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Abstract Clustering is a general problem where, given a certain number of
data points along with a way of measuring their similarity or dissimilarity, one
has to group them up according to that measure. Hierarchical clustering is a
particular case of clustering, providing a recursive partitioning of a data set into
successively smaller clusters. A hierarchical clustering can be represented by a
tree whose leaves correspond to the data points, and each internal node corre-
sponds to a cluster. It has grown to become a popular data analysis method,
with various applications in data mining, phylogeny, and even finance. Hier-
archical clustering is often applied in unsupervised machine learning contexts,
where it provides a flexible way of categorizing data points into a variable num-
ber of clusters, as opposed to other clustering methods.

1 Introduction
The clearest and most illustrative application of hierarchical clustering is phylo-
genetics: given the similarity or dissimilarity of a set of species, one is asked to
categorize them into recursively smaller clusters and thus a tree, from kingdom,
phylum to genus and species. Such a tree is known as dendrogram, and can be
used to form any number of clusters. Figure 1 is an example of a dendrogram
applied to phylogenetics, which could be considered a hierarchical clustering if
a measure of similarity or dissimilarity over these organisms is provided.

Indeed, unlike other approaches to clustering, hierarchical clustering does
not provide a clear-cut number of clusters – once a hierarchy is obtained, one
can recover a k-clustering by performing k− 1 cuts in the dendrogram obtained
from the hierarchical clustering. This is true at all levels of granularity, meaning
the size and number of clusters can be chosen freely depending on where the
cuts are made in the dendrogram. However, note that the choice of where the
cuts are made can be a non-trivial question by and of itself. For instance leaving
a subtree child of the root as a cluster and cutting the rest of the tree into (k−1)
clusters might be suboptimal. Most algorithms in their most popular form yield
binary trees (for reasons explored in Lemma 1), meaning they naturally provide
clusterings into 2, 4, 8, . . . clusters.

As with most unsupervised machine learning problems, hierarchical cluster-
ing has focused on algorithms and suffered from a lack of a precise method
for measuring performance – such as objective functions to evaluate the qual-
ity of a clustering and compare algorithms’ performances. To remedy this,
Dasgupta [Das16] introduced and studied an interesting objective function for
hierarchical clustering for similarity measures, which we shall explore in Sec-
tion 2.
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Figure 1: Dendrogram of the phylogenetic tree of single-celled microbes ar-
chaea.

Traditionally, there are two classes of methods to derive hierarchical cluster-
ings. The most popular algorithms consist of ‘bottom-up’ agglomerative meth-
ods: single, complete and average linkage. These start from 1-clusters and
progressively merge them into a tree structure. The other class of methods
are ‘top-down’ divisive algorithms, of which we shall explore bisection 2-center.
These algorithms start with a single cluster of all points, and divide it until
obtaining a tree structure based on the cuts.

We will explore these algorithms in Section 3, where we will first calculate
their complexities, before proving bounds on worst-case performance compared
to an optimal clustering. We shall also explore these techniques in the context of
one-dimensional data on the real line, improving on best-known upper bounds
for general input.

All of the aforementioned algorithms have existed for much longer than Das-
gupta’s cost function, and can thus only be seen as approximation algorithms
– they don’t provide optimal trees in general. As a matter of fact, finding an
optimal hierarchical clustering for a given set of data points is an NP-complete
problem, as we shall see in Section 4.

2 Cost functions
2.1 Similarity and dissimilarity measures, generating trees
Definition 1. An ultrametric space is a metric space (X, d) such that all
triangles are isosceles and have their two equal sides longer than the third:

d(x, y) ≤ max (d(x, z), d(y, z))

Ultrametrics allow us to define a first type of input, graphs generated by
ultrametrics. They are not the general framework in which similarity graphs
are defined, but they lead to the important notion of ground-truth inputs.
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Definition 2. A similarity graph is a weighted unoriented graph, whose
weights represent the similarity between the nodes, which represent the data
points.

A similarity graph is said to be generated by an ultrametric (X, d) if
its vertices V are a subset of X and the weights are defined by the relation:
w(x, y) = f(d(x, y)), where f is a non-negative decreasing function.

