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Abstract. Two techniques have substantially advanced efficiency and
scalability of multiagent planning. First, heuristic search gains traction
by pruning large portions of the joint policy space. Second, influence-
based abstraction reformulates the search space of joint policies into a
smaller space of influences, which represent the probabilistic effects that
agents’ policies may exert on one another. These techniques have been
used independently, but never together, to solve solve larger problems
(for Dec-POMDPs and subclasses) than was previously possible. In this
paper, we combine multiagent A* search and influence-based abstraction
into a single algorithm. This enables an initial investigation into whether
the two techniques bring complementary gains. Our results indicate that
A* can provide significant computational savings on top of those already
afforded by influence-space search, thereby bringing a significant contri-
bution to the field of multiagent planning under uncertainty.

1 Introduction

Computing good policies for agents that are part of a team is an important topic
in multiagent systems. This task, planning, is especially challenging under un-
certainty, e.g., when actions may have unintended effects and each agent in the
team may have a different view of the global state of the environment due to its
private observations. In recent years, researchers have proposed to gain grip on
the problem by abstracting away from policies of other agents and instead rea-
soning about the effects, or influences, of those policies [2, 1, 22, 26, 24]. However,
no methods have been proposed to effectively search the space of influences other
than enumeration. In this paper, we fill this void by showing how it is possible
to perform heuristic search of the influence space, thereby significantly speeding
up influence-based planning.

The problem of multiagent planning under uncertainty can be formalized
as a decentralized partially observable Markov decision process (Dec-POMDP)
[3]. However, its solution is provably intractable (NEXP-complete). As such,
many methods either focus on finding approximate solutions without quality
guarantees [11, 19, 14], or providing optimal solutions for restricted sub-classes
[12, 23, 22, 24]. In particular, more efficient procedures have been developed for
models that exhibit transition and observation independence [2, 12] or reward
independence [1]. Unfortunately, these sub-classes are too restrictive for many
interesting tasks, such as agents collaborating in the search for a target.



Recently, the transition-decoupled POMDP (TD-POMDP) [26] has been in-
troduced as a model that allows for transition, observation, and reward de-
pendence, while still allowing for more efficient solutions than the general Dec-
POMDP model.3 The core idea is to exploit independence between agents by
formalizing the influence they can exert on each other. This allows us to search
the space of joint influences, rather than the space of joint policies, which can
lead to significant savings since the former can be much smaller for many prob-
lems (cf. [25] chapter 4).

A difficulty in this approach, however, is that it is not clear how to efficiently
search this space; although the influence space is often much smaller the policy
space, it may still grow exponentially with the problem size. Previous work has
performed exhaustive search of the joint influence space. On the other hand,
in general Dec-POMDPs, A* search guided by heuristics, i.e., multiagent A*
(MAA*), has been shown to be an extremely powerful method for finding opti-
mal solutions [21, 15, 20]. The main contribution of this paper, is to show how
heuristics can be defined to more efficiently search the influence space.

To accomplish this, we make the following auxiliary contributions: we show
how one can define heuristics in influence space, we prove the admissibility of
such heuristics—thus guaranteeing optimality of A* search—and we provide the
results of an empirical evaluation that shows that our proposed methods can
yield significant performance increases, especially on problems that are hard for
exhaustive influence search. Additionally, we demonstrate how TD-POMDPs
can be used for an important class of problems: locating objects or targets with
a team of agents, which also leads us to the first application of influence search
on problems that have cyclic dependencies between the agents.

2 Influence-Based Abstraction

Here we provide background on the TD-POMDP model. We also review the
concept of influence-based policy abstraction, and explain how this abstraction
can be exploited to find optimal solutions via optimal influence space search. We
begin with a motivating application.

2.1 Motivating Domain: Locating Targets

Although the TD-POMDP model and the methods presented in this paper ex-
tend to other settings, in this paper we focus on their application to problems
where a team of agents has to locate a target. We assume that a prior probability
distribution over its location is available. Also, the target is assumed to be either
stationary or to move in a manner that does not depend on the strategy used
by the searching agents.

More concretely, we consider a problem domain called HouseSearch in
which a team of robots must find a target in a house with multiple rooms.

3 Some other recent models that allow for limited amounts of both types of dependence
are treated in Section 5.
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Fig. 1: HouseSearch environments. ‘1’ and ‘2’ mark the start positions of the
search robots. ‘t’ marks possible target locations.

