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Abstract 
 
Bird flight, with its simplicity, elegance and efficiency, has garnered much interest in 
scientific and engineering projects. In 2014, Festo, a German robotics company inspired 
by how efficient a bird wing can produce lift, built a dual-wing generator (DWG) that 
mimics the movement of wings in flight to extract wind energy and produce electricity. It 
claims its prototype achieves higher efficiency than current wind turbines at low wind 
speeds. My project uses COMSOL’s computational fluid dynamics module (CFD), a 
finite-element solver, to model several different configurations of the dual-wing system 
immersed in the air. The project evaluates the efficiency of the system to extract wind 
energy by calculating the lift on the airfoils, and verifies the DWG’s higher energy output 
than traditional wind turbines from a quasi-static perspective.  
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I. Introduction: What is a bird-inspired dual-wing generator (DWG)? 

 

1.1  An alternative to wind turbines: dual-wing generator  

 

In 2014, Festo, a German robotics company built a dual-wing generator (DWG) 

that mimics the movement of bird wings in flight to extract wind energy and produce 

electricity. The system is based on reversing the natural wing-beating principle: Whilst 

birds flap their wings to generate power to move forward, a stationary system like the 

DWG can extract kinetic energy from the wind [1]. Figure 1 shows the setup of the 

DWG, which uses airfoils to approximate bird wings. The wind power creates a linear 

lifting movement of the airfoils, which is converted into a rotary movement at the upper 

and lower ends of the DWG, so that both airfoils can return to their initial position to 

complete a cycle. Having a cycle, the DWG can be connected to an electric generator to 

convert the kinetic energy of the airfoils into electricity.  

 
Fig. 1. The setup of Festo’s dual-wing generator [1]. Notice the wings in this setup 

can only have a small displacement in the vertical direction compared to their 

length. 

 
The essence of how the DWG extracts wind power is similar to that of a wind 

turbine. The DWG utilizes its airfoils to produce lift while a wind turbine uses its turbine 

blades. Both machines rely on airflows to drive the motion of their movable parts, 

through which the wind energy is transferred to the kinetic energy of the airfoils or the 
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turbine blades. A turbine blade also has a similar shape to an airfoil, and they share a 

similar lift generation mechanism. In fact, one can even regard the rotary motion of the 

turbine blades as a linear motion of successive parallel turbine blades if one observes a 

turbine from its side and watches the blades go by. 

 
Fig. 2. Illustrations of how airfoils and turbines blades, represented by line 

segments, move in wind. Part (a) shows a cycle of the DWG’s energy 

generation process where the dual-wing configuration moves from stage 1 to 

stage 5 to complete a cycle. Airfoils in different colors are in different stages, 

and the dotted line shows the part of the airfoil that maintains its position in a 

transition. Part (b) shows the movement of turbine blades observed from side. 

A turbine usually has three blades, but four blades are shown here because the 

first blade follows the third blade in a rotation after completing one cycle. 

 
Figure 2 shows the movement of airfoils and wind turbine blades, which are 

represented by line segments. If a line segment is tilted upwards, the lift generated will 

push up the line segment as indicated from “stage 2” to “stage 3”, and vice versa as 

indicated from “stage 4” to “stage 5”. In both processes, wind does work and transfers 

energy to the machines. The wind turbine blades move in a similar fashion as do the 

airfoils from “stage 2” to “stage 3”, despite that the turbine blades move upwards 

continuously if one views from the side of a turbine, as shown in Fig. 2(b). Notice in Fig. 

2(a), the DWG does need to do work to reverse the motion and tilting angle of airfoils 

during transitions from “stage 1” to “stage 2” and from “stage 3” to “stage 4”. However, 

one can argue that the work used to tilt the downward facing airfoil in “stage 1” first to a 
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horizontal position is compensated by the energy added in the next transition, driven by 

the wind, from that horizontal position to the upward facing position in “stage 2”, thus 

making the entire transition from “stage 1” to “stage 2” a process of zero net energy 

change approximately. To simplify the calculation in my analysis part, I ignore the 

“reversing angle” process and only focus on the linear lifting movement of the airfoils 

from “stage 2” to “stage 3” and from “stage 4” to “stage 5”.  

Despite their similarities, the wind turbine blades’ motion differs from that of the 

airfoils in the DWG in one crucial respect: The separation between the turbine blades 

does not change, whereas the separation between the two airfoils does change. This is 

why Festo designs a dual-wing generator rather than a single wing generator. Apart from 

that, the opposing tandem wings neutralize the bearing torques from the upwards and 

downwards motion, having two airfoils moving towards each other creates a suction 

effect when they get close [1]. Similar to the situation where two boats get pulled 

together if they move in parallel and close to each other, the suction effect introduces 

additional lift and increases the energy output. This is one of the reasons why Festo 

claims its DWG achieves higher efficiency than current wind turbines especially at low 

wind speeds, as shown in Fig. 3. My project is thereby motivated to investigate whether 

the suction effect contributes to a higher energy output, and results in an energy-output-

to-wind-speed relationship for the DWG similar to the one shown in Fig. 3. The specific 

process is outlined in section 1.2.  

 
Fig. 3. DWG’s specific output compared to small systems, 

which are conventional wind turbines of similar size [1].  
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1.2  Outline and methodology 

 

In this project, I first motivate the connection between bird wings and the DWG 

as well as the comparison between the DWG and wind turbines in chapter I. In chapter II, 

I give an overview of fluid dynamics, establishing essential concepts to my analysis. The 

goal is to understand how the airfoil generates lift, why I need to solve Navier-Stokes 

equations, and how COMSOL solves those equations. In chapter III, I focus on the 

detailed implementation of my DWG simulation in COMSOL, specifically on four parts: 

model parameters, model geometry, model boundary conditions and model meshing. The 

very last section of this chapter discusses the validity of my previous assumptions and 

justifies that the model I eventually use is suitable for my DWG simulation. Lastly, in 

chapter IV, I present my results from simulation and discuss in terms of energy output 

whether those results support Festo’s claim of DWG as a superior alternative to 

traditional wind turbines at low wind speeds.  

 The methodology I use in this project is an iterative process: Simplify my model 

and ask if the simplified model works? à If yes: add back some complication to make 

the model more realistic; if no: simplify the model more à Repeat the process. This is 

the golden rule that leads to many of my unnatural assumptions originally in an attempt 

to find a working model. When I begin to understand better the physics as well as 

modeling in COMSOL through the simplified models, I gradually update them to match 

our reality.  
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II. Physics: How does an airfoil generate lift? 

 

2.1 Definition of a fluid and flow 

 

A fluid is a continuous medium, a continuum, which deforms continuously in the 

presence of a shear stress, regardless of how small the shear stress may be [2]. A shear 

force Fs is the force component tangent to a surface, and the shear stress 𝜏 is defined 

over an associated area A, as !!
!

 [2]. The definition of a fluid is underpinned by its 

characteristic of a continuous deformation. Unlike a solid, for which momentum transfer 

occurs at the point of collision and completes within the instant of contact, a moving fluid 

deforms when it meets any resistance and thus the momentum transfer is more 

complicated. On the one hand, the deformation is spatially continuous so that neighboring 

points in the fluid change speed and pressure gradually. On the other hand, the 

deformation is temporally continuous in the sense that it does not complete instantly, and 

a disturbance propagates at a finite speed, the speed of sound in forms of pressure waves.  

There are two important properties of a fluid: compressibility and viscosity. 

Compressibility describes the “springiness” of the fluid, while viscosity describes the 

“stickiness” of the fluid [3]. These properties are usually discussed in the context of a 

flow, which is a moving fluid. In terms of compressibility, a flow is categorized into 

either a compressible flow or an incompressible flow. The difference lies in whether the 

density of the fluid remains constant under external forces [3]. For an incompressible 

flow, the fluid density does not vary with pressure. Technically, all fluid can be 

compressed as long as the external force is large enough. To determine when a flow can 

be regarded incompressible, we use Mach number M, the ratio of flow velocity to the 

speed of sound. If M < 0.3, the fluid speed is small enough compared to the speed of 

disturbance propagation, which is the speed of sound. As a result, the density of the fluid 

does not vary much and the flow can be approximated as an incompressible flow [4].  

In terms of viscosity, a fluid is either viscous or inviscid. An inviscid flow is a 

flow of an ideal fluid of no viscosity, but in real life all fluids are viscous and form a 

viscous flow. Viscosity measures how gradual the spatial change in velocity is under a 

unit shear stress, and is defined as the proportionality factor 𝜇 in the equation 
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𝜏 =  𝜇 !"
!"

 ,                                                           (1) 

where 𝜏  is the shear stress at a point, and !"
!"

 is the velocity gradient component 

perpendicular to the shear force at that point. Equation (1) explains the velocity profile in 

Fig. 4, where the lower plate is at rest and the upper plate under a shear stress 𝜏 moves at 

velocity V. The “no slip condition” at both plates commands the fluid in direct contact 

with the plate surface to acquire the velocity of the plate, thus giving a velocity difference 

V in the direction perpendicular to the flow. If the fluid is divided into infinitely many 

thin layers parallel to the flow direction, where each layer has a uniform velocity, then 

each layer will move faster than the layer directly below it and slower than the layer 

directly above it. Because the fluid is viscous, the viscous force arises when neighboring 

layers have different velocities, and causes shear stress that slows the faster layer and 

speeds up the slower layer. A simple model for the fluid between two parallel plates to 

bridge the velocity difference, as shown in Fig. 4, is a linear velocity profile: !"
!"
=

!!""#$"%&'#
!

= !
!

 (constant), where 𝜏!""#$"%&'# is the shear stress at the upper plate, and h 

is the distance between the two plates. The velocity profile for an unbounded flow over a 

single surface, as shown in Fig. 5 where there is no second plate, however, is not a linear 

one. Therefore, Eq. (1) is written in differential form to generalize the relationship 

between the shear stress and the velocity gradient at any point in the fluid. 