Similarly, a dissimilarity graph is said to be generated by an ultrametric
if the same condition is verified with f a non-negative increasing function.

For most of the following work, we shall suppose that we are in the similarity
case, unless stated otherwise. Definitions and proofs are somewhat similar in
the dissimilarity case, only with inequalities occasionally flipped.

These graphs – whether of similarity or dissimilarity – are the input to our
algorithm, giving us the structure of the data to be clustered. One could also
imagine another way of generating such a graph, from a weighted tree structure
over its nodes.

Definition 3. A tree T is said to be a generating tree for the similarity graph
G if its leaves are labeled by the nodes of the graph, and there exists a weight
function W mapping internal nodes of the tree to R+ such that:

• If N is a (possibly indirect) descendant of M then W (M) ≤W (N).

• For any two vertices x, y in the graph, the weight of the edge connecting
them in the graph is the weight according to W of their least common
ancestor in T .

Theorem 1. A graph is generated by an ultrametric if and only if it is generated
by a tree. Such a graph is called a ground-truth input.

Proof. Let G be a graph generated by the tree T . Take two vertices (u, v) which
are of minimal distance d(u, v) in G, assemble them into a tree of two leaves
and a new root. The root should be weighted by f(d(u, v)) = w(u, v) – which is
maximal amongst the images of distances by f . We then insert the other points
one by one into this tree structure to make it into a ‘comb tree structure’ as in
Figure 2, according to the following algorithm.

For any given node x, the triangle (x, u, v) is isosceles in x by definition. We
insert the nodes in order of increasing distance to u – which is the same as the
distance to v by the previous remark – along with a new root according to the
comb structure. The weight of the new root is chosen as w(u, x) at each step.

All nodes of equal distance to u are inserted in a same subtree to the right of
the comb, which is generated recursively with the same algorithm. By induction,
we can suppose the weights of the inner nodes in this subtree to be correct. The
algorithm clearly places the weights in a decreasing fashion from the root along
the comb (weights illustrated in Figure 2), and within the right subtrees by
induction, we however have to prove that all the nodes at a given distance of u
– a right subtree – are closer to one another than to u.
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Figure 2: Comb tree structure.

Take x, y such that d(x, u) = d(y, u). Then the triangle (x, y, u) is isosceles
in u, and so d(x, y) ≤ d(x, u), so in turn w(x, y) ≥ w(x, u) and thus the weights
are correctly ordered from the root into the right subtree.

It is only left to prove that the inner node weights yield the appropriate
distances between two nodes inserted after u and v. If x is being inserted and y
was previously inserted, then (x, u, y) forms an isosceles triangle, and we know
that d(u, x) > d(u, y) thus the triangle is isosceles in x. This tells us that
d(x, y) = d(u, x) = d(v, x), which allows us to conclude the fact the weight
function f(d(x, y)) = f(d(x, u)) is correct.

Conversely, suppose our graph to be generated by a tree T , let us show there
exists an ultrametric over the graph’s vertices generating the same graph. For
this we consider the distance to be an injective decreasing function of the weight
yielded by the tree: d(x, y) = 1/(1+W (LCAT (x, y))), where LCAT is the least
common ancestor – except d(x, x) = 0 of course, for the space to be metric.

We now have to verify the isosceles triangles condition: let (x, y, z) be three
nodes in the tree. Let a be their least common ancestor, then there is at least
one node of (x, y, z) in each of its subtrees, and therefore either its left or right
subtree has exactly one node of (x, y, z).

We can suppose without loss of generality x is that node. We thus have
LCAT (x, y) = LCAT (x, y) so w(x, y) = w(x, u) and therefore d(x, y) = d(x, u).
This allows us to conclude that the isosceles triangles condition is verified –
which is in turn stronger than the triangle inequality.

As stated above, the ultrametric case – or ground-truth case – is not the
framework in which hierarchical clustering is done, since one could wish to use
an Euclidean norm for points in Rn for instance. However, the ground-truth
case allows for an intuition of what kind of problems hierarchical clustering can
solve: these are the cases where we could input a graph generated by a tree
to an algorithm and wish for it to return the tree generating it. We shall now
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formalize this notion thanks to admissible cost functions.

