are referenced within the shader before it is executed. Alter- 
natively, the runtime environment uses a lazy evaluation to com- 
pute the values of the variables on demand. It is also useful to 
provide a bitmask indicating which variables are changed by the 
shader, since in some cases the renderer may want to retain the 
original values. 

3.5. Light Sources 
The most general light source description defines the inten- 

sity and color of the emitted light as a function of position and 
direction[29]. The shading language provides a method for 
describing an arbitrary light source distribution procedurally. It 
does this by providing two constructs, s o l a r  and 
i l l u m i n a t e ,  The illuminate statement is used to set the color 
of light coming from a finite point. Its arguments define a cone 
with its apex at the point from which the light emanates. Only 
points inside that cone receive light from that light source. The 
solar statement is used to set the color of light coming from dis- 
tant or infinite light sources. Its arguments define a cone, centered 
on the point being illuminated, to which distant light will be cast. 
Within the block of a illuminate or solar statement, the emitted 
light direction is available as an independent read-only variable 
L, and the color of the emitted light C1 is treated as a dependent 
variable which should be set to define the color and intensity of 
light emitted as a function of direction. 

During the design process the following canonical types of 
lights were considered, and they illustrate the types of light 
sources which can be modeled. 
• Amb i en t  l ight source.  Ambient light is non-directional and 

ambient light shaders do not use either an illuminate or a 
solar statement. Note that ambient light can still vary as a 
function of  position. 

• Poin t  l ight source.  A point light source casts equal 
amounts of light in all directions from a given point. This 
is the simplest example of the use of an illuminate state- 
ment. 

• Spot  light source.  This is point light source whose inten- 
sity is ma,~imum along the direction the light is pointed and 
fails off in other directions. A spotlight also has a circular 
flap which limits angle of the beam. This is art example of 
a procedurally defined point light source. 

• S h a d o w e d  light source.  This is a point light source whose 
intensity is modulated by a texture or shadow map. 

• Dis tant  light source. An infinite light casts light in only 
one direction. This is the simplest example of the use of a 
solar statement. 

• I l luminat ion  or env ironment  map.  This is a omnidirec- 
tional distant light source whose intensity is given by a tex- 
ture map. 
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• Phong light source. This is a procedurally defined distant 
light source. 

Code for the light shaders for each of  these types of  sources is 
contained in the specification[1 ]. 

The light distribution from an area source is determined 
conceptually by evaluating a light shader at different points on the 
geometric primitive defining the shape of  the source. The results 
are summed, in effect, convolving the light source distribution 
function with the shape of the source. Since all area light sources 
are finite, the light source shader attached to a primitive must con- 
tain an illuminate statement. Area light source shaders also have 
access to all the surface properties, just like surface shaders, so it 
is possible to define lights whose color, intensity and even direc- 
tional dependence varies across the surface. 

3.6. Surface Reflectance 
A surface reflectance shader integrates all the incoming 

light with a procedurally defined bidirectional reflection function 
to compute the color and intensity of light reflected in a particular 
direction. This integration is controlled using an i l l u m i n a n c e  
statment. The arguments to the iltuminance statement define a 
cone, usually the upper hemisphere centered on the surface ele- 
ment, over which the integration occurs. Inside of  the block 
defined by an illuminance statement, two independent read-only 
variables are defined: the incoming color and intensity of light 
(C1) and the light ray direction (L). It is up to the programmer to 
accumulate the results of the reflectance computations. There is 
no restriction on the number of illuminance statements within a 
shader, although they cannot be nested. There are built-in func- 
tions that compute the ambient, diffuse, and specular reflection 
functions, because these are so commonly used. 

As an example of the use of the illuminance statement, the 
diffuse component of  the anisotropic shading model for fur pro- 
posed by Kay and Kajiya[16] would be programmed as 

color C = 0; 

illuminance( P, N, Pi/2 ) { 

L = normalize (L) ; 

C += Kd * Cd * C1 * length(L " T); 
} 

where T is the direction tangent to the fur. The length of the 
cross product of L and T is proportional to the sin of  the angle 
between them, assuming they are unit vectors. The arguments to 
the illuminance statement define the upper hemisphere centered at 
the point being shaded; light coming from other directions is not 
considered when performing the integral. The variable C is used 
to accumulate the results of the integral. 