 
Fig. 4. A viscous fluid sheared between two plates of 

separation h. The lower plate is fixed while the upper plate 

moves horizontally to the right at speed V. No slip condition 

specifies that fluid in immediate contact with the plate 

shares the velocity of the plate. This is Fig. 1-15 from 

Viscous Fluid Flow (White 1991) [4].  
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Although a fluid slows down at the surface of a plate, in other words a boundary, 

under the “no slip condition”, it is intuitive to think that the fluid should maintain its free-

stream velocity far from the boundary. The free-stream velocity is the velocity of a fluid 

in a region far upstream of an object where the velocity is uniform in space [5]. In 

contrast, the aforementioned varying velocity profile describes a region close to the 

boundary, called a boundary layer, which exists between the 0-velocity surface and the 

free-stream velocity area. Figure 5 shows the transition of a laminar boundary layer into a 

turbulent boundary layer along a surface. A laminar flow characterizes a flow regime of 

parallel layers without any disruption between the layers, while a turbulent flow 

characterizes a flow regime of unsteady swirling flows [6]. Notice in Fig. 5 a gradual 

transition from the parallel laminar layers into the swirling turbulent layers within the 

boundary. If the schematic shows more of the turbulent region, we would expect all the 

parallel layers to turn into swirls and even a separation of flow from the surface. Also, the 

laminar boundary layer continues a little before transitioning into the turbulent boundary 

layer, which implies the transition is dependent on the length of the boundary. 

Specifically, it is called the characteristic length L in the formula of Reynolds number, 

 𝑅𝑒 =  !"#
!

 ,                           (2) 

where other variables include 𝜌, the density of the fluid, 𝑉, the free-stream velocity of the 

fluid, and 𝜇, the viscosity of the fluid. Reynolds number expresses the ratio of a fluid 

parcel’s inertial forces to viscous forces. A fluid parcel is an infinitesimal amount of 

fluid, which has a constant mass yet a deformable shape. The fluid parcel’s inertial force 

is its resistance to change in motion. The fluid parcel’s viscous force is the net sheer force 

caused by its surrounding fluid to change its motion [7]. If Reynolds number is small, the 

viscous force is large compared to the inertial force and parallel layers of fluid are 

maintained, leading to a laminar flow. On the contrary, if Reynolds number is large, the 

viscous force is not sufficient enough to bound flowing fluid parcels into orderly layers 

and thus the fluid becomes turbulent.  
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Fig. 5. Boundary layer development from a laminar region into a turbulent 

region. The uniform arrows to the left of the y-axis represent a free-stream 

velocity 𝑢!, and the arrows of varying length to the right show a velocity profile 

u(y). As the boundary layer develops, it becomes thicker and the original ordered 

straight arrows evolve into swirled and curved arrows, indicating turbulence [6].  

 

2.2 Definition of an airfoil  

 

An airfoil is a physical body that generates more lift than drag when positioned at 

a proper angle to airflow [5]. A fluid moving past any physical body exerts a force on the 

surface of the body, and lift is the force component perpendicular to the flow direction, 

while drag is the parallel force component [5]. Figure 6 gives the 2D cross-section of a 

sample airfoil. In Fig. 6, the leftmost tip of the airfoil is called the leading edge while the 

rightmost tip is called the trailing edge. The leading edge is less pointed than the trailing 

edge. Airflow meets an airfoil at its leading edge first and leaves at its trailing edge. The 

line that connects the two edges is the chord, which is the longest line that fits into the 

2D cross-section of the airfoil. The mean camber line divides the airfoil into the upper 

camber and the lower camber. Each point on the mean camber line is equally distant from 

the upper surface and lower surface. Although Fig. 6 shows an almost straight camber 

line, it is normally curved. The deviation of the mean camber line from the chord 

determines the shape of the airfoil, and the overlap of these two lines gives a 

symmetrically shaped airfoil. Lastly, the angle of attack is the angle between the 

direction of the airflow and the chord, and it determines how tilted the airfoil is 

positioned. Although the airfoil in Fig. 6 has more curvature to the upper surface than the 
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lower surface, this is not necessary for lift generation according to the definition of the 

airfoil. In fact, an airfoil can be symmetrical with respect to the chord, or even just a sheet 

of any material whose cross-section is a line segment. The lack of specificity of the shape 

explains why airplane wings can be flown upside down. The more curvature to the upper 

surface only improves the efficiency of lift generation but is not essential [9].  

 
Fig. 6. Cross-section of an asymmetric airfoil [8]. 

 

2.3 Theories of lift generation 

 

 As we establish that the shape of the airfoil is not essential to lift generation, it is 

tempting to ask what explains lift generation. There are many seemingly reasonable yet 

incorrect theories of lift. One of the incorrect explanations is the “skipping stone” 

theory [10]. Figure 7 shows an inflow of air coming from below the airfoil and “bumps” 

into the airfoil’s lower surface, during which the air creates a lift. This theory is based on 

the Newton’s third law, and pictures air molecules as skipping stones that bounce back 

from a surface. The theory is partially right because air molecules do get deflected 

downwards by the airfoil, but it fails at recognizing the airflow as a fluid rather than a 

solid. As a fluid, the airflow deforms as it is obstructed by the lower surface of the airfoil, 

and the resulting sheer stress propagates in all directions to other regions, including the 

region above the airfoil. The “skipping stone theory” misses the lift contribution from the 

upper surface of the airfoil, which in fact accounts for the majority of the lift generation 

of an airfoil. Thus we learn from this incorrect theory that one has to consider wind as a 

continuum in which the airfoil is immersed, and thus the lift calculation should derive 

from applying the Newton’s third law to the entire surface of the airfoil. 
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Fig. 7. “Skipping stone” theory of lift 

generation based on Newton’s third law [10].  

 
 A second incorrect theory that gives insight into lift generation is the “longer 

path” theory [11]. To explain the theory, let me first introduce the concept of 

streamlines. A streamline is an imaginary line drawn in the field of flow such that the 

velocity vector at any point on the line is always tangential to the line [5]. The dots of the 

same color, except for the black ones, in Fig. 8 form streamlines and separate the domain 

into parallel layers of fluid. These layers deform and vary in their widths as they flow 

past the airfoil. Because no point in the field can have more than one velocity, it follows 

that no two streamlines can intersect each other, except for at a point called stagnation 

point. A stagnation point is a point in the flow field where the local velocity of the fluid 

is zero. There are two stagnation points in Fig. 8, where the streamlines first separate 

right below the leading edge and where the streamlines meet again at the trailing edge. A 

clearer view of the two stagnation points can be found in Fig. 21. The fluid traveling 

around the airfoil has two different paths from the first stagnation point to the second 

stagnation point: the upper surface and the lower surface of the airfoil. Because the first 

stagnation point is below the leading edge and that the upper surface has more curvature 

than the lower surface, the upper path is longer than the lower path. The “longer path” 

theory claims that the fluid parcels in the upper path must travel faster than do the fluid 

parcels in the lower path in order for them to meet again at the second stagnation point at 

the trailing edge. As a result, a pressure difference is created according to the Bernoulli’s 

equation, which will be explained in detail in section 2.5.  

 The “longer path” theory is partially correct in that there is a velocity difference 

and consequently a pressure difference between the upper and lower surface, which is 

essentially how lift is generated. But this theory fails to explain how the velocity 
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difference arises, because the fluid parcels that separate at the first stagnation point never 

meet again at the second stagnation point. Figure 8 shows several sets of black dots 

forming vertical lines. Each vertical line formed by the black dots is a timeline, where 

the black dots of the same timeline have traveled for the same period of time [12]. Every 

two neighboring timelines share a same time difference T. In Fig. 8, the first set of black 

dots forms a straight timeline far to the left of the airfoil as the fluid parcels represented 

by the dots have so far traveled at the same velocity and for a same time span. As the 

fluid parcels acquire different velocities approaching the airfoil, the black dots 

representing them begin to travel past different distances, thus deforming the straight 

timeline into a curve as the timeline moves towards the airfoil. When the timeline meets 

the leading edge of the airfoil, it splits into two parts, with the faster moving part moving 

ahead, or in this case to the right, of the other part. However, contrary to what the “longer 

path” theory predicts, the two separated parts of the same time line never rejoin at the 

trailing edge of the airfoil. When the fluid parcel traveling along the upper surface 

reaches the trailing edge, the fluid parcel traveling along the lower surface from the same 

timeline is only half way through and is almost left behind by a T, as shown in Fig. 8.  

 
Fig. 8. A flow around an airfoil. Each dot represents a fluid parcel. 

The dots of the same color constitute a streamline, while the dots of 

different color move with the flow at different velocities. The black 

dots are from different streamlines, and yet they join the same 

timeline, marking an equal traveling time for these dots [13].  

 

A correct explanation of lift generation is based on Newton’s third law. As the 

airflow is deflected downwards by the airfoil in Fig. 8, it experiences a force from the 
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airfoil pointing downwards. According to Newton’s third law, the airflow also exerts a 

force to the airfoil in the opposite direction, which is essentially the lift. In contrast to the 

incorrect “skipping stone” theory, we apply the Newton’s third law to both the upper and 

lower surface of the airfoil, as the airflows moving along both surfaces are deflected 

downwards. In the momentum term, the airfoil transfers a downward momentum to the 

airflow and thus acquires an upward momentum and moves upward [14]. 

 The lift can also be seen as from the pressure difference between the upper and 

lower surfaces of the airfoil. Because the pressure far above and below the airfoil should 

have the same magnitude, there must be a pressure gradient around the airfoil, so that a 

difference between the pressure on the upper and lower surface is achieved. Such a 

pressure gradient is achieved through the turning of the streamlines.  

 
Fig. 9. Pressure gradient across curved streamlines. A 

fluid parcel of cubic shape has edge h, velocity v along 

the streamline, and a pressure Poutside on the upper 

surface whose normal direction points away from the 

center of the streamline curvature, and a pressure Pinside 

on the lower surface whose normal direction points to 

the center of streamline curvature [15]. 

