
A Self-Feeding Robot

by

Eduardo R. Torres-Jara

Ing., Escuela Politécnica del Ejército (1995)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2002

c© Massachusetts Institute of Technology 2002. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 4, 2002

Certified by. .
Rodney Brooks

Fujitsu Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

A Self-Feeding Robot

by

Eduardo R. Torres-Jara

Submitted to the Department of Electrical Engineering and Computer Science
on February 4, 2002, in partial fulfillment of the

requirements for the degree of
Masters of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes the design and construction of a self-feeding robot. Biological
models have been the inspiration for much of the current Embedded Robotics research.
However, some aspects of living creatures have not been completely explored in these
models. One of these aspects is the need that living creatures have for food in order to
maintain an adequate energy level to function. This thesis proposes to build a robot
capable of acquiring its “food.” In this case the “food” is electric energy acquired
from the power outlets in the walls. The energy from the power outlets is used to
recharge the robot’s batteries. Therefore, the robot has skills such as: searching for
power outlets, connecting to power outlets, and recharging its batteries.

Thesis Supervisor: Rodney Brooks
Title: Fujitsu Professor of Computer Science and Engineering

2

Acknowledgments

Working in robotics at MIT has been a life-long goal, and there is nothing better

than working with the leader in this field, Rod Brooks. Thank you Rod for inspiring

me to work on robotics.

I also would like to thank the people with whom I have been working closely during

these years. They are the Humanoid Robotics Group: Jessica, Aaron, Paulina, Paul,

Juan, Charlie, Naoki, Artur, Lijin, Scaz, BP, Maddog, Cindy, Una-May, Martin and

Giorgio. They have been a source of inspiration, support, and knowledge – especially

Paul, Giorgio, and Artur who were of great help throughout this project.

Going from the “Athens” of Ecuador to the “Athens” of North America has been

an interesting journey for me, which I would never have made without the support of

my family: my Dad Teodoro, my Mom Cecilia and my sisters Patricia and Bibiana.

I love you.

My office mates Jessica and Paulina deserve special mention. Jessica has been of

great help, not only proof-reading this thesis but also being there in difficult times.

And Paulina always has the right words to encourage me to continue.

Life brings us a lot of surprises; good and bad things happen, but for making

things better, God gave us friends. People who are with you for the good and the

bad moments, people who really love you. Thanks to God and Maria Auxiliadora for

my family and all my good friends. And thanks to my good friends for being there:

Santiago, Samantha, Cristina, Alvaro, Vlady, Chichi, Pablo, Marco, Marcelo, Mercy,

Jose, Ursula, Juan, Martha, Maria Fernanda, Michael, Marisol, Rafa, Victor, Paul,

Giorgio, Karen and all the ones I am forgetting to mention. Without them life would

be hard.

3

Contents

1 Introduction 9

1.1 Scope of Investigation . 10

1.2 Review of Thesis Contents . 10

2 Literature Survey 12

2.1 Overview . 12

2.2 Self-Feeding . 12

2.3 Vision . 15

2.3.1 Pattern Recognition . 16

2.3.2 Obstacle Detection . 18

2.4 Force Control . 20

3 Hardware: Design and Implementation 21

3.1 Overview . 21

3.2 Mechanical Design . 21

3.2.1 Arm . 22

3.2.2 Plug . 25

3.2.3 Mobile Platform . 27

3.2.4 Camera for Navigation . 29

3.2.5 Camera for Outlet Detection 30

3.3 Computer Hardware . 30

3.3.1 QNX Server . 32

3.3.2 QNX Nodes . 33

4

3.3.3 Motor Controllers and Input/Output Board 35

3.4 Power System . 35

4 Vision Algorithms 39

4.1 Introduction . 39

4.2 Obstacle detection . 39

4.3 Outlet detection . 41

5 Support Software 48

5.1 Overview . 48

5.2 Introduction . 48

5.3 Operating System . 49

5.4 Base B12 daemon . 49

5.5 Arm daemon . 50

5.6 Obstacle detection daemon . 50

5.7 Outlet detection daemon . 51

6 Software: Design and Implementation 52

6.1 Overview . 52

6.2 Introduction . 52

6.3 Behavior: Wandering Around . 54

6.3.1 The Base Motor Control Agent 54

6.3.2 The Obstacle Avoidance Agent 56

6.4 Behavior: Searching for an Outlet . 56

6.4.1 The Outlet Detection Agent 57

6.4.2 The Scanning Agent . 57

6.5 Behavior: Connecting to an Outlet 58

6.5.1 The Arm Motor Control Agent 58

6.5.2 The Orientation Agent . 59

6.5.3 The Approaching Agent . 59

6.5.4 The Reaching Agent . 60

5

6.5.5 The Plugging Agent . 60

6.5.6 The Unplugging Agent . 61

7 Conclusion and Future Work 62

7.1 Analysis and Results . 62

7.2 Conclusions and Recommendations For Future Work 69

6

List of Figures

2-1 Tortoise of W.G. Walter . 13

2-2 Hopkins beast . 14

3-1 Robot . 22

3-2 Arm . 23

3-3 In/Out DOF. Top view of the arm. 24

3-4 Up/Down DOF. Lateral view of the arm. 24

3-5 Plug . 27

3-6 Mechanism for passive compliance. 28

3-7 Detail of an FSR. 28

3-8 Construction of an FSR. 29

3-9 Characteristic resistance of an FSR. 29

3-10 Hardware architecture. 31

3-11 Power System. 38

4-1 Obstacle detection. 40

4-2 Classes of features. 42

4-3 Positive examples . 44

4-4 Negative examples . 45

4-5 Boosting algorithm. 46

4-6 Outlet features. 47

4-7 Example of the detector working . 47

6-1 Software architecture. 53

7

6-2 Wandering around behavior block diagram. 55

6-3 Search for an outlet behavior block diagram. 57

6-4 Connecting to an outlet behavior block diagram. 58

7-1 Features chosen by the learning algorithm. 63

7-2 Additional features. 64

7-3 Example 1. 66

7-4 Example 2. 68

7-5 Trajectory of the robot. 69

8

Chapter 1

Introduction

This thesis describes the design, implementation, and evaluation of a self-feeding

robot. The motivation behind this work is to build a robotic system that allows us to

research living organisms. One of the most important aspects of living organisms is the

fact that they are completely autonomous; they are able to survive without external

help in their environments. Consequently, one of the main drives of living systems is

to obtain the energy necessary for their operation from their environment. They do

this by acquiring and processing food in a very efficient way. Beyond this basic skill,

living organisms have developed many “intelligent” behaviors. Many researchers in

the field of Artificial Intelligence such as Brooks (1989), Maes (1989), Arbib (1992),

Arkin (1998) and Breazeal (2000) have studied these behaviors and their interactions.

However, the study of the “feeding” aspect of living organisms has not received much

attention.

Therefore, we built a robot that emulates the self-feeding behavior of a living

organism. The robot works with batteries. Consequently, the kind of “food” (energy)

that it needs is electrical energy. The environment in which the robot operates is the

9th floor of the MIT AI Laboratory.

Acquiring food in an efficient way is inherent to living organisms. Nevertheless,

this is not an easy task for a robot. The skills that our robot needs to have are:

searching for power outlets, connecting to power outlets, and recharging its batteries.

When the robot needs to recharge its batteries, a visual search detects power

9

outlets. Once an outlet is detected, a visual navigation system directs the robot

towards the power outlet. The robot then accesses the power outlet using a plug

on its arm and visual feedback. When there is electrical contact between the power

outlet and the robot, the robot’s batteries start to recharge.

Building a robot with such skills presents many challenges such as: on-board

computation and power, visual searching, motor-vision coordination, and navigation.

Vision is probably one of the most challenging parts. Animals in general rely a

lot on their vision capabilities and can respond quickly to visual stimuli. However,

for a robot, achieving the same performance is not an easy task because of both

the differences between the computational model used by the robot and the living

brain as well as the complexity of the problem. Another challenge is the “hand-eye”

coordination necessary to connect the robot’s plug into the outlet. This task demands

force control of the actuator involved.

1.1 Scope of Investigation

Creating a robot that can represent a living organism is a complicated challenge

about which we do not have much knowledge. We implement a robot that uses visual

input to recognize outlets and to avoid obstacles. A supervised learning algorithm

is used to learn the pattern of the outlet. It is based on an algorithm used for face

detection since the two problem are fairly similar. A plug mounted on an arm is

used to connect the robot to an outlet. The force applied to the plug is controlled in

order to facilitate this task. In order to have enough computation for running all the

algorithms in real-time, the robot has an on-board computer network. The behaviors

of the robot are implemented using agents.

1.2 Review of Thesis Contents

The thesis is organized as follows:

• Chapter 2 provides a survey of background material supporting this work.

10

• Chapter 3 describes the design and implementation of the hardware of the

robot.

• Chapter 4 describes the vision algorithms implemented for navigation and

pattern recognition.

• Chapter 5 describes the support software used to develop the behaviors of the

robot.

• Chapter 6 describes the software architecture and details modules imple-

mented.

• Chapter 7 presents the results and conclusions.

11

Chapter 2

Literature Survey

2.1 Overview

In this chapter we review the related literature that supports this thesis. The survey

starts with a description of previous robots aimed at the study of different aspects of

living creatures. Then, we discuss work done in other areas related to the design of

the robot, such as pattern recognition, navigation, and force control.

2.2 Self-Feeding

Many robots have been constructed to study different biological aspects. However,

affording a robot the ability of “feed” itself (see Section 4) has not received much

attention even though all living creatures are able to feed themselves. The idea of

implementing such a capability in a robot can be tracked down to W.G. Walter’s

robots (Walter 1950, Walter 1951, Walter 1953). Walter named his robots Elmer

(ELectro MEchanical Robot) and Elsie (Light Sensitive, with Internal and External

stability). These robots were capable of recharging their batteries when they went

back to a hutch.

As shown in Figure 2-1, each of the robots consisted of: a shell with a photocell

on its top, a bumping sensor, two motors, two radio tubes, and a battery. One of

the motors was used for translating, the other for steering. The light sensor was

12

Figure 2-1: Tortoise of W.G. Walter

connected to the steering motor. This configuration allowed the robot to explore its

environment, according to the following description.

When it did not detect any light, the robot turned on its two motors, describing

a cycloidal trajectory. The steering motor also rotated the photocell in search of a

light stimulus. This combination of actions generated an exploratory behavior. If

the photocell detected light, the steering motor was turned off, causing the robot to

move toward the light stimulus. However, if the light stimulus became too strong,

the robot turned away from the light. This ensured the robot would not stay under

the light the entire time.

