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Abstract

We present the results of the Machine Read-
ing for Question Answering (MRQA) 2019
shared task on evaluating the generalization
capabilities of reading comprehension sys-
tems.1 In this task, we adapted and unified 18
distinct question answering datasets into the
same format. Among them, six datasets were
made available for training, six datasets were
made available for development, and the fi-
nal six were hidden for final evaluation. Ten
teams submitted systems, which explored var-
ious ideas including data sampling, multi-task
learning, adversarial training and ensembling.
The best system achieved an average F1 score
of 72.5 on the 12 held-out datasets, 10.7 ab-
solute points higher than our initial baseline
based on BERT.

1 Introduction

Machine Reading for Question Answering
(MRQA) has become an important testbed for
evaluating how well computer systems understand
human language. Interest in MRQA settings—in
which a system must answer a question by read-
ing one or more context documents—has grown
rapidly in recent years, fueled especially by the
creation of many large-scale datasets (Rajpurkar
et al., 2016; Joshi et al., 2017; Kwiatkowski
et al., 2019). MRQA datasets have been used to
benchmark progress in general-purpose language
understanding (Devlin et al., 2018; Yang et al.,
2019). Interest in MRQA also stems from their
use in industry applications, such as search
engines (Kwiatkowski et al., 2019) and dialogue
systems (Reddy et al., 2019; Choi et al., 2018).

While recent progress on benchmark datasets
has been impressive, MRQA systems are still pri-
marily evaluated on in-domain accuracy. It re-
mains challenging to build MRQA systems that

1https://github.com/mrqa/MRQA-Shared-Task-2019.

generalize to new test distributions (Chen et al.,
2017; Levy et al., 2017; Yogatama et al., 2019)
and are robust to test-time perturbations (Jia and
Liang, 2017; Ribeiro et al., 2018). A truly ef-
fective question answering system should do more
than merely interpolate from the training set to an-
swer test examples drawn from the same distribu-
tion: it should also be able to extrapolate to test
examples drawn from different distributions.

In this work we introduce the MRQA 2019
Shared Task on Generalization, which tests extrac-
tive question answering models on their ability to
generalize to data distributions different from the
distribution on which they were trained. Ten teams
submitted systems, many of which improved over
our provided baseline systems. The top system,
which took advantage of newer pre-trained lan-
guage models (Yang et al., 2019; Zhang et al.,
2019), achieved an average F1 score of 72.5 on
our hidden test data, an improvement of 10.7 ab-
solute points over our best baseline. Other submis-
sions explored using adversarial training, multi-
task learning, and better sampling methods to im-
prove performance. In the following sections,
we present our generalization-focused, extractive
question-answering dataset, a review of the offi-
cial baseline and participating shared task submis-
sions, and a meta-analysis of system trends, suc-
cesses, and failures.

2 Task Description

The MRQA 2019 Shared Task focuses on general-
ization to out-of-domain data. Participants trained
models on a fixed training dataset containing ex-
amples from six QA datasets. We then evalu-
ated their systems on examples from 12 held-
out test datasets. For six of the test datasets,
we provided participants with some development
data; the other six datasets were entirely hidden—

https://github.com/mrqa/MRQA-Shared-Task-2019


participants did not know the identity of these
datasets.

We restricted the shared task to English-
language extractive question answering: systems
were given a question and context passage, and
were asked to find a segment of text in the con-
text that answers the question. This format is used
by several commonly-used reading comprehen-
sion datasets, including SQuAD (Rajpurkar et al.,
2016) and TriviaQA (Joshi et al., 2017). We found
that the extractive format is general enough that
we could convert many other existing datasets into
this format. The simplicity of this format al-
lowed us to focus on out-of-domain generaliza-
tion, instead of other important but orthogonal
challenges.2

The datasets we used in our shared task are
given in Table 1. The datasets differ in the fol-
lowing ways:

• Passage distribution: Context passages
come from many different sources, including
Wikipedia, news articles, Web snippets, and
textbooks.

• Question distribution: Questions are of dif-
ferent styles (e.g., entity-centric, relational)
and come from different sources, including
crowdworkers, domain experts, and exam
writers.

• Joint distribution: The relationship between
the passage and question also varies. Some
questions were written based on the passage,
while other questions were written indepen-
dently, with context passages retrieved after-
wards. Some questions were constructed to
require multi-hop reasoning on the passage.