  

In Fig. 9 a fluid parcel is traveling along a streamline curved downwards. As the 

fluid parcel acquires a downward velocity component, it must experience acceleration 

and thus a force pointing downward. This force derives from the pressure difference 

between the fluid parcel’s upper and lower surface, and the direction of the force suggests 
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the upper surface experiences a higher pressure. Let the pressure on the upper surface 

“outside” the curve be Poutside = p + dp and the pressure on the lower surface “inside” the 

curve be Pinside = p. Thus dp = h (dp / dy), where dy is in the direction normal to the 

streamline and points away from the center of curvature [15]. The force due to the 

pressure difference is F = A∙dp, where A is the surface area of the cubic fluid parcel. This 

force must equal the centripetal force F = mv2 / R, where v is the flow velocity and R is 

the local radius of curvature. The mass of the fluid parcel is m = 𝜌Ah. Combining all of 

the above equations yields 

      𝐹 = 𝐴 ∙ d𝑝 = 𝐴ℎ !!
!!
= 𝜌𝐴ℎ !

!

!
 , 

which is simplified to  
!!
!!
= 𝜌 !!

!
 ,                                                        (3) 

which is the pressure gradient across streamlines. Equation (3) shows that there will be a 

pressure difference if the streamline is curved. If R → ∞, then !!
!!
→ 0. So there is no 

pressure gradient across straight streamlines [15]. In Fig. 8, both the streamlines above 

the airfoil and the streamlines below the airfoil are curved downwards like the streamline 

shown in Fig. 9. Therefore, there is a continuous pressure dropping from above the airfoil 

to below the airfoil, creating a net force on the airfoil point upwards. Thus for an airfoil 

to generate lift, it must turn the streamlines in the direction opposite to the desired 

direction of the lift. Notice the lift is not necessarily an upward pointing force and it can 

point downwards when the airfoil has negative angle of attack and deflects the flow 

upwards.  

 Equation (3) also gives us insight into the different portion of lift contributed by 

the upper and lower surface of the airfoil. As shown in Fig. 8, the streamlines above the 

airfoil have larger curvature than the streamlines below the airfoil, which is Rupper > 

Rlower. According to Eq. (3), this means a larger pressure difference above the airfoil than 

below the airfoil, indicating a larger lift contribution from the upper surface than from the 

lower surface.  
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2.4 The conservation of mass and continuity equation 

 
Apart from the pressure information, the distribution of the streamlines also gives 

us information about the velocity change of fluid parcels in Fig. 8. A careful reader will 

notice the streamlines above the airfoil are more densely packed than they are below the 

airfoil, which means fluid parcels above the airfoil will flow into a narrower streamtube 

than will the fluid parcels below the airfoil as they approach the airfoil. A streamtube is 

a tubular region of fluid surrounded by streamlines [16]. At the boundary of the 

streamtube formed by streamlines, there should be no flux crossing. A fluid parcel 

crossing the boundary indicates an intersection of two streamlines of different direction, 

which is forbidden by definition. Therefore, fluid parcels in a streamtube in Fig. 10 can 

only enter in the flow direction from its inlet, which has size A1, and exits in the flow 

direction from its outlet, which has size A2. The conservation of mass states that mass is 

neither created nor destroyed [17]. So the amount of mass inside the streamtube remains 

constant, which means the amount of mass that flows in through area A1 must equal that 

flows out through area A2 in every instant. For an infinitesimal straight steady streamtube 

we have  

𝜌!𝐴!𝑣! =  𝜌!𝐴!𝑣! ,                                                 (4) 

which for an incompressible flow simplifies to 𝐴!𝑣! = 𝐴!𝑣!, as the fluid density does 

not change. Equation (4) relates the velocity of the flow to the geometry of streamlines 

based on the conservation of mass. In light of this, the higher density of streamlines at the 

upper surface of the airfoil in Fig. 8 than at the lower surface implies a higher velocity at 

the upper surface than at the lower surface.  

 
Fig. 10. Streamtube formed by streamlines. 

There is no flux across the boundary of the 

streamtube, and mass flows in from inlet of 

area A1 and flows out of outlet of area A2.  
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Simple and intuitive as Eq. (4) is, it is only suitable for a steady flow. A steady 

flow is one where the flow conditions such as velocity and pressure do not change with 

time [2]. To amend for the time-dependence, we use a general differential form of the 

conservation of mass equation, or the continuity equation,  

 !!
!!
+ ∇ ∙ 𝜌𝒖 = 0 ,                                                    (5) 

where the term !"
!"

 accounts for the fluid density dependence on time, the divergence term 

accounts for the net mass flow out of the boundaries, and the “0” term means there is no 

sink or source of mass and accounts for mass conservation. Notice the velocity field 𝒖 is 

a vector containing u, v, w, each of which is a one-dimensional velocity.  

 

2.5 The conservation of energy and Bernoulli’s equation 

 

In section 2.2 we confirm a pressure difference between the two surfaces of the 

airfoil based on the curvature of the streamlines, while in section 2.3 we confirm a 

velocity difference between the two surfaces of the airfoil based on the density of the 

streamlines. One may naturally ask if there is a relationship between the pressure and 

velocity. The answer is yes, and in fact, I have alluded to the Bernoulli’s equation in 

section 2.3 to refer to the relationship. In this section I derive the pressure-velocity 

relationship from the conservation of energy. As I have looked at the pressure gradient 

across streamlines, I start with looking at the pressure gradient along streamlines this 

time.  

 
Fig. 11. Pressure gradient along a streamline. Pressure 

drops accelerate the fluid parcel. In the energy term, the 

enthalpy of the fluid drops while the kinetic energy of 

the fluid increases. The energy is conserved [15].  
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In Fig. 11, a fluid parcel at velocity v and surface area A is accelerated by a 

pressure difference in the x-direction. The pressure behind it is p and the pressure in front 

of it is p + dp. According to Newton’s second law [14],  

𝐹 = 𝑚𝑎 = 𝑚 !!
!!

 ,                                                     (6) 

where m = 𝜌𝐴d𝑥. Alternatively, the pressure difference gives 𝐹 = −d𝑝 𝐴, which points 

to the –x direction. Combining both expressions of the force gives us – d𝑝 𝐴 = 𝜌𝐴 d𝑥 !!
!!

 

which can be simplified to an relationship between the pressure gradient in the x-

direction and the acceleration of the fluid: 

− !!
!!
=  𝜌 !!

!!
 .                                                        (7) 

Rearranging Eq. (7) into dp = −𝜌𝑣 d𝑣, where we have substituted !!
!!

 with v. Now 

integrating between any two points along the streamline gives us 

d𝑝!
! = − 𝜌!! 𝑣 d𝑣  

𝑝! − 𝑝! = −𝜌(!!
!

!
− !!!

!
) , 

which can be rearranged as  

𝑝! + 𝜌
!!!

!
= 𝑝! + 𝜌

!!!

!
 ,                                               (8) 

which is a simplified form of Bernoulli’s equation without considering gravity [15]. 

 Notice Eq. (8) comes from integrating over two arbitrary points along the 

streamline, so it applies to any two points along the streamline. In my derivation I 

integrate over an infinitesimal dx, so on the macro scale the streamline can be a curve. 

There are, nevertheless, many limitations to Bernoulli’s equation. First, I assume the 

pressure difference to be the only source of force in the direction of the streamline, 

excluding any external source of force, such as gravity, or the viscous force of the fluid. 

So the flow has to be an inviscid flow for Eq. (8) to work. Second, I do not include any 

time-dependent terms in my derivation, so the flow has to be steady as well. Third, I 

assume constant fluid density at point 1 and point 2, so the flow has to be incompressible 

and at a low velocity. There are some other restrictions, but so far I have shown 

Bernoulli’s equation can only solve an inviscid, steady, incompressible flow.  

 In addition to my Newton’s second law’s derivation of the Bernoulli’s equation, 

one can also derive it from the first law of thermodynamics: the conservation of energy, 
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which is nevertheless omitted here [18]. If the internal energy of the fluid does not 

change, the conservation of term 𝑝 + 𝜌 !!

!
 in Eq. (8) indicates that the sum of enthalpy, 

defined as the system internal energy plus the product of pressure and volume, and 

kinetic energy of the fluid conserves [19]. As p decreases and v increases, energy 

transfers from the fluid’s enthalpy into the fluid’s kinetic energy, while the total energy 

of the fluid remains constant.   

 

2.6 The conservation of momentum, Euler equations and Navier-Stokes equations 

 

Since I’ve discussed the conservation of mass and energy, it will be a little unfair 

if I leave out linear momentum conservation. The momentum conservation states that the 

momentum is neither created nor destroyed, and is only changed through force [14]: 

𝐹 ∙ 𝑡 = 𝑚!𝑣! −𝑚!𝑣! .                                             (9) 

Take the time derivative of Eq. (9), we get Eq. (6). So for every instant, the momentum 

conservation reduces to force balance, which is Newton’s second law, or Eq. (6). In fact, 

when we start with Newton’s second law in section 2.5, we are on track to derive the 

momentum conservation equation, until we integrate Eq. (7) over a path, which then gets 

us the energy conservation equation. If we do not integrate Eq. (7) and write  !!
!!

 as !!
!!
∙ !!
!!

, 

which is essentially 𝑣 !!
!!

, we get  

− !!
!!
= 𝜌𝑣 !!

!!
 ,                                                    (10) 

which is the one-dimensional differential form of conservation of momentum for a steady 

flow [20]. This momentum equation has one benefit over the energy equation, Eq. (8), as 

it applies to an incompressible flow, because we do not integrate over any path where the 

fluid density is not uniform. However, Eq. (10) is still not applicable to a viscous flow as 

I leave out the consideration of viscous force in my derivation from Newton’s second 

law.  

A more general form of the momentum conservation equation that solves for an 

inviscid yet unsteady, compressible flow is included in the Euler equations, which is a 

set of partial differential equations (PDE) that govern fluid motions. Because momentum 
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is a vector, we need three equations to describe the momentum conservation in addition 

to our time-dependent mass conservation equation [21]:  
!"
!"
+ !(!")

!"
+ !(!")

!"
+ !(!")

!"
= 0 (Continuity Eq. )                       (11) 

   !(!")
!"

+ !(!!!)
!"

+ !(!"#)
!"

+ !(!"#)
!"

