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Abstract—Robots cannot yet match humans’ ability to
rapidly learn the shapes of novel 3D objects and recognize them
robustly despite clutter and occlusion. We present Bayes3D,
an uncertainty-aware perception system for structured 3D
scenes, that reports accurate posterior uncertainty over 3D
object shape, pose, and scene composition in the presence of
clutter and occlusion. Bayes3D delivers these capabilities via a
novel hierarchical Bayesian model for 3D scenes and a GPU-
accelerated coarse-to-fine sequential Monte Carlo algorithm.
Quantitative experiments show that Bayes3D can learn 3D
models of novel objects from just a handful of views, recognizing
them more robustly and with orders of magnitude less training
data than neural baselines, and tracking 3D objects faster than
real time on a single GPU. We also demonstrate that Bayes3D
learns complex 3D object models and accurately infers 3D scene
composition when used on a Panda robot in a tabletop scenario.

Index Terms—Probabilistic robotics, Bayesian inverse graph-
ics, Scene perception, Probabilistic programming

I. INTRODUCTION

There is a widespread need in robotics for 3D scene
perception systems that can learn objects from just a handful
of frames of data and robustly recognize them in clutter and
high occlusion. Although neural network models have made
significant progress, training them from scratch typically
requires large datasets and compute budgets, and they can
struggle to perform robustly. This paper introduces Bayes3D,
a novel 3D scene perception system that learns 3D object
models from just 1-5 frames in realtime, and robustly parses
3D scenes containing these objects, reporting coherent un-
certainty about scene composition and geometry.

Bayes3D is based on GPU-accelerated sequential Monte
Carlo inference in a probabilistic program that generates 3D
objects and scenes. During inference, objects are detected
and sequentially incorporated into a 3D scene graph model

* equal contribution

that supports massively parallel, low-resoluti on rendering
and robust, hierarchical Bayesian scoring against real depth
images. Object poses are inferred via coarse-to-fine enumer-
ation, enabling scoring of large numbers of high-resolution
poses at relatively low computational cost. Unlike previous
probabilistic programming approaches to 3D scene percep-
tion, these innovations in model robustness and inference
performance enable Bayes3D to work on challenging real-
world, real-time tabletop robotics problems.

Experiments on a Panda robot show that Bayes3D can
acquire complex 3D object models and robustly recog-
nize them in practice. Qualitative demonstrations show that
Bayes3D reports coherent uncertainty in challenging settings
with heavy occlusion. This paper also presents quantitative
benchmarks of Bayes3D’s data efficiency, when tested both
in-distribution and out-of-distribution, showing orders-of-
magnitude improvement over convolutional neural network
baselines.

II. RELATED WORK

Deep learning. Many popular approaches to 3D scene per-
ception and pose estimation use deep learning [19], [20],
[24]–[26], [34], [36], often fusing RGB and depth data
[33], [35] and incorporating probabilistic losses [5], [9]–
[11]. Outside of robotics, large neural networks for sub-
problems such as feature extraction [30] and segmentation
are also increasingly popular. These approaches typically
require significant training data and compute and can struggle
to robustly detect heavily occluded objects while failing to
report coherent uncertainty over 3D scene composition [12].
Inverse graphics. Bayes3D falls within the analysis-by-
synthesis paradigm [15], [17], [22], [38], in which 3D per-
ception is formulated as approximate inversion of a rendering
process. Recently, differentiable formulations such relying
on NeRFs [13], [29], [37] and 3D Gaussians [14], [16]



Scene Hypotheses

Rend
er

Score & 
Sample

Rend
er

Score & 
Resample

Score & 
Resample

Inferred Segmentation

Render Render Render

Scene Hypotheses Scene Hypotheses

Input RGB-D

RGB-D Video Mesh Construction Learned Object Library

Novel Object Learning Pipeline Inferred 3D Scene

Bayes3D Inference Engine

…

Fig. 1. Bayes3D Pipeline. Bayes3D is an uncertainty-aware 3D scene perception system that can learn to recognize and localize novel objects from just a
handful of views. To learn a novel object, we capture 5-10 RGB-D images (with a calibrated camera) from different viewpoints and overlay the resulting
point clouds to get a complete point cloud representation of the object. From this, we construct a voxel mesh by discretizing the cloud at a specified
resolution and placing voxels at each point. Now, given an input RGB-D image, we iteratively parse objects into a scene graph. At each step, we use a
coarse-to-fine procedure to recognize and localize objects. The procedure first coarsely enumerates many scene hypotheses, evaluates their likelihood, then
samples from the resulting approximate posterior. The procedure is then repeated according hyperparameters defined by a fixed schedule. We apply this
coarse-to-fine procedure iteratively to infer object poses, eventually reconstructing the full scene.

have received significant attention, but unlike Bayes3D, these
typically require large numbers of images to train and do not
parse scenes into 3D scene graphs [32], .

