
MARVIN:
Multimodally Advantaged Robotic
Vehicle for Improved Navigation

Adam Fisch1 and Maksimilian Shatkhin2, ‘15

Submitted to the
Department of Mechanical & Aerospace Engineering1

and Department of Electrical Engineering2

Princeton University
in partial fulfillment of the requirements of

Undergraduate Independent Work.

Final Report

May 4, 2015

Professor Andrew Houck
Professor Clarence Rowley
ELE 497-498
97 pages

Demo and test videos:
http://bit.ly/1bI3IYS

c© Copyright by Adam Fisch and Maksimilian Shatkhin, 2015.
All Rights Reserved

This thesis represents our own work in accordance with University regulations.

Abstract

Hybrid robots leverage the advantages of multiple types of locomotion. More specif-
ically, wheel-legged hybrid robots aim to capture the speed, stability, and power
efficiency of wheeled robots as well as the ability to traverse robust natural terrain
that legged robots provide. Effective hybrid designs are able to capitalize on both sets
of advantages without compromising the overall effectiveness of the machine. Here,
we present a design and implementation of MARVIN, a wheel-legged hybrid robot
that emphasizes three key features: a quick transition mechanism, a well-defined
wheel and leg mode, and the capacity for flexible control through continuously vari-
able leg length. We demonstrate how the two clearly defined modes of legs/wheels
in MARVIN capitalize on their respective advantages. Furthermore, in realizing the
tradeoff between modes specific to this robot, we derive a hybrid path-planning algo-
rithm using an empirically driven cost function, which we found by collecting data in
real-terrain experiments. We discuss our mechanical, electronic, and software design
approaches in building a prototype of the proposed design. We also review our ex-
perimental methods. Lastly, we point out lessons learned from the operation of our
prototype robot, identifying directions for future upgrades.

iii

Acknowledgements

This work is funded by the Princeton University School of Engineering and Applied
Science, the Department of Electrical Engineering and the Department of Mechani-
cal and Aerospace Engineering. The authors would like to thank Professors Andrew
Houck and Clarence Rowley for acting as advisers throughout the process. We would
also like to thank David Radcliffe, Glenn Northey, Gabriel Mann, and Spencer Nichols
for their help in troubleshooting our issues and discussing design considerations, as
well as numerous other staff, graduate students, and professors in the Electrical Engi-
neering Department and Mechanical Engineering Department for their contributions
to this project.

iv

Contents

Abstract . iii
Acknowledgements . iv
List of Tables . viii
List of Figures . ix

1 Introduction 1
1.1 Hybrid Modes: An Optimization Approach 1
1.2 The Legs vs. Wheels Tradeoff . 3
1.3 Prior Work . 4

1.3.1 Non-Integrated Designs . 6
1.3.2 Integrated Designs . 7

1.4 MARVIN . 8

2 Mechanical Design Analysis 12
2.1 Retractable Leg Length . 12
2.2 Leg-Assisted Climbing . 15
2.3 Leg Mode Dynamics . 18

2.3.1 “Walking” . 18
2.3.2 Forces and Reference Frames 19
2.3.3 Single Stride Dynamics . 20
2.3.4 Pivot Leg Transition . 21
2.3.5 Trajectory . 22

2.4 Torque Requirements . 23
2.4.1 Inner Motor . 24
2.4.2 Outer Motor . 24

2.5 MARVIN Parameters . 25

3 Control System 27
3.1 DC Motor Model . 28

v

3.1.1 Equation of Motion . 28
3.1.2 Transfer Function . 29

3.2 Controller Design . 29
3.2.1 Network Level Control . 29
3.2.2 Motor Level Control . 30

3.3 Real Systems Implementation . 34
3.3.1 Motor Saturation and Integrator Anti-Windup 35
3.3.2 Digital Control . 36

4 Electronics 38
4.1 Wireless Communication . 38
4.2 Power Analysis . 38

4.2.1 Loads . 38
4.2.2 Batteries . 39

4.3 Motors . 41
4.4 Arduino Microprocessor . 42
4.5 Sensors . 43

5 Experimental Procedure 45
5.1 Methods . 45
5.2 Controlled Environment . 47
5.3 Data . 48

5.3.1 Artificial Terrain . 48
5.3.2 Natural Terrain . 49

5.4 Analysis . 51
5.4.1 Power Consumption . 51
5.4.2 Stability . 51
5.4.3 Speed . 52
5.4.4 Climbing Ability . 52

5.5 Cost Based Mode Selection . 52

6 Least-Cost Hybrid Paths 54
6.1 Hybrid Global Path Planning . 54
6.2 A* with Hybrid Costs . 55
6.3 Discussion . 57

vi

7 Future Work and Improvements 58
7.1 Design Improvements . 58
7.2 Scaling Considerations . 59

8 Conclusion 60

A Motor Constants 67

B Manufacturing 68
B.1 Wheel Module . 68
B.2 Gears and Gearbox . 68
B.3 Chassis . 69

C Electronics Schematic 72

D Parts List 73

E Arduino Code 74
E.1 MotorController.ino . 74
E.2 VexMotor.h . 80
E.3 VexMotor.cpp . 81