2.2 Admissible cost functions
In the case of hierarchical clustering, a clustering for a graph is a tree whose
leaves are labeled by the vertices of the graph. A cost function for a given graph
is therefore a function which maps trees into R+, with lower costs being desirable
in the similarity case. In his paper [Das16], Dasgupta considers cost functions of
a particular form, later generalized in Cohen-Addad et al.’s paper [CKMM18],
which also characterizes admissible cost functions amongst them.

Definition 4. For a given internal node N of T , let Nl, Nr be respectively its
left and right subtrees, and s(N) the number of leaves of the subtree rooted in
N . The Γ cost function is defined in the following manner:

Γ(T ) =
∑
N∈T

γ(N)

γ(N) = s(N)
∑

x∈Nl,y∈Nr

w(x, y)

In words, the cost at a given internal node is the sum of the dissimilarities
between pairs of points separated between left and right subtree, weighted by
the amount of leaves under that node.

Definition 5. A desirable property for cost functions is that the generating
tree performs well when compared to other tree structures. A cost function is
said to be admissible if for any ground-truth input, it is minimal on generating
trees for this input.

Remark 1. A slightly more general version for cost functions replaces s(N) in γ
by an arbitrary function g(s(Nl), s(Nr)). We will only look at the case where g is
the sum of its arguments, and we rely on the characterization of admissible cost
functions given in [CKMM18] to prove that Γ is indeed admissible in Corollary 1.
Remark 2. In the dissimilarity case, we can consider the same cost function Γ,
but with objective of maximizing it. It is often called objective function, and
the cost often called score of a clustering.

Definition 6. We define the cost function Ψ as follows,

Ψ(T ) =
∑
N∈T

∑
x∈Nl,y∈Nr

(s(T )− s(N))w(x, y)

This cost function is sometimes called dual to Dasgupta’s cost function, and
is due to Moseley and Wang [MW17].

Proposition 1. The sum of Γ and Ψ is constant for a given graph.
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Figure 3: The transformation to make a non-binary tree binary.

Proof.

Γ(T ) + Ψ(T ) =
∑
N∈T

∑
x∈Nl,y∈Nr

s(G)w(x, y) = s(G)
∑
e∈E

w(e)

In particular, Property 1 shows that minimizing Γ is the same as maximizing
Ψ and vice-versa. We shall be focused on Dasgupta’s cost function until Sub-
section 3.4, though thanks to this duality most properties of Dasgupta’s cost
function Γ are closely tied to those of Moseley and Wang’s cost function Ψ.

2.3 Elementary properties
There is a natural way to extend the Γ cost function to general non-binary
trees, by summing over nodes in different subtrees of each node. One could try
to imagine minimizing the cost in such a manner, by considering this vaster
class of trees. However, this effort proves fruitless.

Lemma 1. There always exists a binary optimal tree.

Proof. Given an optimal tree T whose children of the root are (T1, . . . , Tk), we
recursively apply the following transformation to make it into a binary tree:
take a new root, make its left child T1 and its right child a node with children
(T2, . . . , Tk).

We then apply the same transformation to the children of this new root –
that is T1 and the new node. This clearly makes the tree into a binary tree,
we only have to prove that it decreases cost. The final result is illustrated in
Figure 3.

After a single step of the transformation, the cost at the root will be de-
creased, ∑

xi∈Ti,xj∈Tj

1≤i<j≤k

w(xi, xj) ≥
∑

x1∈T1,xj∈Tj

1<j≤k

w(x1, xj)
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since the second sum has its indexes strictly included in the first’s.
Finally, a single step of the transformation will have, on top of the cost at

the root, the cost of T1 and the cost of the subtree containing (T1, . . . , Tk). The
other costs will also be greater by induction over the transformation steps.

From now on, clusterings shall be by definition binary trees only.
One first type of graph one might like to look at is one where all points are

similarly similar: all of the weights are equal to 1 and every vertex is connected
to every other vertex. Such a graph is known as a clique.

Lemma 2. All clusterings on a clique have the same cost.