= − !"
!"

  (X-momentum Eq.)                (12) 

   !(!")
!"

+ !(!"#)
!"

+ !(!!!)
!"

+ !(!"#)
!"

= − !"
!"

  (Y-momentum Eq.)                (13) 

   !(!")
!"

+ !(!"#)
!"

+ !(!"#)
!"

+ !(!!!)
!"

= − !"
!"

  (Z-momentum Eq.) ,              (14) 

where Eq. (11) is the same as Eq. (5) but not in vector form, and Eqs. (12) – (14) are the 

three-dimensional partial forms of Eq. (10) that solve for unsteady and compressible 

flows. Specifically, Eqs. (11) – (14) all have the time-dependent !
!"

 term to account for 

unsteady situations, and the density 𝜌 is no longer separable from the spatial partial-

derivative operator as it varies in space in a compressible flow. To solve for the viscous 

flow as well, the Euler momentum equations need to be modified to include viscous 

forces. The set of PDEs that govern the motion of a viscous, compressible, unsteady flow 

is called the Navier-Stokes equations. The Navier-Stokes momentum equations, which 

are equivalent to Eqs. (12) – (14) but now including the viscous term and other external 

forces, in the vector form are  

,         (15) 

where 𝜌 is density, p is pressure, 𝜇 is dynamic viscosity, F is the external body force, I is 

the identity matrix, u is the vector field of flow velocity, and T signifies the transpose 

[22]. In terms of force balance, term 1 describes the initial forces, term 2 describes the 

pressure forces, term 3 describes the viscous forces, and term 4 describes the external 

forces applied to the entire fluid body at the boundaries [22]. Complex as Eq. (15) seems, 

it is essentially F = ma for fluids. On the one hand, term 1 corresponds to ma, where !𝒖
!"

 is 

the local acceleration of the fluid parcel at a fixed point in space while 𝒖 ∙ ∇𝐮 is the 

convective acceleration of the fluid parcel, which predicts how the flow differs in space 

at the same instant of time [23]. On the other hand, terms 2, 3 and 4 collectively are the 

forces that cause the acceleration. Notice in our previous incompressible equations, we do 
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not have term 3, the viscous force, and we have been ignoring gravity and other external 

forces, which are represented by term 4.   

In addition to the three momentum equations, Navier-Stokes equations also 

include the continuity equation Eq. (11), an energy equation, which is related to the 

temperature of the fluid, and a fluid equation of state, which links temperature, pressure 

and density together. We have six independent equations in total as we solve for six 

unknowns of the fluid: pressure, temperature, density, and velocity field, which has three 

components. It is interesting that in section 2.5 the integration of Eq. (7), which is 

equivalent to the momentum Eq. (8), leads to the energy equation. The fact that both 

momentum conservation and energy conservation lead to the same Bernoulli’s equation 

shows that the energy conservation equation is redundant in the analysis for a steady 

incompressible inviscid flow [24]. However, the energy equation in the Navier-Stokes 

equations, although omitted here, is not redundant as we will not be able to solve for all 

six unknowns without it. 

 That most of the six unknowns appear in all six Navier-Stokes equations means 

these equations are coupled and must be solved simultaneously [21]. Solving a set of 

partial differential equations usually relies on computer programs to solve numerically 

with some additional boundary conditions. Although Navier-Stokes equations can in 

theory solve for any flows, in practice they can only give exact solutions to laminar flows 

due to the immense computational complexity for turbulent flows. Because the turbulent 

patterns are usually transient in nature, to model them and find the exact solutions are 

beyond the computational power of most current computers. Therefore, we can use a 

Reynolds-Averaged Navier-Stokes (RANS) formulation of the Navier-Stokes equations, 

which uses a time-averaged velocity and pressure field [22]. These time-averaged 

equations can be then solved relatively quickly.  

To further reduce the time complexity in my study, I initially adopt both an 

incompressible and a steady assumption, so that Eq. (15) and Eq. (5) can be simplified. 

The incompressible assumption gives ∇ ∙ 𝐮 = 0, and drops − !
!
𝜇 ∇ ∙ 𝐮 𝐈 from the term 3 

in Eq. (15). The time-independent assumption eliminates the !𝐮
!"

 term in Eq. (15) and the 
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!!
!"

 term in Eq. (5). I also assume there is no external force F, so Eqs. (15) and (5) reduce 

to  

                                           𝜌𝐮 ∙ ∇𝐮 = ∇ ∙ (−𝑝𝐈+ 𝜇 ∇𝐮+ ∇𝐮)!  ,                             (16) 

and 

                                                            𝜌 ∇ ∙ 𝐮 =  0 .                                                   (17) 

Equations (16) and (17) are used in my original laminar model to solve for pressure and 

velocity of the flows. The reduced forms prove to be easier to solve because a laminar 

model takes less time to converge than a turbulence model, which instead uses the 

compressible and unsteady form of the Navier-Stokes equations. 

 

2.7  The calculation of lift 

 

How much lift an airfoil generates is dependent on the shape of the airfoil, the 

angle of attack, the velocity, density and viscosity of the fluid, and other conditions. An 

approach to quantify how these variables affect lift is to relate lift to the lift coefficient: 

𝐶! =
!!!
!!!!

 ,                                                        (18) 

where 𝐹! is the lift which is usually measured experimentally in wind tunnels, 𝜌 and v are 

density and velocity of the fluid respectively [25]. Area A is the wing area, defined as the 

projected area bounded by the leading and trailing edges and the wing tips. Through Eq. 

(18) we can then compute the lift coefficient of an object immersed in a flow, such as an 

airfoil or wind turbine blade. A higher lift coefficient means the object is more efficient at 

generating lift, as per density per velocity square and per unit area, the lift measured will 

be higher according the Eq. (18).  

Since I do not have a wind tunnel, I rely on COMSOL to solve the Navier-Stokes 

equations, which is discussed in section 2.8. Once the computer finds solutions to the 

Navier-Stokes equations, we know the pressure at any point in the fluid. As we discussed 

previously, that lift derives from a pressure difference between the upper and lower 

surface, we integrate pressure values over the surface of the airfoil to get lift:  

𝑭𝑳 = 𝑝𝒏 d𝐴 ,                                                  (19) 
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where 𝒏 is the normal vector perpendicular to the surface [26]. Notice Eq. (19) does not 

guarantee the lift will point upwards. In my project, however, I am only concerned about 

the y-component of the lift that is either driving or opposing the linear vertical motion of 

the airfoils. I will give this more discussion in my energy calculation in section 4.1.   

 

2.8 COMSOL and the finite-element method  

 

In section 2.7, I raise the point of solving Navier-Stokes equations using computer 

programs. Clearly, Eq. (16) and Eq. (17) are still impossible to solve analytically, despite 

that they are the simpler forms of Navier-Stokes equations and the continuity equation 

respectively. Therefore, I resort to a piece of software called COMSOL Multiphysics to 

solve the Navier-Stokes equations numerically. COMSOL stands for “computer 

solutions” while Multiphysics means that “multiple fields of physics can be solved 

together simultaneous in one model”, providing valuable integration of related physical 

phenomenon. COMSOL is a finite-element solver that uses finite-element method to 

solve partial differential equations (PDEs) [27]. Since my study deals with fluid flows, I 

use the computational fluid dynamics (CFD) module of the Multiphysics package to 

solve for pressure and velocity of fluid flows. The software allows me to simulate the 

energy generation process of the DWG through specifying the geometry, the flow 

physics, the initial conditions, and boundary conditions, etc. Simple as it sounds, learning 

how to use the COMSOL Multiphysics CFD module to produce simulation results that 

are consistent with theoretical predictions is quite challenging, which I will discuss in 

Chapter III.  

At the core of COMSOL’s capacity to solve complex PDEs is a numerical 

technique called the finite-element method (FEM). FEM divides a complex PDE 

problem into finite-elements, which are small and discrete regions where the solutions are 

easier to find. Once the solutions for these finite-elements are found, they are recombined 

at the element boundaries to form a continuous approximate solution to the original PDEs 

[28]. Figure 12 illustrates this process by trying to find a piecewise function that 

approximates a curve. The curve is first divided into four pieces by equally spaced 

parallel black dotted lines. For each part of the curve, FEM tries to find as the solution a 
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line or curve segment that minimizes the difference between itself and the original curve, 

which in Fig. 12 is the area between the curve and the line segments. Clearly, line 

segments 2, 3, 4 are good solutions as they fit their respective part of the curve well. So 

when we combine line segments 2, 3, 4, we get a good approximation of that part of the 

curve. In contrast, line segment 1 is a bad fitting to its corresponding part of the curve as 

it leaves a considerable gap between itself and the curve. We will encounter a non-

convergence problem if the area of the gap exceeds the tolerance of the FEM [31], which 

is a predefined maximum relative difference allowed between the true solution and the 

computer’s guessed solution. When solving PDEs, COMSOL will try until a certain 

number of iterations to update the solution to reduce the difference between its guessed 

solution and the true solution before declaring non-convergence. So in this case, a 

computer program may try to update the fitting line 1 to a fitting polynomial, which may 

potentially resolve the convergence problem.  

 
Fig. 12. Illustration of the finite-element method 

to find a piecewise function to approximate the 

curve.  

However, if we are constrained to using a straight-line segment, it is almost 

certain that the computer program will reach the maximum number of iterations before 

successfully bringing the difference down to within the tolerance. This non-convergence 

issue is what happened to my modeling frequently in COMSOL, and to avoid it is my 

major motivation to start with a model as simple as possible, so that it converges, before 

upgrading it gradually to the level of complexity that matches my DWG model. Apart 
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from simplifying the model as a way to increase the chance of convergence, one can also 

refine the mesh. Meshing is the process of discretizing the problem domain into fine 

elements. Dividing the curve by four equally spaced dotted lines resembles an automatic 

meshing process by COMSOL, which has no information about the geometry. For a user 

who knows the geometry, he can strategically refine the mesh at places of large 

curvatures, such as corners, where the solution tends to be more complex compared to the 

solutions along straight lines. For example, introducing a red dotted line to split the part 

of the curve in region 1 into two “finer” elements reduces significantly the gap between 

the curve and the fitting straight-line segments. Refining the mesh at places with large 

curvature not only increases the chance of convergence for models that do not originally 

converge, but also reduces the number of iterations tried to find the solution for models 

that do converge originally. 
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III. Modeling: How to simulate fluid flows in COMSOL CFD? 