This last behavior depended on the voltage level of the battery. If the battery level

was below a threshold, the photocell amplifier increased its gain to detect the light

from farther away. Then, when the robot detected light, it ran towards it. However,

since its battery was low, the amplified light signal remained below the threshold that

would cause the robot to run away. Therefore, in this low power condition, the robot

would continue approaching the light source. In order to use this behavior for feeding

the robot, a light bulb and a recharging system were placed inside a hutch. When the

13

robot got into the hutch and the recharging system was activated, the motors were

disconnected. Once the battery was recharged, the motors were reconnected and,

because both the battery voltage and light intensity were above their thresholds, the

robot ran away from the hutch.

The design was simple and effective. However, there is no evidence that the

recharging of the batteries was automatic or even that it really existed. In order

for the robot to recharge its batteries automatically, the recharging system would

have had to have some kind of alignment process that was not described in Walter’s

literature. It is interesting to note that Walter referred to his robots as an “Imitation

of Life” (Walter 1950). He considered his robots rough prototypes of living organisms

and even coined them as the species Machine Speculatrix.

In 1964 the Hopkins Beast robots (Figure 2-2) were built at the Johns Hopkins

University Applied Physics Laboratory. These robots were able to navigate the cor-

ridors using sonar. When they ran out of power, they looked for outlets to recharge

themselves. One of the Hopkins Beasts found the power outlets by feeling along the

walls. Another used photocells to optically find the outlets from a distance. The

outlets had to contrast with the wall in order for this to work.

Figure 2-2: Hopkins beast

More recently, Brooks proposed the idea of Embodied Intelligence (Brooks 1986)

14

which radically changed the approach to robotics. Brooks’ idea was implemented in

many creature-like robots such as Genghis (Brooks 1989) and Attila (Angle 1991).

These robots had the goal of “surviving” in their environment. As a consequence,

robotics research turned its attention to biology, looking for models and inspiration

to create versatile, robust, and intelligent robots. The idea of robots as creatures was

especially successful because robots were able to deal with real-time tasks.

Brooks’ research extended from single creature-like robots to groups of robots

(Maes & Brooks 1990) searching for collaborative behaviors, such as those observed

in many colonizing creatures like ants. This work influenced not only the robotics

community, but space exploration as well (Brooks & Flynn 1989), with the creation

of Sojourner to explore Mars (Golombek, Cook, Economou, Folkner, Haldemann,

Kallemeyn, Knudsen, Manning, Moore, Parker, Rieder, Schofield, Smith & Vaughan

1997). Sojourner is a well-known representative of a robot that survives in its envi-

ronment. However, it does not need to look for its energy sources because its solar

panels automatically relay power as soon as the sunlight hits them.

Other autonomous robots that power themselves use different strategies. For

example, SAGE (Nourbakhsh, Bobenage, Grange, Lutz, Meyer & Soto 1999) uses

electrical energy while Gastrobot (Wilkinson 2000) uses chemical energy. SAGE gives

tours in the Carnegie Museum of Natural History. The robot recharges itself when

it returns to its base. However, it uses very visible artificial markers to identify its

base and to recharge its battery. Unlike SAGE, Gastrobot has an artificial stomach

that processes sugar to recharge its batteries. However, this robot is not capable of

obtaining its own food.

2.3 Vision

Vision is the most important sense in many animals. Thus, many behaviors are

associated with visual stimuli. Additionally, vision allows animals to react quickly

to a changing environment around them . Therefore, developing a system that uses

visual information is one of our goals. However, processing visual information is

15

not an easy task. It is difficult to represent the information in an image and, even

more so, to do this task with the same speed and accuracy with which animals and

humans do. Besides the problem of representation, we have to face the problem of

computation. Biological vision is processed by a highly parallel computer architecture.

The robot, on the other hand, uses a serial computational model. This means that

all the information has to go through a single machine. In order to try to simulate

the same operation that a parallel system does, we need a very fast computer able to

handle the adequate throughput.

2.3.1 Pattern Recognition

One of the tasks involved in this project is pattern recognition. Specifically, we

must detect pattern of the power outlet. It is necessary to recognize this pattern at

different scales and in slightly different orientations, while the robot is both stationary

and moving. This task, simple for humans, is not an easy one for the robot’s vision

system.

Many implementations of pattern recognition deal with frontal face detection. In

the following we survey methods that primarily use shape instead of color information.

The assumptions made for frontal face detection are useful in the outlet detection.

For example, we assume that an outlet will be vertically oriented mounted on a flat

wall.

One way to solve the pattern recognition problem is with the method proposed

by Rowley, Baluja & Kanade (1996). This method uses several neural networks that

cover different areas of a 20 × 20 pixel image. Some of the areas covered by the

neural networks overlap each other. After an intensive training over a sample set

with thousands of various faces, the neural networks contain the information that

allows the system to detect a face. In order to detect faces in an image at different

scales, the image is downsampled. Each of the 11 steps in the downsampling process

reduces the image by 10%. Though this method is effective, the response time is

high. Because it is necessary to evaluate the neural networks at each point of the

image at all different scales, the response time is not good enough to work in a real-

16

time system. To improve the performance, Rowley et al. (1996), trained two different

sets of networks. One is trained to preclassify windows that may contain faces; and

the other, discriminates the faces from the preclassified windows. The second set of

neural networks does a more complicated job since the images that are evaluated have

features in common with the faces. A much simpler version of this method was used

in Torres-Jara & Edsinger (1999). In this work just one neural network was used.

However, the accuracy decreased as was expected.

A support vector machine has also been used to discriminate between face and

non-face images (Osuma, Freund & Girosi 1997). The advantage of using a support

vector machine is that the answer (the support vectors) defines the optimal boundary

between the positive and negative samples. However, the training involves solving

a quadratic optimization problem. The application of this method to an image is

similar to the one described previously. In short, a window is used to scan the whole

image. This window is evaluated using the support vector machine to determine

whether there is a face present or not. The same procedure is repeated for various

scales.

Sung & Poggio (1994) have proposed a mixture of Gaussian model to detect

faces. This method, as with the previous, search for faces in various scales using

downsampling.

Another way to approach the problem of pattern recognition is to create a tem-

plate made up of edges of a pattern (e.g., a face or an outlet). Then an image can be

correlated with the pattern at different scales. Correlation can be accelerated using

the Fast Fourier Transform. However, depending on the size of the template, the num-

ber of operations needed to compute the correlation makes this method unattractive

for real-time detection.

The method of pattern recognition used in this project has been presented in

(Viola & Jones 2001). In this method, it is assumed that an image is made up of a

combination of rectangular features. These rectangular features form a base of the

image; however, this base is over determined. In order to recognize a pattern it is

necessary to find the rectangular features that best describe the pattern. This is

17

done by training various discriminant functions and then boosting the answer using a

variation of the Adaboost(Freund & Schapire 1995) algorithm. The big advantage of

this method is that once the rectangular features have been determined, evaluation

of features is fast. To do this, an integral of the image is calculated and then the

area under this integral is easily found by differentiating the limits of the rectangular

features (as to be explained in Section 4).

In Viola & Jones (2001), the method presented in Rowley et al. (1996) and the in-

tegral image method are compared. The results show that the latter is approximately

fifteen times faster. One of the reasons for this performance is that to evaluate multi-

ples scales it is not necessary to downsample in order to evaluate the image at multiple

scales.

2.3.2 Obstacle Detection

Obstacle detection is obviously a necessary feature for a mobile robot. Many methods

have been developed to detect obstacles, depending on the kind of sensors used. For

instance infrared, ultrasonic sensors and cameras are common sensors. In this work

the robot uses a camera to detect obstacles.

Outdoor and indoor environments have both been considered in the developing of

obstacle detection methods using visual information. For outdoor environments one

of the most well-known platforms is the CMU NAVLAB (Thorpe, Kanade & Shafer

1987). This platform is a modified Chevy Van equipped with cameras in the front

and the rear, laser rangefinder, and an inertial navigational system. The goal of this

platform is to follow a road. This was achieved by using a neural network system to

process the images and determine the direction to drive. This neural network system,

called ALVINN (Autonomous Land Vehicle In a Neural Network), was developed

by Pomerleau (1993). Another system that uses vision and lasers to detect hazard

conditions is the one used on the rover of the Mars Pathfinder Project (Matthies,

Gat, Harrison, Wilcox, Volpe & Litwin 1995a).

Navigation systems based only on stereo vision have also been developed and

tested in rovers (Matthies, Kelly & Litwin 1995b). A different approach for outdoor

18

navigation is presented in Lorigo, Brooks & Grimson (1997). A 64× 64 image is used

and the following constraints are assumed:

• The robot is on flat terrain. Therefore, the obstacles that are farther away

appear at a higher position in the image than the obstacles that are closer to

the robot.

• Obstacle boundaries are visible.

• The floor near the robot has no obstacles.

The image is scanned from bottom to top with a 20× 10 pixel window. For each

consecutive step, the window is placed one pixel above its previous location. For

each window, histograms of the brightness gradient magnitude, the normalized RGB

color, and the normalized HSV color are calculated. The histograms of each successive

window placement in a column are compared with those of the bottom window. When

the difference is greater than a given threshold an, obstacle is detected. This analysis

is repeated for each column in the image.

Many approaches have been developed for indoor navigation as well. Two ap-

proaches that use vision as their only input are described in Santos-Victor, Sandini,

Curotto & Garibaldi (1995) and Horswill (1993). Santos-Victor et al. (1995) uses

optical flow to navigate the robot along corridors; the robot computes the velocity

of variation of the left and right halves of the image, and steers toward the half with

lower velocity. This method is based on the centering reflex of a bee. Horswill (1993)

used a different method based on the constraints of corridors. It is assumed that the

robot is on a flat floor and that the floor has little to no texture. Because the robot

is on a flat floor, the distance from the bottom of the image to the closest point of an

obstacle can be used to measure the distance from the robot to the obstacle. Also,

because the floor has low texture, an edge detector can be used to separate the floor

from obstacles. Consequently, the robot computes the edges of a grey-scale image

and selects the edges whose distances are closest to the bottom of the image. These

edges represent obstacles. A combination of this method and the one presented in

Lorigo et al. (1997) is used in this thesis.

19

2.4 Force Control

In order to connect the plug to the outlet, it is necessary to control the force exerted by

the arm. This can be done either by using passive systems or by actively controlling

the forces.

One of the most well-known passive systems is Remote Center of Compliance(RCC)

(Whitney & Nevins 1978), which was developed for assembling parts. In Whitney

(1982), there is a description of the the geometric problem of assembling rigid parts

in real environments in which conditions such as perfect alignment are difficult to

achieve.

