
Rendering Fake Soft Shadows
with Smoothies
Rendering Fake Soft Shadows
with Smoothies

Eric Chan
Massachusetts Institute of Technology

ClarificationClarification

ClarificationClarification

Real-Time Soft ShadowsReal-Time Soft Shadows

Goals:
• Interactive framerates
• Hardware-accelerated
• Good image quality
• Dynamic environments

Challenge:
• How to balance quality and performance?

NVIDIA

Ordinary Shadow MapsOrdinary Shadow Maps

Image-space algorithm:
• Fast and simple
• Supported in hardware
• Aliasing artifacts

NVIDIA Sen et al. [SIGGRAPH 2003]

Soft Shadow MapsSoft Shadow Maps

Techniques:
• Filtering
• Stochastic sampling
• Image warping

Agrawala et al. [SIGGRAPH 2000]

But: need dense sampling to minimize artifacts

Examples:
• Percentage closer filtering

(Reeves et al., SIG1987)
• Deep shadow maps

(Lokovic and Veach, SIG2000)

Soft Shadow Maps (cont.)Soft Shadow Maps (cont.)

Approximations

Soler and Sillion

Examples:
• Convolution (Soler and Sillion, SIGGRAPH 1998)
• Linear lights (Heidrich et al., EGRW 2000)

IdeaIdea

Extend basic shadow map approach

Extra primitives (smoothies) soften shadows

light’s view (blockers only) light’s view (blockers + smoothies)

Fake Soft ShadowsFake Soft Shadows

Shadows not geometrically correct

Shadows appear qualitatively like soft shadows

Hard shadows Fake soft shadows

Smoothie AlgorithmSmoothie Algorithm

Properties:
• Creates soft shadow edges

• Hides aliasing artifacts
• Efficient (object / image space)

• Hardware-accelerated
• Supports dynamic scenes

ReferencesReferences

Rendering Fake Soft Shadows with Smoothies
• E. Chan and F. Durand [EGSR 2003]

Penumbra Maps
• C. Wyman and C. Hansen [EGSR 2003]

Algorithm

Algorithm OverviewAlgorithm Overview

Implementation details later

Focus on concepts

Algorithm OverviewAlgorithm Overview

Create depth map

Step 1

Algorithm OverviewAlgorithm Overview

Create smoothie buffer

Step 2

Algorithm OverviewAlgorithm Overview

Render scene + shadows

Step 3

Create Shadow MapCreate Shadow Map

Render blockers into depth map

light’s view

observer’s view

Find Silhouette EdgesFind Silhouette Edges

Find blockers’ silhouette edges in object space

object-space
silhouettes

observer’s view

light’s view

Construct SmoothiesConstruct Smoothies

Blocker only:

blocker exterior

silhouette vertex

silhouette edges

Construct SmoothiesConstruct Smoothies

Blocker + smoothies:
silhouette vertex

silhouette edges

smoothie edge

smoothie corner

blocker exterior

Construct SmoothiesConstruct Smoothies

Smoothie edges are fixed-width rectangles in screen space
Smoothie corners connect adjacent smoothie edges

geometry shading

Render SmoothiesRender Smoothies

Store depth and alpha values into smoothie buffer

Smoothie Buffer (depth) Smoothie Buffer (alpha)

light’s viewpoint

Compute ShadowsCompute Shadows

smoothie

light source

blocker

receiver

Compute intensity using depth comparisons

Compute Shadows (1 of 3)Compute Shadows (1 of 3)

Image sample behind blocker (intensity = 0)

smoothie

light source

blocker

receiver
completely in shadow

Compute Shadows (2 of 3)Compute Shadows (2 of 3)

partially in shadow

smoothie

light source

blocker

receiver

Image sample behind smoothie (intensity = α)

Compute Shadows (3 of 3)Compute Shadows (3 of 3)

illuminated

smoothie

light source

blocker

receiver

Image sample illuminated (intensity = 1)

Computing Alpha ValuesComputing Alpha Values

Intuition:
• Alpha defines penumbra shape
• Should vary with ratio b/r

blocker

smoothie α

receiver

light source

r b

Without Alpha RemappingWithout Alpha Remapping

Linearly interpolated alpha undesired results!

smoothie contact problem

With Alpha RemappingWith Alpha Remapping

Remap alpha at each pixel using ratio b/r:

smoothie fixed contact problem

α’ = α / (1 – b/r)

