### **Rendering Fake Soft Shadows with Smoothies**



#### Eric Chan Frédo Durand

Laboratory for Computer Science Massachusetts Institute of Technology

## **Real-Time Shadows**

### Goals:

- Interactive framerates
- Hardware-accelerated
- Good image quality
- Dynamic environments



### **Applications:**

- Game engines (e.g. Doom 3)
- Interactive walkthroughs

Challenge: balancing quality and performance

NVIDIA

# Two Algorithms from the 1970's

Shadow volumes (Crow 1977)

- Object-space
- Accelerated by hardware stencil buffer
- Large fillrate consumption

Shadow maps (Williams 1978)

- Image-space
- Fast and simple
- Supported in hardware
- Undersampling artifacts





**NVIDIA** 

### Soft Shadow Volumes

### Penumbra wedges:

- Shadow polygons -> wedges
- Compute penumbra with pixel shaders
- Accurate approximation

#### Papers:

 Assarsson et al. (EGRW 2002, SIGGRAPH 2003, HWWS 2003)

### But: much higher fillrate needed





Assarsson and Akenine-Möller

# Soft Shadow Maps

### Ideas:

- Filtering
- Stochastic sampling
- Image warping



#### Examples:

Agrawala et al.

- Percentage closer filtering (Reeves et al., SIGGRAPH 1987)
- Deep shadow maps (Lokovic and Veach, SIGGRAPH 2000)
- Image-based soft shadows (Agrawala et al., SIGGRAPH 2000)
- Multisampling hard shadows (Heckbert and Herf, TR 1997)

#### But: need dense sampling to minimize artifacts

# Soft Shadow Maps (cont.)

### Approximations



#### Examples:

- Convolution (Soler and Sillion, SIGGRAPH 1998) Soler and Sillion
- Linear lights (Heidrich et al., EGRW 2000)
- Outer surfaces (Parker et al., TR 1998)
- Plateaus (Haines, JGT 2001)
- Penumbra maps (Wyman and Hansen, EGSR 2003)

### **Overview**

- Extend basic shadow map approach
- Use extra primitives (<u>smoothies</u>) to soften shadows



light's view (blockers only)



light's view (blockers + smoothies)

### **Fake Soft Shadows**

- Shadows not geometrically correct
- Shadows appear **<u>qualitatively</u>** like soft shadows



#### Hard shadows

### Contributions

Smoothie shadow algorithm:

- Creates soft shadow edges
- Hides aliasing artifacts
- Efficient (object / image space)
- Hardware-accelerated
- Supports dynamic scenes





### 1. Create Shadow Map

### Render blockers into depth map



# 2. Identify Silhouette Edges

#### Find blockers' silhouette edges in object space



## **3. Construct Smoothies**

### Blocker only:



# 3. Construct Smoothies (cont.)

#### Blocker + smoothies:



# 3. Construct Smoothies (cont.)

- <u>Smoothie edges</u> are rectangles in screen space with a fixed width
- Smoothie corners connect adjacent smoothie edges



### 4. Render Smoothies

### Store depth and alpha values into smoothie buffer



### Compute intensity using depth comparisons



Image sample behind blocker (intensity = 0)



Image sample behind smoothie (intensity =  $\alpha$ )



Image sample illuminated (intensity = 1)



# **Computing Alpha Values**

### Intuition:

- Alpha defines penumbra shape
- Should vary with ratio b/r



### Computing Alpha Values (cont.)

- 1. Linearly interpolate alpha
- 2. Remap alpha at each pixel using ratio b/r:

 $\alpha' = \alpha / (1 - b/r)$ 



# **Multiple Blockers and Receivers**



### **Multiple Receivers**



### Multiple Receivers (cont.)



# Multiple Receivers (cont.)



### **Multiple Blockers**

#### What happens when smoothies overlap?



#### smoothie overlap

## Multiple Blockers (cont.)

### Minimum blending: just keep minimum of alpha values



### **Comparison to Penumbra Maps**

Penumbra maps (Wyman and Hansen, EGSR 2003)
Same idea, different details

|              | Penumbra Maps    | Smoothies            |
|--------------|------------------|----------------------|
| Geometry:    | cones and sheets | quads                |
| Store depth: | blockers only    | blockers + smoothies |

#### Smoothie depth:

- Extra storage + comparison
- Handles surfaces that act only as receivers

### Results

System information:

- 2.6 GHz Intel Pentium 4
- NVIDIA Geforce FX 5800 Ultra



#### **Ordinary Shadow Map**

Triangles: 2324 Average FPS: 100.0



# Hiding Aliasing (256 x 256)



# Hiding Aliasing (1024 x 1024)



# **Comparison to Ray Tracer**



increasing size of light source





original md2shader demo courtesy of Mark Kilgard

### Discussion

### Shadow maps:

- Assumes directional light or spotlight
- Discrete buffer samples

#### Shadow volumes:

- Assumes blockers are closed triangle meshes
- Silhouettes identified in object space

### Smoothies:

- Rendered from light's viewpoint
- Occupy small screen area -> inexpensive

### Summary

### **Contribution:**

- Simple extension to shadow maps
- Shadows edges are fake, but look like soft shadows
- Fast, maps well to graphics hardware





### **Trends in Real-Time Shadows**

Architectures and algorithms go together

Currently, architectures —> algorithms:

Store per-pixel data at full precision

But also, algorithms —> architectures:

- Shadow maps
- Shadow volume depth bounds
- Aggressive early z and stencil reject

## Acknowledgments

#### Hardware, drivers, and bug fixes

- Mark Kilgard, Cass Everitt, David Kirk, Matt Papakipos (NVIDIA)
- Michael Doggett, Evan Hart, James Percy (ATI)

### Writing and code

- Sylvain Lefebvre, George Drettakis, Janet Chen, Bill Mark
- Xavier Décoret, Henrik Wann Jensen

### Funding

ASEE NDSEG Fellowship