For an active system, the controlled parameter is either only the force or a ra-

tio between the force and another variable. If the variable is position, it is called

stiffness control; if the variable is velocity it is called damping control. A survey of

these methods is presented in Whitney (1987) and in Zeng & Hemami (1997). They

include: combined position and force control (Raibert & Craig 1981), stiffness control

(Salisbury 1990), damping control (Whitney 1977), and impedance control (Hogan

1985).

RCC devices are less complex than active force controlled devices which is why

they are preferred in simple assembly tasks. In this thesis an RCC device is used to

connect the plug to the outlet. Its design is described in Section 3.

20

Chapter 3

Hardware: Design and

Implementation

3.1 Overview

In this chapter we describe the design and implementation of the hardware of the

robot from the global architecture to the details of its main components such as

actuators, sensors, controllers and processors.

3.2 Mechanical Design

The mechanical design of the the robot comprises the following parts: an electrical

outlet plug, an arm, two cameras, a mobile platform, three on-board processors,

an ethernet switch, an ethernet-wireless converter, motor controllers, and a power

system. A picture of the robot is shown in Figure 3-1.

The main function of robot, its being able to acquire energy to recharge itself,

revolves around a plug which is mounted on an arm. The arm has two degrees of

freedom (DOF): up/down and in/out. There are sensors that allow the robot to

detect when the plug has made electrical and/or mechanical contact. The arm and

the plug are further mounted on a mobile platform that can translate and rotate.

One of the cameras is mounted on the lower front part of the platform and is used for

21

Figure 3-1: Robot

detecting obstacles. The other camera is mounted on the up/down DOF of the arm

(see Figure 3-1). This camera is used to detect power outlets. Each of these parts

are described in detail in the following subsections.

There are also three computers, an ethernet switch, an ethernet-wireless converter,

motor controllers, and a power system all located on the three layers of the robot’s

base. Their details and connections are explained in section 3.3.

3.2.1 Arm

The arm is used to reach the power outlets. It has two linear DOF: one for the

up/down movement and the other for the in/out movement. The shape of the arm

is shown in Figure 3-2.

The in/out DOF uses two 12-inch hardened anodized aluminium shafts mounted

22

Figure 3-2: Arm

on four frelon-lined linear bearings. Each shaft uses two bearings, so that when

the arm is extended, the bars will have enough support so as not to bend. This

configuration is shown in Figure 3-3. The combination of these specific bearings and

shafts keeps the friction low and compensates for slight misalignments. The in/out

DOF uses a cable system driven by a DC brushed motor with a 400 counts per rotation

(cpr) optical encoder and a 134:1 gear head. The characteristics of the motor are in

Table 3.1.

The up/down DOF is built with two 12-inch hardened anodized aluminium shafts

mounted on two frelon-lined linear bearings. This DOF lifts the in/out apparatus as

shown in Figure 3-4. The up/down DOF uses a ball screw that is driven through

a belt by a brushed DC motor. The ball screw is mounted with shaft reducers and

bearings and keeps the arm at a constant height with no power consumption. (In

23

Figure 3-3: In/Out DOF. Top view of the arm.

Figure 3-4: Up/Down DOF. Lateral view of the arm.

24

Motor MicroMo 2224

Power 3.8W
Voltage 12V
Torque constant 2.05oz-in/A
Stall Torque 2.80oz-in
No load Speed 7800rpm
Weight 1.62oz
Efficiency 0.82
Inertia 0.382 × 10−4oz-in-sec2

GearBox MicroMo 23/1

Reduction 134:1
Continuous Maximum Torque 99.13oz-in
Intermittent Maximum Torque 141.61oz-in
Efficiency 0.60
Gearbox Weight 3.53oz

Table 3.1: Motor Characteristics for the in/out DOF

other words, the motor is off when the arm is not moving.) This helps to conserve

the battery charge. The DC motor driving this DOF has a 16 cpr magnetic encoder

and a 141:1 gear head which enables it to lift the 2 Kg mass of the other DOF’s

components. The characteristics of the motor are presented in Table 3.2.

3.2.2 Plug

The plug consists of two copper prongs mounted in a plastic housing. The plas-

tic housing provides electrical insulation. The plug is mounted on the arm using a

mechanism that provides passive compliance. The passive compliance compensates

for slight misalignments that may arise between the plug and the sockets of a power

outlet.

The mechanism that provides the passive compliance is shown in Figure 3-6. The

mechanism consists of a spring, a plug support, the plug itself, and a cable. The plug

and the case remain together due to the normal force exerted by the spring through

a cable. If lateral forces are applied to the plug, it moves or slides while remaining in

contact with the plug support. Therefore, when the robot is trying to plug into an

25

Motor MicroMo 1524

Power 1.4W
Voltage 12V
Torque constant 1.614oz-in/A
Stall Torque 0.957oz-in
No load Speed 9900rpm
Weight 0.74oz
Efficiency 0.76
Inertia 9.2 × 10−6oz-in-s2

GearBox MicroMo 15/5

Reduction 141:1
Continuous Maximum Torque 14.2oz-in
Intermittent Maximum Torque 21.2oz-in
Efficiency 0.66
Gearbox Weight 0.741oz

Table 3.2: Motor Characteristics for the up/down DOF

outlet, even if the plug is misaligned, the plug’s prongs will touch the funnels of the

outlet. The mechanical contact will thus align the plug and the outlet enabling the

robot to complete the insertion.

When the robot is extending its arm, the arm may touch a wall or other surface,

making it necessary to detect this state. This is done using a Force Sensing Resistor

(FSR). The FSR is a device made of a thick film polymer that decreases in resistance

when the force applied to it increases. The way an FSR is constructed is shown in

Figures 3-7 and 3-8.

An FSR has advantages over piezofilm and conductive rubber. An FSR is less

sensitive to vibration and heat than piezofilm and has less hysteresis than conductive

rubber. Though FSR’s are not completely linear, they are suitable for the current

application in which only a rough estimate of the force on the plug is needed.

An FSR is placed between the plug and the plug support. The force exerted by the

plug is distributed over the sensor surface using a metallic plate and a double-sided

laminated adhesive. The laminated adhesive has three functions: to act as a spring,

to make the mounting easier, and to electrically insulate the FSR from the metallic

26

Figure 3-5: Plug.

parts of the plug support. The dynamic range of the sensor’s resistance is from 1kΩ

to 1MΩ (Figure 3-9). A voltage divider is used to convert the force to a voltage. The

output of the voltage divider is connected to an A/D converter.

The plug on the end of the robot’s arm is further connected to a switched power

supply. This power supply converts the 110V AC from the wall’s outlet to a regulated

24 V DC. The output of the power supply is used to power the battery charging sys-

tem. In order to detect that the plug is under voltage, an optocoupler is connected to

the output of the regulated power supply. By reading the output of this optocoupler,

the robot can determine if a successful operation has been accomplished.

3.2.3 Mobile Platform

The robot uses a commercial mobile platform (RWI B12) which has a synchronous

drive system that allows it to translate and rotate. The drive system includes three

wheels that are kept parallel all the time. These three wheels are all driven, providing

good traction.

The B12 platform includes an on-board NEC 78310 microcontroller. This mi-

crocontroller controls the motors and the battery system. The motor control for

steering and driving uses optical feedback from the motors’ encoders and pulse width

modulation (PWM) to power the motors. The microcontroller also reads the voltage

27

Figure 3-6: Mechanism for passive compliance. The figure shows a cut of the plug
in Figure 3-5. The cable that connects the spring with the plug is not shown in the
figure.

Figure 3-7: Detail of an FSR. The figure shows the parts of an FSR.

and current from the batteries. Communication is through an RS-232 serial interface

using ASCII commands. The command format is given by a two letter mnemonic

command and a hexadecimal number. The commands allow the robot to read the

status of the base and to change the motors’ positions, velocities, and accelerations.

Information about the commands can be found in (Real World Interface Inc. 1994).

The platform is powered by four lead-acid batteries. The electronics necessary

to charge the batteries according to specifications is included on the platform. The

charging system requires a connection to a regulated power supply not initially in-

cluded on the platform.

28

Figure 3-8: Construction of an FSR. The figure shows the assembling process of an
FSR

Figure 3-9: Characteristic resistance of an FSR. The figure illustrates the relation
between the force applied and the resistance of an FSR. The resistance decreases as
the force increases.

3.2.4 Camera for Navigation

The camera used for navigation is an analog color camera with NTSC output. The

characteristics of the camera are shown in Table 3.3.

The camera uses a lens whose maximum aperture is F2.8 and whose horizontal

field angle is 115◦. This wide angle makes it possible to visualize a space as big as

the width of the robot which is convenient for detecting obstacles.

This camera is mounted on the front of the platform and tilted to have a better

image of the floor.

29

Camera Specifications

Model GP-CX161-15
TV Standard NTSC
Horizontal scanning frequency 15.734 kHz
Vertical scanning frequency 59.94 kHz
Number of scanned lines 525 lines
Frames per second 30 frames
Synchronization Internal
Resolution Horizontal: Min. 330 lines (center area)

Vertical: Min. 350 lines (center area)
S/N ratio 46 dB (with ACG off)
AGC On (preset)
Video output VBS 1V(p-p) / 75 Ωcomposite signal
External terminal 6-pin cable connector

Power supply range DC 4.8 5̃.5 V
Power consumption DC 5.0 V 160 mA (Typ.)
Field angle 115.0◦

Max. aperture F2.8

Table 3.3: Specifications: Camera for Navigation

3.2.5 Camera for Outlet Detection

The task of this camera is different from the one used for navigation. It is mounted

on the up/down DOF of the arm, so that it can detect the outlets and the plug. The

camera used is an analog color camera with NTSC output. The characteristics of the

camera are shown in Table 3.4.

The camera uses a lens whose maximum aperture is F2.8 and whose horizontal

field angle is 45◦. Unlike the previous camera, the narrow angle gives less deformation

and better image resolution. These features are appealing for pattern recognition.