3.7. Built-In Functions 
A lot of attention was paid to selecting the built-in func- 

tions in the language. Functions were added so that common 
shading operations were readily available and could be easily 
composed. Frequently used functions were also built-in, so that 
they could be implemented in the most efficient way possible. In 
a few cases, functions were built-in because their calculations 
could not be expressed within the shading language; however, this 
was always considered bad and whenever possible features were 
added to the language to make it more complete. Expressing all 
the functions using the language makes it possible for users to 
modify them to suit their needs. 

For maximum flexibility many of the built-in functions are 
polymorphic, that is, they can accept arguments with different 
types and perform the appropriate operations depending on the 
type of input. The most straightforward example is p r i n t f  
which can print any type in the language. More generally, 
polymotphic functions may return a type which also depends on 
the type of inputs or their values. Polymorphism significantly 

complicates the compiler and the run-time system, so to simplify, 
the return type of a polymorphic function can only be a function 
of the types of the inputs. These typing rules are built into the 
compiler, and so it is not possible for the user to write 
polymorphic functions. In some cases, the return type depends on 
the value of an argument and not its type (for example texture 
access, where the return type depends on the texture map being 
used which is identified by passing in a texture map name). This 
case is handled by requiring an explicit type cast before these 
types of functions. 

The remainder of  this section will describe several of the 
more unusual functions and their impact on the implementation. 

Taking the derivative of position was discussed in Section 
3.4. For generality, another function was added to take the deriva- 
tive of  any varying variable with respect to any other varying vari- 
able. These functions turned out to be very useful, but much more 
difficult to implement than we expected. First, the derivative of a 
procedurally defined variable is not always continuous. For 
example, when a value is computed within a conditional state- 
ment, neighboring values computed in different branches of  the i f  
may be quite different. The logical expression controlling the i f  
statement acts as a step function between the values computed in 
the branches of  the if, so the derivative becomes infinite at the 
step. Fortunately, these situations tend to be avoided in practice 
because such shading formula are very prone to aliasing and cause 
artifacts. Second, to form derivatives of an arbitrary expression 
requires information about how it varies in a neighborhood of the 
point where the derivative is taken. This can be done reliably, if  
the variable is only a function of the properties of the surface, for 
example, rate of change of color as a function of texture coordi- 
nates. However, if the variable is a function of the illumination 
environment, then the values of its neighbors may be contingent 
on knowing the illumination environment of  its neighbors, which 
may be difficult for certain types of renderers to provide. 

One difficulty with procedural shading models is that they 
are prone to aliasing. Shading functions will alias if they contain 
frequencies greater than the rate at which the surface is being 
shaded. Providing the sampling rate to the shader allows shading 
functions to clamp themselves so that no frequencies greater than 
the Nyquist frequency are present[22]. The best example of this is 
the use of band-limitied noise functions for solid texture syn- 
thesis[18, 25]. The sampling rate is provided by a function which 
returns the screen area covered by a single shading calculation, 
and also by two global variables, du  and d r ,  which estimate the 
change in the surface parameters between adjacent samples. If the 
area is 1, the surface element being shaded occupies approxi- 
mately one pixel in the final image. A very interesting area for 
future work is to have the shading language compiler try to 
automatically band-limit the shading functions so that clamping 
need not be done explicitly. 

3.8. Texture Mapping Functions 
The texture mapping functions retum filtered texture values 

based on user-supplied indices. There are four built-in texture 
functions: 
* texture returns floats or colors as a function of  the 

surface's texture coordinates. 
, bump returns a point specifying the normal perturbation as 

a function of the surface's texture coordinates. 
• environment returns floats or colors as a function of a 

direction in space passed as a point. 
• s h a d o w  retums a float specifying the percentage of the 

surface element in shadow as a function of  its position. 
There is no limit, in principle, to the number of  texture maps 
allowed per shader or per scene. The texture indices may be the 
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surface parameters or texture coordinates, or they may be com- 
puted with the shading language. This flexibility in defining the 
mapping to texture space allows techniques such as decals[2], 
reflection maps[11, 20], and two-part texture mapping[4] to be 
programmed in the shading language. 