Evaluation criteria Systems are evaluated us-
ing exact match score (EM) and word-level F1-
score (F1), as is common in extractive question an-
swering tasks (Rajpurkar et al., 2016; Joshi et al.,
2017; Yang et al., 2018). EM only gives credit for
predictions that exactly match (one of) the gold
answer(s), whereas F1 gives a partial credit for
partial word overlap with the gold answer(s). We
follow the SQuAD evaluation normalization rules
and ignore articles and punctuation when comput-
ing EM and F1 scores. While more strict evalu-
ation (Kwiatkowski et al., 2019) computes scores

2Notatably, the task does not test unanswerable (Ra-
jpurkar et al., 2018), multi-turn (Reddy et al., 2019), or open-
domain (Chen et al., 2017) question types.

based on the token indexes of the provided con-
text, we compute scores based on answer string
match (i.e., the prediction doesn’t need to come
from exact same annotated span as long as the pre-
dicted answer string matches the annotated answer
string). We rank systems based on their macro-
averaged test F1 scores across the 12 test datasets.

3 Dataset Curation

The MRQA 2019 Shared Task dataset is com-
prised of many sub-domains, each collected from
a separate dataset. The dataset splits and sub-
domains are detailed in Table 1. As part of the
collection process, we adapted each dataset to con-
form to the following unified, extractive format:

1. The answer to each question must appear as
a span of tokens in the passage.

2. Passages may span multiple paragraphs or
documents, but they are concatenated and
truncated to the first 800 tokens. This eases
the computational requirements for process-
ing large documents efficiently.

The first requirement is motivated by the fol-
lowing reasons:

• Extractive settings are easier to evaluate with
stable metrics than abstractive settings.

• Unanswerable questions are hard to synthe-
size reliably on datasets without them. We
investigated using distant supervision to au-
tomatically generate unanswerable questions,
but found it would introduce a significant
amount of noise.

• It is easier to convert multiple-choice datasets
to extractive datasets than converting extrac-
tive datasets to multiple-choice, as it is dif-
ficult to generate challenging alternative an-
swer options.

• Many of popular benchmark datasets are al-
ready extractive (or have extractive portions).

3.1 Sub-domain Splits
We partition the 18 sub-domains in the MRQA
dataset into three splits:

Split I These sub-domains are available for
model training and development, but are not in-
cluded in evaluation.



Dataset Question (Q) Context (C) |Q| |C| Q ⊥⊥ C Train Dev Test

I

SQuAD Crowdsourced Wikipedia 11 137 7 86,588 10,507 -
NewsQA Crowdsourced News articles 8 599 3 74,160 4,212 -
TriviaQA♠ Trivia Web snippets 16 784 3 61,688 7,785 -
SearchQA♠ Jeopardy Web snippets 17 749 3 117,384 16,980 -
HotpotQA Crowdsourced Wikipedia 22 232 7 72,928 5,904 -
Natural Questions Search logs Wikipedia 9 153 3 104,071 12,836 -

II

BioASQ♠ Domain experts Science articles 11 248 3 - 1,504 1,518
DROP♦ Crowdsourced Wikipedia 11 243 7 - 1,503 1,501
DuoRC♦ Crowdsourced Movie plots 9 681 3 - 1,501 1,503
RACE♥ Domain experts Examinations 12 349 7 - 674 1,502
RelationExtraction♠ Synthetic Wikipedia 9 30 3 - 2,948 1,500
TextbookQA♥ Domain experts Textbook 11 657 7 - 1,503 1,508

III

BioProcess♥ Domain experts Textbook 9 94 7 - - 219
ComplexWebQ♠ Crowdsourced Web snippets 14 583 3 - - 1,500
MCTest♥ Crowdsourced Crowdsourced 9 244 7 - - 1,501
QAMR♦ Crowdsourced Wikipedia 7 25 7 - - 1,524
QAST Domain experts Transcriptions 10 298 7 - - 220
TREC♠ Crowdsourced Wikipedia 8 792 3 - - 1,021

Table 1: MRQA sub-domain datasets. The first block presents six domains used for training, the second block
presents six given domains used for evaluation during model development and the last block presents six hidden
domains used for evaluation. | · | denotes the average length in tokens of the quantity of interest. Q ⊥⊥ C is
true if the question was written independently from the passage used for context. ♠-marked datasets used distant
supervision to match questions and contexts, ♥-marked datasets were originally multiple-choice, and ♦-marked
datasets are other datasets where only the answer string is given (rather than the exact answer span in the context).

Split II These sub-domains are not available for
model training, but are available for model devel-
opment. Their hidden test portions are included in
the final evaluation.

Split III These sub-domains are not available
for model training or development. They are com-
pletely hidden to the participants and only used for
evaluation.