3.3 Computer Hardware

The robot has three PC104 computers on its top layer, which were chosen for their

small form factor(3.55” × 3.755”). A PC104 computer uses a connector with 104

pins to replace the ISA standard in a normal PC. There is also an extension called

30

Motor
Controller

Motor
Controller

 Server
 (Node 1)

 Node 2

Frame grabber

Camera

A
R
M

 Node 2

Frame grabber

Camera

Switch
Ethernet
converter

RS232 /
RS485

Input/Output
Board

Base B12

Force

NTSC NTSC

RS485

RS232 RS232

UTP
UTP

Plug

120 AC/
24 DC

120 AC/
15 DC

120 AC/
15 DC

120 AC/
15 DC

120 AC/
15 DC

 Battery System

Voltage Detector

Hard
Drive

Figure 3-10: Hardware architecture. The figure illustrates the connections between all
the components of the robot. A detailed diagram of the Battery System is illustrated
in Figure 3-11

31

Camera Specifications

Model GP-CX161-45
TV Standard NTSC
Horizontal scanning frequency 15.734 kHz
Vertical scanning frequency 59.94 kHz
Number of scanned lines 525 lines
Frames per second 30 frames
Synchronization Internal
Resolution Horizontal: Min. 330 lines (center area)

Vertical: Min. 350 lines (center area)
S/N ratio 46 dB (with ACG off)
AGC On (preset)
Video output VBS 1V(p-p) / 75 Ω composite signal
External terminal 6-pin cable connector

Power supply range DC 4.8 5̃.5 V
Power consumption DC 5.0 V 160 mA (Typ.)
Horizontal field angle 45.0◦

Vertical field angle 33.8◦

Max. aperture F2.8
Focal length 4.6 mm

Table 3.4: Specifications: Camera for Outlet Detection

PC104+, which is equivalent to the PCI standard.

These computers are running QNX as their operating system, one of them acting

as a server and the other two as nodes. All three computers are connected to each

other via an ethernet switch and to an external network via an ethernet-wireless

converter (see Figure 3-10). The network in the Artificial Intelligence Laboratory is

the external network.

The server also connects via a serial port to a network of controllers to control

the arm motors and read the sensors.

3.3.1 QNX Server

The QNX server in the robot stores the programs to be run as well as the boot

configuration of all the nodes in the network, provides network services, and acts as

32

a bridge between the internal and external networks.

The computer used as a server has a 400MHz AMD K6-2 processor, 256MB RAM,

and on-board I/O devices. A more complete description of the computer is presented

in Table 3.5. Additionally, a 20GB 3.5” hard drive is connected using an IDE interface

so that the server can store the operating system, configurations, and programs.

The on-board I/O devices used in this project are the two RS-232 serial ports

and the ethernet card. One of the RS-232 ports connects to the B12 base making

it possible to read the encoders of the motors as well as the charge of the battery.

It is also possible to set position, velocity, and acceleration for the translational and

rotational motors. The other serial RS-232 port connects to the network of controllers

using an RS232 to RS485 converter. In this network, the server is the master controller

and the other boards are slaves. The server is able to read the encoders from each of

the motors, the values of the force sensors, and “the presence of voltage” sensor. The

server also can set the PID gains, position, velocity, acceleration, and some additional

parameters of the controllers.

The ethernet card in the server is connected to an ethernet-wireless converter

using a UTP cable. This ethernet converter interfaces the ethernet board with a

IEEE 802.11 PCMCIA wireless card. Therefore, the server can communicate with

the wireless network available in the AI Laboratory.

A second ethernet card is attached to the server using the PC104 expansion. This

card links to the 100/10Mps ethernet switch via a UTP cable. The ethernet switch

also links to the other two nodes to form a QNX network which will be referred to as

the internal network. Given that the server connects to both the internal and external

networks, it is capable of behaving as a bridge between these two networks.

3.3.2 QNX Nodes

Each node in the robot is dedicated to processing images from the connected camera.

The two nodes are computers with the same characteristics running as QNX nodes.

A node comprises a computer and an external frame grabber.

The two computers are the same as the server: an AMD K6-2 400MHz processor

33

Computer specifications

Processor AMD K6-2 400MHz
Cache 512KB Level 2
RAM 256MB
Ethernet card dual speed 10/100 Mbps
Serial/Parallel ports 2 COM +1 LPT
Disk On Chip Socket 32 pin. Flash technology
Keyboard and PS2 Mouse port Available
Video PCI
IDE expansion Available
Power Supply 5V
Power Requirements +5V ±5% @ 4.25A typ. (21.3W)
(32MB RAM, keyboard, mouse,Win95 and ethernet)

Table 3.5: Computer specifications.

with 256MB RAM (again see Table 3.5 for more specifications). A 16MB flash disk on

chip (DOC) is mounted in each computer. This DOC has the information necessary

to boot the computer and to connect to the network. The connection of each node

to the network is done through their respective on-board ethernet cards.

The external frame grabber, whose characteristics are shown in Table 3.6, is at-

tached to the computer using a PC104 connector. Each node (computer and frame

grabber) only requires 5V DC to operate.

Frame grabber specifications

Form factor PC104+
Input video format NTSC, PAL, SECAM, S-video
Output formats Color: YcrCb 4:2:2 and 4:1:1; RGB 32, 24, 16, 15; Monochrome: Y8
Resolution NTSC: 640 x 480; PAL/SECAM: 768 x 576
Video noise 1 LSB (least significant bit)
Power 5 VDC, 500 mA

Table 3.6: Frame grabber specifications

34

3.3.3 Motor Controllers and Input/Output Board

The controllers used for the DC brushed motors are PIC-SERVO Motion Controller

Boards. These boards are based on PIC microcontrollers which makes them small

and have low power consumption. The controllers are networked using a full duplex

RS-485 protocol. This characteristic allows for control of the motors using one serial

connection to the RS-485 network. Some of the features of the controllers are:

• Position and velocity control

• Trapezoidal profiling

• 16-bit PID gains

• RS-485 serial interface

• Two-channel incremental encoders

In order to read the force and voltage-presence sensors, a PIC-I/O Multifunction

Digital and Analog I/O Board is used. This board can read twelve digital inputs and

three 8-bit A/D input channels. Additionally, this board can be connected to the

motor controller network. The motors and the sensor inputs are interfaced with the

QNX server through an RS-232 port.

The sensors are connected in the following way:

• The outputs of each FSR voltage divider are connected to a different A/D input

channel.

• The output from the optocoupler, which detects the voltage presence in the

plug, is connected to one of the digital inputs of the board.

3.4 Power System

The power system of the robot must supply energy to the controllers, the motors,

the base, the cameras, the computers, the hard drive, the switch, and the ethernet

converter. The diagram of the power system is shown in Figure 3-11.

35

The controllers and the arm motors have low power consumption. Therefore, it

is possible to use the base’s lead-acid batteries to power them. The base supplies

an output that starts at 12V DC when the batteries are fully charged. This voltage

decreases as the batteries discharge. In order to provide constant voltage to the

motors, the robot has a DC/DC converter which keeps the voltage constant. The

controllers, on the other hand, have voltage regulators which makes it possible to

directly connect them to the battery output.

To power the other devices, the robot uses four ED369 battery systems . These

systems have outputs at 16 or 19V DC regulated or 12V DC unregulated. The charge

of the system is 5800 mAh. The characteristics of this battery system are shown in

Table 3.8. The distribution diagram is also shown in Figure 3-11.

One of the ED369 power systems powers the ethernet switch, the ethernet con-

verter, the hard drive, and the cameras. The 19V DC output is transformed to

12V DC and 5V DC using DC/DC converters. The voltage requirements are shown

in Table 3.7.

Power requirements

Device Voltage(V) Current(mA) Power(W)
Color camera 5 160 0.80
Hard drive 12 240 2.88

5 500 2.50
Ethernet switch 12 600 7.20
Ethernet converter 5 400 2.00

Total 15.38

Table 3.7: Power requirements

Each of the three computers is also powered by a ED369 battery system. The

output voltage is converted to 5V DC regulated. The current required by each com-

puter is 4.25 A when no serial port is used. The DC/DC converter used to drive this

power is a 30 W TRI-MAG 980ZW1205S which outputs 5V DC regulated from an

input between 9-18 V DC.

All these batteries must be recharged when the robot connects to an outlet.

36

Battery system specifications

Model ED369
Battery cell High density Lithium Ion Battery
Capacity 5400 mAh

Power input DC 15V 1̃8V / 1.0 A min
Power output 16V / 2.5A

19V / 2.2 A

10V 1̃2V / 3.0A
Dimensions 19.7 cm × 10.1 cm × 2.8 cm
Weight 620 g
Charging time 6 h

Table 3.8: Battery system specifications

The B12 base has a recharging circuit on-board for its lead acid batteries. This

circuit operates properly with a regulated source that provides 24V DC/1.5A. This

energy is obtained from a switched power supply that converts 110V/1.5A AC to

24V/2.5A DC regulated. The 110V AC is obtained from the robot’s plug when it is

connected to a power outlet. Furthermore, the power supply is mounted on board.

This is possible because a switched power supply is much lighter than a linear one.

All the ED369 battery systems are rechargeable using an external regulated power

supply. As in the B12 recharger, the power is provided by an on-board switched power

supply. The power supply converts 110 V AC to 15V DC. However, the battery system

is not capable of both recharging its batteries and supplying energy to the load at the

same time. Furthermore, the battery system is inactive for about one second when it

switches from charging to supplying energy to the load. This situation occurs when

the robot is disconnecting from the power outlet. Therefore, an external circuit that

takes care of these commutations is connected to the battery system.

37

DC/DC (*)
Converter.
12V / 12V

DC/DC (*)
Converter.
12V / 5V

DC/DC (*)
Converter.
12V / 5V

Battery
System

Camera

Camera

Ethernet
Switch

Ethernet
Converter

Hard
Drive

Computer

BaseB12

Arm
motors

DC/DC

Power
Supply Commute

Circuit

Battery
System

Power
Supply Commute

Circuit

Power
Supply

A block like this for each computer

Controllers

Plug

(*)
 The ground
of these
converters
are
connected.

Figure 3-11: Power system block diagram.

38

Chapter 4

Vision Algorithms

4.1 Introduction

In this chapter we describe the algorithms implemented for obstacle detection and

outlet detection. Obstacle detection runs on one of the nodes and outlet detection on

the other, so that each algorithm can take full advantage of their respective processor.

4.2 Obstacle detection

The method implemented for obstacle detection is similar to the works of Horswill

(1993) and Lorigo et al. (1997). We assume the same constraints as in the latter

paper. That is:

• The robot is on flat terrain. Therefore, the obstacles that are farther away

appear in a higher position in the image than the obstacles that are closer to

the robot.

• Obstacle boundaries are visible.

• The floor near the robot has no obstacles.

The images acquired by the camera are color images with a resolution of 128×128

pixels. During processing, an image is first transformed into a gray-scale image and

39

(A) (B)

(C) (D)

Figure 4-1: Obstacle detection. (A)Initial image. (B) Averaged image using windows.
(C) Differentiating the averaged image. (D) Image of obstacles obtained from the
values of image (C) that are above the threshold.

an integral image is computed as described later. Then a window with a height of

10 pixels and a width of 20 pixels is moved from the bottom to the top by placing

each consecutive window one pixel above the previous one. The average of the pixels

inside one window is calculated and subtracted from the previous one. If this value is

above a threshold, an obstacle is detected at that location. This works based on the

assumption that the average of each adjacent window should be similar unless there

is an obstacle present. The same process is repeated for each column in the image in

which the window can fit. Thus the number of columns scanned is 128−20+1 = 109.