4 .  I m p l e m e n t a t i o n  
A shader passes through various stages in its life cycle. 

We give an initial definition of the various stages in the shader life 
cycle, then examine each step in more detail. 
• Compilation. Compilation occurs prior to rendering. Files 

containing shading language source statements are pro- 
cessed by a compiler which generates code for a particular 
run-time interpreter. The compiler is responsible for the 
inline expansion of  user functions and performs several 
implementation-independent optimizations. 

• Loading. During the specification of  the scene to the 
renderer, shaders are placed into the current graphics state 
or instanced. The first time a shader is instanced, the 
renderer must read in the code and symbol table. 

• Instancing. The shader's instance variables must be bound 
to the shader, replacing the default values. The "shader"  
coordinate system is also defined when the shader is 
instanced, and any point parameters passed to the shader 
must be transformed from this coordinate system to the 
coordinate system being used for calculation. 

• Binding to a Geometric Primitive. Next the shader is 
bound to a particular geometric primitive. This occurs 
whenever a geometric primitive is created, and since dif- 
ferent primitives may share a shader this occurs more fre- 
quently than instancing. At this point, the "objec t"  coor- 
dinate system has been defined and can be bound. The sur- 
face color and opacity are inherited from the current graph- 
ics state or from the geometric primitive. Since these attri- 
butes can come from either source, the uniform or varying 
nature of late-binding variables is only now determined. 

• Elaboration. Surface parameters are bound to values in the 
graphics state, and data that may be located in various 
caches is organized for efficient execution. 

• Evaluation The shader is evaluated at different points on 
the surface. 
Each subsequent stage in the life-cycle is usually per- 

formed many more times than the previous stages. This life cycle 
strains the implementation since it presents a general binding 
problem. For flexibility, it is desirable to bind as many values as 
late as possible, but for efficiency, it is desirable to optimize later 
stages in the life cycle. Since these optimization steps are them- 
selves time-consuming, it is desirable for them to occur as soon as 
possible in the life cycle so that they are not repeated. However, 
the optimizers do the best job once all the bindings have been 
established. Table 1 gives time and invocation counts for these 
various life cycle stages for a typical image (a single frame from 
the animated short "Luxo Jr."). 

Stage Invocations Time (seconds) Percentage 
Compile 1 5.6 1.33 
Load 12 2.11 .50 
Instance 45 3.61 .86 
Bind 153 3.96 .94 
Elaborate 9004 0.78 .18 
Evaluate 11255 403.08 96.16 

Table 1: Shader Life Cycle 

We now consider these steps in more detail. 

4 .1 .  Compilat ion 
The compiler uses the shader class for determining allowed 

access to the intrinsic state. Only light shaders may set the light 
color and contain solar and illuminate statements. Only surface 
shaders may contain illuminance statements and only within these 
statements is access to the light color and direction allowed. 
These constraints are intended to limit the environment for each 
class of shader for performance reasons, and to detect user errors 
at compile time. 

Typically the time spent compiling a shader is many orders 
of magnitude less than the time spent actually executing a shader. 
This in turn implies that no compile-time optimizations are prohi- 
bitively expensive. Two of the more unusual optimizations per- 
formed by the compiler involve expression classification and com- 
piled function inlining. 

Shading language expressions can be categorized as falling 
into one of two classes: uniform or varying. In principle, uniform 
expressions need only be evaluated once. The compiler has facili- 
ties for rearranging uniform' expressions in order to execute them 
separately from the varying expressions in the shader body. There 
are implementation difficulties with this: the compiler has to be 
careful about code motion across loop and conditional boundaries, 
and the late binding of shader parameters restrict the type 
inferencing that can be done. In these cases, the compiler 
assumes the expression is varying but provides sufficient informa- 
tion for the run-time system to make the final decision (at a some- 
what reduced level of efficiency). It should be noted in passing 
that the uniform/varying distinction poses a classical time/space 
tradeoff. If  the cost of saving the result of a computation is in 
some sense cheaper than the computation, it makes sense to save 
the result. There may be implementations where the storage 
requirements for these values are far more expensive (in terms of 
their size or management) than simply performing the computa- 
tion each time its result is required. 