Additionally, we balance the testing portions of
Splits II and III by re-partitioning the original sub-
domain datasets so that we have 1,500 examples
per sub-domain. We partition by context, so that
no single context is shared across both develop-
ment and testing portions of either Split II or Split
III.3

3.2 Common Preprocessing

Datasets may contain contexts that are comprised
of multiple documents or paragraphs. We concate-
nate all documents and paragraphs together. We
separate documents with a [DOC] token, insert
[TLE] tokens before each document title (if pro-

3We draw examples from each dataset’s original test split
until it is exhausted, and then augment if necessary from the
train and dev splits. This preserves the integrity of the orig-
inal datasets by ensuring that no original test data is leaked
into non-hidden splits of the MRQA dataset.

vided), and separate paragraphs within a document
with a [PAR] token.

Many of the original datasets do not have la-
beled answer spans. For these datasets we provide
all occurrences of the answer string in the context
in the dataset. Additionally, several of the original
datasets contain multiple-choice questions. For
these datasets, we keep the correct answer if it is
contained in the context, and discard the other op-
tions. We filter questions that depend on the spe-
cific options (e.g., questions of the form “which of
the following...” or “examples of ... include”). Re-
moving multiple-choice options might introduce
ambiguity (e.g., if multiple correct answers appear
in the context but not in the original options). For
these datasets, we attempt to control for quality by
manually verifying random examples.

3.3 Sub-domain Datasets

In this section we describe the datasets used as
sub-domains for MRQA. We focus on the modifi-
cations made to convert each dataset to the unified
MRQA format. Please see Table 1 as well as the
associated dataset papers for more details on each
sub-domain’s properties.

SQuAD (Rajpurkar et al., 2016) We used the
SQuAD (Stanford Question Answering Dataset)



dataset as the basis for the shared task for-
mat.4 Crowdworkers are shown paragraphs from
Wikipedia and are asked to write questions with
extractive answers.

NewsQA (Trischler et al., 2017) Two sets of
crowdworkers ask and answer questions based on
CNN news articles. The “questioners” see only
the article’s headline and summary while the “an-
swerers” see the full article. We discard questions
that have no answer or are flagged in the dataset to
be without annotator agreement.

TriviaQA (Joshi et al., 2017) Question and an-
swer pairs are sourced from trivia and quiz-league
websites. We use the web version of TriviaQA,
where the contexts are retrieved from the results
of a Bing search query.

SearchQA (Dunn et al., 2017) Question and
answer pairs are sourced from the Jeopardy! TV
show. The contexts are composed of retrieved
snippets from a Google search query.

HotpotQA (Yang et al., 2018) Crowdwork-
ers are shown two entity-linked paragraphs from
Wikipedia and are asked to write and answer ques-
tions that require multi-hop reasoning to solve. In
the original setting, these paragraphs are mixed
with additional distractor paragraphs to make in-
ference harder. We do not include the distractor
paragraphs in our setting.

Natural Questions (Kwiatkowski et al., 2019)
Questions are collected from information-seeking
queries to the Google search engine by real users
under natural conditions. Answers to the ques-
tions are annotated in a retrieved Wikipedia page
by crowdworkers. Two types of annotations are
collected: 1) the HTML bounding box containing
enough information to completely infer the answer
to the question (Long Answer), and 2) the sub-
span or sub-spans within the bounding box that
comprise the actual answer (Short Answer). We
use only the examples that have short answers, and
use the long answer as the context.

BioASQ (Tsatsaronis et al., 2015) BioASQ, a
challenge on large-scale biomedical semantic in-
dexing and question answering, contains question
and answer pairs that are created by domain ex-
perts. They are then manually linked to multiple

4A few paragraphs are long, and we discard the QA pairs
that do not align with the first 800 tokens (1.1% of examples).

related science (PubMed) articles. We download
the full abstract of each of the linked articles to
use as individual contexts (e.g., a single question
can be linked to multiple, independent articles to
create multiple QA-context pairs). We discard ab-
stracts that do not exactly contain the answer.

DROP (Dua et al., 2019) DROP (Discrete Rea-
soning Over the content of Paragraphs) examples
were collected similarly to SQuAD, where crowd-
workers are asked to create question-answer pairs
from Wikipedia paragraphs. The questions focus
on quantitative reasoning, and the original dataset
contains non-extractive numeric answers as well
as extractive text answers. We restrict ourselves to
the set of questions that are extractive.

DuoRC (Saha et al., 2018) We use the Para-
phraseRC split of the DuoRC dataset. In this set-
ting, two different plot summaries of the same
movie are collected—one from Wikipedia and the
other from IMDb. Two different sets of crowd-
workers ask and answer questions about the movie
plot, where the “questioners” are shown only the
Wikipedia page, and the “answerers” are shown
only the IMDb page. We discard questions that
are marked as unanswerable.