Such an environment can be represented by a graph, as illustrated in Fig. 1.
At every time-step an agent i can stay in the current node n or move to a
neighboring node n′. The location of an agent i is denoted li and that of the target
is denoted ltarget. The movements, or actions ai, of each agent i have a specific
cost ci(li,ai) (e.g., the energy consumed by navigating to a next room) and can
fail; we allow for stochastic transitions p(l′i|li,ai). Also, each robot receives a
penalty ctime for every time step that the target is not caught yet. When a
robot is in the same node n as the target, there is a probability of detecting
the target p(detecti|ltarget,li), which will be modeled by a state variable ‘target
found by agent i’. When the target is detected, the agents receive a reward rdetect.
Additionally, i automatically communicates to all other agents that it found the
target. Given the prior distribution and model of target behavior, the goal is to
optimize the sum of rewards, thus trading off movement cost and probability of
detecting the target as soon as possible.

2.2 TD-POMDP Model

Here we formalize the planning task for scenarios such as the HouseSearch

task described above. First, we introduce the (single-agent) factored POMDP,
a common model for single-agent planning under uncertainty. Then we describe
how a TD-POMDP extends this model to multiple agents.

A factored partially observable Markov decision process for a single agent i

is a tuple 〈Si,Ai, Ti, Ri,Oi, Oi〉, where Si = X1 × · · · ×Xk is the set of states si
induced by a set of k state variables or factors, Ai is the set of actions that the
agent can take, Ti is the transition model that specifies Pr(s′i|si,ai), Ri(si,ai,s

′
i)

is the reward function, Oi is the set of observations oi, and Oi is the observation
function that specifies Pr(oi|ai,s

′
i). Because the state space is factored, it is

usually possible to specify Ti, Ri and Oi in a compact manner using a Bayesian
network called a two-stage temporal Bayesian network (2TBN) [4]. Given this
model, the planning task for a POMDP is to find an optimal policy πi that
maximizes the expected sum of rewards over h time steps or stages, where h

specifies the horizon. Such a policy maps from beliefs, probability distributions
over states, to actions. While solving a POMDP is an intractable problem, in
the last two decades many exact and approximate solution methods have been
proposed (see, e.g., [8]).
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Fig. 2: TD-POMDP State components (left) and illustration (right).

Intuitively, a TD-POMDP is a set of factored POMDPs, one for each agent,
where there is overlap in the state factors of each agent. Of course, for such a
setting to be well-defined means that different transition models Ti need to be
consistent since the local transition probabilities can depend on other agents
too. (Alternatively one can think of there being a single transition model T for
all agents.) In a TD-POMDP, the set of state factors can be divided into factors
that occur only in one agent’s local state space (‘non-mutual’ factors, or NMFs)
and factors that are ‘mutually modeled’ by more than one agent (MMFs). The
joint reward function for the TD-POMDP is the sum of the individual rewards of
the agents: R(s,a,s′) =

∑

i Ri(si,ai,s
′
i). Additionally, we assume that there is a

known initial state distribution b0. A TD-POMDP imposes the restriction that
each state factor can be directly affected by the action of at most one agent.
That is, each factor can have an incoming edge from only 1 action variable,
thus no two agents can directly affect the same factor. This does not mean that
state factors depend on just one agent, since factors can be indirectly (i.e., via
a directed path consisting of multiple edges) influenced by many agents. This
factorization leads to different parts of an agent’s local state, as summarized in
Fig. 2a. Using the notation defined in this table, we will write the local state of
an agent i as si =

〈

xl
i,x

u
i ,m

l
i,m

n
i ,m

u
i

〉

= 〈xi,,mi〉. For a more formal introduction
of the TD-POMDP framework, see the second author’s dissertation [25].

As in a factored POMDP, the TD-POMDP transition, observation and re-
ward model can be represented by a 2TBN. For instance, Fig. 2b illustrates the
2TBN for HouseSearch. It clearly shows that the local states of both agents
are overlapping: both agents model the target location and the factors ‘target
found by agent 1/2’. Note that the mutually modeled state factors can only be
characterized as (non)locally affected from the perspective of a particular agent.
E.g., f1 is locally affected for agent 1, but non-locally affected for agent 2. The
figure also shows that, for this particular problem, each agent’s reward function



Ri is factored as the sum of two components Rdetect and Rmove. The former
models the rewards for detection, as well as the time cost (ctime) of not de-
tecting. This component depends on f t+1

1 , f t+1
2 as well as on f t

1, f
t
2: only when

(at least) one of the fi variables switches from false to true the agents receive
the reward; when all four factors are false the agents get the time penalty and
otherwise the rewards are 0 (but the movement costs remain). The movement
reward component only depends on the agents’ non-mutual locations and local
action.