All the space in front of the robot is scanned in this manner and the height of each

obstacle detected is stored in an array. The height of each obstacles can be at most

128− 10 + 1 = 119.

40

The average of each window is computed quickly because an integral image is

used. The integral image is defined in Viola & Jones (2001) as:

II(x, y) =
∑

ix<x,iy<y

I(ix, iy) (4.1)

where I(ix, iy) is the original image and II(x, y) is the integral image. This operation

can be done in one pass over the image using the following recurrences:

S(x, y) = S(x, y − 1) + I(x, y) (4.2)

II(x, y) = II(x− 1, y) + S(x, y) (4.3)

Computing the average value of the window requires four memory accesses to its

corners in the integral image. In Figure 4-1 we can see the results of the algorithm

applied to an image.

4.3 Outlet detection

To solve the problem of detecting an outlet in an image, we use the method presented

in Viola & Jones (2001). In this method the object to be recognized is represented

by a few of its most relevant features. A feature is defined in terms of operations

between rectangular areas. The configuration of those rectangular areas determines

a class of feature.

The classes of features considered in our case are: a two-rectangle feature oriented

in either the horizontal and vertical direction, a three-rectangle feature with similar

choice of orientation, and a four-rectangle feature. These classes are illustrated in

Figure 4-2. The value of a feature is obtained by subtracting the average value of the

image within the black rectangle from the one within the white rectangle.

In order to find out the most relevant features of an outlet, many samples are

collected. These samples include outlet and non-outlet images, called positive and

negative examples respectively.

For each sample, the value of all possible features drawn from each class is calcu-

41

 A B C

 D E

Figure 4-2: Classes of features. The features are shown inside a window. (A) Two-
rectangle horizontal. (B)Two-rectangle vertical. (C) Three-rectangle horizontal. (D)
Three-rectangle vertical. (E) Four-rectangle.

lated and stored in a vector. For each one of these features a classifier is then trained.

A classifier is characterized by a threshold and a sign. The threshold separates the

positive and negative examples and the sign indicates if the positive examples are

above or below the threshold value.

It is not expected that one of these classifiers alone will perfectly separate positive

from negative examples. However, a combination of some of them may do a sufficient

job. In order to find which classifiers to combine for improving the final classification,

a variation of the Adaboost (Freund & Schapire 1995) algorithm is used. In this

algorithm, the first classifier chosen is the one that yields the lowest classification

error on the samples, where error is defined as the number of misclassified samples.

In order to improve the final classification, the next classifier must do a better job

on the samples than the first did. To implement this, the samples are weighted. The

weights of the samples misclassified by the first classifier are made greater than those

of the samples correctly classified. These weights are normalized so that they behave

as a distribution.

42

Using these weighted samples, new classifiers are trained for each feature and again

the classifier with the lowest error is chosen. This procedure is known as boosting.

Since there is a classifier for each feature, by selecting the best classifiers we select

the most relevant features.

Each classifier selected also has a weight associated with it that depends on the

number of classifications it got correct. This weight is used to combine all the selected

classifiers. The output of each classifier (0 or 1) multiplied by its associated weight are

added. The answer divided by the sum of these weights is compared to a threshold to

decide whether or not the image contains an outlet. This is the output of the outlet

detector. The details of this algorithm are presented in Figure 4-5.

For our implementation, 846 positive examples (outlet samples) and 1400 negative

examples (non-outlet samples) were collected. These samples are 28 × 20 gray-scale

images extracted from pictures taken in the laboratory. The outlets were centered

in the window and labelled by hand using a program written in Matlab. All the

samples were normalized with respect to their variance in order to reduce the effects

of illumination. Some of the samples are shown in Figure 4-3.

After collecting samples, all the features were calculated for each sample. The

class of feature illustrated in Figure 4-2 (D) which was not included in Viola & Jones

(2001) is also considered.

The number of features values for each sample is large. For example for the total

number of features calculated for a 28 × 20 image is 153,398. Since we have 2246

samples, the memory requirement is 344,531,908 floating point numbers or 1.3 GB.

Therefore, it was necessary to swap the data between memory and disk often on a

PC with 256 MB of memory.

For each of these features a classifier was trained. The classifier used consists

of two Gaussian functions fitted to the positive and negative samples respectively.

The intersection of the two Gaussian functions determines the threshold, and the

difference of the means determines the sign.

This process, although simple in principle, takes considerable time due to the

amount of features. The training algorithm was coded in Matlab. For 2246 samples,

43

Figure 4-3: Positive examples. Some of the examples used for training.

150 iterations took about 38 hours. Some of the features that the training program

found are shown in Figure 4-6.

Having found the relevant features, the search for an outlet in an image is done

as follows. First, an integral of the image and an integral of the squared image are

calculated using the method describe in Section 4.2. Then, the image is scanned using

a 28× 20 window for the scale 1:1. Each window is variance normalized and then the

classifiers are applied to it. The integral of the image is used to compute the value of

the features associated with the classifiers. The integral of the image squared is used

to compute the variance of the window according to the identity σ2 = E[x2] − m2.

Where m is the mean and x represents the pixels of the window.

This scanning is repeated at several scales. However, with this method it is not

necessary to downsample the image. Instead the size of the window and its features

increase without affecting the evaluation of the feature. This is because the time

taken to compute the average over a window with an integral image is independent

44

Figure 4-4: Negative examples. These samples were obtained randomly from images
that did not contain outlets.

45

• Given the examples (x1, y1),...,(xn, yn) where yi = 0, 1 for negative and positive
examples respectively.

• Initialize weights w1,i = 1
2m

, 1
2l

for yi = 0, 1 respectively, where m and l are the
number of negatives and positives respectively.

• For t = 1, ..., T :

1. Normalize the weights, wt,i ← wt,i∑n

j=1
wt,j

so that wt is a probability distri-

bution.

2. For each feature, j, train a classifier hj which is restricted to using a single
feature. The error is evaluated with respect to wt, εj =

∑
i wi|hj(xi)− yi|.

3. Choose the classifier, ht, with the lowest error εt.

4. Update the weights: wt+1,i = wt,iβ
1−ei
t where ei = 0 if example xi is

classified correctly, ei = 1 otherwise, and βt = εt

1−εt
.

• The final strong classifier is:

h(x) =

{
1

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise

where αt = log(1
βt

)

Figure 4-5: Boosting algorithm. Reproduced from Viola & Jones (2001) without
permission.

of the size of that window. The program searches at 7 scales starting with a scale of

1 and increasing by 20%.

In order to achieve an accurate detection around 30 features are needed. Evalu-

ating these features in every window at each scale takes enough time to make this

method inadequate for real-time. To reduce the time required for evaluation, a cas-

cade of detectors is used. In this cascade, only the windows positively classified by a

detector in one stage are evaluated by the classifier in the next stage. Those windows

that pass all the detectors in the cascade contain an outlet.

The time response of a cascade detector improves because the first detector uses

only two features instead of 30. More features are evaluated only for those windows

that pass the first detector, which are much fewer than the total number of windows

46

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

Figure 4-6: Some of outlet features extracted by the algorithm.

in the image. The second, the third and the fourth stages use 2, 5 and 20 features

respectively.

An example of the result is shown in Figure 4-7.

Figure 4-7: Example of the detector working

47

Chapter 5

Support Software

5.1 Overview

This chapter describes some features of the operating system used and the processes

that were written to support the software architecture of the robot.

5.2 Introduction

In order to take advantage of the three computers available, programs run on different

nodes. However, to create behaviors it is necessary to communicate among these

programs. The communication among programs can be complicated and slow. To

make this more efficient, QNX has primitive functions for communication. Using

these functions, code has been written to allow other programs to access the B12

base, the arm, and the frame grabbers. These programs known as daemons, run in

the background, listening for requests from another program (referred to as a client).

The daemons are capable of accessing the hardware and supplying the information

requested. Daemons take advantage of the idle time of the processor, access the

hardware asynchronously (if needed), reply to requests with the data acquired in the

latest update, and reply to requests from different processes.

In this chapter we will start describing some features of the operating system,

continuing with a description of the following daemons: base B12, arm, obstacle

48

detection, and outlet detection.

5.3 Operating System

The QNX operating system has features needed for real time applications. These

features are multitasking, preemptive scheduling, and fast context switching. To ac-

complish such tasks, QNX was designed using a microkernel architecture and message-

based interprocess communication.

The QNX microkernel is a small kernel that is dedicated to message passing and

scheduling. The microkernel is called from a process or a hardware interrupt. There-

fore, all QNX services are standard QNX processes. The device drivers are also

standard QNX processes. The advantage of handling services and device drivers

as standard processes is that they can be started or stopped without affecting the

operating system.

In order to provide communication among processes, QNX uses message passing.

A message is a packet of bytes whose content is defined by the sender and the receiver

processes. The basic primitive functions for communication are: Send(), Receive(),

and Reply(). The message passing is independent of the location of the processes.

They can be in the same processor or in different processors.

Finally, the daemons mentioned above are implemented as QNX processes. These

processes are identified by global names, thanks to the QNX Network Manager. This

service registers and locates global names.

5.4 Base B12 daemon

This daemon connects the base B12 to a client. When this daemon starts, it registers

a global name so that any client can send requests.

A client communicates with the daemon using predefined messages that include

the parameters needed to control the base B12. When the daemon receives these

messages, it sends the corresponding commands to the base in ASCII code via serial

49

port. The daemon accesses a serial port in a raw mode at 9600 bps. That is with no

flow-control and no terminal functions.

Additionally, the daemon polls the battery voltage with an interval of one minute.

It also reads periodically the value of the encoders of the base. Therefore, when any

of these values are requested by a client, the value stored in memory is immediately

sent. This gives better time response to the client.

5.5 Arm daemon

This daemon connects the motor controllers of the arm to a client. The daemon

communicates with the motor controllers via a serial port in raw mode, at the speed

of 19200 bps. The motor controllers have a proprietary protocol for communication.

This protocol is coded in a library for Windows that was translated for QNX.

As in the previous section, the client uses a predefined set of messages and pa-

rameters to communicate with the daemon. The daemon identifies the message and

sends the corresponding command to the motor controllers.

The client that accesses this daemon can also obtain the values of the force and

voltage presence sensors.

5.6 Obstacle detection daemon

This daemon uses YARP (Fitzpatrick & Metta forthcoming) connections to commu-

nicate with other modules. In order to establish a YARP connection, it is necessary

to define input and output ports in the modules to connect.