RACE (Lai et al., 2017) ReAding Comprehen-
sion Dataset From Examinations (RACE) is col-
lected from English reading comprehension ex-
ams for middle and high school Chinese students.
We use the high school split (which is more chal-
lenging) and also filter out the implicit “fill in the
blank” style questions (which are unnatural for
this task).

RelationExtraction (Levy et al., 2017) Given
a slot-filling dataset,5 relations among entities
are systematically transformed into question-
answer pairs using templates. For example, the
educated at(x, y) relationship between two enti-
ties x and y appearing in a sentence can be ex-
pressed as “Where was x educated at?” with an-
swer y. Multiple templates for each type of re-
lation are collected. We use the dataset’s zero-
shot benchmark split (generalization to unseen re-
lations), and only keep the positive examples.

TextbookQA (Kembhavi et al., 2017) Text-
bookQA is collected from lessons from middle
school Life Science, Earth Science, and Physical

5The authors use the WikiReading dataset (Hewlett et al.,
2016) for the underlying slot-filling task.



Science textbooks. We do not include questions
that are accompanied with a diagram, or that are
“True or False” questions.

BioProcess (Berant et al., 2014) Paragraphs are
sourced from a biology textbook, and question and
answer pairs about those paragraphs are then cre-
ated by domain experts.

ComplexWebQ (Talmor and Berant, 2018)
ComplexWebQuestions is collected by crowd-
workers who are shown compositional, formal
queries against Freebase, and are asked to re-
phrase them in natural language. Thus, by de-
sign, questions require multi-hop reasoning. For
the context, we use the default web snippets pro-
vided by the authors. We use only single-answer
questions of type “composition” or “conjunction”.

MCTest (Richardson et al., 2013) Passages ac-
companied with questions and answers are writ-
ten by crowdworkers. The passages are fictional,
elementary-level, children’s stories.

QAMR (Michael et al., 2018) To construct
the Question-Answer Meaning Representation
(QAMR) dataset, crowdworkers are presented
with an English sentence along with target non-
stopwords from the sentence. They are then asked
to create as many question-answer pairs as pos-
sible that contain at least one of the target words
(and for which the answer is a span of the sen-
tence). These questions combine to cover most of
the predicate-argument structures present. We use
only the filtered6 subset of the Wikipedia portion
of the dataset.

QAST (Lamel et al., 2008) We use Task 1 of
the Question Answering on Speech Transcriptions
(QAST) dataset, where contexts are taken from
manual transcripts of spoken lectures on “speech
and language processing.” Questions about named
entities found in the transcriptions are created by
English native speakers. Each lecture contains
around 1 hour of transcribed text. To reduce the
length to meet our second requirement (≤ 800 to-
kens), for each question we manually selected a
sub-section of the lecture that contained the an-
swer span, as well as sufficient surrounding con-
text to answer it.

TREC (Baudiš and Šedivý, 2015) The Text
REtrieval Conference (TREC) dataset is curated

6The questions that are valid and non-redundant.

from the TREC QA tasks (Voorhees and Tice,
2000) from 1999-2002. The questions are fac-
toid. Accompanying passages are supplied using
the Document Retriever from Chen et al. (2017),
if the answer is found within the first 800 tokens
of any of the top 5 retrieved Wikipedia documents
(we take the highest ranked document if multiple
documents meet this requirement).

4 Baseline Model

We implemented a simple, multi-task baseline
model based on BERT (Devlin et al., 2018), fol-
lowing the MultiQA model (Talmor and Berant,
2019). Our method works as follows:

Modeling Given a question q consisting of
m tokens {q1, . . . , qm} and a passage p of n
tokens {p1, . . . , pn}, we first concatenate q and
p with special tokens to obtain a joint context
{[CLS], q1, . . . , qm,[SEP], p1, . . . , pn,[SEP]}.
We then encode the joint context with BERT
to obtain contextualized passage represen-
tations {h1, . . . ,hn}. We train separate
MLPs to predict start and end indices inde-
pendently, and decode the final span using
argmaxi,j{pstart(i)× pend(j)}.

Preprocessing Following Devlin et al. (2018),
we create p and q by tokenizing every example us-
ing a vocabulary of 30,522 word pieces. As BERT
accepts a maximum sequence length of 512, we
generate multiple chunks {p(1), . . . , p(k)} per ex-
ample by sliding a 512 token window (of the joint
context, including q) over the entire length of the
original passage, with a stride of 128 tokens.

Training During training we select only the
chunks that contain answers. We maximize
the log-likelihood of the first occurrence of the
gold answer in each of these chunks, and back-
propagate into BERT’s parameters (and the MLP
parameters). At test time we output the span with
the maximal logit across all chunks.

Multi-task Training We sample up to 75K ex-
amples from each training dataset, combine them,
and create mixed batches of examples from all of
the data. We then follow the same training proce-
dure as before on all the composed training dataset
batches.