The TD-POMDP is a non-trival subclass of the factored Dec-POMDP [16],
for which the NEXP-completeness result still holds [25]. This also means that
single-agent POMDP solution methods do not directly apply. A first problem
is that, in a multiagent context, we are now searching for a joint policy π =
〈π1, . . . ,πn〉. Moreover, when there are multiple agents interacting, the agents can
no longer base their policy over simple beliefs over states4, instead the policies
are mappings from histories of observations ~oi to actions.

2.3 Influences and Local Models

A well-known solution method for Dec-POMDPs, JESP [11], searches for a lo-
cally optimal joint policy as follows: it starts with a random joint policy and
then selects one agent to improve its policy while keeping the other policies
fixed. The improvement of the selected agent is done by computing a best re-
sponse. From the perspective of a single agent i, by fixing π−i (the policies of
the other agents) the problem can be re-cast as an augmented POMDP, where
the augmented state is a tuple 〈s, ~o−i〉 of a nominal state and the observation
histories of the other agents.

JESP directly applies to TD-POMDPs. However, because of the special struc-
ture a TD-POMDP imposes, we can compute the best response in more efficient
way: rather than maintaining a JESP belief bi(s, ~o−i), agent i can maintain a
condensed belief bi(x

t
i, ~m

t
i) over just its own private factors and the history of

mutually modeled factors [25, 26]. Intuitively, this is possible, because all in-
formation about ~o−i and the state factors that are not in agent i’s local state
(i.e., xj for j 6= i) is captured by ~mt

i. For instance, Fig. 2b illustrates that all
information agent 2 has about lt1 is inferred from the history of f t

1 and lttarget.
A second important observation is that an agent i is only influenced by other

agents via its nonlocal mutually modeled factorsmn
i . E.g., in Fig. 2b agent 1 only

influences agent 2 through changes to factor f1. Therefore, if, during planning,
the value of this factor at all stages is known, agent 2 can completely forget about
agent 1 and just solve its local POMDP (and similar for agent 1). This line of
reasoning holds even if agent 2 does not know the exact values of f1 ahead of
time, but instead knows the probability that f1 turns to true for each stage. This
insight lies at the basis of influence-based policy abstraction: all policy profiles
π−i that lead to the same distributions over non-local MMFs m

n,0
i , . . . ,m

n,h−1
i

4 In order to predict the action of a teammate as well as possible, an agent has to
maintain a more complex belief over states and future policies of agents [6].



can be clustered together, since they will lead to the same best response of
agent i.

This idea is formalized using the notion of incoming influence. An incom-
ing influence point of agent i, denoted I→i, specifies a collection of conditional
probability tables (CPTs): one for each nonlocally affected MMF, for each stage
t = 1, . . . ,h − 1.5 We denote a CPT for f t

1 (from our example) as pft
1
, which

specifies probabilities pft
1
(v|·) for values v ∈ {0,1} of f t

1 given its parents (·).
In this example, I→2 = {pf1

1
, pf2

1
, . . . , p

f
h−1

1

}. To specify these CPTs, it is nec-

essary to only use ~mi, the history of mutual features, as the parents [26]. I.e.,
the CPTs are specified as p

m
n,t+1

i
(·|~mt

i). With some abuse of notation, we also

write Pr(mn,t+1
i |~mt

i, I→i) for the probability of (some value of) a non-local factor

m
n,t+1
i according to I→i. Because the CPTs can only depend on ~mi, an incoming

influence point I→i enables the computation of a best response πi independent
of the other agents.