The compiler is also responsible for the inline insertion of 
previously compiled shading language functions. The compiler 
reconstructs a parse tree from the compiled function and performs 
the normal optimizations after inserting the parse tree inline. If 
the function can be evaluated at compile time (that is, if its argu- 
ments are known constants), its result will be substituted for the 
function call. 

In general, we attempt to do as much optimization at 
compile-time as is possible, and for those cases where we must 
defer to the run-time system, we attempt to provide it with 
sufficient information for it to further optimize execution. To this 
end, the "objec t"  file output by the compiler contains an exten- 
sive symbol table. In fact, there is sufficient information in the 
symbol table to reconstruct the original parse tree. For those 
shader parameters with default values, the symbol table contains a 
pointer to the block of  code to compute this value. For each sym- 
bol referenced by the shader, the symbol contains pointers to the 
initial and final read and write references in the shader code. This 
is used to determine if a shader requires access to a external vari- 
able, or if the shader changes the variable, to ensure that a local 
copy is made or that related properties (position and normals for 
instance) are updated consistently. 

4 ,2 .  L o a d i n g  
The run-time system loads shaders in response to shader 

directives which normally occur when a shader is made current. 
The shader name is mapped into an (operating system dependent) 
external file name for the initial request to read the file containing 
the shader. In order to minimize the amount of  I/O traffic the sys- 
tem maintains a simple shader cache. The (system independent) 
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shader name is used as the key for subsequent searches. The first 
time a shader is read, it is converted from an external to an inter- 
nal executable format. This converted shader object is subse- 
quently stored in the shader cache. Future references to this 
shader will fetch the copy from the cache thus avoiding the over- 
head of  file I/O and the external to internal conversion process. 

4.3. Instancing 
Associated with a shader directive is a parameter list. It is 

quite common for modeling systems to generate complex objects 
composed of  alternating shaders containing the same parameters. 
If each shader directive results in the creation of a separate 
instance of the referenced shader, we would end up filling 
memory with many copies of identical shader instances. This 
problem is solved with the addition of a higher level shader 
instance cache. The shader's parameters are packaged up and 
inserted in the shader instance cache along with a reference to the 
basic entry in the lower level shader cache. The shader name and 
its parameters are used as a key to index the instance cache. Thus, 
shader directives that refer to the same shader with the same 
parameters will all share a common instance of that shader. These 
caches may be flushed at the discretion of the renderer, usually at 
end of frame. 

4.4. Binding to a Geometric Primitive 
It is not until we actually bind the shader to a geometric 

primitive that we can finally determine the uniform/varying nature 
of its parameters. But the values of these variables are not yet 
available because they may be computed as part of  the rendering 
process. Consequently, we package up the number and identity of 
varying parameters along with a reference to the shader instance, 
and insert this item into a bound instance cache. 

4.5. Elaboration 
Eventually a geometric primitive has been reduced to an 

object for which the rendering system wishes to invoke a shader. 
Any varying parameters have been interpolated over the surface 
of the primitive. At this time, all parameters have been bound to 
the shader and we are in a position to determine their values. We 
allocate storage for the shader's local and temporary variables and 
finally evaluate its parameters. The parameters of the shader are 
assigned (in order of  decreasing precedence) either: 
* the value associated with the geometric primitive, 
• the value specified in a shader directive, or 
• the default value as specified in the shader. 
We refer to this as an elaborated shader instance and update the 
bound instance cache entry for the shader to indicate an elaborated 
instance is available. Subsequent attempts to evaluate the shader 
will use this elaborated instance. 

Elabortt*d 
InstJnal Ir~tmnoo Lrmtnco 

Figu re  3. H ie ra rchy  o f  shader  caches .  

Figure 3 illustrates the various internal caches and Table 2 
demonstrates the effectiveness of the hierarchical cache scheme 
for the same Luxo Jr. frame described in Table 1. 

