
Rendering Fake Soft Shadows with Smoothies

Laboratory for Computer Science
Massachusetts Institute of Technology

Eric Chan          Frédo Durand



Goals:

� Interactive framerates

� Hardware-accelerated

� Good image quality

� Dynamic environments

Applications:

� Game engines (e.g. Doom 3)

� Interactive walkthroughs

Challenge: balancing quality and performance

Real-Time Shadows

NVIDIA



Two Algorithms from the 1970’s

Shadow volumes (Crow 1977)

� Object-space

� Accelerated by hardware 
stencil buffer

� Large fillrate consumption

Shadow maps (Williams 1978)

� Image-space

� Fast and simple

� Supported in hardware

� Undersampling artifacts
NVIDIA



Soft Shadow Volumes

Penumbra wedges:

� Shadow polygons       wedges

� Compute penumbra with pixel 
shaders

� Accurate approximation 

Papers:

� Assarsson et al. (EGRW 2002, 
SIGGRAPH 2003, HWWS 2003)

But: much higher fillrate needed
Assarsson and Akenine-Möller

wedge



Soft Shadow Maps

Ideas:

� Filtering

� Stochastic sampling

� Image warping

Examples:

� Percentage closer filtering (Reeves et al., SIGGRAPH 1987)

� Deep shadow maps (Lokovic and Veach, SIGGRAPH 2000)

� Image-based soft shadows (Agrawala et al., SIGGRAPH 2000)

� Multisampling hard shadows (Heckbert and Herf, TR 1997)

But: need dense sampling to minimize artifacts

Agrawala et al.



Soft Shadow Maps (cont.)

Approximations

Examples:

� Convolution (Soler and Sillion, SIGGRAPH 1998)

� Linear lights (Heidrich et al., EGRW 2000)

� Outer surfaces (Parker et al., TR 1998)

� Plateaus (Haines, JGT 2001)

� Penumbra maps (Wyman and Hansen, EGSR 2003)

Soler and Sillion



Overview

� Extend basic shadow map approach

� Use extra primitives (smoothies) to soften shadows

light’s view (blockers only) light’s view (blockers + smoothies)



Fake Soft Shadows

� Shadows not geometrically correct 

� Shadows appear qualitatively like soft shadows

Hard shadows Fake soft shadows



Contributions

Smoothie shadow algorithm:

� Creates soft shadow edges 

� Hides aliasing artifacts

� Efficient (object / image space)

� Hardware-accelerated

� Supports dynamic scenes



1. Create Shadow Map

Render blockers into depth map

light’s view

observer’s view



2. Identify Silhouette Edges

Find blockers’ silhouette edges in object space

object-space
silhouettes

observer’s view

light’s view



3. Construct Smoothies

Blocker only:

silhouette vertex

silhouette edges

blocker exterior



3. Construct Smoothies (cont.)

Blocker + smoothies:

silhouette vertex

silhouette edges

smoothie edge

smoothie corner

t

t

blocker exterior



3. Construct Smoothies (cont.)

� Smoothie edges are rectangles in screen space with 
a fixed width

� Smoothie corners connect adjacent smoothie edges

t

t

geometry shading



4. Render Smoothies

Store depth and alpha values into smoothie buffer

Smoothie Buffer (depth) Smoothie Buffer (alpha)

light’s viewpoint



5. Compute Shadows

Compute intensity using depth comparisons

smoothie

light source

blocker

receiver



5. Compute Shadows

Image sample behind blocker (intensity = 0)

smoothie

light source

blocker

receiver
completely in shadow



5. Compute Shadows

Image sample behind smoothie (intensity = α)

partially in shadow

smoothie

light source

blocker

receiver



5. Compute Shadows

Image sample illuminated (intensity = 1)

illuminated

smoothie

light source

blocker

receiver



Computing Alpha Values

Intuition:

� Alpha defines penumbra shape

� Should vary with ratio b/r

blocker

smoothie α

receiver

light source

r b



Computing Alpha Values (cont.)

1. Linearly interpolate alpha

2. Remap alpha at each pixel using ratio b/r:

α’ = α / (1 – b/r)

original α remapped α result



Multiple Blockers and Receivers



Multiple Receivers

light’s view

same thickness

Smoothie buffer
(linearly-interpolated α)

1

2



Multiple Receivers (cont.)

light’s view

Smoothie buffer
(remapped α)

different thickness

1

2



Multiple Receivers (cont.)

Final image

observer’s view

different thickness



Multiple Blockers

What happens when smoothies overlap?

smoothie overlap



Multiple Blockers (cont.)

Minimum blending: just keep minimum of alpha values

smoothie ray tracer



Comparison to Penumbra Maps

Penumbra maps (Wyman and Hansen, EGSR 2003)

� Same idea, different details

Smoothie depth:

� Extra storage + comparison

� Handles surfaces that act only as receivers

blockers + smoothiesblockers only

quadscones and sheetsGeometry:

Store depth:

Penumbra Maps Smoothies



Results

System information:

� 2.6 GHz Intel Pentium 4

� NVIDIA Geforce FX 5800 Ultra



Video



Hiding Aliasing (256 x 256)

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

16 ms 129 ms

19 ms 19 ms



Hiding Aliasing (1024 x 1024)

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

17 ms 142 ms

22 ms 24 ms



Comparison to Ray Tracer

smoothie ray tracer

increasing size
of light source



Video

original md2shader demo courtesy of Mark Kilgard



Discussion

Shadow maps:

� Assumes directional light or spotlight

� Discrete buffer samples

Shadow volumes:

� Assumes blockers are closed triangle meshes 

� Silhouettes identified in object space

Smoothies:

� Rendered from light’s viewpoint

� Occupy small screen area        inexpensive



Summary

Contribution:

� Simple extension to shadow maps

� Shadows edges are fake, but look like soft shadows

� Fast, maps well to graphics hardware



Trends in Real-Time Shadows

Architectures and algorithms go together

Currently, architectures        algorithms:

� Store per-pixel data at full precision

But also, algorithms        architectures:

� Shadow maps 

� Shadow volume depth bounds

� Aggressive early z and stencil reject



Acknowledgments

Hardware, drivers, and bug fixes

� Mark Kilgard, Cass Everitt, David Kirk, Matt Papakipos (NVIDIA)

� Michael Doggett, Evan Hart, James Percy (ATI)

Writing and code

� Sylvain Lefebvre, George Drettakis, Janet Chen, Bill Mark

� Xavier Décoret, Henrik Wann Jensen

Funding

� ASEE NDSEG Fellowship


