Goal: build an end-to-end question answering system that can use full Wikipedia to answer any factual question.

Large-scale QA + Machine comprehension of Text “Machine Reading at Scale” (MRS)

Our system **DrQA**:

Q What is question answering? A computer science discipline within the fields of information retrieval and natural language processing

Q Who was the winning pitcher in the 1956 World Series? A Don Larsen

Q What is the answer to life, the universe, and everything? A 42

Try it out yourself! https://github.com/facebookresearch/DrQA

Document Retriever + Document Reader

- Document retriever: finding relevant articles from 5 million Wikipedia articles
- Document reader (reading comprehension system): identifying the facts from those articles

Q How many of Warsaw’s inhabitants spoke Polish in 1933?

Datasets:

- SQuAD (Rajpurkar et al., 2016)
- TREC (Baudiš and Šedivý, 2005)
- WebQuestions \(\text{Freebase}^*) (Berant et al, 2013)
- WikiMovies (Miller et al, 2016)

Document Retriever

TF-IDF bag-of-words vectors + efficient bigram hashing (Weinberger et al., 2009)

Document Reader

Task: given paragraph P and question Q, the goal is to find a span A in the paragraph which answers the question.

Model: similar to AttentiveReader (Hermann et al., 2015; Chen et al, 2016). We aim to keep it **simple!**

![Bidirectional LSTMs](Image)

\[
\begin{align*}
P_s(i) &= \text{softmax}(qW_p^s) \\
\hat{P}_s(i) &= \text{softmax}(qW_p^s) \\
\end{align*}
\]

The input vectors consist of:

- Word embeddings
- Exact match features: whether the word appears in question
- Token features: POS, NER, term frequency
- Aligned question embedding

Data: SQuAD + Distantly Supervised Data

(Q, A) \(\rightarrow\) (P, Q, A) if P is retrieved and A can be found in P

Q: What part of the atom did Chadwick discover? A: neutron

Atom

From Wikipedia, the free encyclopedia

The atomic mass of these isotopes varied by integer amounts, called the **whole number rule**. The explanation for these different isotopes awaited the discovery of the **neutron**, an uncharged particle with a mass similar to the **proton**, by the physicist **James Chadwick** in 1932. Isotopes were then explained as elements with the same number of protons, but different numbers of neutrons within the nucleus.

Finding Relevant Articles

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Wiki Search</th>
<th>unigram</th>
<th>+bigram</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuAD</td>
<td>62.7</td>
<td>76.1</td>
<td>77.8</td>
</tr>
<tr>
<td>TREC</td>
<td>81.0</td>
<td>85.2</td>
<td>86.0</td>
</tr>
<tr>
<td>WebQuestions</td>
<td>73.7</td>
<td>75.5</td>
<td>74.4</td>
</tr>
<tr>
<td>WikiMovies</td>
<td>61.7</td>
<td>54.4</td>
<td>70.3</td>
</tr>
</tbody>
</table>

Performance on SQuAD (single model, Feb 2017)

<table>
<thead>
<tr>
<th>Method</th>
<th>EM</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logistic regression</td>
<td>40.4</td>
<td>51.0</td>
</tr>
<tr>
<td>Fine-Grained Gating (Carnegie)</td>
<td>62.5</td>
<td>73.3</td>
</tr>
<tr>
<td>Match-LSTM (Singapore)</td>
<td>64.7</td>
<td>73.7</td>
</tr>
<tr>
<td>DCN (Salesforce)</td>
<td>66.2</td>
<td>75.9</td>
</tr>
<tr>
<td>BiDAF (UW & Allen Institute)</td>
<td>68.0</td>
<td>77.3</td>
</tr>
<tr>
<td>Ours</td>
<td>70.7</td>
<td>79.4</td>
</tr>
<tr>
<td>r-net (MSR Asia)</td>
<td>71.3</td>
<td>79.7</td>
</tr>
<tr>
<td>State-of-the-art (July 2017)</td>
<td>75.7</td>
<td>83.5</td>
</tr>
<tr>
<td>Human performance</td>
<td>82.3</td>
<td>91.2</td>
</tr>
</tbody>
</table>

Exact match features are important!

Full Results

- Pre-trained SQuAD model
- SQuAD + fine-tuning on DS data
- Multi-task learning

Exact match (top-1 prediction)

- SQuAD
- TREC
- WebQuestions
- WikiMovies

Overview

Approach

Results

Document Retriever + Document Reader

Datasets:

- SQuAD (Rajpurkar et al., 2016)
- TREC (Baudiš and Šedivý, 2005)
- WebQuestions [Freebase] (Berant et al, 2013)
- WikiMovies (Miller et al, 2016)