Of course, in general the actions of agent i can also influence other agents, so
in order to find optimal solutions, we will also need to reason about this influ-
ence. We denote by Ii→ the outgoing influence point of agent i, which specifies a
collection of CPTs: one for each of its locally affected MMFs. Again, these CPTs
can depend on only (the history of) MMFs ~mi. An incoming and outgoing in-
fluence point together form a (complete) influence point Ii = 〈I→i, Ii→〉. A joint
influence point I = 〈I1→, . . . ,In→〉 specifies an outgoing influence point for each
agent. Note that I also specifies the incoming influences, since every incoming
influence point is specified by the outgoing influence points of the other agents.
Fig. 3a illustrates the dependencies of an influence point in a so-called influence
DBN. For instance, the possible CPTs pft+1

1

are conditioned on ~lttarget, the his-

tory of the target location, as well f t
1, the value of ‘target found by agent 1’ at

the previous stage.
Given Ii, agent i has an augmented local POMDP with local states, rewards

and transitions. In this local model, a state is a pair 〈xt
i, ~m

t
i〉 such that, as

discussed above, a belief is of the form bi(x
t
i, ~m

t
i). Given an incoming influence

point that dictates the transition probabilities of its nonlocally-affected MMFs,
this local POMDP is independent of the other agents, but subject to constraints:
the solution should adhere to the specified outgoing influence point. We call such
a restricted model together with the influence point an influence augmented
local model (IALM). Solving the IALM is non-trivial since standard POMDP
solvers will not respect the additional constraints. The problem can be solved
by reformulating it as a mixed integer linear program (MILP) [25].

2.4 Optimal Influence Search

The key property of influences is that each influence point can compactly repre-
sent potentially many policies. Moreover, the number of influence points is finite,
since we need to consider at most one for each deterministic joint policy.6 There-

5 For t = 0 the distribution is specified by the initial state distribution b0.
6 A deterministic solution is guaranteed to exist.



. . .

. . .. . .

. . . . . .

. . .. . .

p
ft=1
2

p
ft=2
2

p
ft=1
1

p
ft=2
1

I1
1→

I1
2→ I1′

2→

I2
1→ I2′

1→

I2
2→

Fig. 3: The influence DBN and search tree for the example of Figure 2b.

fore, rather than searching in the larger space of joint policies, we can search in
the space of joint influence points and evaluate each of them by computing the
agents’ best responses. In particular, the value of a fully specified joint influence
point is

V (I) =

n
∑

i=1

Vi(I) (1)

where Vi(I) = Vi(〈I→i, Ii→〉) is the value of agent i’s best response to I→i subject
to the constraints of satisfying Ii→, i.e., the value that results from solving its
IALM.

Given that we can compute the value of a joint influence point I, we can
optimally solve a TD-POMDP by enumerating all I. Optimal Influence Search
(OIS) [26] does this by constructing a tree, as illustrated in Fig. 3b. An outgoing
influence slice Iti→ is that part of agent i’s outgoing influence point corresponding
to a particular stage t. The search tree contains the outgoing influence slices for
all agents for stage t = 1 on the first n levels, it contains the slices for t = 2
on the next n levels, etc. An influence point is defined by a complete path from
root to leaf. OIS performs an exhaustive depth-first search to find the optimal
joint influence point from which the optimal joint policy can be reconstructed.

Although an apparently simple search strategy, OIS’s influence abstraction
has led to impressive gains in efficiency. It has established itself as the state of
the art in computing optimal solutions for weakly-coupled agents agents, demon-
strating improvements over several other approaches that also exploit interaction
structure [26].

3 Heuristic Influence Search

OIS can greatly improve over other methods by searching in the space of joint
influences, which can be much smaller than the space of joint policies. However,
its weakness is that it needs to search this space exhaustively. In contrast, for
general Dec-POMDPs, heuristic search methods (in particular A*, see, e.g., [18])
have shown to be very effective [20]. The main idea here, therefore, is to extend
heuristic search to be able to search over the joint influence space.



In the subsections that follow, we develop the mechanics necessary to com-
pute admissible heuristic values for nodes of the influence search tree. As we
describe, this is a non-trivial extension, due to the fact that an influence sum-
marizes a set of possible policies.

3.1 Computing Heuristic Values

In order guarantee that heuristic search finds the optimal solution we need an
admissible heuristic; i.e, a function F mapping nodes to heuristic values that are
guaranteed to be an over-estimation of the value of the best path from root to
leaf that passes through that node. In our setting this means that the heuristic
F (Ǐ) for a partially specified joint influence point Ǐ (corresponding to a path
from the root of the tree to a non-leaf node) should satisfy

F (Ǐ) ≥ max
I consistent with Ǐ

V (I). (2)

We will also write I∗|Ǐ for the maximizing argument of the r.h.s. of (2).
In Dec-POMDPs, it is possible to perform A* search over partially specified

joint policies [15]. For a ‘past joint policy’ ϕ = (π0, . . . ,πt−1) that specifies the
joint policy for the first t stages, it is possible to define F (ϕ) = G(ϕ) +H(ϕ),
where G gives the actual expected reward over the first t stages 0, . . . ,(t−1) and
where H is a heuristic of the value achievable for the remaining stages. There
are multiple ways to define H. For instance, one general form [21] is:

H(ϕ) =
∑

s

Pr(s|b0,ϕ)Ht(s), (3)

where Ht(s) is a guaranteed overestimation of the expected value starting from
s in stage t. Such an overestimation can be obtained, for instance, by solving the
underlying MDP (called QMDP ) or POMDP [5, 15] .