 

3.1 Model and parameter specification for dual-wing generator 

 

I base the geometry of DWG on the NACA 0012 airfoil. Airfoil shapes are 

commonly characterized with a numbering system originally defined by the National 

Advisory Committee for Aeronautics (NACA). This characterizing system defines airfoil 

shapes with a series of digits corresponding to non-dimensionalized airfoil properties. 

The number of digits used to describe an airfoil corresponds to the complexity of the 

airfoil [8]. A detailed equation that describes the shape of the 0012 airfoil will be given 

later in this document.   

 
Fig. 13. Geometry of the DWG in a domain of airflow (grey). Inlet is the left 

boundary. The two airfoils are 2 m apart and tilted 10° from horizontal position. 

 

Now I proceed to build my dual-wing system with the COMSOL Multiphysics 

software 5.2 with its Computational Fluid Dynamics (CFD) module. In the starting 

interface, I choose the “Model Wizard” initialization that leads to predefined models, 

whose specifications are asked for in several follow-up prompts. For “space dimension”, 

I chose the “2D dimension” model; for “physics interface” I originally chose “laminar 

flow (spf)”, where “spf” stands for single-phase flow; and for “study” I chose “stationary 
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study”, which means the model is time-independent. I use the 2D model instead of the 3D 

model because it reduces significantly the computational complexity without sacrificing 

the validity of my simulation. By using the 2D cross section of the airfoils, I am assuming 

the airfoils are much longer than they are wide, and that the major energy efficiency 

improvements are achieved through the configuration in the two dimensions presented in 

the model. I also chose laminar flow instead of turbulent flow originally, because 

turbulent flow models seldom result in a converging result. Therefore, for the same 

benefit of having affordable computational complexity given the time constraint on this 

project, I opted for the laminar model as my original choice. The assumption is that the 

geometric benefit of this unique dual-wing configuration should carry over from one 

model to the other, be it turbulent or laminar. This choice, however, later proves to be 

problematic as I discuss in section 3.5, and I eventually switch to a turbulence model for 

my analysis. Despite this final change, I stick to using laminar model here as an example 

for this section. The single-phase flow means the dual-wing system is entirely immersed 

in a single phase, in this case air, where the simulation does not involve boundary 

crossing between two different media. Lastly, the choice of the stationary model is aimed 

at reducing simulation complexity. The time-dependent study requires a different setup, 

and to which the transfer of our stationary simulation result needs additional time and 

work beyond the scope of this project. But my stationary simulation at different stages of 

the dual-wing movement cycle still gives us insights into and approximation about what a 

continuous simulation looks like.  

Before building the geometry in Fig. 13, I set some parameters for the model. I 

create a “Parameters” tab under “Global Definitions” to specify global parameters. 

Global parameters are variables used throughout the model, but can be reset by users for 

different values. There are three variables I hold constant in my simulation, although I 

occasionally change them for the purpose of testing prior to the actual simulation.  

First, I set “U_inf”, the free-stream velocity of the medium to be 2 m/s. This is the 

velocity I assign to the inlet boundary condition. It is the velocity of air far from the dual-

wing configuration, and “inf” stands for “infinity” although the air is not in reality 

coming from infinitely far away. As the air approaches the DWG, its velocity changes. I 

also start with a relatively conservative inlet velocity of only 2 m/s to ensure the 
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Reynolds number is within the laminar flow region. If I choose too large a velocity, such 

that the Reynolds number exceeds the laminar flow limit, the simulation will not 

converge. Readers should notice that, however, this is my original assumption. I later 

realized the problem with a laminar model is largely due to the extremely small value of 

air viscosity rather than using a large velocity.  

Second, I set “L”, the horizontal dimension of the domain, to be 18 m, mainly 

because it is large enough compared to the chord length “c” which I set to be 1.8 m. It is 

crucial to choose a small enough chord size so that the dimension of the domain is large 

enough relative to the dimension of the airfoil and thus that the boundaries of the domain 

appear far away, even though not at infinity, from the dual-wing system. In this case, the 

ratio of domain dimension to the airfoil dimension is 10 : 1. Readers should again know 

that these values are temporary and are revised later. I stick to these assigned values here 

because the first half of my project uses these values consistently. Newly assigned values 

are reported in section 4.1. 

There are two other parameters that I change in my simulation for my quasi-static 

simulation. One is “r”, the rotation of the airfoil from its horizontal position, which 

represents the angle of attack, and the other one is “d”, the displacement of the trailing 

edge of the airfoil from the origin of the domain. Notice the displacement is half the 

separation between two airfoils. In the model shown in Fig. 13, r is 10° while d is 1m.  

 

3.2      Geometry of DWG 

 

After parameter specification, the next step in the model is to build the geometry 

of the configuration in Fig. 13. I start with building a single airfoil embedded in the 

domain, which is symmetric with respect to the chord. First, under the “Geometry”, I 

draw a parametric curve that represents the shape of the upper surface above the chord of 

the NACA 0012 foil. The expression for y is 𝑐×0.594689181×(0.298222773× 𝑠 −

0.127125232×𝑠 − 0.357907906×𝑠! + 0.291984971×𝑠! − 0.105174696×𝑠!)  [29], 

while the expression for x is 𝑐×𝑠, where c is the cord length, set to be 1.8 m initially, and 

s is the horizontal proportional displacement from the origin and has a value from 0 to 1. 

With these two expressions, COMSOL draws a curve highlighted in blue in Fig. 14(a).   
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Secondly, I draw the second half of the surface using the same expressions, and 

take the “union” operation to consolidate the two symmetric curves into one curve, called 

“uni 1”. This “uni 1”, however, is still just a curve object. To turn the curve into an airfoil, 

I perform the “convert to solid” operation that solidifies the area bounded by the curve 

into one two-dimensional object. Notice that the airfoil is grey, suggesting the airfoil 

body is currently the domain bounded by hollowness. But we do not want to perform the 

finite-element analysis within the airfoil body, but rather we want to perform the finite-

element analysis in the air around the airfoil. Thus we need to invert the domain area so 

that the airfoil is a hollow shape embedded in a solid domain. 

  
             (a)                                                 (b)  
Fig. 14. (a) Curves denote the surface of the airfoil. (b) A solid airfoil.  

 
Thirdly, I create a domain object that is large enough to contain the airfoil object 

to embed the airfoil in the domain. Specifically, I draw a circle of radius L centered at the 

origin and take the difference between the circle object and the airfoil object, resulting in 

an object called “dif 1” where a hollow airfoil is embedded in the circle domain. Notice 

the trailing edge of the airfoil is positioned at the origin, so that when I rotate the “dif 1” 

object, the position of the trailing edge remains unchanged. I choose a circle as the shape 

of this tentative domain because the outline of a circle domain will not change when it is 

rotated with respect to the center of the circle.  

  
          (a)                                                   (b)  
Fig. 15. (a) A temporary circle domain of air. (b) The embedded airfoil shape. 
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Fourth, I rotate the “dif 1” object by “r”, the parameter for angle of attack, and the 

new object created is labeled “rot 1”. Having the rotation angle as a parameter gives me 

the option to build airfoils tilted at other angles for the quasi-static analysis later on. In 

this case the rotation will be 10° for this generic model. Fifth, I move the “rot 1” object in 

the y direction by “d”, the displacement of the airfoil from x–axis, which can be both a 

negative or a positive value. Again, having the displacement as a parameter allows future 

adjustments to our geometric configuration. With my d value currently set to 1 m, this 

operation moves the “rot 1” object upwards by 1 m and the new object is called “mov 1”.  

 
          (a)                                                   (b)  
 Fig. 16. (a) One airfoil tilted. (b) The rectangle domain on top of the tilted airfoil.  

 

Sixth, I create the final domain and perform a mirror operation to complete the 

dual-wing configuration. I draw the upper half of the rectangle domain in Fig 16(b) on 

top of our current “mov 1” object. I then perform an intersection operation that leaves 

only the overlap of the “mov 1” object and my newly drawn rectangle object, labeled as 

“int 1”. Notice I could have initially used a rectangle rather than a circle for my tentative 

domain. But my rotation operation will rotate the rectangle as well, after which the 

resulting object may not be able to contain the final rectangle of length L for the 

intersection operation, unless a rather large rectangle domain is tentatively deployed. 

Next, with the “mirror” operation with respect to the x–axis, I create a symmetric domain 

and “union” the two domains, giving me the final domain with embedded airfoils as 

shown in Fig. 17(b). Notice the rectangle domain is centered at the origin and has width 

L/2 and length L, the dimension I specify in the global parameter section. The two airfoils 

are both rotated by r away from the x–axis. Their trailing edges are on the x = 0 line and 

are 2d apart. In my quasi-static analysis, I leave the domain dimensions unchanged but I 
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actively change r and d to capture the configuration of the dual-wing system at different 

stages in the cycle. 

  
          (a)                                                  (b)  
Fig. 17. (a) One half of the final domain. (b) Overview of the final domain.  

 

3.3      Boundary conditions 

 

After building the geometry, essential to the finite-element analysis is the 

specification of boundary conditions. In Fig. 18 I highlight all the boundaries of the 

domain. The red boundary designates the inlet, while the yellow boundaries designate 

outlets. Inlet is where the air flows in, and specifically at which the velocity is U_inf in 

the x direction. There is no y component of the velocity of the incoming air. Outlet is 

where the air flows out and can be regarded as a sink of the fluid. Blue boundaries are 

walls which air cannot flow across. At walls, in this case the surface of the airfoils, the 

“no slip condition” is applied. “No slip condition” means that friction prevents the fluid 

from “slipping”; in other words, the velocity of the fluid must be 0 at the walls. So there 

should be a velocity gradient in the direction normal to the walls, so that the speed drops 

to 0 at the wall. Because of this velocity drop, I expect to see pressure build up in some 

regions close to the airfoils.  
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Fig. 18. Boundaries of the domain.  The blue boundaries are 

walls, the red boundary is the inlet, and the yellow 

boundaries are the outlets. 