Probabilistic programming formulations have been also
developed for broad classes of 2D and 3D scenes [12],
[18], [27], [39]. Although these approaches are more data
efficient than neural approaches, they have relied on slow,
generic MCMC inference, unlike Bayes3D. The algorithms in
Bayes3D are more similar to template matching approaches
[1], [2] that efficiently evaluate geometric models against
depth data. But unlike classical template matching, Bayes3D
leverages a hierarchical Bayesian model for robust scoring
even when data is noisy and a sequential Monte Carlo
algorithm for efficiently inferring the composition of multi-
object scenes. To the best of our knowledge, Bayes3D is
the first inverse graphics system to deliver both real-time
learning and high-quality approximate Bayesian inference,
without relying on neural networks or generic MCMC.

III. METHODOLOGY

We cast pose estimation as approximate Bayesian posterior
inference in a generative model of scene depth images. A
high-level overview of our approach is depicted in Figure 1.
We implement our generative model and approximate infer-
ence algorithm in a JAX-based [3], [31] GPU implementation

of Gen [7], a probabilistic programming language [?] with
programmable inference [28].

A. Generative model

Algorithm 1 Bayes3D’s generative model
Require: n the number of objects appearing in the scene
Require: Otable a mesh model for the table
Require: O library of learned object voxel models
Require: I camera intrinsics
Require: σmax prior parameter for noise model

1: procedure SCENEMODEL
2: G← FLOATINGSCENEGRAPHNODE(1SE(3), Otable)
3: for i = 1, . . . , n do
4: oi ∼ U{O}
5: ci ∼ U{1, . . . , 6}
6: ∆ϕi ∼ RELATIVEPOSEPRIOR(Otable, oi, ci)
7: ADDCHILD(G, oi, ci,∆ϕi)
8: end for
9: θcam ∼ CAMERAPOSEPRIOR

10: y ← DEPTHRENDERER(G,ϕcam, I)
11: poutlier ∼ U(0, 1)
12: σnoise ∼ U(0, σmax)
13: ỹ ∼ DEPTHIMAGELIKELIHOOD(y, poutlier, σnoise, I)
14: end procedure



Our generative model is given in algorithm 1. Below we
describe different parts of the model in detail.

(i) Scene prior (lines 2-8): We use a structured scene
graph as our latent representation of scenes. For sim-
plicity, we assume that objects are not stacked (i.e. the
only node in the scene graph with non-zero out-degree
is the root node representing the table) and that all
objects are in contact with the table. This assumption
can be relaxed with minimal modifications to the system
as in [12]. We assume that types and poses of objects
in the scene are independent. We assume a uniform
prior on the type of objects that can appear in the
scene (line 4) and model contact relationships through
the bounding boxes of the objects. For each object
in the scene, we assume a uniform prior on which
face of its bounding box is in contact with the table
(line 5). Given the object type and contact face, three
parameters completely determine the pose of the object
relative to the table: the horizontal and vertical offset
of the object with respect to the table, denoted ∆x and
∆y, and a counter-clockwise rotation angle along the
normal vector of the table denoted ∆θ. For simplicity
of notation, we let ∆ϕ := (∆x,∆y,∆θ) in algorithm
1. We also assume a uniform prior on these parameters
for their valid range, that is:

p(oi, ci,∆ϕi) =
1

O
× 1

6
× 1

Otable.width− oi.ci.width

× 1

Otable.height− oi.ci.height

× 1

2π
.

(ii) Camera pose prior (line 9): We assume a simple prior,
on the pose of the camera frame. We assume that the eye
of the camera looks directly at the origin of the world
frame and that the camera’s “up” direction agrees with
the positive z-axis of the world frame. The distance
of the camera from the origin of the world frame and
the azimuth and altitude angles of the camera pose are
assumed to have uniform priors over fixed intervals.