Unfortunately, it is not possible to adapt the above approach to searching
influence space in a straightforward fashion. Given an Ǐ, the past joint policy is
not fixed, because π∗|Ǐ the best joint policy for I∗|Ǐ is unknown. Therefore, we
take a somewhat different approach, as detailed next.

3.2 Restricted Scope Restricted Horizon Heuristic

We exploit the fact that V (I) in (1) can be additively decomposed. That is we
upper bound (1) by

F (Ǐ) =

n
∑

i=1

Fi(Ǐ) (4)

Clearly, when Fi(Ǐ) ≥ Vi(I
∗|Ǐ) for all agents i, then F (Ǐ) ≥ V (I∗|Ǐ) and F (Ǐ) is

admissible.
The problem of computing a heuristic value Fi(Ǐ) is illustrated in Figure 4.

For now, we assume that Ǐ specifies all the influences for the first h stages
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(i.e., up to but not including stage h). The figure, in which h = 2, shows that
computation of Fi(Ǐ) depends on only a subset of state factor (i.e., a restricted
scope). In order to actually compute the Fi(Ǐ) , we suggest a 2-step approach: 1)
compute an admissible heuristic for the stages for which the influence is not yet
specified, and 2) subsequently use these heuristic values to solve a constrained
POMDP over horizon h. We will refer to heuristics of this form as restricted
scope restricted horizon (RSRH) heuristics.

Step 1: The Unspecified-Influence Stages. The goal here is to compute Hh
i

similar to the term used in (3). This means computing an optimistic estimate of
the value over the remaining (unspecified-influence) stages. In particular, we use
an approach similar to QMDP: we compute the value of the underlying MDP
but restricted to local states of the agent. In order to do so, we make optimistic
assumptions on the unspecified incoming influences. Intuitively, this amounts to
assuming that an agent i’s peers will adopt policies that will exert the most
beneficial effect on agent i’s local state.



Remember that an IALM state 〈sti, ~m
t−1
i 〉 = 〈xt

i,~m
t
i〉, and that we write

xi =
〈

xl
i,x

u
i

〉

and mi =
〈

ml
i,m

n
i ,m

u
i

〉

. Now the overestimation we use is7

Ht
i (xi, ~mi) , max

ai

[

R(si,ai) +
∑

x′

i
,ml′

i
,mu′

i

Pr(x′
i,m

l′
i ,m

u′
i |si, ai)max

mn′

i

Ht+1
i (x′

i, ~m
′
i)
]

(5)
It is clear that

H
t
i (xi, ~mi) ≥ max

ai

[

R(si,ai) +
∑

x′

i
,ml′

i
,mu′

i
,mn′

i

Pr(x′
i,m

l′
i ,m

u′
i ,m

n′
i |xi, ~miai,I→i)

V
I→i
i,MDP (x

′
i, ~m

′
i)
]

= V
I→i
i,MDP (xi, ~mi), ∀I→i. (6)

Here, V I→i

i,MDP is the value of the underlying restricted-scope MDP given any
fully specified incoming influence point I→i. Also, it is important to note that
Pr(x′

i,m
l′
i ,m

u′
i |si,ai) in (5) can be directly computed due to the structure imposed

by the TD-POMDP. As such, our ‘optimistic estimate of QMDP’ Ht
i can be

computed via dynamic programming starting at the last stage h−1 and working
back to stage h.

Step 2: The Specified-Influence Stages. Here we use Hh
i found in step 1 to

construct a restricted-horizon constrained POMDP, i.e., the IALM for agent i

for only the first h stages, which we will denote by M (we denote all quantities
of M with bars). For this IALM, we change the immediate rewards for the ‘last’

stage, stage h− 1, to include the heuristic Hh
i for the remaining stages:

R
h−1

(xi, ~mi, ai) , R(si,ai)+
∑

x′

i
,ml′

i
,mu′

i

Pr(x′
i,m

l′
i ,m

u′
i |si,ai)max

mn′

i

Hh
i (x

′
i, ~m

′
i) (7)

That is, we apply the same optimistic estimate, effectively transforming the im-
mediate rewards of stage h− 1 into optimistic heuristic ‘action-value’ estimates.
The result is a completely specified, restricted-horizon, IALM for agent i that
can be solved in exactly the same way as the full-horizon IALM. The value it
achieves is Fi(Ǐ) , V i(I).