5 Shared Task Submissions

Our shared task lasted for 3 months from May to
August in 2019. All submissions were handled
through the CodaLab platform.7 In total, we re-
ceived submissions from 10 different teams for the
final evaluation (Table 2). Of these, 6 teams sub-
mitted their system description paper. We will de-
scribe each of them briefly below.

5.1 D-Net (Li et al., 2019)

The submission from Baidu adopts multiple
pre-trained language models (LMs), including
BERT (Devlin et al., 2018), XLNet (Yang et al.,
2019), and ERNIE 2.0 (Zhang et al., 2019). Un-
like other submissions which use only one pre-
trained LM, they experiment with 1) training LMs
with extra raw text data drawn from science ques-
tions and search snippets domains, and 2) multi-
tasking with auxiliary tasks such as natural lan-
guage inference and paragraph ranking (Williams
et al., 2017). Ultimately, however, the final system
is an ensemble of an XLNet-based model and an
ERNIE-based model, without auxiliary multitask
or augmented LM training.

5.2 Delphi (Longpre et al., 2019)

The submission from Apple investigates the ef-
fects of pre-trained language models (BERT vs
XLNet), various data sampling strategies, and data
augmentation techniques via back-translation.
Their final submission uses XLNet (Yang et al.,
2019) as the base model, with carefully sampled
training instances from negative examples (hence
augmenting the model with a no-answer option)
and the six training datasets. The final submission
does not include data augmentation, as it did not
improve performance during development.

5.3 HLTC (Su et al., 2019)

The submission from HKUST studies different
data-feeding schemes, namely shuffling instances
from all datasets versus shuffling dataset-ordering
only. Their submission is built on top of XL-
Net, with a multilayer perceptron layer for span
prediction. They also attempted to substitute the
MLP layer with a more complex attention-over-
attention (AoA) (Cui et al., 2017) layer on top of
XLNet, but did not find it to be helpful.

7https://worksheets.codalab.org

5.4 CLER (Takahashi et al., 2019)

The submission from Fuji Xerox adds a mixture-
of-experts (MoE) (Jacobs et al., 1991) layer on
top of a BERT-based architecture. They also use
a multi-task learning framework trained together
with natural language inference (NLI) tasks. Their
final submission is an ensemble of three models
trained with different random seeds.

5.5 Adv. Train (Lee et al., 2019)

The submission from 42Maru and Samsung Re-
search proposes an adversarial training frame-
work, where a domain discriminator predicts the
underlying domain label from the QA model’s hid-
den representations, while the QA model tries to
learn to arrange its hidden representations such
that the discriminator is thwarted. Through this
process, they aim to learn domain (dataset) in-
variant features that can generalize to unseen do-
mains. The submission is built based on the pro-
vided BERT baselines.

5.6 HierAtt (Osama et al., 2019)

The submission from Alexandria University uses
the BERT-Base model to provide feature represen-
tations. Unlike other models which allowed fine-
tuning of the language model parameters during
training, this submission only trains model param-
eters associated with the question answering task,
while keeping language model parameters frozen.
The model consists of two attention mechanisms:
one bidirectional attention layer used to model the
interaction between the passage and the question,
and one self-attention layer applied to both the
question and the passage.

6 Results

6.1 Main Results

Table 3 lists the macro-averaged F1 scores of all
the submissions on both the development and test-
ing portions of the MRQA dataset. The teams are
ranked by the F1 scores on the hidden testing por-
tions of the 12 datasets (Split II and III in Sec-
tion 3.1). As seen in Table 3, many of the submis-
sions outperform our BERT-Large baseline signif-
icantly. The best-performing system, D-Net (Li
et al., 2019), achieves an F1 score of 72.5, which is
a 10.7 point absolute improvement over our base-
line, and 11.5 and 10.0 point improvements, re-
spectively, on Split II (with the development por-

https://worksheets.codalab.org


Model Affliation

D-Net (Li et al., 2019) Baidu Inc.
Delphi (Longpre et al., 2019) Apple Inc.
FT XLNet Harbin Institute of Technology
HLTC (Su et al., 2019) Hong Kong University of Science & Technology
BERT-cased-whole-word Aristo @ AI2
CLER (Takahashi et al., 2019) Fuji Xerox Co., Ltd.
Adv. Train (Lee et al., 2019) 42Maru and Samsung Research
BERT-Multi-Finetune Beijing Language and Culture University
PAL IN DOMAIN University of California Irvine
HierAtt (Osama et al., 2019) Alexandria University

Table 2: List of participants, ordered by the macro-averaged F1 score on the hidden evaluation set.