(iii) Depth image likelihood (lines 10-13): The purpose
of the likelihood is for us to be able to score a
hypothesized latent scene against an observed depth
image. To generate an observed image from the sampled
scene and camera pose, we first use an OpenGL depth
buffer to obtain a “ground truth” depth image y (line
10). We then convert this depth image into a point cloud
C in the camera frame. We obtain our observed depth
image by creating another point cloud C̃ of the same
size as C and converting C̃ to the observed depth image
ỹ. To obtain the i-th point in q̃i ∈ C̃, we first flip a
biased coin with probability poutlier to determine if q̃i
will be used to generate an inlier or outlier observation.
Depending on whether we decide the point is an inlier
or outlier, we act differently.

Inlier: If the point is decided to be an inlier, we first
sample a point q ∈ C uniformly at random,

and then add independent Gaussian noise with
mean 0 and variance σnoise to each coordinate
of q to obtain q̃i.

Outlier:If the point is decided to be an outlier, we sam-
ple q̃i uniformly at random from the volume
of the visible scene.

To ensure that our observation model can produce
informative scores for a large range of images, we put
priors on the noise parameters poutlier and σnoise (lines
11, 12). These priors are non-informative and exist so
that, during inference, we can score hypotheses under
different noise assumptions.
Putting all these together, the likelihood density is given
by

p(poutlier, σnoise, ỹ|o1:n, c1:n,∆ϕ1:n) = σnoise/σmax

×
|y|∏
i=1

poutlier
V

+
1− poutlier
|y|

|y|∑
j=1

N (ỹi; yj , σnoise)


(1)

where V denotes the volume of the visible scene.

B. Approximate Inference

We use a sequential Monte Carlo (SMC) sampler [6], [8]
with a probabilistic program proposal [23] for approximate
posterior inference against Bayes3D’s generative model. Us-
ing the notation of Algorithm 1, our SMC sampler targets n
intermediate distributions. The k-th intermediate distribution
pk is Bayes3D’s posterior given an observed depth image ỹ,
but the number of objects depicted in ỹ is assumed to be k.
More precisely,

pk(o1:k, c1:k,∆ϕ1:k, poutlier, σnoise|ỹ) =

(
k∏

i=1

p(oi, ci,∆ϕi)

)
p(poutlier, σnoise, ỹ|o1:k, c1:k,∆ϕ1:k)/p(ỹ)

That is, in the first step, the SMC sampler “explains” the
observed depth image using a single object and a large num-
ber of observed pixels are labeled as outliers. In the second
step, an additional object is added and fewer points are
explained as outliers. Eventually, the final SMC intermediate
distribution is the true posterior, explaining the scene with n
objects. Note that this inference strategy starts by inferring
poutlier and σnoise to be very high and eventually lowers these
estimates, thereby relying on these variables’ priors on these
variables.

The proposal kernels used in Bayes3D’s SMC algorithm
are probabilistic programs that rely on coarse-to-fine search
of the support of the posterior. At the i-th stage of the SMC
sampler, the proposal kernel needs to propose values for
variables ci, oi, ∆ϕi, poutlier, and σnoise given

1) the observation depth image ỹ,
2) the parameters c1:i−1, o1:i−1, ∆ϕ1:i−1, and
3) the estimates (poutlier)i−1 and (σnoise)i−1 of the noise

parameters at stage i− 1

The proposal uses the following ingredients to produce a
sample:
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Fig. 2. 6D Pose Uncertainty. Bayes3D can infer posterior distributions over an object’s 6D pose. (a) Examples from the synthetic dataset on which we
evaluate and the corresponding posterior distributions inferred by Bayes3D. (b) The same procedure works on real RGB-D images. (c) Our quantitative
evaluations show that Bayes3D outperforms a neural network even with substantially less training data. The neural network is also unable to generalize to
out-of-distribution samples.

• coarse-to-fine schedule: Letting the support of the
parameters of interest be denoted by X , a coarse-to-
fine schedule is a finite sequence of partitions {Πt} of
X such that Π0 = {X} and each element of Πt can be
obtained by a union of a subset of elements of Πt+1.
The number of partitions in the schedule indicate the
number of stages in the coarse-to-fine search.