This daemon has an BGR image as input port and a vector as an output port.

The program waits for a connection with a module that sends images. When an

image is received, the algorithm described in section 4.2 is applied. The output of

this algorithm is a vector containing the distances to obstacles detected.

YARP also provides a module (grabber) that communicates with a frame grabber

and outputs images. The output of the grabber is connected to the input of this

50

daemon. The connection of the output of this daemon is explained in chapter 6.

In order to connect to the daemon output port to a client input port, both ports

must be of the same kind, in this case a vector. For debugging purposes it is possible

to define an image as a second output of the daemon. This output is usually connected

to a YARP display for visualization.

5.7 Outlet detection daemon

This daemon recognizes outlets using the method described in section 4.3. As in the

daemon described in section 5.6, YARP connections are used to communicate with

other modules.

An image is defined as an input port for this daemon. The input port is connected

to the output of a YARP grabber module to receive images. The outlet detection

algorithm is applied to each image. Its result is stored in a structure that contains the

position, the scale, and the degree of certainty of a detected outlet. This structure is

defined as an output port of the daemon.

51

Chapter 6

Software: Design and

Implementation

6.1 Overview

This chapter describes the software architecture used to control the robot. It starts

with a global description of the architecture and the strategy. The chapter continues

with a detailed description of the implementation of the software.

6.2 Introduction

In the field of Artificial Intelligence, the design of “brains” for robots has often been

inspired by neuroscience and biology. One of the main works is by Brooks (1986),

in which he proposes to arbitrate several behaviors based on subsumption. Some

behaviors inhibit the output of other modules, but all the modules are active at the

same time. Another characteristic of the subsumption architecture is the fact that it

directly connects sensors with actuators. In other words, not all the sensors report

to a central information processor that decides what sequences of actions to execute.

Subsumption architecture proposes distributed processing instead of central process-

ing. This model has been corroborated by biological studies, such as Koopowitz &

Keenan (1982). In these experiments, the brain of a flatworm (Notoplana acticola)

52

A
vo

id
an

ce

O
bs

ta
cl

es

B
as

e
M

ot
or

C

on
tr

ol

O
ut

le
t

D
et

ec
tio

n

O
ri

en
tin

g

A
pp

ro
ac

hi
ng

R
ea

ch
in

g

A
rm

 M
ot

or

C
on

tr
ol

O
bs

ta
cl

e
D

et
ec

tio
n

D
ae

m
on

 (
N

2)

U
np

lu
gg

in
g

P
lu

gg
in

g

S
ca

nn
in

g

O
ut

le
t

D
et

ec
tio

n
D

ae
m

on
 (

N
3)

B
as

e
B

12

D
ae

m
on

(N

1)

A
rm

D

ae
m

on

(N
1)

D
ae

m
on

s
A

ge
nt

s
S

ha
re

d
D

at
a

S
tr

uc
tu

re
s

Figure 6-1: Software architecture. The block diagram illustrates agents, daemons and
shared data structures. The shared data structures are also called connections. All
the agents are executed in the server (N1). The daemon blocks include the number
of the node where they are executed. They are described in Chapter 5

53

was removed but the animal still showed its ability to acquire food. However, the

flatworm lost its ability to determine a satiation point at which no more food was

necessary.

By applying this example to our model, the architecture proposed consists of many

agents. Each agent is able to receive inputs from any other agent. The agent executes

simple tasks that connect sensors with actuators in a direct way. The combination of

these agents yields complex behaviors.

A block diagram of a software architecture based on agents is shown in Figure 6-

1, where each arrow represents a shared data structure between agents. At each

iteration, all the shared data structures are updated and then the code of each agent

is executed.

This software architecture implements the behaviors wandering around, look-

ing for an outlet, and connecting to an outlet which are explained in the fol-

lowing sections.

6.3 Behavior: Wandering Around

This behavior moves the robot around the laboratory. It is activated when the energy

level is high enough for operation. The behavior turns and/or translates the robot in

a direction chosen to avoid collisions with the obstacles on the floor. This behavior

uses the base motor control and obstacle avoidance agents.

6.3.1 The Base Motor Control Agent

The base motor control agent is a client of the base B12 daemon (see section 5.4);

therefore, it is capable of sending commands to the base B12 and reading its encoders

and battery voltage.

As described in the following sections, many agents send motion commands to

this agent. The commands can be either rotations or translations. However, only one

rotational and one translational command is selected and sent to the base B12. This

selection process, known as arbitration, can be implemented using several criteria such

54

Avoidance
Obstacles Base Motor

Control

Outlet
Detection

Orienting

Approaching

Reaching

Arm Motor
Control

Obstacle
Detection
Daemon (N2)

Unplugging

Plugging

Scanning

Outlet
Detection
Daemon (N3)

Base B12
Daemon
(N1)

Arm
Daemon
(N1)

Daemons Agents Shared Data Structures

Behaviors

Figure 6-2: Wandering around behavior block diagram.

as winner-take-all, action-selection, voting, etc. A winner-take-all criteria is used in

this particular implementation.

Each of the agents that connect to the Base Motor Control agent sends a command

and an associated priority. The command with the highest priority is sent to the base

B12. This selection process is done independently for translational and rotational

commands.

In many cases, agents repeatedly sent the same command to the base, for exam-

ple, a translation using a constant speed. The motion of the base will not change

when the command is received the second time. This agent detects this situation

and sends only those commands that change the current motion of the robot’s base.

This optimization reduces the serial port traffic and consequently reduces the power

consumption.

This agent also reads and stores the values of the encoders (translational and ro-

tational) and the voltage battery. This data is shared with other agents as illustrated

in figure 6-1.

55

6.3.2 The Obstacle Avoidance Agent

This agent connects to the obstacle detection daemon (section 5.6) to obtain the

information about the obstacles. This information consists of a vector where the

heights of the obstacles detected are stored (section 4.2). This vector is divided

into three regions (left, center and right) and the minimum point of each region is

determined.

If any of these three points is less than 23 pixels, the robot stops translating

because the obstacle is too close. Otherwise, the minimum value of the three regions

is multiplied by a gain and sent to base motor control agent. The rotation magnitude

is calculated as the difference between the left and right minimum point multiplied

by a gain.

The priority of the stopping command has the highest value in this architecture.

The priority of the other commands depends on the voltage level of the robot’s bat-

teries.

When the voltage level of all the batteries is above 11V, there is enough energy to

make the wandering around behavior predominant. This is achieved by rising the

priority of the motor commands of this agent. On the other hand, if the voltage level

is below the 11V the priority is set to the lowest value. This makes it possible for

motor commands from agents other than the obstacle avoidance agent to be executed.

As a consequence the other behaviors, that try to acquire energy, can be executed.

6.4 Behavior: Searching for an Outlet

The searching for an outlet behavior is activated when the robot needs to recharge

its batteries and an outlet is not detected. The purpose of this behavior is to help

find an outlet. The agents used by this behavior are shown in Figure 6-3. They are:

detect outlet, base motor control(see section 6.3.1), and scanning.

56

Avoidance
Obstacles Base Motor

Control

Outlet
Detection

Orienting

Approaching

Reaching

Arm Motor
Control

Obstacle
Detection
Daemon (N2)

Unplugging

Plugging

Scanning

Outlet
Detection
Daemon (N3)

Base B12
Daemon
(N1)

Arm
Daemon
(N1)

Daemons Agents Shared Data Structures

Behaviors

Figure 6-3: Search for an outlet behavior block diagram.

6.4.1 The Outlet Detection Agent

The outlet detection agent is a client of the outlet detection daemon (see section 4.3).

This agent receives the position, the scale and the degree of certainty of a detection.

6.4.2 The Scanning Agent

The scanning agent reads the voltage level of the batteries. When any voltage value

is under 11V and no outlet is detected, this agent stops the robot’s translation and

rotates the robot 90◦ to one side. Later, it rotates the robot in the opposite direction

in steps of 18◦. The rotation stops after covering 180◦ in 10 steps.

If at any time an outlet is detected by the detect outlet agent (see section 6.4.1),

the rotation is stopped and no more commands are sent to the base. The agent

remains in this state until either two minutes have passed or the robot has translated

a given distance. It is expected that the obstacle avoidance agent will be chosen by

arbitration process of the base motor control agent. Therefore, the robot will move

57

before a new scanning process happens.

6.5 Behavior: Connecting to an Outlet

Avoidance
Obstacles Base Motor

Control

Outlet
Detection

Orienting

Approaching

Reaching

Arm Motor
Control

Obstacle
Detection
Daemon (N2)

Unplugging

Plugging

Scanning

Outlet
Detection
Daemon (N3)

Base B12
Daemon
(N1)

Arm
Daemon
(N1)

Daemons Agents Shared Data Structures

Behaviors

Figure 6-4: Connecting to an outlet behavior block diagram.

When an outlet has been located by the detection outlet agent, the robot tries to

connect to the outlet. The first thing that the robot does is approach the outlet until

it is close enough to be reached by the arm. In this position, the plug is aligned with

the outlet and the arm is extended for plugging.

The behavior described above is implemented with the following agents: outlet

detection, arm motor control, orientation, approaching, reaching, plugging, unplugging,

and avoidance obstacles.

6.5.1 The Arm Motor Control Agent

This agent is similar to the base motor control agent described in section 6.3.1. The

arm motor control agent is a client of the arm daemon (see section 5.5) and, there-

58

fore, it is capable of sending commands to the network of motor controllers used for

controlling the arm.

As we can see in Figure 6-1, there are several agents connected to the arm motor

control agent. These agents either send commands to the motors or read sensors

values.

A command is sent together with a priority value which is used to arbitrate the

inputs. The command with the highest priority is executed. The arbitration process

is applied to the up/down and in/out commands independently.As for the base motor

control agent, this agent also optimizes the serial traffic by sending only the commands

that change the motion of the arm.

This agent also reads the values of the encoders, the force sensor and the “voltage

presence” sensor from the arm daemon.

6.5.2 The Orientation Agent

The orientation agent controls the base and the robot’s arm to place a detected outlet

in the center of the image. This condition aligns the robot’s camera with the outlet.

Due to the configuration of the arm, when the camera is aligned with the outlet, the

plug is also horizontally aligned and the vertical distance between the plug and the

outlet is a known value.

The information about a detected outlet is obtained from the outlet detection

agent. The horizontal difference between the outlet and the center of the image is

used to rotate the base. Likewise, the vertical difference between the outlet and the

center of the image is used to move the arm up or down. The commands to the base

and arm are sent through the base and arm motor control agents respectively.

6.5.3 The Approaching Agent

The approaching agent moves the robot towards a detected outlet. The information

about the detected outlet is obtained from the outlet detection agent.