Model Split I Split II Split II Split III Split II + III

Portion (# datasets) Dev (6) Dev (6) Test (6) Test (6) Test (12)

D-Net (Li et al., 2019) 84.1 69.7 68.9 76.1 72.5
Delphi (Longpre et al., 2019) 82.3 68.5 66.9 74.6 70.8
FT XLNet 82.9 68.0 66.7 74.4 70.5
HLTC (Su et al., 2019) 81.0 65.9 65.0 72.9 69.0
BERT-cased-whole-word 79.4 61.1 61.4 71.2 66.3
CLER (Takahashi et al., 2019) 80.2 62.7 62.5 69.7 66.1
Adv. Train (Lee et al., 2019) 76.8 57.1 57.9 66.5 62.2
Ours: BERT-Large 76.3 57.1 57.4 66.1 61.8
BERT-Multi-Finetune 74.2 53.3 56.0 64.7 60.3
Ours: BERT-Base 74.7 54.6 54.6 62.4 58.5
HierAtt (Osama et al., 2019) 71.1 48.7 50.5 61.7 56.1

Table 3: Performance as F1 score on the shared task. Each score is macro-averaged across individual datasets. The
last column (test portion of Split II and III) is used for the final ranking. Our baselines are shaded in yellow, and
the submissions which did not present system description papers are shaded in grey.



# Best Base Impr.

Question
Type

Crowdsourced 6 69.9 58.5 11.5
Synthetic 1 88.9 84.7 4.2
Domain experts 5 71.5 60.5 11.5

Context
Type

Wikipedia 4 73.4 62.3 11.1
Education 4 68.2 56.2 12.0
Others 4 76.1 66.8 9.3

Q ⊥⊥ C 3 5 73.0 63.8 9.2
7 7 72.2 60.3 11.9

Table 4: Macro-averaged F1 scores based on the
dataset characteristics as defined in Table 1. Best de-
notes the best submitted system (D-Net), and Base de-
notes our BERT-Large baseline.

tions provided) and Split III datasets (completely
hidden to the participants).

We evaluate all the submissions on the in-
domain datasets (Split I) in Table 3 and find that
there is a very strong correlation between in-
domain and out-of-domain performance. The top
submissions on the out-of-domain datasets also
obtain the highest scores on the six datasets that
we provided for training.

We present per-dataset performances for 12
evaluation datasets in the appendix. Across the
board, many submitted systems greatly outper-
form our baselines. Among the 12 datasets, per-
formance on the DROP dataset has improved the
most—from 43.5 F1 to 61.5 F1—while perfor-
mance on the RelationExtraction dataset has im-
proved the least (84.9 F1 vs. 89.0 F1). The mod-
els with higher average scores seemed to outper-
form in most datasets: the performance rankings
of submissions are mostly preserved on individual
datasets.

6.2 Summary of Findings

Improvements per data types We analyzed the
average performance across the various types of
datasets that are represented in Table 1. Table 4
summarizes our observations: (1) the datasets with
naturally collected questions (either crowdsourced
or curated by domain experts) all obtain large
improvements; (2) The datasets collected from
Wikipedia or education materials (textbooks and
Science articles) receive bigger gains compared to
those collected from Web snippets or transcrip-
tions; and (3) There is a bigger improvement for
datasets in which questions are posed dependent
on the passages compared to those with indepen-
dently collected questions (11.9 vs. 9.2 points).

Pre-trained language models The choice of
pre-trained language model has a significant im-
pact on the QA performance, as well as the gen-
eralization ability. Table 5 summarizes the pre-
trained models each submission is based on, along
with its evaluation F1 score. The top three per-
forming systems all use XLNet instead of BERT-
Large—this isolated change in pre-trained lan-
guage model alone yields a significant gain in
overall in- and out-of-domain performance. Li
et al. (2019) argues that XLNet shows superior
performances on datasets with discrete reasoning,
such as DROP and RACE. Su et al. (2019), how-
ever, also use XLNet, but does not show strong
gains on the DROP or RACE datasets.

The winning system ensembled two different
pre-trained language models. Only one other sub-
mission (Takahashi et al., 2019) used an ensemble
for their final submission, merging the same LM
with different random seeds.

Model Base Eval F1
Language Model (II + III)

D-Net XLNet-L + ERNIE 2.0 72.5
Delphi XLNet-L 70.8
HLTC XLNet-L 69.0

CLER BERT-L 66.1
Adv. Train BERT-L 62.2
BERT-Large BERT-L 61.8
HierAtt BERT-B 56.1

Table 5: Pretrained language models used in the shared
task submissions. *-L and *-B denote large and base
versions of the models.