• scoring strategy: A scoring strategy for the partition
Πt is a mapping St : Πt → R+ which assigns a
positive score to each element of Πt. In our case, these
scoring functions evaluate the unnormalized SMC target
at a fixed set of points within each partition cell and
compute a weighted sum of the resulting values. We
also truncate the sum in (1) for each observed pixel to a
window of nearby pixel. This operation can be viewed
as convolving the output of the depth renderer (line
10 of algorithm 1) with a convolutional filter before
applying the likelihood. This truncation introduces a
small amount of bias in the importance weights of the
SMC sampler but significantly improves our run time.

Given these ingredients, the proposal kernel keeps track
of a subset of A ⊆ X from which it will sample its
proposal values for the variables of interest. Initially, A = X ,
indicating that the proposal can return samples anywhere
in the support of the variables of interest. At stage t of
the coarse-to-fine search, the proposal kernel subdivides A
according to its schedule Πt and then scores each subdivided
region using the scoring strategy St. The region of interest
A in the stage t + 1 of coarse-to-fine is then sampled from
this subdivision with probability proportional to its score. At
the end, a uniform sample is generated at the final value of
A to be returned as the proposed values for the variables
of interest. Note that our assumptions on Π imply that this
proposal distribution has a tractable density which can be
used to calculate importance weights in the SMC sampler.

For the rest of this section, we denote this density by q.
On a GPU, the scores can be calculated in parallel giving

rise to a performant sampler, capable of parsing scenes in
real-time. Table I illustrates this fact, showing various run
times for camera pose calibration using such a coarse-to-fine
proposal for stochastic search.

After the proposal samples are generated, the importance
weights of the particles need to be updated. The update
formulas are the usual SMC updates, but since most prior
terms are uniform, the weights can be slightly simplified.
Equation (2) gives the weight of each particle at the first
stage of the SMC sampler, and (3) shows how to obtain the
weight of each particle in the i-th stage from the weight in
the i−1-th stage. As is typically done in SMC samplers, we
optionally resample particles based on their weights at the
end of each stage.

W1 =
p1(o1, c1,∆ϕ1, poutlier, σnoise, ỹ)

q(o1, c1,∆ϕ1, poutlier, σnoise; ỹ)
(2)

Wi =
Wi−1pi(o1:i, c1:i,∆ϕ1:i, (poutlier)i, (σnoise)i, ỹ)

pi−1(o1:i−1, c1:i−1,∆ϕ1:i−1, (poutlier)i−1, (σnoise)i−1, ỹ)

× 1

q(oi, ci,∆ϕi, (poutlier)i, (σnoise)i; o1:i−1, c1:i−1,∆ϕ1:i−1, ỹ)
(3)

IV. EXPERIMENTS

This section presents quantitative evaluations of Bayes3D’s
pose inferences, object class inferences, hierarchical
Bayesian parameter estimates, and real-time 3D object
tracking performance. We also include the results of using
Bayes3D as the perception system on a real robot.

A. 6D Pose Uncertainty

First, we compare Bayes3D’s pose uncertainty estimates
with a neural pose estimator. For simplicity, we restrict this
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microbenchmark to scenes with a single known object – a
YCB mug [4]. Due to self-occlusion, there will be uncertainty
in the mug’s pose whenever the handle is not visible as in
Figure 2. We train a CNN [21] on synthetic images of the
mug at a fixed point on the table. The training images are
labeled with the true angular component relative pose of
the mug. The CNN outputs the location and concentration
parameters of a von Mises distribution approximating the
posterior distribution of the angular component of the mug’s
relative pose. The training objective is the cross entropy

loss from the true posterior on the pose to the variational
approximation predicted by the CNN.

To compare the performance of Bayes3D against the
neural baseline we use Bayes3D to obtain a von Mises
variational approximation. We sample 1000 particles from
Bayes3D’s SMC sampler and use the angular component of
the relative pose of the mug to form maximum likelihood
estimates of the parameters of a von Mises distribution. We
then evaluate the same cross-entropy loss on the obtained
variational approximation. In Figure 2 we have plotted the
loss curves for Bayes3D and the CNN for both in-distribution
and out-of-distribution test sets.