Partially Specified Joint Influence Slices. So far we assumed that the
(outgoing) influences, for all agents, up to and including stage h−1 were specified.
However, for many nodes in the influence tree in Figure 3b the influences are only
specified for a subset of agents at stage h− 1. However, we can easily overcome
this problem by adapting the computation of Fi(Ǐ) in the following fashion.

If an outgoing influence at stage h − 1 is not specified we just omit the
constraint in the MILP. If an incoming influence at stage h − 1 is not specified

7 In the remainder of the paper we assume rewards of the form R(si,ai) for simplicity,
but the extension to R(si,ai,s

′
i) is straightforward.



we transform the transition probability for the last transition in the restricted-
horizon IALM (i.e., the transition from stage h − 2 to h − 1) such that for all

〈xl,t
i ,x

u,t
i ,m

l,t
i ,m

u,t
i 〉 the local state will always transition to the fully specified

local state 〈xl,t
i ,x

u,t
i ,m

l,t
i ,m

n,t
i ,m

u,t
i 〉 with the highest heuristic value.

Theorem 1. Fi(Ǐ) is admissible.

Proof. See appendix.

The implication is that our heuristic can be used to prune those influence
assignments that are guaranteed to be sub-optimal. As such, we will be able to
expand potentially far fewer nodes of the influence-space search tree and still
guarantee optimality.

4 Experiments

We now present an empirical evaluation of our heuristic influence-space search
method. Our primary hypothesis is that exhaustive influence-space search (OIS),
which has established itself as the state of the art for computing optimal solu-
tions for weakly-coupled transition-dependent agents, can gain even more trac-
tion if combined with heuristic search methods. Although it would be interesting
to additionally compare with optimal Dec-POMDP solution methods that em-
ploy heuristic search but not influence abstraction (e.g., [20]), we expect that
these problems are too large, especially in the number of individual observa-
tions (4× 2× 2 = 16 for Diamond, 32 for Rectangle, and 36 for Squares), which
are way beyond what optimal Dec-POMDP solvers can handle (the largest of
those problems have 5 individual observations). In order to test our hypothesis,
we performed experiments both on the HouseSearch configurations shown in
Fig. 1 as well as on SatelliteRover, a TD-POMDP test set involving two
agents that interact through task dependencies [26].

For HouseSearch, we experimented with different degrees of stochasticity.
I.e., we considered problems ranging from deterministic actions and determinis-
tic observations (“d.a.d.o.”) to stochastic actions (where the probability that a
move action will fail is 0.1) and stochastic observations (where the probability
of observing no target when in the same room as the target is 0.25) (“labeled
s.a.s.o”). For all problems, the parameters were set to ctime = −5, ci = −1
for each movement action, and rdetect = 0. Table 1 compares the runtimes of
OIS with those of A* using our restricted scope restricted horizon heuristic. As
shown, using this simple heuristic can lead to significant speedups over depth-
first search, especially on the Diamond configuration where we see as much as
two orders of magnitude improvement (e.g., at horizon 3 of Diamond d.o.s.a)
not to mention scaling up of influence-based planning to larger time horizons
than was previously possible. For Rectangle and Squares, however, the benefit of
A* over exhaustive OIS are less pronounced. (Given space restrictions, we omit
the d.o.d.a., d.o.s.a, and s.o.s.a. variations of these problems, whose trends were
the same as in s.o.d.a.)



Diamond Rectangle Squares

(d.o.d.a) (s.o.d.a) (d.o.s.a) (s.o.s.a) (s.o.d.a) (s.o.d.a)

h OIS A* OIS A* OIS A* OIS A* OIS A* OIS A*

1 0.16 0.15 0.21 0.26 0.20 0.30 0.34 0.37 0.11 0.18 0.21 0.27
2 0.95 0.57 3.65 1.20 6.38 1.92 69.65 5.05 1.04 0.95 1.56 1.65
3 8.65 1.55 423.5 19.39 15,042 96.02 11,124 36.52 29.92 75.59 80.53
4 108.0 7.54 881.0 5,629 3,346 13,769
5 1,403 45.29

Table 1: Runtime results for different variations of HouseSearch problems.