Cache Storage Probes Misses Hit Rate 
Shader 29.2K 14 12 14% 
Instance t .5K 45 14 68% 
Bound Instance na na na na 
Elaborated Instance 21.0K 9004 42 99% 

Table 2: Shader Cache Hit Rates 

The instance cache size is basically determined by the number of 
different types of surfaces and lights, the elaborated instance 
cache by the number of geometric primitives. The relatively low 
hit rates for the lower level caches are due to the effectiveness of  
the higher level caches. We have only counted actual probes of 
each cache. If one counts actual post-probe references (11255) to 
cached data, the importance of the lower level caches is more 
apparent. There are no vertex arguments in this example, so the 
bound instance cache is bypassed. 

4.6. Evaluation 
The current run-time system implements a virtual SIMD 

array processing architecture. Geometric primitives are diced into 
surface elements or grids containing some number of surface 
points[8]. One geometric primitive may give rise to many grids. 
The shading interpreter executes shader operators once per grid, 
each operator performing its calculations over every point in the 
grid. This helps reduce the effect of interpreter overhead by 
amortizing it over the number of points in the grid. 

Earlier we mentioned that due to the late binding of  shader 
parameters, certain optimizations must be left to the run-time sys- 
tem. Each operator is passed the address, type, and 
uniform/varying nature of its arguments. The individual operators 
may use this information to optimize their computations. For 
example, if an operator receives uniform arguments and is 
required to compute a varying result, it may perform its operation 
once, then replicate the result value. Thus, at the very worst, each 
uniform expression is computed at most once per grid. 

The SIMD nature of the run-time system does complicate 
the handling of loops and conditionals, especially if normal SISD 
semantics are to be preserved. Nevertheless, we felt it was impor- 
tant to hide the details of the implementation, and so resisted 
adding language constructs to deal with the lower level SIMD 
machine. 

5. Discussion 
Overall the shading language has met most of the goals set 

out in the introduction. Figure 4 shows one example of the type 
of flexibility possible in the language. This surface shader dents 
the teapot using a fractal-like procedural displacement until the 
metal breaks. This breakage is modeled by making the surface 
transparent if  the magnitude of the dent exceeds a certain value. 
Note that the shader shown in Figure 4 is quite short, which attests 
to the high-level nature of the language. Most shaders that have 
been written take much less than a screenful of text. The frame 
from the film knickknack shown in Figure 5 was created using 
procedural shading for everything except the texture mapped text 
on the pyramid and pool, and the drawing on the surfboard. The 
shading language encourages the development of compact.pro- 
cedural texture representations. In the future, we expect to see a 
great deal of research in procedural material representations of 
appearance. Catalogs of  materials will be available much like 
catalogs of clip art are available today. 
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surface 

dent( float KS=.4, Kd=.5, Ka=.l, roughness=.25, dent=.4 ) 
{ 

float turbulence; 
point Nf, V; 
float ~, freq; 

/* Tran,rformm $olid texlurecoordina~systcm */ 
V = transform("shader",P); 

/ * Sum 6 '%craves" o/noise reform mrbu~nce * / 
turbulence = 0; freq = 1.0; 
for( i=0; i<6; i+= I ) { 

turbulence += l/freq * abs( 0.5 - noise( 4*freq*v ) 
freq *= 2; 

} 

/*  Sharpen mrbu~nee */ 
turbulence *= turbulemce * turbulence; 
turbulence *= dent; 

/* D~p~eesu~aceandcompu~ normal*/ 
P -= turbulence * normalize(N); 
Nf = faceforward{ normalize(calculatenormal(P)), I ); 
V = normalize(-I); 

/*  Pe~orm shading calcu~on * / 
Oi = 1 - emoothstep( 0.03, 0.05, turbulence ); 
Ci = Oi * Cs * (Ka*ambient() + Ks*specular(Nf,V, roughness)); 

Figure 4. Corroded teapot. 