To achieve the same level of performance, we needed
to use neural networks with roughly 7 million parameters
(27.9MB), roughly 1700x more memory than the 16KB
needed for Bayes3D’s models.

B. Object Type Uncertainty

As a second microbenchmark we compare Bayes3D’s
performance on object identity inference against a neural
baseline. The dataset for this microbenchmark consists of
images of scenes with an occluder (a YCB Cheez-Its box) at
a fixed pose and–with equal probability–either a dumbbell
or a hammer. Depending on the relative position of the
occluder and the object, the identity of the object might be
uncertain, as shown in Figure 3. Our neural baseline for this
microbenchmark is again a CNN, but this time with a final
softmax layer with two nodes encoding the probability of
the hammer and the dumbbell. We train the network with a
cross-entropy loss on synthetic data.

Figure 3 shows the results of the microbenchmark. We
have evaluated the performance of the neural baselines and
Bayes3D on held-out data from the training distribution and
slightly out-of-distribution data obtained by adding Gaussian
noise to the pose of the hammer or dumbbell. We can see
that Bayes3D requires much less data to perform at the same
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level of accuracy as the neural baselines, while its quality
does not deteriorate on out-of-distribution data.

To achieve this level of performance, we needed to
use neural networks with roughly 3.15 million parameters
(12.6MB), roughly 1050x more memory than the 16KB
needed for Bayes3D’s models.

C. Hierarchical Bayesian Inference

To show the necessity of having priors on the noise
parameters poutlier and σnoise, we perform an ablation study
of these priors. We perform a basic classification task with
the objective to infer an object’s pose and identity from a
single corrupted depth image; see Figure 4B. We compare
performances of a hierarchical model with uniform priors
over over noise parameters (σnoise and poutlier) and a series of
ablated models with clamped sensor parameters set to a range
of small to larger values. For each of the 19 objects from a
synthetic dataset we compute the posterior probability over
object identity marginalized over poses and, in case of the
hierarchical model, over noise parameters. We report these
posterior probabilities in form of a confusion matrix, where
the i’th row corresponds to the (approximated) posterior
conditioned on object i; see Figure 4. Assuming a low noise
regime, while operating in a high noise regime, results in
more misclassifications; see Figure 4A (right).

D. Real-time 3D Tracking

We show that Bayes3D is capable of tracking the pose of a
moving camera in realtime. Just as our previous experiments
involved inference of the poses of objects in the scene, the
Bayes3D model supports inferring camera poses as well. We
synthetically generate video sequences (120 frames) of an
object panning around a single object places on the table.
Using a particle filtering algorithm, we iteratively infer the
camera pose at each frame, assuming the camera pose in the
first frame is given.

TABLE I
REALTIME CAMERA POSE TRACKING

Pose Accuracy
Object Image Size FPS Position (cm) Orientation (deg.)

Mustard

25x25 103.207 0.130 1.524
50x50 82.129 0.002 0.841
100x100 37.944 0.002 0.736
200x200 14.507 0.002 0.739

Drill

25x25 104.266 0.486 2.920
50x50 79.265 0.300 1.370
100x100 34.615 0.324 1.331
200x200 14.013 0.269 1.296

Clamp

25x25 104.189 0.650 3.710
50x50 84.029 0.392 1.980
100x100 37.452 0.240 1.157
200x200 14.259 0.254 1.281

Table I shows the frame rate and accuracy of camera
pose tracking for 3 different objects and 4 image resolutions.
We found that at low image resolutions, Bayes3D can track
at 100+ FPS and is still be fairly accurate. The speed of
Bayes3D is due to (1) fast parallel rendering in OpenGL
which enables rendering 2048 scene hypotheses in parallel
and (2) JAX implementation of our image likelihood that
allows us to score those 2048 images in parallel on the GPU.

V. CONCLUSION

In this paper, we presented an approach to uncertainty-
aware 3D scene perception that can rapidly learn the shapes
of novel 3D objects and then proceed to recognize and
localize those objects. Our method is based on probabilistic
inference in a structured generative model of 3D scenes and
inference is made scalable by fast parallel coarse-to-fine SMC
implemented on GPU. Our quantitative results indicate that
structured uncertainty representations enable accurate, robust,
and data-efficient pose inferences in real-world scenes.
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