Data sampling Our shared task required all
participants to use our provided training data,
compiled from six question answering datasets,
and disallowed the use of any other question-
answering data for training. Within these restric-
tions, we encouraged participants to explore how
to best utilize the provided data.

Inspired by Talmor and Berant (2019), two
submissions (Su et al., 2019; Longpre et al.,
2019) analyzed similarities between datasets. Un-
surprisingly, the performance improved signifi-
cantly when fine-tuned on the training dataset
most similar to the evaluation dataset of inter-
est. Su et al. (2019) found each of the devel-
opment (Split II) datasets resembles one or two
training datasets (Split I)—and thus training with
all datasets is crucial for generalization across the
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Figure 1: F1 scores on Split II sub-domains (test portions) comparing the best submitted system (D-Net) against our
BERT-Large baseline. The third result for each dataset is from individually fine-tuning the BERT-Large baseline
on the in-domain dev portion of the same dataset (i.e., Split II (dev)).

multiple domains. They experimented with data-
feeding methodologies, and found that shuffling
instances of all six training datasets is more effec-
tive than sequentially feeding all examples from
each dataset, one dataset after another.

Additionally, Longpre et al. (2019) observed
that the models fine-tuned on SearchQA and Triv-
iaQA achieve relatively poor results across all
the evaluation sets (they are both trivia-based,
distantly supervised, and long-context datasets).
Downsampling examples from these datasets in-
creases the overall performance. They also found
that, although our shared task focuses on answer-
able questions, sampling negative examples leads
to significant improvements (up to +1.5 F1 on
Split II and up to +4 F1 on Split I). Since most
systems follow our baseline model (Section 4) by
doing inference over chunks of tokens, not all ex-
amples fed to these models are actually guaranteed
to contain an answer span.

Multi-task learning Two submissions at-
tempted to learn the question answering model
together with other auxiliary tasks, namely natural
language inference (Takahashi et al., 2019; Li
et al., 2019) or paragraph ranking (Li et al., 2019)
(i.e., classifying whether given passages contains
an answer to the question or not). This could im-
prove the generalization performance on question
answering for two reasons. First, the additional
training simply exposes the model to more diverse
domains, as the entailment dataset (Williams
et al., 2017) contains multiple domains ranging
from fiction to telephone conversations. Sec-
ond, reasoning about textual entailment is often

necessary for question answering, while passage
ranking (or classification) is an easier version of
extractive question answering, where the model
has to identify the passage containing the answer
instead of exact span.

Both systems introduced task-specific fully con-
nected layers while sharing lower level representa-
tions across different tasks. While Takahashi et al.
(2019) showed a modest gain by multi-tasking
with NLI tasks (+0.7 F1 score on the development
portion of Split II), Li et al. (2019) reported that
multitasking did not improve the performance of
their best model.

Adversarial Training One submission (Lee
et al., 2019) introduced an adversarial training
framework for generalization. The goal is to learn
domain-invariant features (i.e., features that can
generalize to unseen test domains) by jointly train-
ing with a domain discriminator, which predicts
the dataset (domain) for each example. Accord-
ing to Lee et al. (2019), this adversarial training
helped on most of the datasets (9 out of 12), but
also hurt performance on some of them. It finally
led to +1.9 F1 gain over their BERT-Base baseline,
although the gain was smaller (+0.4 F1) for their
stronger BERT-Large baseline.

Ensembles Most extractive QA models, which
output a logit for the start index and another for the
end index, can be ensembled by adding the start
and end logits from models trained with different
random seeds. This has shown to improve per-
formances across many model classes, as can be
seen from most dataset leaderboards. The results
from the shared task also show similar trends. A



few submissions (Takahashi et al., 2019; Li et al.,
2019) tried ensembling, and all reported modest
gains. While ensembling is a quick recipe for a
small gain in performance, it also comes at the cost
of computational efficiency—both at training and
at inference time.

Related to ensembling, Takahashi et al. (2019)
uses a mixture of experts (Jacobs et al., 1991)
layer, which learns a gating function to ensemble
different weights, adaptively based on the input.

6.3 Comparison to In-domain Fine-tuning

Lastly, we report how the best shared task perfor-
mance compares to in-domain fine-tuning perfor-
mance of our baseline. Section 6.1 shows large
improvements by the top shared task model, D-
Net, over our baseline. We analyze to what ex-
tent the reduced performance on out-of-domain
datasets can be overcome by exposing the baseline
to only a few samples from the target distributions.
As suggested by Liu et al. (2019), if the model can
generalize with a few examples from the new do-
main, poor performance on that domain is an indi-
cator of a lack of training data diversity, rather than
of fundamental model generalization weaknesses.