 

The decision of which boundary to assign the inlet is straightforward because in 

my analysis the air blows from left to right, initially in the positive x direction. Also, the 

decision regarding the walls is straightforward, because the only non-penetrable 

boundaries in this domain are the surfaces of the airfoils. However, it might seem a little 

tricky for the assignment of outlet boundaries. Clearly, the right side of the rectangle 

must be an outlet where most of the airflow exits. As for the upper and lower boundaries, 

it should not matter whether they are walls or outlets if they are far away from the 

airfoils. But because I am using a domain that’s relatively small compared to the size of 

the airfoils, I often run into non-convergence issues with the finite-element computation 

when the upper and lower boundaries are set to be walls. If I assign these two boundaries 

to be outlets, then the non-convergence issue is usually resolved without additionally 

mesh refinement. This setup also corresponds better to the actual situation of wind 

blowing to the dual-wing system, where it is possible for air molecules to escape from the 

imagined boundaries of the airflow into its ambient environment.  
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3.4      Meshing of DWG 

 

Having set the boundary condition, the next step is meshing, the process of 

dividing the domain into fine elements over which the FEM is performed. A generic 

triangular element is by default the shape of a 2D fine element. Each triangle is governed 

by an independent set of Navier-Stokes equations, which specify the velocity and 

pressure of any point within the fine element. Therefore, finer the mesh is, in other 

words, smaller and more concentrated the triangles are, better the approximations are. 

Yet an equally fine mesh over the entire domain is not necessary. First, the airflow far 

from the airfoils is less variable in pressure and velocity, so the same equations can 

accurately describe a larger element. A coarser mesh can therefore be used in regions far 

from the surface of the airfoils as illustrated in Fig. 19(a) to reduce the computation 

complexity. Second, pressure variations tend to occur at surfaces where normal vectors 

change rapidly, such as at sharp corners. An automatic meshing sequence of COMSOL 

assigns more triangle elements to the leading edge of the airfoil to accommodate the 

pressure variation as shown in Fig. 19(a). Along the upper or lower surface of the airfoil, 

where normal vectors do not vary significantly, rectangular mesh elements are assigned 

by default. Blues dots in Fig. 19(a) mark the distribution of the rectangle mesh elements 

along the surface. Each two neighboring dots form the longer side of a rectangle, and 

more rectangles stack on top in the normal direction to the surface. This mesh generated 

automatically by the program does not lead to a converging finite-element analysis for it 

leaves the trailing edge of the airfoil with a coarse mesh, at a corner that is even sharper 

than the leading edge of the airfoil. In Fig. 11(b), I replace the rectangular elements along 

the surface with triangular elements and refine the mesh at the trailing edge significantly. 

As a result, the FEM converges, and this is the mesh pattern I use throughout my quasi-

static analysis.  
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(a)                                              (b) 

Fig. 19. (a) Automatic mesh sequence generated by COMSOL. (b) My mesh 

sequence after refining the mesh at the trailing edges. 

 

3.5      Validity of the model  

 

 Having built the DWG model based on a laminar flow assumption, it is important 

to check its validity before we proceed to any analysis. Running the simulation with the 

current settings gives us a flow plot in Fig. 20 (a), which looks like a valid result at first 

glance. First, the model converges, confirming that we have solutions to the PDEs. 

Second, we do see a pressure build-up at the stagnation point and a pressure drop at the 

outer surface of both airfoils, producing lift at both surfaces of both airfoils. All seem to 

encourage us to move forward to analysis, except for an unusual observation of a flow 

separation starting almost at the leading edge of either airfoil. The separation of flow 

indicates the viscous force is not large enough compared to the inertial force in order to 

“pull” the airflow close to the contour of the airfoil. It suggests a high Reynolds number 

and a turbulent flow, and contradicts our laminar assumption. In fact, if we give the 

streamline plot a higher density of streamlines, we will see a large region of turbulence as 

shown in Fig. 20 (b).  
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(a) 

 
(b) 

Fig. 20. Surface plot of pressure and streamline plot of velocity for 

DWG in a laminar model. L = 18 m, c = 1.8 m, U_inf = 2 m/s, d = 1m, r 

= 10°. The surface plot in color shows the pressure above 1 atm and the 

streamline plot shows the velocity field. The difference between part (a) 

and (b) is the number of streamlines per unit area plotted. 

 

 Although our theory [32] allows a transition from a laminar zone into a turbulent 

zone along a surface, having it occur right after the leading edge is problematic. The 
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airfoil misses a large mass of airflow to deflect downwards and thus cannot produce 

meaningful lift. That streamlines closest to the airfoil in Fig. 20 (a) pass through the 

airfoil almost horizontally without turning downwards is a confirmation of lift generation 

being missed. This conclusion follows fundamentally from Newton’s third law, as 

discussed in section 2.3. A further proof of the invalidity of this model is that when I 

calculate the lift produced by this model with different r, which corresponds to angle of 

attack, I do not see the stall effect on lift generation. A wing stall describes the sudden 

loss of lift when the angle of attack of a wing increases past a point when major flow 

separation occurs. Before the stall point, lift increases linearly with angle of attack until 

the stall point, where it takes a downturn and begins to decrease. This laminar model fails 

to predict a lift drop when I increase r past 14°, an angle where a wing stall usually 

occurs [29]. When I decrease r to close to 0°, I also fail to resolve flow separation, 

contrary to that fact that low angle of attack should not produce much turbulence.  

 To resolve the flow separation, I investigate the same model but with only one 

airfoil at the center of the domain in order to reduce complexity. All the parameter 

settings remain the same, including r, d, and U_inf. I start with the equation of Reynolds 

number, Eq. (2), 𝑅𝑒 =  !"#
!

, to find what parameter contributes to an inertial force and 

viscous force imbalance and thus a large Re value. Notice I substitute chord length c for 

the characteristic length L in Eq. (2), because it is over the surface of the airfoil of chord 

length c that a boundary layer develops. Among all the values I assign to the model, the 

air viscosity 𝜇 is the most extreme. Compared to water, air has low level of “stickiness” 

and thus little viscosity, specifically, 1.81×10-5 kg/m∙s [29]. This extremely small value 

gives rise to a large Reynolds number that far exceeds the range for laminar flow. As I 

artificially increase the viscosity of air, the flow separation starts to disappear when 𝜇 

increases to a level of 10-2 kg/m∙s. So the model would work if air has 1000 times higher 

viscosity. However, air is air. Therefore to base the model on laminar flow is an invalid 

assumption to start with, despite its convenience of low complexity.  

 To switch from a laminar model to a turbulence model is my next step. This 

switch introduces some more nonlinear PDEs that increase the challenge and time 

complexity for COMSOL to find a numerical solution [33]. Therefore, it is crucial to find 

a simple yet accurate enough turbulence model so that the simulation converges in a short 
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period of time. After repeated trial and error, I find the k-𝜀 turbulence model, which 

calculates a time-average of turbulence, converges relatively quickly and produces a 

beautiful result, shown in Fig. 21, which is compatible with the theory of lift generation. 

Specifically, we see streamlines separate at the stagnation point and meet again at the 

trailing edge of the airfoil, wrapping around the airfoil in a tight fashion. This suggests 

the characteristic length, in this case the chord length c, is within the laminar range 

calculated by this turbulence model, and thus we do not see a transition into the turbulent 

zone along the airfoil surface in this plot. As a result, a clear pattern of streamlines being 

deflected downwards by the shape of the airfoil emerges, indicating a good amount of lift 

generated in the process according to Newton’s third law.  

 
Fig. 21. Surface plot of pressure and streamline plot of velocity for DWG in k-𝜀 

turbulence model. L = 6 m, c = 0.3 m, U_inf = 8 m/s, r = 10°. There are two clear 

stagnation points, where the streamlines meet the airfoil right below the leading 

edge and then separate into two groups to wrap around the airfoil, and where the 

two groups of streamlines meet again to form one at the trailing edge. Notice I 

changed the parameters for this simulation, but these changes do not lead to the 

improved streamline pattern if I do not switch to the turbulence model. In the 

plot, readers may see alternating dark and bright fringes formed by streamlines. 

These are moiré patterns, which originate from the interference between 

pixilation and markings in my figure and have nothing to do with the flow. They 

emerge in this plot in particular due to the high density of streamlines.  
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 In addition, I also test the k-𝜀 turbulence model with different angles of attack. 

The lift for different r is shown in the scatter plot in Fig. 22. We see clearly lift first 

increases linearly with the angle of attack before it reaches stall at 20° and begins to turn 

downwards. The close correspondence between this turbulence model and the theory 

gives me the green light to use it as my DWG model for analysis. When I extend the 

model to the two-airfoil configuration I build in the previous laminar model, the model 

continues to converge and the stall phenomenon continues to occur, but this time at 14°, 

where the airfoils produce highest combined lift. This angle, r = 14°, is what I use for the 

two airfoils when they are moving toward and away from each other. Using the 

turbulence model also relieves me from sticking to a small U_inf, and now I have the 

freedom to test the model with different wind speeds in my analysis in Chapter IV. The 

specifics of k-𝜀 turbulent, where k stands for the turbulent kinetic energy, and 𝜀 the rate 

of dissipation of kinetic energy, and why this model works is beyond the scope of this 

document and is thus omitted here [34].  

 
Fig. 22. Lift vs. angle of attack for a single airfoil immersed 

in an airflow with U_inf = 8 m/s. L = 6 m, c = 0.3 m. 

Selected angles of attack are 5°, 7°, 10°, 11°, 12°, 13°, 14°, 

15° , 16° , 17° , 18° , 19° , 20° . The finite-element method 

ceases to converge above 20°, indicating stall. The lift has 

unit N/m—that is, lift force per meter of airfoil length—

because this is a 2D model rather than a 3D model.  
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IV. Results: Is DWG more efficient than wind turbines? 