Proof. If the result is true, then the cost of any clustering of the clique of size
n can be written as a function A of n. We shall prove this by induction over n
the size of the clique. Note the result is trivially true for n = 2 where only one
tree structure exists.

Let T be a clustering over a clique of size n > 2. The cost at the root
will be ns(Tl)s(Tr). By induction, the cost of the subtrees will respectively be
A(s(Tl)), A(s(Tr)). Let us denote k = s(Tl) the size of the left subtree, we have
to prove

∀k ∈ [|1, n− 1|], A(n) = nk(n− k) +A(k) +A(n− k)

that is, we have to prove the right hand term coincides for all values of k.
To do so, we prove by induction that

A(n) = 2
(
n+ 1

3

)
= n(n+ 1)(n− 1)

3

This is true for n = 2, and then substituting it into the previous formula does
indeed give the same result A(n) for all k by developing the three products.

In [CKMM18], it is proven that a cost function derived from g (as described
in the previous subsection) is admissible if and only if it yields the same cost for
all cliques, it is symmetrical and an increasing function of each of its arguments
individually. The previous lemma thus allows us to deduce,

Corollary 1. The Γ cost function is admissible.

3 Classical algorithms
3.1 Agglomerative approaches
The most popular approach to hierarchical clustering is linkage algorithms:
these start off with clusters of single vertices, and sequentially merge them
up into a single tree. The difference in the single, complete and average linkage
algorithms resides in the choice for the similarity function. This function is
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defined on pairs of trees – not clusterings, simply trees labeled by a subset of
the graph’s nodes.

sim(T1, T2) =



1
s(T1)s(T2)

∑
x∈T1,y∈T2

w(x, y) average linkage

max
x∈T1,y∈T2

w(x, y) single linkage

min
x∈T1,y∈T2

w(x, y) complete linkage

Algorithm 1 Linkage algorithms (similarity setting)
Input: A weighted graph G = (V,E,w)

Create s(G) singleton trees for each node in G
Define the similarity function as described above
while there are at least two trees do

Take two trees T1, T2 maximizing the similarity function
Replace these two trees by a new tree having these two trees as children

end while
return The single remaining tree

Proposition 2. The complexity of all three linkage algorithms is O(s(G)3).

Proof. Let n = s(G), note that a naive attempt at a proof for the algorithm as
described above yields a complexity O(n5): we will have to optimize it.

The while loop is performed exactly n−1 times, since it reduces the amount
of trees by exactly one at each iteration. The algorithm can cache the similarities
between trees in a table, thus only having to recalculate the similarities for the
newly merged tree. The amount of trees at the end of step k is n− k, and there
are thus n − k − 1 similarity calculations to be done at each loop, and a table
of size (n− k)2 whose minimum is to be found.

Moreover, calculating the similarity of a merged tree with another tree can
be done in constant time based on the two merged trees’ similarities with the
other tree:

simavg (T1 ∪ T2, T3) = s(T1)s(T3)simavg(T1, T3) + s(T2)s(T3)simavg(T2, T3)
(s(T1) + s(T2))s(T3)

simsng (T1 ∪ T2, T3) = max (simsng(T1, T3), simsng(T2, T3))
simcomp (T1 ∪ T2, T3) = min (simcomp(T1, T3), simcomp(T2, T3))

Initializing the similarity table is a O(n2) operation. Merging trees can be
made into a constant time operation, and thus the overall complexity is bounded
by a constant times, n2 +

∑n−1
k=1(n− k)2 + (n− k − 1) = O(n3)
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When the input to the linkage algorithms is a ground-truth input – a graph
generated by a tree or an ultrametric – then the result will be optimal. We shall
not prove this result here, but we do for the next algorithm in Subsection 3.2.
Remark 3. Being efficient in the ground-truth case does not mean being efficient
in general. This can for instance be seen in Charikar et. al’s paper [CCN19]:
average linkage can yield no better approximations than 2

3 for Γ and 1
3 for Ψ in

the worst case.

3.2 Divisive methods
The next algorithm, bisection 2-center, can be seen as an adaptation of a class of
more general algorithms bisection k-means to the case of hierarchical clustering.