We also tested A* on SatelliteRover, in which the lengths of task exe-
cution windows were systematically varied to affect the level of influence con-
strainedness [26]. The less constrained the agents’ interactions, the larger the
influence space, as demonstrated by the exponentially increasing runtimes plot-
ted on a logarithmic scale in Fig. 5a. Evidently, it is on these less-constrained
problems, which are hardest for OIS, where we get the most speedup from A*.
Here, A* search leads to significant savings of well over an order of magnitude
(573s vs. 19.9s for IC=1/7), thereby complementing the savings achieved by
influence-based abstraction.

The differences between the impact of A* in Diamond, Rectangle, and Squares
warrant a more detailed analysis. In the latter two variations, the tighter heuristic
appears too loose to effectively guide heuristic search except on problems with
longer time horizons. Upon closer inspection, we discovered an inherent bias in
the application of our heuristic to HouseSearch problems; it encourages the
‘stay’ action. This is because the heuristic evaluation of each agent makes the
optimistic assumption that the other agent will find the target, in which case the
agent need not look itself and incur the associated movement cost. To verify this
hypothesis we performed some additional experiments where movements do not
have a cost associated with them. The results are shown in Fig. 5b and clearly
confirm the hypothesis. A* now shows substantial speedups on Rectangle and
on Squares, and even more impressive speedups on Diamond.
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Diamond Rectangle Squares

h OIS A* OIS A* OIS A*

1 0.22 0.25 0.13 0.16 0.22 0.26
2 3.49 0.59 0.79 1.24 2.24 2.24
3 349.6 3.52 27.34 25.48 68.70 45.10
4 40.68 5,434 275.8 656.3
5 2,163

(b)

Fig. 5: Results for SatelliteRover (a), and Runtimes for the s.o.d.a. variations
of HouseSearch without movement costs (b).



5 Related Work

Recently, some other methods and models that allow for both transition and
reward dependence have been proposed. As mentioned, MAA* for Dec-POMDPs
has seen various improvements [15, 20, 21]. The big contrast with that work, is
that here we perform search in the more compact space of influences.

A related model is the EDI-CR [10] that makes explicit a set of joint tran-
sition and reward dependencies. The authors propose an MILP-based solution
method that is conceptually related to influence abstraction; it clusters action-
observation histories that have equivalent probabilistic effects so as to reduce the
number of joint histories considered. A significant difference is that, unlike the
algorithms we develop here, instead, it entails solving a single joint model framed
as an MILP. In contrast, our methodology employs more compact local models
augmented with influence information and decoupled from the joint model.

Another related model, the DPCL [22, 24], uses ‘coordination locales’ (CLs)
to facilitate the computation of response policies using local models that incor-
porate the effect of other agents’ policies. Here, coordination locales isolate the
structured dependencies among agents analogously to the way that TD-POMDP
mutually-modeled features enable compact specification of influences. However,
in contrast to our work, the DPCL has only ever been solved approximately,
with no guarantees on solution quality.

Finally, there have also been a number of papers on computing approximate
solutions for factored Dec-POMDPs, which are more general than TD-POMDPs
in that they do not impose restrictions on the number of agents that can directly
affect a state factor. Also, they allow for an arbitrary (e.g., not agent-wise) de-
composition of the joint reward function. For a finite horizon, one can try to
exploit the factorization using collaborative graphical Bayesian games, which
can in turn be approximated using approximate inference techniques [13]. Sim-
ilarly, for the infinite-horizon, EM has been proposed to exploit factorization
while optimizing policies represented as finite state controllers [9, 17]. Again, the
biggest difference with the work described here is that these methods search in
policy space, rather than the space of influences.

6 Conclusions & Future Work

We have introduced heuristic A* search of the influence space for the optimal
solution of multiagent planning problems formalized as TD-POMDPs. As pre-
vious work has shown, the space of influences can be much smaller than the
space of joint policies and therefore searching the former can lead to significant
improvements in performance. We illustrated the efficacy of our approach on
sets of problems from two different domains including HouseSearch, wherein
we showed the first application of optimal influence search on TD-POMDPs
with cyclic dependencies between agents. Our empirical evaluation shows that
A* search of the influence space can lead to significant improvements in per-
formance over plain depth-first OIS. In particular, the results indicate that in



problems that are harder (i.e., where there is a high number of possible influ-
ences) A* leads to the most improvements. In other words, influence abstraction
and heuristic search can provide complementary gains. This suggests that A*
search of influence space can be an important tool in scaling up a large class of
multiagent planning problems under uncertainty.