 

4.1  DWG lift calculation in a static simulation 

 

Finally, with the geometry drawn, boundary conditions set, mesh complete, I 

conduct a parametric study where I modify the geometry for each round of finite-element 

analysis by assigning different values to the parameters used to draw the geometry. This 

allows me to simulate the different separation and angle of attack associated with the 

different stages in a cycle listed in Fig. 2 (a), so that I can conduct a quasi-static analysis. 

A quasi-static analysis is based on the assumption that the airfoils move slowly enough 

that each stage in its dynamic process can be considered static. Therefore I can use the 

time-independent stationary model in COMSOL CFD to simulate the multiple static 

stages in a DWG cycle as a set of continuous snapshots of the dynamic process.  

To simplify the model, I focus on the energy generation from stage 2 – 3 where 

the two airfoils move apart at a positive angle of attack, and from stage 3 – 4 where the 

two airfoils move towards each other at a negative angle of attack. I ignore the turning of 

the airfoils from one angle of attack to the other, both at the upper and lower ends of the 

DWG; as I have explained in section 1.1, the turning process adds approximately zero net 

energy.   

After many trials and tests, I reset the parameters for the DWG simulation, and 

the final settings for my analysis are: c = 0.3 m, L = 6 m, U_inf = 8 m/s, and the angle of 

attack = 14°. I change the original chord length of 1.8 m as I want to match my 

simulation to the actual DWG. The new choice of c = 0.3 is from my eye estimate of the 

actual size of the DWG airfoil presented in Festo’s DWG brochure [1]. Accordingly, I 

reduce the horizontal dimension of the domain L from 18 m to 6 m. In the process, I 

nevertheless increase the ratio of domain dimension to the airfoil dimension from the 

original 10:1 to 20:1, as it helps convergence at larger U_inf values. I also increase the 

free-stream velocity U_inf from the previous 2 m/s to 8 m/s. On the one hand, I can 

afford the increase of velocity now without any convergence issues as I have switched to 

a more accurate turbulence model than the previous laminar model. On the other hand, 

the wind speed of 8 m/s is the maximum threshold at which the DWG still outperforms 
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the traditional wind turbine in Fig. (3), and I want to test this result. I chose the angle of 

attack to be 14°, as stall occurs beyond this angle and lift drops for the DWG.  

Once COMSOL finds a converging solution for the DWG model with the above 

settings, I have access to the pressure values along the airfoil surface, which are stored in 

the expression “p” in COMSOL. Equation (19) suggests that with pressure information, I 

can calculate lift through a surface integral. Because I use a 2D model, instead of a 

surface integral of pressure over the airfoil’s surface to get force, I perform a line integral 

of the pressure along the airfoil surface, which is the boundary line in this 2D model, and 

thus I get force per unit length (N/m). The integrand of my line integration is “ !
!
×𝑛𝑦×

𝑝”, where ny is the y-component of the normal vector of the surface, which means the 

integral is not lift but the y-component of the normal vector of the surface. Because the 

airfoils only move in the y-direction, only the force pointing in the y-direction contributes 

to energy generation. As a disclaimer, in the following passage when I say lift I mean the 

y-component of the lift, unless otherwise specified. Notice the airfoil is tilted, and thereby 

the drag also has a y-component that contributes to the energy output. However, because 

the airfoil is only tilted at 14°, giving sin(14°), a small value. Also, because air has 

extremely low viscosity, I leave out the consideration of drag in my energy calculation.  

 When I perform the line integration, I need to select all the boundaries, including 

the upper and lower surface of both the upper and lower airfoil, over which the 

integration occurs. But the lift generated by the two airfoils has opposite directions as the 

airfoils have opposite angle of attack. Consequently, COMSOL’s output of the net lift is 

0 as the symmetry with respect to the x-axis gives the two lift values same magnitude but 

different signs. Therefore, we want to instead sum up the absolute value of the lift 

generated by the two airfoils. As the two airfoils differ in the positivity of their y-

coordinates, and that COMSOL happens to have an absolute function, I create a sign 

function !
!

 that can make the negative lift value from the lower airfoil, which has 

negative y-coordinate, positive. Then I can integrate over the surface of both airfoils at 

once in a single line integration to get the total y-component of lift.  
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4.2  DWG lift results and energy calculation 

 

In the U_inf = 8 m/s DWG cycle, the wind exerts a force on the airfoil in the 

direction of the airfoil’s motion. Therefore the wind does work on the airfoil and transfers 

its wind energy to the kinetic energy of the airfoils. Energy conservation has [14]  

∆𝐸 = 𝐹! d𝑦                                                      (20) 

where 𝐹! is the y-component of lift in the y-direction. If I take a small enough dy, the 𝐹! 

can be regarded as the same, and I can then approximate the integral by 𝐹!×∆𝑦. In my 

quasi-static analysis, the consecutive simulations differ only in the separation between the 

two airfoils by a small amount of 0.02 m. In other words, I vary d to simulate the moving 

of two airfoils first apart and then together, specifically from d = 0.1 m to d = 0.3 m when 

r = −14°, and then d = 0.3 m to d = 0.1 m when r = 14°. The choice of d = 0.1 m and 0.3 

m is again based on the eye estimate of the minimum and maximum separation between 

the two airfoils in a DWG cycle [1]. The r = −14° corresponds to a positive angle of 

attack, and vice versa, as I rotate the chord line against the origin clockwise by 14° so 

that the extension of the chord forms a −14° angle with the positive side of the x-axis.  

For each complete cycle from d = 0.1 m to d = 0.3 m, consisting of the airfoils 

moving apart when r = −14° and moving towards each other when r = 14°, I also vary 

the incoming wind speed from U_inf = 8 m/s to 4 m/s, 6 m/s, 10 m/s and 12 m/s. The lift 

results are shown in Table I, and there are several interesting observations. First, for the 

same U_inf, the increase in d does not affect the lift much when the two airfoils are tilted 

apart from each other at r = −14°. But it does decrease the lift when the two airfoils are 

tilted towards each other at r = 14°. Second, when the two airfoils are tilted towards each 

other, the lift is consistently and at times considerable larger than when the airfoils are 

tilted apart from each other. Third, an increase in wind speed, does boost the lift for both 

angles of attack, but unequally, as the lift difference between the two angles of attack 

increases across the table, especially in the first few rows in Table I. Lastly, doubling the 

lift of a single airfoil with the same parameter settings gives a result similar to the 

DWG’s lift when the two airfoils are tilted away but less than the DWG’s lift when the 

two airfoils are tilted towards each other. The single airfoil’s lift is doubled for 

comparison, as all the other entries in Table I are the sum of lift on two airfoils. 
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Table I. Lift results of 11 configurations of the DWG in my quasi-static 

analysis. Angle of attack is controlled by the parameter “rotation”, r, and the 

separation between the trailing edges of the two airfoils is controlled by the 

parameter “displacement”, d. Notice the r values are negative, but they 

correspond to positive angles of attack, while positive r values correspond to 

negative angles of attack. The values overlaid with grey bars are the lift results 

(N/m) from simulation. The longer the grey bar is, the larger the lift is 

comparatively. In the last row, “single x 2” shows the lift, doubled, of a single 

airfoil tilted at the same angle immersed in an airflow of the same velocity.  

 
 

 To explain these curious results, I make the pressure surface plot and velocity 

streamline plot for these different configurations. In Fig. 24, I present the first four entries 

in both sub-columns within the U_inf = 8 m/s column, in total eight configurations. I 

choose the four d = 0.10 m, 0.12 m, 0.14 m, and 0.16 m pairs of configuration because 

they present the largest difference in lift and show a clear pattern of the suction effect 

which Festo attributes to the cause of the additional lift [1]. Because the lift is the same 

for the same angle of attack regardless of whether the two airfoils are moving apart or 

together, I reverse the order of the eight configurations in Fig. 24 to better illustrate the 

emergence of the suction effect. Specifically, as the two airfoils gradually move together 

from Fig. 24 (a) à (c) à (e) à (g), we see the two separate green-yellow low-pressure 

regions between the airfoils move closer and gradually combine into one region where 
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the pressure drop is even larger. Such a combined effect is absent in the process (h) à (f) 

à(d) à (b) when the two airfoils are moving apart. It is not even seen in (h) when the 

two airfoils are the closest. That the two airfoils are tilted away from each other gives 

additional separation to the leading edges, at which the pressure gradient is the largest. 

Therefore, we do not see pressure build up and this process is less lift productive than the 

previous process. As one process enjoys additional pressure drop and the other misses 

potential pressure build up, we see the increase of wind speed having asymmetrical 

impact on the lift generation of the two processes in Table I. Furthermore, neither the 

pressure pattern nor the velocity streamlines between the two airfoils change much as the 

two airfoils move apart from (h) à (f) à(d) à (b), suggesting that the two airfoils can 

be regarded far away from each other even from the beginning in configuration (h). This 

explains why the lift does not change much for r = −14° as I vary the separation d, and 

confirms that the result that the doubled lift from a single airfoil matches the total lift 

produced by the DWG in the process when the two airfoils move apart. Readers may 

notice a small glitch in (g) as the flow is not symmetric and there is an unexpected flow 

separation. This is likely due to the fact that the mesh I use is not fine enough, and 

COMSOL has guessed an inaccurate solution to the Navier-Stokes equations that 

nevertheless is within the tolerance of the turbulence model.  
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(a)      (b) 

 
(c)      (d) 

 
(e)      (f) 

 
(g)      (h) 

Fig. 24. Pressure and velocity field of eight configurations at U_inf = 8 m/s.  
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 Because I use the single airfoil model to approximate wind turbine blades as a 

comparison to my DWG, it is worth the time and effort to take a closer look at the two 

configurations side by side. This time I look at the velocity surface plot overlaid with 

velocity streamlines and a pressure contour plot for the d = 0.14 configuration when the 

two low-pressure zones begin to merge in Fig. 24(c). In Fig. 25(a), the flow is much 

faster, marked as orange and yellow, between the two airfoils in the dual-wing 

configuration than at the lower surface of the single airfoil. The flow below the single 

airfoil is an unbounded flow, while the flow between the two airfoils in the dual-wing 

configuration is constricted by two surfaces and thus moves faster. From another 

perspective, compared to a fluid parcel at the lower surface of the upper airfoil in the 

dual-wing configuration, whose higher-than-U_inf velocity is sustained by the fast 

moving layer below it, a fluid parcel at the same position at the lower surface of the 

single airfoil experiences in contrary a sheer stress in the direction opposite to the flow 

due to the slower moving layer below it, which slows down the fluid parcel. As a result 

we see a more extended region of fast flowing flow and the formation of a suction effect 

in the dual-wing configuration. A confirmation from the pressure contour plot in Fig. 