A crucial question is how efficient is this approach relative 
to built-in shading models. Compiler efficiency is not really an 
issue here, as the time spent compiling shaders is very small com- 
pared to the time spent evaluating them. In fact, the 
evaluating/compiling ratio is so large that we are quite willing to 
spend a considerable amount of time trying to perform optimiza- 
tions during the compile stage in exchange for reduced rendering 
time. Also, shading language programs are quite short. This is an 
excellent opportunity to employ normally costly "aggressive" 
optimization strategies such as superoptimization which searches 
for the best possible generated code[19]. The compiler could also 
convert functions or complicated expressions of a single varying 
variable to tables and evaluate them using table lookup. For 
example, the power function used for specular shading is a func- 
tion of varying quantity N. H and a uniform exponent. Once the 
exponent is available, the compiler could generate a table for this 
function. The uniform/varying variable distinction allows one to 
find constant uniform expressions and save the cost of reevaluat- 
ing them, which can reduce shading time considerably. In the 
example above, if the normal and highlight direction are fixed, 
then the power function need only be evaluated once. The point is 
that many of the techniques currently used to speed up shading 
algorithms could be implemented by better shading compilers. If  
such compilers are successful, then compiled shaders could be 
more efficient than hand-coded shaders. 

The language presented does pose some difficult and chal- 
lenging problems for graphics algorithm developers. The 
specification of  area and procedural light sources was designed for 
full generality, but as a result is beyond the capability of current 
lighting and shading algorithms, since they assume the renderer 
can correctly integrate over directional or positional distributions. 
However, it seems likely that distributed stochastic sampling[7] 
would yield good approximations to these integrals, although this 
is certainly an area that needs more research. Also, as mentioned 
in the introduction, global illumination models such as radiosity 
work only with simple diffuse shading formula. Implementing a 
global illumination algorithm for the procedural shaders describ- 
able in this language is also an area for future research. Finally, 
the flexibility introduced by having programmable texture func- 
tions taxes the texturing subsystem. This' is an area which needs 
further research; some preliminary results are reported in 
Peachey[23]. 

However, this approach to shading does have its limita- 
tions. Perhaps the crucial assumption is that it is a good idea to 
decouple geometric and optical calculations. Kajiya has proposed 
a hierarchy of detail which involves smooth transitions between 
geometry, displacement mapping, bump mapping, and surface 
reflectance functions - that is, a smooth transition from geometric 
to optical calculations[14]. In such a system, it might make sense 
to more tightly couple the two types of calculations. 

Finally, the shading language is the interface which pro- 
grammers use to extend the types of materials and light sources 
available to a rendering system. A better interface for most peo- 
ple, however, is an interactive editor that allows them to build and 
modify existing shaders. Previous work along these lines allows 
the user to control parameters of preprogrammed shaders; the 
challenge here is to find methods that allow for quick updates so 
the system is feels responsive. This is a difficult problem because 
fast methods involve approximations that affect the final appear- 
ance, so what  you  see is not  what  you  get. Compiler technology 
might help an interactive parameter editor by figuring out how to 
evaluate shading formulae incrementally if only a single parame- 
ter is changing. Another interesting area for future research is to 
create an interactive shading editor that models the optical proper- 
ties of  materials by simulating the processes that are used to create 
their appearance. Each object description would begin by cutting 
out the geometry from an underlying solid material (for example, 
wood or steel), which would then be covered by a surface material 
(for example, veneer or decals) and a coating (for example, paint 
and varnish). The result could then be polished and subject to 
wear and tear. This type of editor would create shading language 
programs by patching together together program fragments that 
model the various stages used to produce the final appearance. 

6. Acknowledgements 
Rob Cook designed and implemented the original shade- 

tree system. Tony Apodaca provided constant input on many 
features of  the language and in particular helped think through the 
light source specification. Sam Leffler and Darwyn Peachey 
implemented the texturing subsystem. Mike Paquette and Mal- 
colm Blanchard helped port the system to various platforms. 
Mark Leather and Jeff Mock tried successfully to break pieces of 
the system with enormous shaders; Jeff also was kind enough to 
contribute the shader for Figure 4. Bill Reeves, Eben Ostby, and 
John Lasseter suffered through the entire development process, 
finding and fixing bugs, and tried to make a movie at the same 
time; they were also kind enough to contribute Figure 5. Finally, 
we would like to thank Ed Catmull, Tom Porter and Miekey Man- 
fie for their help with this project. 

297 



,G, StGGRAPH '90, Dallas, August 6-10, 1990 

Figure 5. Procedural texture in Knickknack. 
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