There are a number of directions for future research. First, the results in-
dicate that in some cases only a moderate amount of pruning is realized. As
such, an important direction of future work is to find tighter heuristics that can
still be computed efficiently. Because of the connection this paper establishes
between searching influence space and MAA* for Dec-POMDPs, it is natural to
try and extend recent improvements in the latter to the former. One question
is whether it is possible to incrementally expand the nodes in the search tree.
Such incremental expansion has yielded significant increases in performance for
Dec-POMDPs [20]. Another interesting question is whether it is possible to clus-
ter influence points. That is, it may be possible to characterize when different
joint influence points correspond to best responses that are guaranteed to be the
identical.
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Appendix: Proof of Theorem 1

Proof. We need to show that

∀Ii Fi(Ǐ) = V i(I) ≥ Vi(I
∗|Ǐ) (8)

We assume an arbitrary I→i,Ii→ consistent with Ǐ. Since the first h − 1 stages are
identical, (8) clearly holds if

∀bi Q
h−1

i (bi,ai) ≥ Q
h−1,I→i,Ii→
i (bi,ai). (9)

We choose an arbitrary bi. Expanding both sides, we need to show that

R
h−1

(bi,ai) ≥ R
h−1(bi,ai) +

∑

b′

P (b′|bi,ai)V
h,I→i,Ii→
i (b′i). (10)

Expanding the expectations over IALM states:

∑

xi,~mi

bi(xi, ~mi)R
h−1

(xi, ~mi,ai) ≥
∑

xi,~mi

bi(xi, ~mi)

[

R(si,ai) +
∑

s′
i

∑

oi

Pr(s′i,oi|si,ai)V
h,I→i,Ii→
i (x′

i, ~m
′
i, b

′
i).

]



Substituting the definition of R:

∑

xi,~mi

bi(xi, ~mi)
[

R(si,ai) +
∑

x′

i
,ml′

i
,mu′

i

Pr(x′
i,m

l′
i ,m

u′
i |si,ai)max

mn′

i

H
h
i (x

′
i, ~m

′
i)
]

≥
∑

xi,~mi

bi(xi, ~mi)
[

R(si,ai) +
∑

s′
i

∑

oi

Pr(s′i,oi|si,ai)V
h,I→i,Ii→
i (xi, ~mi,b

′
i)
]

.

This is proven if we can show that

∀xi,~mi

∑

x′

i
,ml′

i
,mu′

i

Pr(x′
i,m

l′
i ,m

u′
i |si,ai)max

mn′

i

H
h
i (x

′
i, ~m

′
i)

≥
∑

s′
i

∑

oi

Pr(s′i,oi|si,ai)V
h,I→i,Ii→
i (x′

i, ~m
′
i, b

′
i) (11)

We assume arbitrary xi, ~mi and now continue with the right hand side. Since it is well-
known that the MDP value function is an upper bound to the POMDP value function
[7], we have

∑

s′
i

∑

oi

Pr(s′i,oi|si,ai)V
h,I→i,Ii→
i (x′

i, ~m
′
i,b

′
i) ≤

∑

s′
i

∑

oi

Pr(s′i,oi|si,ai)V
h,I→i,Ii→
i,MDP (x′

i, ~m
′
i)

≤
∑

s′
i

Pr(s′i|si,ai)V
h,I→i,Ii→
i,MDP (x′

i, ~m
′
i) ≤

∑

s′
i

Pr(s′i|si,ai)V
h,I→i
i,MDP (x

′
i, ~m

′
i)

The last term denotes the optimal value under only incoming influences, and the in-
equality holds because the set of policies available to agent i without restrictions due
to promised outgoing influences is a strict superset of those when there are outgoing
influences. Now, by (6) we directly get that the last quantity

≤
∑

s′
i

Pr(s′i|si,ai)H
h
i (x

′
i, ~m

′
i) ≤

∑

x′

i
,ml′

i
,mu′

i

Pr(x′
i,m

l′
i ,m

u′
i |si,ai)max

mn′

i

H
h
i (x

′
i, ~m

′
i), (12)

which concludes the proof. ⊓⊔
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