Algorithm 2 Bisection 2-center (similarity setting)
Input: A weighted graph G = (V,E,w)

Let (u, v) be an edge that maximizes minx max(w(x, u), w(x, v))
Let A be the set of nodes x such that w(x, u) ≥ w(x, v)
Let B = V \A
Let TA and TB be the recursively obtained results on subgraphs A,B respec-
tively
return A new root with subtrees TA, TB

The choice of (u, v) might seem a little cryptic at first. Recalling that the
greater w(x, y), the more similar x and y are, the interpretation for the centers
(u, v) would be the pair of points such that the point furthest from the closest of
the centers is as close as possible.

This might still sound cryptic. For each vertex x, we look at the closest of
the centers from it; we look at the point for which this measure is the greatest,
and we want to minimize it. In sum, we want all points to be close to at least
one of the centers, which is intuitive for a clustering.
Proposition 3. The complexity of bisection 2-center is a O(s(G)4).

Proof. At each internal node N of the tree, the complexity is S(N)3 in order to
find the edge minimizing the minmax. The produced tree is full – there are no
internal nodes that have only one child – and so the tree has s(G)− 1 internal
nodes. Since we can bound s(N)3 ≤ s(G)3, the overall complexity is S(G)4.

Unlike linkage algorithms, bisect 2-center does not always yield an optimal
tree on ground-truth inputs. It however does when the optimal tree is unique –
up to an automorphism – which can be defined in terms of generating trees.

Definition 7. A tree is said to be strictly generating for a graph G if the
weight inequality in Definition 3 is strict: W (M) < W (N) for any descendant
M of N .

Proposition 4. If G is a strict ground-truth input, then the output of bisection
2-center is optimal.
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Proof. We shall proceed by induction over the size of the graph. Let T be a
strictly generating tree for the input and W the associated weight function.

For all x ∈ Tl and y ∈ Tr, let us denote w(x, y) = W (T ) = α, which is
consistent by the definition of a generating tree. Let (u, v) be the edge the
algorithm chooses, and suppose both these vertices are in Tl. Then,

minx (max(w(x, u), w(x, v))) ≤ minx∈Tr
(max(w(x, u), w(x, v))) = α

Now let u′ ∈ Tl, v
′ ∈ Tr be a new edge but separated between both subtrees

of T . Then for x ∈ T , we have

max (w(u′, x), w(v′, x)) ≥ min (W (Tl),W (Tr)) > W (T ) = α

where the first inequality comes from the definition of a generating tree and the
second the definition of a strictly generating tree.

Taking the min over x ∈ T thus yields the fact that (u′, v′) has a strictly
greater ‘minmax’ than (u, v), which is a contradiction with the fact that the
algorithm chose the latter.

Therefore, if (u, v) is picked by the algorithm, they are in different subtrees
of T . We can suppose without loss of generality u ∈ Tl, let us inspect the
partition (A,B) performed by Algorithm 2:

• For x ∈ Tr, we have w(x, u) = α < W (Tr) ≤ w(x, v) so the algorithm
places x in the set B.

• For x ∈ Tl, we have w(x, u) ≥ W (Tl) > α = w(x, v) so the algorithm
places x in the set A.

Up to exchanging the sets A and B, the algorithm correctly separates the
two subtrees, and by induction it yields T up to an isomorphism – which will
always be a ground-truth tree, and thus optimal by Corollary 1.

Remark 4. Note that we have avoided mentioning w(u, u) and w(v, v) in this
last proof. In the similarity case, a node is more similar with itself than any
other: one can recover this from the ultrametric case in Subsection 2.1, since
f(d(u, u)) = f(0) ≥ f(x) for all x.

This thus means that the partitioning does indeed yield u ∈ A and v ∈ B,
since the reasoning extends to these two nodes.

3.3 Experimental performance
To assess the efficiency of these algorithms, I ran a simulation for randomly
chosen integers in [| − 500; 500|] for the distance w(x, y) = |x− y| – which falls
in the dissimilarity case, recall Remark 2.