This agent sends a translation command to the base motor control agent when

59

both the detected outlet is centered on the image and the scale of the outlet is less

than three times the size of the minimum outlet detected.

When the size of the outlet detected is equal or greater than three times the

minimum detectable size, a stop command is sent because the outlet is close enough

to be reached by the robot’s arm. At this point, the avoidance obstacle agent also

stops the robot because the wall is detected as an obstacle too close to the robot.

This fact adds robustness to the robot behavior.

6.5.4 The Reaching Agent

The reaching agent receives the position and the scale of a detected outlet from

the outlet detection agent. When an outlet is detected at a given scale and it is in

the center of the image, the arm is extended as much as possible. The action of

extending stops when either the force sensor detects contact or when the arm has

been completely extended. The force sensor and arm encoders values are obtained

from the arm motor control agent.

6.5.5 The Plugging Agent

The plugging agent detects if the plug is in contact with a surface (i.e. a wall) and

if there is electrical contact. This information is read from the force and “voltage

presence” sensors available from the arm motor control agent.

When there is both physical and electrical contact, it is assumed that the robot

successfully connected to an outlet. Therefore, this agent stops all the motion of the

robot until its batteries have been recharged. The stop command is constantly sent

to all the motors of the robot. When the robot’s batteries are recharged, this agent

stops sending commands to the in/out motor of the arm to allow the other agents

(i.e., unplugging) to act.

If there is only physical contact and the arm was extending before this contact, it

is assumed that the robot missed the outlet. This situation can arise when the robot

orientation is not perpendicular to the wall where the outlet is mounted. However,

60

since the passive compliance mechanism can help to solve this situation, the informa-

tion about obstacles is consulted to find out the orientation of the wall. If the wall

is not perpendicular to the robot’s orientation a small rotation is performed. The

direction of this rotation is chosen to increase the misalignment between the robot

and the outlet but it helps to align the plug (a passive compliance mechanism) with

the outlet.

If the wall is perpendicular to the robot orientation or no wall is detected in front

of the robot, this agent stops all the motors of the robot, assuming that the robot

has collided with an obstacle.

The obstacle information is obtained through a connection with the avoidance

obstacle agent.

6.5.6 The Unplugging Agent

The unplugging agent retracts the arm and then turns the robot 180◦. This agent

assumes that if the arm is extended it is because a plugging trial has happened.

To determine the state of the arm, the encoder of the in/out motor is read. If the

encoder value is different from zero, a command is sent to the motor to retract the

arm. However, this command is executed only when the plugging agent, which has a

higher priority, stops sending commands to the in/out motor.

Once the arm is completely retracted, a rotation command is sent to the base.

The completion of the rotation is detected by reading the rotational encoder of the

base. The information about the base and arm encoders is obtained from the base

and the arm motor control agents.

61

Chapter 7

Conclusion and Future Work

7.1 Analysis and Results

The learning algorithm used for outlet recognition chooses a feature and an associated

weight in each iteration (see Figure 4-5). The features selected were used to build a

one-stage classifier. This classifier was tested on an evaluation set of 20 images. The

algorithm worked well at different scales when the image did not contain too many

details. In images such as that of the corridor, in which many details of the ceiling

and pictures on the wall show up, the classifier yields many false detections, especially

at greater scales.

Many 28× 20 windows of various images were collected and incorporated into the

training set. The features obtained after running the learning algorithm are shown in

Figure 7-1. As we can see the first features obtained from each set were basically the

same. Unlike in Viola & Jones (2001) the interpretation of the features obtained is not

evident. However, the interpretation of features obtained in the following iterations

in a set are more evident. For example, in Figure 7-2(A) the feature chosen finds

the vertical edge the outlet’s face plate, while the feature in Figure 7-2(B) tests for

symmetry of the lower outlet.

To eliminate false detections, more features have to be evaluated which implies a

longer evaluation time. In order to maintain a reasonable evaluation time and to use

more features, a cascade of four classifiers was implemented. The classifiers of the

62

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

(A) (B)

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

(C) (D)

Figure 7-1: Features chosen by the learning algorithm. (A) First feature from the
first set. (B) Second feature from the first set. (C) First feature from the second set.
(D) Second feature from the second set.

63

5 10 15 20

5

10

15

20

25

5 10 15 20

5

10

15

20

25

(A) (B)

Figure 7-2: Additional features chosen by the learning algorithm.

cascade evaluate 2, 2, 5, and 20 features. The thresholds for each stage are 1.0, 0.5,

0.25, 0.8. These values were fine-tuned by hand after visualizing the response of the

algorithm on images of the corridor.

In order to ensure good time response, the outlet recognition algorithm and the

image grabber are the only processes run on Node 3 of the QNX network. However,

even with the whole processor available, a careful implementation of the algorithm is

needed in order to achieve real time response.

The original implementation scanned a 128 × 128 image pixel by pixel using a

28× 20 window for the scale 1:1. Two features were evaluated in each window which

had been variance normalized. The complete scanning process lasted 0.7s. This time

response was not acceptable for our implementation. In order to reduce this time

response, the dimensions and position of each feature used for the classifiers at each

scale were precomputed and stored. Also, the function used in the main loop was

compiled as “inline”. The only operations done in this main loop of the algorithm

are a “switch” to select the kind of feature and the computation of the offset of

the window. Since the “switch” is implemented as a PC-relative jump, most of the

64

processing time is spent in adding the offset of the window to the coordinates of a

feature and accessing the integral image. This results in a 0.6 s decrease in response

time (to 0.1s) for evaluation at one scale. Using this implementation, the evaluation

time of a cascade of four classifiers at seven scales is 0.3s. The evaluation time remains

small because only a few windows that are positively classified by the first stage of the

cascade are evaluated by the subsequent stages. This is the advantage of a cascade

of classifiers. This time response is good enough to track an outlet when the robot is

moving towards it.

The minimum size of an outlet considered in the recognition algorithm fits com-

fortability in a 28×20 window. This makes it possible to detect outlets that are about

four feet away from the robot. Assuming that an outlet is mounted on a flat wall,

we use the angle between the wall and the robot’s orientation as reference to further

evaluate the recognition algorithm. This angle is 90◦ when the robot is directly ori-

entated toward an outlet. An outlet is recognized when this angle is between 60◦ to

120◦. The slight deformations of the outlet between these angles have been learned

by the algorithm.

The outlet recognition algorithm was initially trained with samples obtained from

a digital camera. The parameters obtained from these samples did poorly when

applied to images acquired by the analog camera on the robot’s arm. Therefore, new

samples obtained with the analog camera were used to train the outlet recognition

algorithm. This was not an expected problem since both cameras used CCD sensors

and DSP’s for preprocessing. However, after analyzing the quality of the image from

both cameras, we noticed that an image from the analog camera is a lot noisier than

one from the digital camera.

The obstacle detection algorithm finds objects in a wide field of view. It can detect

obstacles that are as close as 7 inches. In the current implementation objects that are

approximately 1.5 inch × 1.5 inch can be detected. This resolution is given by the

size of the scanning window and the displacement between the scanned columns. The

current displacement between scanned columns is one pixel obtaining 109 values (see

Section 4.2). This number can be reduced, sacrificing resolution. For example, Martin

65

(2001) uses only 12 columns to guide the robot. The obstacle detection algorithm

runs alone on Node 2, therefore it is possible to have high resolution without reducing

the time response of the system.

Obstacle Avoidance
Orientation
Approaching
Reaching
Unplugging
Plugging

Rotation

Translation

Up/Down

In/Out

100 200 300 400 500 600 700 800 900 1000

1

2

3

4

0 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10
x 10

4

U
p/

D
ow

n
E

nc
od

er

0 100 200 300 400 500 600 700 800 900 1000
-10

-5

0
x 10

4

 In
/O

ut
E

nc
od

er

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

F
or

ce
S

en
so

r

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

R
ot

at
io

n
E

nc
od

er

Iterations

Figure 7-3: Example 1. The colors that represent to each of agents are shown in the
top of the figure. The first plot from the top illustrates the agents that won access to
each of the motors. The name of each motor is in the vertical axis of this plot. The
next plots present the values of the up/down encoder, in/out encoder, force sensor,
and rotation encoder. The horizontal axis represents the iteration number.

The software architecture implemented uses agents that compete for accessing the

motor control agents. The arbitration of these agents is based on priorities. In the

following two examples, the interaction of these agents can be observed.

In the first example, the robot is about 5 feet in front of a wall with an outlet.

Figure 7-3 illustrates the results recorded. In the top of this figure, the agents that

won access to the rotation, translation, up/down, and in/out motors are shown. The

first two motors control the base and the other two control the arm. Figure 7-3 also

66

illustrates the readings from the force sensor and the motor encoders.

In this sequence we can observe that the obstacle avoidance agent controls the

rotation and the translation motors at the beginning. Later the approaching, the

orientation, and the obstacle avoidance agents alternate the control of the translation

motor. The orientation agent wins when the vertical distance between the outlet

detected and the center is beyond a threshold. Otherwise, the orientation agent

controls the translation motor. When the robot is too close to the wall, we can

observe that obstacle avoidance agent takes control to avoid hitting the wall. During

this period, the up/down motor is controlled by the orientation agent, which moves

to vertically center the outlet in the image. The plot of the up/down encoder shows

this movement.

Once the outlet is centered in the image, the reaching agent takes control of the

up/down, in/out, and rotation motors. The rotation motor is stopped, the up/down

motor is moved upwards, and then the arm is extended. These movements are shown

in the encoder plots.

When the plug hits the outlet, (see the force sensor reading), the plugging agent

stops the in/out, up/down and rotation motors. It also calculates the orientation

of the robot with respect to the wall to rotate the base if needed. In this example,

the base is perpendicular to the robot’s orientation; therefore, no rotation is needed.

Since there is no more to do to help the plugging, the plugging agent stops sending

commands to the motors. At this point, the unplugging agent retracts the arm and

later moves it down. Finally, it rotates the robot.

Another example of the robot moving towards an outlet is illustrated in Figures 7-

4. The trajectory of the robot, reconstructed from the readings of the encoders, is

shown in Figure 7-5. In this example the rotation of the unplugging agent was reduced

to 10◦.