25(b) is that the pressure contour lines are more sparsely spaced along the airfoil surface 

in the dual-wing configuration, indicating a smaller pressure gradient, and thus a greater 

portion of the airfoil surface is exposed to low pressure.  
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(a) 

 
(b) 

Fig. 25. (a) Velocity surface and streamline plot and (b) pressure 

contour plot for DWG at d = 0.14 m. Wind velocity U_inf = 8 m/s.  

 
With lift values, the last step in this project is to calculate the energy output via 

my quasi-static approach based on Eq. (20). The product of the displacement and the y-

component of the lift for each stage gives the work done by the wind per unit length. The 
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work in this case has unit J/m rather than J because my model is based on the cross-

section of the airfoils. As an illustration, I plot the U_inf = 8 m/s column in Table I in Fig 

26, where the red dots correspond to results when r = −14° and blue dots when r = 14°. 

The single straight-line shows lift on a single airfoil, which is intended to simulate the lift 

on a single wind turbine blade in configuration 2(b). In Fig. 26, the blue dots and the red 

dots represent the lift generated and the area under the dots shows the energy extracted. It 

is clear that the blue dots, which correspond to the half cycle where the two airfoils are 

tilted towards each other, enclose more area under them than the red dots, which 

correspond to the other half cycle. If the single airfoil line represents the wind turbine 

output correctly, then the DWG is more efficient than the turbine as the area under the 

red dots and the blue dots together surpass twice of the area under the single airfoil line. 

The area between the blue dots and red dots is where the additional energy comes from. 

As the blue dots begin to converge to the red dots as d increases, although not fully 

shown in Fig. 26, one can speculate that at a large d, the half cycle corresponding to the 

blue dots is as energy productive as the other cycle. It is true that when the two airfoils 

are far from each other, they each function as an individual airfoil, regardless of their 

angle of attack. So it makes sense for Festo to design a DWG where the two airfoils each 

only traverse a displacement at a scale close to 0.2 m and turn back before the blue dots 

fully converge to the red dots.  

 
Fig. 26. Difference in lift values generated by the first half and the second 

half of the cycle at U_inf = 8 m/s. The first blue dot is an outlier and the 

velocity field is flawed due to a big separation as shown in Fig. 23(a). 

The single airfoil line represents the lift produced by a single airfoil.  
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To calculate the quasi-static energy output for U_inf = 8 m/s, I compute 

0.02 m × 𝐹!!.! !
!.!" ! , where 𝐹! is the y-component of lift we have in Table I. I leave out 

the first lift value at d = 0.01 m, which corresponds to the first blue and red dots, because 

they are outliers as shown by the flow separation in Fig. 24 (g). Thus I am left with 10 

different lift and 10 displacements of 0.02 for each half cycle, and I assume the airfoils 

traverse 0.02 m under each lift, during which the force remains constant. Once I get the 

energy output for 8 m/s, I extend the calculation to the other wind velocities listed in 

Table I, and the result is shown in Fig. 27.  

 
Fig. 27. Scatter plot of energy output for a DWG cycle 

against U_inf. The red dots show the energy produced by 

one single airfoil doubled.  

 

In Fig. 27, the blue points correspond to the DWG, while the red points 

correspond to a single airfoil, both for U_inf = 4 m/s, 6 m/s, 8 m/s, 10 m/s, and 12 m/s. It 

is noticeable that the superior energy output DWG has over the single airfoil widens as 

the U_inf increases. Although a positive confirmation of the energy efficiency of DWG, 

it does not match the experimental result presented in Fig. 3, where the wind turbine 

energy output overtakes the DWG energy output past U_inf = 8 m/s. To find a potential 

answer to this curious observation, I first investigate the dependence of DWG energy 

output on the wind speed by fitting the five blue points with a polynomial of order three. 

The choice of a cubic polynomial comes from Betz’s law. Betz’s law states that the 

maximum power that can be extracted from the wind by a wind turbine is related to the 

cube of the wind speed [30]. This is intuitively applicable to both the DWG and the 
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single airfoil: On the one hand the air kinetic energy is dependent upon the mass flow rate 

and wind speed square; on the other hand the mass of air that passes through the airfoils 

per unit of time is related to the first order of wind speed. Therefore the transfer of kinetic 

energy per unit time to airfoils from wind is cubic of the wind speed.  

However, the best fitting polynomial to the blue dots I find using Excel is 

𝑦 = 0.0002𝑥! + 0.1941𝑥! − 0.0540𝑥, which is not dominated by the cubic term. The 

coefficient before the 𝑥! is almost 1000 times smaller than that of 𝑥!, indicating the blue 

points constitute a quadratic curve rather than a cubic curve. This inconsistency is due to 

my oversimplification of a dynamic process into a static one. By assuming the 

displacement of the airfoils between two consecutive stages to be a constant 0.02 m 

rather than a time-dependent velocity of the airfoils in the y-direction, I leave out the third 

order of speed and essentially calculate the sum of lift rather than energy. As the air 

density, wing area, shape of airfoil, and angle of attack remain constant for different wind 

speeds and separations of the airfoils, the lift-coefficient equation, Eq. (18), predicts a 

quadratic relationship between the wind speed and lift, which is consistent with our curve 

in Fig. 27. Thus it is more reasonable to conclude that, instead of proving the DWG has 

superior energy output than a wind turbine, I prove that DWG has higher lift coefficient 

than a wind turbine. Consequently, I exempt myself from explaining the previous 

inconsistency that my model does not show a wind turbine will outperform the DWG at 

high wind speeds, as I never compute the energy output in a real-world dynamic process. 

 

4.3  Concluding remarks 

 

So far I have finally completed my quasi-static energy analysis of the dual-wing 

generator (DWG), if I ignore the impact of reducing a dynamic process into a static 

process. To estimate the quasi-static energy output of my DWG, I first find the pressure 

on the two airfoils pushed apart and together by wind in different stages of the DWG 

cycle based on a 2D turbulent simulation in COMSOL. With the pressure values, I 

conduct a surface integral to compute the lift for each stage. Assuming the airfoils travel 

a constant separation between each stage, I sum up the product of lift and separation to 

result in the quasi-static energy output. Meanwhile, I do the same for a single airfoil from 
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the DWG to compare the results. I use the single airfoil as a proxy for the turbine blades 

in a traditional wind turbine, which is a considerable simplification admittedly. However, 

I do find that the dual-wing configuration produces higher lift than a single airfoil during 

the process where the two airfoils are tilted towards each other. The additional lift comes 

from the suction effect when the two airfoils are close to each other, and consequently 

results in a higher lift coefficient for the DWG than a comparable wind turbine in theory. 

Notice this result applies to all different wind speeds and becomes more striking at large 

wind speeds. It will nevertheless be wishful thinking to extend the same quasi-static 

result for lift to energy output, because my model does not account for how the DWG 

airfoils move with respect to the wind, which can significantly change the results. 

Therefore, I have to conclude that, despite that I verify the contribution of suction effect 

to a higher lift and energy output produced by the DWG from a quasi-static process, 

regrettably, I fail to verify the relationship between the wind speed and the energy output 

of the DWG in a dynamic process presented by Festo in Fig. 3. 

Nevertheless, I want to reassure readers that this project is meaningful. For the 

Physics Department, Middlebury College, I hope this project sparks interest in the 

continual study in fluid dynamics and bio-inspired technology, motivates potential 

projects to upgrade my stationary model to a time-dependent model in order to calculate 

energy, and maybe even persuades the faculty to teach a course in fluid dynamics for 

physics majors. 

For myself, not only do I get to re-experience the beauty of Newton’s second, 

third law, the conservation of mass, momentum, and energy, but also do I discover the 

beauty of partial differential equations, especially the beauty of the beastly Navier-Stokes 

equations; the beauty of fluid dynamics and the lovely physics behind it; the beauty of 

computer simulation, which is both time-wise and money-wise economic; the beauty of 

modeling in COMSOL, which allows you to do crazy things like signing up a creative 

writing class to write a fiction, or like constructing a new world from scratch so that you 

can destroy it in Inception; and the beauty of Festo’s biomimetic robotics; the beauty of 

applying natural principles to an artificial machinery; the beauty of human imagination; 

the beauty of Sisyphus rolling the rock; the beauty of our life; and last but not least, the 

beauty of flight—so simple, elegant, and lifting.  
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At the end of this memorable journey I wish not to end, I want to give my most 

sincere and wholehearted thanks to: 

 

Professor Richard Wolfson, my advisor on this project, whose technical and 

personal support to this project is like Newton’s third law to my airfoils. I thank him for 

his insights, encouragements, and immense patience and tolerance of that I keep calling 

this document a thesis, mistakenly of course, while he keeps calling it a project; 

 

Professor Susan Watson, whose encouraging smiles and wonderful leadership of 

both my thesis discussion and my experimental physics lab always make them a fun part 

of and a significant contribution to my project, which compels me to attend her sessions, 

despite my human weakness of wanting to skip them; 

 

Professor Anne Goodsell, whose detailed-oriented explanation of impossible 

concepts and motherly consideration for her imperfect students always help me 

improve—fingers crossed—my scientific writing, which is crucial to the fact that you are 

reading this document in English; 

 

and my friends: Liushao, who rescued a draft of this document from my trash bin, 

Jiguang, who cooked instant noodles at night, and Xingzi, who corrected my grammar, 

for their generous friendship and kind support; 

 

and countless epic music soundtracks which help me stay awake when I should be 
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