Definition 8. A clustering of points in R is said to be non-interlaced if the
leaves are ordered along an in-order traversal.
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Figure 4: Experimental results for linkage and bisect 2-center algorithms

The hypothesis from my internship is that any input graph of points over R
has an optimal non-interlaced clustering. To test this hypothesis in a few practi-
cal cases, I performed dynamic exhaustive searches for non-interlaced clusterings
and general clusterings, and plotted the score obtained by the linkage algorithms
and bisect 2-center compared to the optimal clustering.

The code differs from Algorithms 1 and 2 in two ways:

• Algorithm 1 is given in the similarity case, and had to be adapted here to
the dissimilarity case – this means it selects two trees of smallest similarity
to merge.

• The algorithms I coded try to make the final tree as non-interlaced as
possible. For linkage, this means the merging procedure compares the
smallest element of the trees to merge and puts the smallest one to the
left. For bisect, this means the list is first sorted and kept sorted when
partitioning, and both partitions’ smallest elements are compared when
assembling them into a tree.

I performed the experiment for n = 6 and n = 10, under the assumption
that if a counterexample existed, it would exist for small values of n. The plots
can be seen in Figure 4: the bottom axis is the optimal score for all clusterings,
in green the score for single linkage, in red for average linkage and blue for
complete linkage. All scores are relative to the optimal score.

I found no counterexamples, there always existed a non-interlaced opti-
mal clustering. The algorithms all performed very well, often finding a non-
interlaced optimal clustering.

The average performances of the algorithms can be seen in Figure 5. One
should also note that the medians are generally slightly higher than the averages
for all algorithms (1.000 median for all algorithms in the n = 6 case). This means
the algorithms very often return an optimal clustering, with only a few cases
returning suboptimal results.
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Single linkage Complete linkage Average linkage Bisect 2-center
n = 6 0.998 0.997 0.996 0.994
n = 10 0.997 0.995 0.999 0.993

Figure 5: The average score of the four algorithms relative to the optimal score

3.4 Case of the real line
It is clear that the cases n ≥ 4 are not ground-truth cases: a triangle on the
real line is not isosceles unless one point is halfway between the two others. In
this particular case, the many strong geometrical properties which the general
ultrametric case does not verify allows us to prove interesting bounds on the
results of the clustering algorithms. The results in this subsection are due to
Charikar et. al [CCNY19].

A first useful property of average linkage on the line is the following lemma,
whose intuitive - yet technical - proof we shall leave out for conciseness.

Lemma 3. The result of average-linkage can be made to be non-interlaced up
to choice of the way similarity ties are resolved.

It is intuitive in the sense that the similarity of two adjacent clusters is
always greater than that of two non-adjacent clusters – and thus we can merge
adjacent clusters only, creating a non-interlaced clustering.

Recall the Ψ cost function from Definition 6 and Property 1: minimizing Γ
is the same as maximizing Ψ.

Theorem 2. The average linkage algorithm yields a tree of score for Ψ at least
1
2Ψ(T ∗), where T ∗ is an optimal tree.

Proof. For this proof, we use a potential function defined over partitions of V ,

Φ (S1, . . . , Sm) =
∑

x<y<z∈V
x,y,z are separated

w(x, y) + w(y, z)

where “separated” is defined as: “are in pairwise distinct classes”. If V = {xi}i,
we define the quantity,

α = Φ ({x1}, . . . , {xn}) =
∑

x<y<z

w(x, y) + w(y, z)

Observe now that,

Ψ(T ∗) =
∑

{x,y,z}⊆V

Sx
y,z(T ∗)w(y, z) + Sy

x,z(T ∗)w(x, z) + Sz
x,y(T ∗)w(x, y)

where Sx
y,z equals 1 if and only if x is separated from y, z earlier than the others

in the tree. Indeed, in the right hand sum, each weight will appear with an
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Figure 6: Naming of sets when merging in average linkage – image taken
from [CCNY19] with permission.

indicator of 1 exactly as many times as there are leaves outside of its least
common ancestor. We then have by definition of a similarity measure,

Ψ(T ∗) ≤
∑

x<y<z

max (w(x, y), w(y, z), w(x, z))

≤
∑

x<y<z

max (w(x, y), w(y, z))

We can implicitly define the potential function over forests, by considering
each tree as a class of the partition. Over the course of an execution of average
linkage, the potential function will go from α down to 0 – initially all points are
separated, and no points are separated in a one-tree forest.