Figure 1 presents our results on the six datasets
from Split II, where we have individually fine-
tuned the BERT-Large baseline on each of the
Split II dev datasets and tested on the Split II
test datasets. We see that while the gap to D-
Net shrinks on all datasets (overall performance
increases by 4.6 F1), surprisingly it is only com-
pletely bridged in one of the settings (RelationEx-
traction). This is potentially because this dataset
covers only a limited number of relations, so hav-
ing in-domain data helps significantly. This sug-
gests that D-Net (and the other models close to it
in performance) is an overall stronger model—a
conclusion also supported by its gain on in-domain
data (Split I).

7 Conclusions

We have presented the MRQA 2019 Shared Task,
which focused on testing whether reading compre-
hension systems can generalize to examples out-
side of their training domain. Many submissions
improved significantly over our baseline, and in-
vestigated a wide range of techniques.

Going forward, we believe it will become in-
creasingly important to build NLP systems that
generalize across domains. As NLP models be-

come more widely deployed, they must be able to
handle diverse inputs, many of which may differ
from those seen during training. By running this
shared task and releasing our shared task datasets,
we hope to shed more light how to build NLP sys-
tems that generalize beyond their training distribu-
tion.
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We present the per-dataset performances in Ta-
ble 6 and Table 7 for shared task submissions and
our baselines.



BioASQ DROP DuoRC RACE RelExt TextbookQA
Model EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

D-Net 61.2 75.3 50.7 61.5 54.7 66.6 39.9 53.5 80.1 89.0 57.2 67.6
Delphi 60.3 72.0 48.5 58.9 53.3 63.4 39.4 53.9 79.2 87.9 56.5 65.5
FT XLNet 59.3 72.9 48.0 58.3 52.7 63.8 39.4 53.8 79.0 87.2 53.6 64.2
HLTC 59.6 74.0 41.0 51.1 51.7 63.1 37.2 50.5 76.5 86.2 55.5 65.2
BERT-cased-whole-word 57.8 72.9 43.1 53.2 42.3 53.5 35.0 48.7 78.5 87.9 43.9 51.9
CLER 53.2 68.8 37.7 47.5 51.6 62.9 31.9 45.0 78.6 87.7 53.5 62.9
Adv. Train 45.1 60.5 34.8 43.8 46.2 57.3 29.6 42.8 74.3 84.9 48.8 58.0
Ours: BERT-Large 49.7 66.6 33.9 43.5 43.4 55.1 29.0 41.4 72.5 84.7 45.6 53.2
BERT-Multi-Finetune 48.7 64.8 30.4 40.3 43.7 54.7 26.4 38.7 75.3 85.0 44.0 52.4
Ours: BERT-Base 46.4 60.8 28.3 37.9 42.8 53.3 28.2 39.5 73.3 83.9 44.3 52.0
HierAtt 43.0 59.1 24.4 34.8 38.5 49.6 24.6 37.4 67.9 81.3 32.1 40.5

Table 6: Performance on the six datasets of Split II (test portion). EM: exact match, F1: word-level F1-score.

BioProcess ComWebQ MCTest QAMR QAST TREC
Model EM F1 EM F1 EM F1 EM F1 EM F1 EM F1

D-NET 61.3 75.6 67.8 68.3 67.8 80.8 60.4 76.1 75.0 88.8 51.8 66.8
Delphi 58.9 74.2 55.1 62.3 68.0 80.2 61.0 75.3 78.6 89.9 55.0 65.8
FT XLNet 62.6 75.2 54.8 62.7 66.0 79.6 56.5 73.4 76.8 90.0 51.8 65.5
HLTC 56.2 72.9 54.7 61.4 64.6 78.7 56.4 72.5 75.9 88.8 49.9 63.4
BERT-cased-whole-word 56.2 71.5 52.4 60.7 63.8 76.4 56.1 71.5 69.6 85.3 43.6 61.6
CLER 48.0 68.4 52.6 61.2 59.9 73.1 54.3 71.4 65.0 84.3 42.7 60.0
Adv. Train 46.1 62.9 48.7 56.9 57.2 70.9 56.8 71.7 56.8 77.8 42.6 58.8
Ours: BERT-Large 46.1 63.6 51.8 59.1 59.5 72.2 48.2 67.4 62.3 80.8 36.3 53.6
BERT-Multi-Finetune 43.4 58.8 49.6 57.7 59.2 72.2 48.6 67.0 60.0 80.1 34.6 52.3
Ours: BERT-Base 38.4 57.4 47.4 55.3 54.2 66.1 47.8 64.8 58.6 77.0 36.7 54.0
HierAtt 44.3 60.8 41.9 51.2 54.2 67.9 48.0 66.0 50.9 75.5 27.7 48.7

Table 7: Results on the six datasets of Split III. EM: exact match, F1: word-level F1-score.