Two versions of this robot were constructed. In the first one, a 600 MHz laptop

computer with Windows as its operating system was used. However, the computer

alone was not enough to run all the algorithms in real-time and the operating system

crashed often. Learning from this experience, in the second version, which has been

67

Obstacle Avoidance
Orientation
Approaching
Reaching
Unplugging
Plugging

Rotation

Translation

Up/Down

In/Out

200 400 600 800 1000 1200 1400 1600 1800 2000

1

2

3

4

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-5

0

5

10
x 10

4

U
p/

D
ow

n
E

nc
od

er

0 200 400 600 800 1000 1200 1400 1600 1800 2000
-10

-5

0
x 10

4

 In
/O

ut
E

nc
od

er

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

F
or

ce
S

en
so

r

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

50

100

R
ot

at
io

n
E

nc
od

er

Iterations

Figure 7-4: Example 2. The colors that represent to each of agents are shown in the
top of the figure. The first plot from the top illustrates the agents that won access to
each of the motors. The name of each motor is in the vertical axis of this plot. The
next plots present the values of the up/down encoder, in/out encoder, force sensor,
and rotation encoder. The horizontal axis represents the iteration number.

described in this thesis, the computation on board was changed to three 400 MHz

PC104 computers running QNX as their operating system. This operating system

works in real-time and is very robust. Its only drawback is that it supports limited

compatible hardware. This was one of the main reasons to use analog cameras instead

of digital ones.

The batteries used for powering the robot are enough to power the three computers

for about 2 hours. However, when all the parts of the robot were operating, the

power requirements increased and the batteries only can support the robot for about

1.5 hours. The components that draw the most power, after the computers, are the

translational motor of the base and the serial ports. Regrettably, the RS232 ports

68

−1 −0.5 0 0.5 1 1.5 2

x 10
4

−1

−0.5

0

0.5

1

1.5

2

x 10
4

 Robot’s
 trajectory

Outlet

Figure 7-5: Trajectory of the robot. The robot approaches the outlet and later goes
away. This trajectory was reconstructed form the readings of the translational and
rotational encoders. The detail of the agents involved in the control of the robot are
illustrated in Figure 7-4.

implemented in the PC104 computers require a lot of energy.

7.2 Conclusions and Recommendations For Future

Work

The learning algorithm in Viola & Jones (2001) is described as a general algorithm

for detecting objects. Frontal face detection is used as an example to demonstrate its

performance. This work has shown that the learning algorithm also works well when

applied to a different object, e.g., a frontal outlet. A detector constructed using this

learning algorithm can work faster than other known algorithms, however, it has to

be carefully implemented.

The obstacle detection algorithm does a very good job of finding obstacles in

the environment. However, there are cases in which it fails. For example, it iden-

tifies shadows and changes in color and texture on the floor as an obstacle. These

69

failing conditions are discussed in Horswill (1993), Lorigo et al. (1997), and Martin

(2001). Using additional information from stereo vision or other ranging methods,

these problems can be solved. Though there are many benefits of stereo vision, its

main drawback is its heavy computational requirements. This is a critical factor in

mobile robots where adding computers implies adding batteries.

The behaviors were implemented using agents which run in parallel and compete

for access to the motor control agents. This configuration has the advantage that

new agents can be added to create more behaviors without changing the existent

implementation. Besides, some of the agents are used to generate more than one

behavior. For example, the obstacle avoidance agent described in Section 6.3.2 is

used by all three behaviors. This also increases robustness since some behaviors will

help each other. For example, the approaching agent guides the robot towards an

outlet until it is reachable by the robot’s arm then stops the robot. However, if

the detected outlet is an object on the wall that looks like an outlet from far away,

the robot will continue approaching and will hit the wall. Nevertheless, due to the

fact that the obstacle avoidance agent is running in parallel, it will detect the wall

and stop the robot avoiding the collision. The stop command sent by the obstacle

avoidance agent will have the highest priority to overwrite the commands of any other

agent given the importance of the action to execute. Therefore, this architecture is

adequate to increase the number of behaviors performed by the robot.

Energy is still a big issue in mobile robotics for two main reasons. First, most

of the hardware with enough processing power for performing tasks such as vision is

neither power-aware nor low-power. Also the kind of batteries capable of providing

enough electrical power require a careful and usually long recharging time.

Finally, having an autonomous self-powered robot provides a simple example of

an organism which can be used to further study living organisms.

70

Bibliography

Angle, M. C. (1991), Design of an Artificial Creature, Master’s thesis, Massachusetts

Institute of Technology, Cambridge, MA.

Arbib, M. A. (1992), ‘Schema Theory’, The Encyclopedia of Artificial Intelligence

pp. 1427 – 43.

Arkin, R. (1998), Behavior Based Robotics, The MIT Press, Cambridge, MA.

Breazeal, C. (2000), Sociable Machines: Expressive Social Exchange Between Hu-

mans and Robots, PhD thesis, MIT Department of Electrical Engineering and

Computer Science.

Brooks, R. A. (1986), ‘A Robust Layered Control System for a Mobile Robot’, IEEE

Journal of Robotics and Automation 2, 14–23.

Brooks, R. A. (1989), ‘A Robot That Walks: Emergent Behavior from a Carefully

Evolved Network’, IEEE Journal of Robotics and Automation 2, 253–262.

Brooks, R. A. & Flynn, A. M. (1989), ‘Fast, Cheap and Out of Control: A Robot

Invasion of the Solar System’.

Fitzpatrick, P. & Metta, G. (forthcoming), YARP, Technical report, MIT, Artificial

Intelligence Laboratory.

Freund, Y. & Schapire, R. E. (1995), A decision-theoretic generalization of on-line

learning and an application to boosting, in ‘In Computational Learning Theory:

Eurocolt ’95’, Springer-Verlag, pp. 23–37.

71

Golombek, M. P., Cook, R. A., Economou, T., Folkner, W. M., Haldemann, A. F. C.,

Kallemeyn, P. H., Knudsen, J. M., Manning, R. M., Moore, H. J., Parker, T. J.,

Rieder, R., Schofield, J. T., Smith, P. H. & Vaughan, R. M. (1997), ‘Overview

of the Mars Pathfinder Mission and Assessment of Landing Site Predictions’,

Science 278, 1743–1748.

Hogan, N. (1985), ‘Impedance Control: An Approach to Manipulation: Part I–

Theory’, Transacions of the ASME, Journal of Dynamic Systems, Measurement

and Control 107, 1–7.

Horswill, I. (1993), Polly: A Vision-Based Artificial Agent, in ‘Proceedings of the

11th National Conference on Artificial Intelligence’, AAAI Press, Menlo Park,

CA, USA, pp. 824–829.

Koopowitz, H. & Keenan, L. (1982), ‘The Primitive Brains of platyhelminthes’,

Trends in Neurosicenes 5, 77–79.

Lorigo, L. M., Brooks, R. A. & Grimson, W. E. L. (1997), Visually-Guided Obstacle

Avoidance in Unstructured Enviroments, in ‘Proceedings of the IEEE Conference

on Intelligent Robots and Systems’, Grenoble, France.

Maes, P. (1989), The Dynamics of Action Selection, in ‘Proceedings of the Eleventh

International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, MI’,

pp. 991 – 97.

Maes, P. & Brooks, R. A. (1990), ‘Robot Insect Societies’.

Martin, M. C. (2001), Simulated Evolution of Robot Perception, PhD thesis, Carnegie

Mellon University, The Robotics Institute.

Matthies, L., Gat, E., Harrison, R., Wilcox, B., Volpe, R. & Litwin, T. (1995a), Mars

Microrover Navigation : Performance Evaluation and Enhancement, in ‘Proc.

IEEE Int’l Conf. Intelligent Robots and Systems’, Vol. 1, pp. 433–440.

72

Matthies, L., Kelly, A. & Litwin, T. (1995b), ‘Obstacle Detection for Unmanned

Ground Vehicles: A Progress Report’.

Nourbakhsh, I., Bobenage, J., Grange, S., Lutz, R., Meyer, R. & Soto, A. (1999), ‘An

Affective Mobile Educator with a Full-time Job’, Artificial Intelligence 114(1 -

2), 95 – 124.

Osuma, E., Freund, R. & Girosi, F. (1997), Training support sector machines: an

application to face detection, in ‘In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition’.

Pomerleau, D. A. (1993), Neural Network Percerption for Mobile Robot Guidance,

Kluver Academic Publishers, Norwell, MA.

Raibert, M. & Craig, J. (1981), ‘Hybrid Position/Force Control of Manipulators’,

Transacions of the ASME, Journal of Dynamic Systems, Measurement and Con-

trol 102, 126–133.

Real World Interface Inc. (1994), ‘B12 Base Manual’.

Rowley, H., Baluja, S. & Kanade, T. (1996), Human Face Detection in Visual Scenes,

in ‘Advances in Neural Information Processing Systems 8’, pp. 875 – 881.

Salisbury, J. K. (1990), ‘Active Stiffness Control of a Manipulator in Cartesian Co-

ordinates’, 19th IEEE Conference on Decision and Control.

Santos-Victor, G., Sandini, G., Curotto, F. & Garibaldi, S. (1995), Divergent Stereo

in Robot Navigation: Learning from Bees, in ‘Proc. IEEE CS Conf. Computer

Vision and Pattern Recognition’.

Sung, K.-K. & Poggio, T. (1994), ‘Example Base Learning for view-based face detec-

tion’, A.I. Memo.

Thorpe, C., Kanade, T. & Shafer, S. A. (1987), Vision and Navigation for the

Carnegie-Mellon Navlab, in ‘Proc. Image Understand Workshop’, pp. 143–152.

73

Torres-Jara, E. & Edsinger, A. (1999), ‘Face Recogniton’.

Viola, P. & Jones, M. J. (2001), ‘Robust Real-time Object Detection’. Cambridge

Research Laboratory, Technical Report Series, CRL 2001/01.

Walter, W. (1950), ‘An Imitation of Life’, Scientific American 182(5), 42–45.

Walter, W. (1951), ‘A Machine That Learns’, Scientific American 185(5), 60–63.

Walter, W. (1953), The Living Brain, Duckworth, London, United Kingdom.

Whitney, D. & Nevins, J. (1978), ‘What is the remote center compliance and what

can it do?’.

Whitney, D. E. (1977), ‘Force Feedback and Control of Manipulator Fine Motions’,

Transacions of the ASME, Journal of Dynamic Systems, Measurement and Con-

trol pp. 91–97.

Whitney, D. E. (1982), ‘Quasi-Static Assembly of Compliantly Supported Rigid

Parts’, Journal of Dynamics Systems, Measurement, and Control 104, 65–77.

Whitney, D. E. (1987), ‘Historical Perspective and State of the Art in Robot Force

Control’, The International Journal of Robotics Research 6(1), 3–14.

Wilkinson, S. (2000), Benefits and Challenges of Microbial Fuel Cells in Food Powered

Robot Applications, in ‘Journal of Autonomous Robots, paper 99-026’.

Zeng, G. & Hemami, A. (1997), ‘Overview of Force Control’, Robotica 15(5), 473–482.

74