On every merge in average linkage, the new root of the merged tree will be
a node in the newly merged tree. We can thus consider that the merge will
increase the score of the final tree by the score of that node. If we denote ∆S
this variation in final score and ∆Φ the variation in potential induced by the
merge, we will show ∆S + ∆Φ

2 ≥ 0 at every step, which will conclude the proof.
By Lemma 3, the clusters A and B being merged at a given step are adjacent,

and we can denote C and D the sets of points at the left of cluster A and the
right of B respectively – see Figure 6 for an illustration.

By definition of the score function we have ∆S = (|C|+|D|)
∑

x∈A,y∈B w(x, y).
To condense notations, we shall denote w(A,B) =

∑
x∈A,y∈B w(x, y). Consider

now a previously separated triplet x < y < z being merged in this step. We
either have (x, y, z) ∈ C × A × B or (x, y, z) ∈ A × B ×D. For such a triplet,
the potential will drop by w(x, y) + w(y, z) and so,

−∆Φ = (w(A,B)|C|+ w(A,C)|B|) + (w(A,B)|D|+ w(B,D)|A|)

Now we note that average linkage has picked (A,B) to merge rather than
(C,A) and (B,D) – we consider all points in C to be a single cluster knowing
that the similarity with the right-most cluster of C is greater than the similarity
with the whole of C. This in particular means that,

w(A,B)
|A| · |B|

≥ w(A,C)
|A| · |C|

w(A,B)
|A| · |B|

≥ w(B,D)
|B| · |D|

⇐⇒

{
w(A,B)|C| ≥ w(A,C)|B|
w(A,B)|D| ≥ w(B,D)|A|
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By summing these final two lines, we get:

∆S = (|A|+ |C|)w(A,B) ≥ −∆Φ−∆S

which yields the wanted result.

Remark 5. If we write the result of average linkage Tavg, we have proven that
Ψ(Tavg) ≥ 1

2Ψ(T ∗). We can transcribe this result in terms of Γ using Proposi-
tion 1:

1
2

(
s(G)

∑
e∈E

w(e) + Γ(T ∗)
)
≥ Γ(Tavg)

I was unable to find an interesting interpretation of this inequality, since the
constant term cannot really be controlled. Moreover, the constant term is much
larger than Γ(T ∗).
Remark 6. For general input, Charika et. al [CCN19] have proven that an
optimal bound is 2

3Ψ(T ∗).
Note that there are examples on the real line where average linkage can yield

results as low as 3
4Ψ(T ∗), yet the gap between 1

2 and 3
4 has not yet been filled.

This is a goal of my work during the internship – either find counterexamples
closer to 1

2 or prove a bound closer to 3
4 .

4 NP-completeness
Another type of algorithm is enumeration, or exhaustive search. This can be
programmed dynamically, with complexity the amount of tree structures over
the input. This is of the order en, which is clearly suboptimal. We can actually
prove that any algorithm consistently returning an optimal clustering is of such
complexity – under the assumption P 6= NP. The results in this section are due
to Dasgupta [Das16], and can be generalized to the Ψ cost function as well.

4.1 Maximizing is equivalent to minimizing
Lemma 4. Finding the worst clustering is equivalent to finding the best clus-
tering.

Proof. Given a weighted graph G = (V,E,w), we shall define its complementary
weighted graph Gc = (V,E,wc) where wc = max(x,y)∈E (w(x, y))−w. In words,
w + wc is constant over all edges, and wc ≥ 0.

Notice G and Gc have the same vertices, so clusterings over G can also be
considered as clusterings for Gc. We shall prove that for a clustering T , the sum
of the costs of T for G and Gc is constant.

Let us calculate the sum of costs at a node N of the tree:

γG(N)+γGc(N) = s(N)
∑

x∈Nl,y∈Nr

w(x, y)+wc(x, y) = s(N)s(Nl)s(Nr) max(w)
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This is also the expression of the cost at a node for a clique with edge weights
max(w). We thus conclude that by summing these terms over all nodes N ∈ T ,
we obtain the cost of a clustering for the clique, which by Lemma 2 equals
max(w)A(s(G)).