Computing Alpha ValuesComputing Alpha Values

1. Linearly interpolate alpha
2. Remap alpha at each pixel using ratio b/r:

α’ = α / (1 – b/r)

original α remapped α result

Multiple ObjectsMultiple Objects

Multiple ReceiversMultiple Receivers

light’s view

same thickness

Smoothie buffer
(linearly-interpolated α)

Multiple ReceiversMultiple Receivers

light’s view

Smoothie buffer
(remapped α)

different thickness

Multiple ReceiversMultiple Receivers

Final image

observer’s view

different thickness

Multiple BlockersMultiple Blockers

What happens when smoothies overlap?

smoothie overlap

Multiple BlockersMultiple Blockers

Minimum blending: just keep minimum of alpha values

smoothie ray tracer

Implementation

ImplementationImplementation

• Details (OpenGL)

• Hardware acceleration
• Optimizations

Create Shadow MapCreate Shadow Map

Render to standard OpenGL depth buffer
• 24-bit, window space
• Post-perspective, non-linear distribution of z

Also write to color buffer (using fragment program)
• Floating-point, eye space
• Pre-perspective, linear distribution of z
• Unlike regular shadow maps

Why? Need linear depth for next rendering pass

Create Smoothie BufferCreate Smoothie Buffer

Conceptually, draw the smoothies once:
• store depth and alpha into a buffer

In practice, draw smoothies twice:
1. store nearest depth value into depth buffer
2. blend alpha values into color buffer

Computing AlphaComputing Alpha

α’ = α / (1 – b/r)How to compute alpha? Recall
• α is linearly interpolated from 0 to 1 across quad
• b is computed in fragment program
• r is obtained from shadow map (linear depth!)

blocker

smoothie α

receiver

light source

r b

current sample

Minimum BlendingMinimum Blending

Implementation in OpenGL:
• Supported natively in hardware
• use glBlendEquationEXT(GL_MIN_EXT)

Final Rendering PassFinal Rendering Pass

Implementation using fragment program:
• Project each sample into light space
• Multiple texture lookups

shadow map
(depth)

smoothie buffer
(depth)

smoothie buffer
(alpha)

Additional DetailsAdditional Details

Combination of methods:
• percentage closer filtering (2 x 2 filtering in shader)
• perspective shadow maps

See paper (course notes) for Cg shader code

Examples

VideoVideo

Hiding Aliasing (256 x 256)Hiding Aliasing (256 x 256)

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

16 ms 129 ms

19 ms 19 ms

Hiding Aliasing (1k x 1k)Hiding Aliasing (1k x 1k)

17 ms 142 ms

22 ms 24 ms

shadow map bicubic filter

smoothie (t = 0.02) smoothie (t = 0.08)

Antialiasing Example #1Antialiasing Example #1

shadow map

hard shadows
(aliased)

Antialiasing Example #1Antialiasing Example #1

smoothies

soft shadows
(antialiased)

Antialiasing Example #2Antialiasing Example #2

shadow map

hard shadows
(aliased)

Antialiasing Example #2Antialiasing Example #2

smoothies

soft shadows
(antialiased)

LimitationsLimitations

smoothie ray tracer

increasing size
of light source

VideoVideo

original md2shader demo courtesy of Mark Kilgard

TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

Shadow volumes:
• Assumes blockers are closed triangle meshes
• Silhouettes identified in object space

TradeoffsTradeoffs

Shadow maps:
• Assumes directional light or spotlight
• Discrete buffer samples

Shadow volumes:
• Assumes blockers are closed triangle meshes
• Silhouettes identified in object space

Smoothies:
• Rendered from light’s viewpoint
• Occupy small screen area inexpensive

SummarySummary

Main points:
• Simple extension to shadow maps
• Shadows edges are fake, but look like soft shadows
• Fast, maps well to graphics hardware

AcknowledgmentsAcknowledgments

Hardware, drivers, and bug fixes
� Mark Kilgard, Cass Everitt, David Kirk, Matt Papakipos (NVIDIA)

� Michael Doggett, Evan Hart, James Percy (ATI)

Writing and code
� Sylvain Lefebvre, George Drettakis, Janet Chen, Bill Mark

� Xavier Décoret, Henrik Wann Jensen

