

Reading Wikipedia to Answer Open-Domain Questions

Dangi Chen, Adam Fisch, Jason Weston, Antoine Bordes Stanford University & Facebook Al Research

Overview

Goal: build an end-to-end question answering system that can use full Wikipedia to answer any factoid question.

Large-scale QA + Machine comprehension of Text "Machine Reading at Scale" (MRS)

Our system DrQA:

Q What is question answering? **A** a computer science discipline within the fields of information retrieval and natural language processing

Q Who was the winning pitcher in the 1956 World Series? A Don Larsen

Q What is the answer to life, the universe.

and everything? A 42

Trv it out vourself!

https://github.com/facebookresearch/DrQA

Document Retriever + Document Reader

- Document retriever: finding relevant articles from 5 million Wikipedia articles
- Document reader (reading comprehension system): identifying the answer spans from those articles

Q: How many of Warsaw's inhabitants spoke Polish in 1933?

- Datasets:
- SQuAD (Rajpurkar et al, 2016)
- TREC (Baudiš and Šedivý, 2005)
- WebQuestions *≈* Freebase (Berant et al, 2013)
- WikiMovies (Miller et al, 2016)

Approach

Document Retriever

TF-IDF bag-of-words vectors + efficient bigram hashing (Weinberger et al., 2009)

Document Reader

Task: given paragraph P and guestion Q, the goal is to find a span A in the paragraph which answers the question. **Model**: similar to AttentiveReader (Hermann et al, 2015; Chen et al, 2016). We aim to keep it simple!

The input vectors consist of:

- Word embeddings
- Exact match features: whether the word appears in guestion
- Token features: POS, NER, term frequency
- Aligned question embedding

Data: SQuAD + Distantly Supervised Data

 $(Q, A) \longrightarrow (P, Q, A)$ if P is retrieved and A can be found in P

Q: What part of the atom did Chadwick discover? WebQuestions A: neutron

Atom

From Wikipedia, the free encyclopedia

The atomic mass of these isotopes varied by integer amounts, called the whole number rule.^[23] The explanation for these different isotopes awaited the discovery of the neutron, an uncharged particle with a mass similar to the proton, by the physicist James Chadwick in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus

Results

Finding Relevant Articles

	Wiki	unigram	+bigram
	Search		
SQuAD	62.7	76.1	77.8
TREC	81.0	85.2	86.0
WebQuestions	73.7	75.5	74.4
WikiMovies	61.7	54.4	70.3

70-86% of guestions we have that the answer segment appears in the top 5 articles

Performance on SQuAD (single model, Feb 2017)

	EM	F1
Logistic regression	40.4	51.0
Fine-Grained Gating (Carnegie	62.5	73.3
Match-LSTM (Singapore	64.7	73.7
DCN (Salesforce)	66.2	75.9
BiDAF (UW & Allen Institute)	68.0	77.3
Ours	70.7	79.4
r-net (MSR Asia)	71.3	79.7
State-of-the-art (July 2017)	75.7	83.5
Human performance	82.3	91.2

Exact match features are important!

Features	F1
Full	78.8
No fttoken	78.0 (-0.8)
No fexact_match	77.3 (-1.5)
No faligned	77.3 (-1.5)
No faligned and fexact_match	59.4 (-19.4)

Full Results