Finally, calculating the complementary weighted graph can be done in poly-
nomial time, and is an involutive operation. Since we have proven ΓG(T ) =
C−ΓGc(T ) where C is a constant, maximizing and minimizing Γ are equivalent
problems.

4.2 NAESAT*
To prove NP-completeness, we shall reduce instances of NAESAT* into instances
of our problem, a variant of not-all-equal satisfiability.

Definition 9. NAESAT is the problem of satisfiability of a CNF formula with
the follow constraint: in the truth affectation, each clause must have at least
one literal evaluating to true and at least one evaluation to false. Schematically,
the truth evaluation must turn each clause into

true ∨ false ∨ false or true ∨ true ∨ false

A formula satisfying NAESAT is said to be not-all-equal satisfiable.
NAESAT* is the problem of not-all-equal satisfiability of a CNF formula

with clauses containing two to three variables, verifying the following: any literal
appears exactly thrice, once in a three-clause and twice in two-clauses with
opposing polarities.

Remark 7. Note that not-all-equal satisfiability in the case of two-clauses means
the truth affectation turns them into true ∨ false.

We shall here accept that NAESAT* is equivalent to NAESAT, and that
NAESAT is an NP-complete problem – since these proofs are of little relevance
to the main proof.

4.3 NP-completeness of maximizing the cost
Theorem 3. Maximizing Γ for a given input G is an NP-complete problem.

Proof. To this end, we shall prove that for a given instance Φ of NAESAT*, we
can construct a weighted graph G and an integer M such that

• max(w), s(G) and M are polynomial in the length of Φ

• Φ is not-all-equal satisfiable if and only if there exists a tree of cost greater
than M for G.

We first remove the following types of redundancies from the formula:

• If a clause is included in another – either two equal three-clauses or a
two-clause included in a three-clause – it is removed
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Figure 7: Tree structure constructed in the proof of NP-completeness.

• If a clause with its polarities inverted is included in another, it is also
removed

• Trivially true clauses can be removed, i.e. x ∨ x̄

Let n be the number of variables in this simplified formula Φ, m the amount
of three-clauses and m′ the amount of two-clauses.

We create a graph G of size 2n, whose vertices correspond to the literals, i.e.
xi and x̄i for each variable xi. For each three-clause, add three edges between
the literals, and three edges between the negations of the literals in the clause.
For each two-clause, add one edge between the literals, and one edge between
the negations of the literals in the clause. These edges all have unit weight.

Finally, add edges between xi and x̄i of weight α = 2nm+ 1. Thanks to the
previous simplifications, all of the previously added edges are pairwise distinct,
and there is a total of 6m+ 2m′ + n edges.

Suppose now that Φ is not-all-equal satisfiable, we construct a tree as in
Figure 7.

The root separates literals with true valuation V + and false valuation V −.
This will break exactly two edges in each triangle – by definition of not-all-equal
satisfaction. It will also break the edges created for two-clauses for the same
reason, as well as the edges formed between a literal and its negation.

The cost at the root will thus be 2n(4m+ 2m′ + nα). The remaining edges
are thus exactly one per created triangle, so exactly 2m. Moreover, exactly half
of these edges will be in V + and the other in V − by definition of the triangles.

The second level of the tree is created by splitting the m edges. This is
possible because a literal cannot appear in two triangles by the simplification
rules made earlier. The sum of the costs at nodes V +, V − will be 2nm. In total
the total cost of this tree will be 2n(m+ 4m+ 2m′+ nα), which is how we now
define M .

Conversely, suppose we have a tree T of cost at least M . The first cut of
this tree must split all edges (xi, x̄i): if it does not, its cost is at most the cost
of all edges except for one of weight α,

2n(6m+ 2m′ + nα)− α < 2n(5m+ 2m′ + nα) = M

Thus the algorithm divides the vertices in such a way to break all of these
edges, and leaves at least one edge per triangle untouched. By a similar com-
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parison, the algorithm must break all of these edges on the next step in order
to have cost at least M .

By picking this split as a valuation, the first cut tells us the valuation is
coherent (a literal is not both true and false) and the second tells us it satisfies
Φ not-all-equally.
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