F A* Code 84
F.1 example grid.py . 84
F.2 astar grid.py . 85
F.3 astar.py . 86

vii

List of Tables

2.1 Transformation from inertial frame I to polar frame B. 20
2.2 Transformation from polar frame B to polar frame C. 20

4.1 Comparison of several commercial DC motor models. 41

viii

List of Figures

1.1 Drawbacks of legs and wheels . 4
1.2 Examples from the hybridized mobile robot design space. 5
1.3 Non-Integrated hybrid designs . 6
1.4 Integrated hybrid designs . 7
1.5 Internals of the leg extension mechanism. 9
1.6 Top view of MARVIN. 11
1.7 MARVIN side views. 11

2.1 Determining the critical leg retraction angle. 13
2.2 Determining the maximum leg length, l. 14
2.3 Nondimensional leg length l′ = l/r2 vs. number of legs. 15
2.4 Forces on a regular wheel when climbing over a bump. 16
2.5 Forces on a wheel with spoke legs when climbing over a bump. 16
2.6 An example of a non-optimal (l) vs optimal (r) approach to a step. . 18
2.7 Step height ratio H’ for leg mode . 18
2.8 Wheel trajectory during leg mode. 19
2.9 Reference frames and free body diagram for the leg mode. 19
2.10 Inverted pendulum dynamics about O1. 20
2.11 Trajectory of the wheel center of mass during leg mode operation. . . 23
2.12 Quasi-static moment analysis on the inner axel. 23
2.13 Maximal torque requirements on the inner motor (a) and outer motor

(b) as a function of r′. 25

3.1 Master-Slave Control . 30
3.2 Feedback Loop . 30
3.3 Bode plot (a) and a step response (b) for the PI ω controller. 33
3.4 Bode plot (a) and a linear input response (b) for the PID θ controller. 34
3.5 Feedback Loop . 35
3.6 Digital feedback. 36

ix

3.7 Experimental data of motor phase during a mode switch 37

4.1 VEX Robotics battery load curves . 40
4.2 Daisy chained encoder modules on the I2C line (courtesy of VEX7). . 42

5.1 Examples of natural terrains used for MARVIN’s performance tests. . 46
5.2 Artificial test field for controlled experimentation with MARVIN. . . 46
5.3 Artificial test bed schematic. 47
5.4 Mean current draw vs. RMS roughness. 48
5.5 Mean z-axis acceleration variance vs. RMS roughness. 49
5.6 Mean speed vs. RMS roughness. 49
5.7 Comparative data from natural terrain test runs 50

6.1 Comparison of standard vs hybridized optimal paths. 56

A.1 Calibration of motor specific constants. 67

B.1 Iterations of the spoke wheel. 69
B.2 The gearboxes. 69
B.3 Old chassis layout. 70
B.4 The final chassis layout. 71

C.1 Electronics schematic. 72

x

Chapter 1

Introduction

1.1 Hybrid Modes: An Optimization Approach

For ground robots, mobility is a key, defining feature. In fact, even in the age of rapid
advances in artificial intelligence and cutting-edge robotic sensors, robot mobility
is still considered an area of predominant importance, and a major limitation in
current robotic technology [20, 43]. With respect to locomotion, robots are generally
classified as either legged or wheeled. As a consequence, this distinction creates a
sharp dichotomy in the applications for which these types of robots are well-suited.

Wheels are widely known to be smooth, quick, and energy efficient. However, they
are designed for the artificially paved world, and quickly lose effectiveness on rough,
natural terrain. In contrast, legs are capable of traversing tough environments, and
often mimic biological behaviors that perform well in nature. But they come at a
significant cost. Legged robots are typically slow, unstable, and power-hungry.

In certain domains, this dichotomy does not produce a noticeable disadvantage.
Clearly, legs would not provide any use for factory robots intended for flat, indoor
facilities, nor would wheels appreciably aid a climbing robot. Today, however, there
is an increasing demand for robotic vehicles suitable for high-risk, diverse terrain
missions [21]. One example, in particular, of intense interest is disaster-zone rescue
efforts. In both the 9/11 and Fukushima-Daiichi catastrophes, robots were deployed
in an attempt to search for trapped victims, as well as report feedback on the status
of humanly inaccessible areas [43]. In such scenarios, especially when the exploration
region is large, speed and efficiency are paramount. Likewise, robustness against
unforeseen obstacles is not just desirable — it is a fundamental necessity.

1

In response to these demands, there are hybrid designs seeking to combine legs
and wheels in a single design in an attempt to capture the advantages of both modes.
The hybrid model is a far less developed concept than either solely wheeled or legged
systems, however now it is receiving intense research interest [5].

In this thesis, we propose an improvement upon existing hybrid approaches by
introducing a novel geometrical structure and control strategy that allow for new
flexibilities and performance characteristics. Specifically:

1. We developed a design that has smooth and fast transitions between distinctive
wheel and leg modes.

2. We introduced the capability of what we term “flexible control.” By flexible
control we mean that the robot has the ability to modulate the extent to which
the leg mode is emphasized in an effort to select the best leg dynamics1.

3. Given our design, we introduced a novel cost model that allows us to algorithmi-
cally estimate the most efficient, hybrid strategy to move from point A to point
B given information about the current terrain. This model is developed from
experimental data of power consumption and stability, which are translated into
costs that the robot incurs during each mode.

Our contributions are implemented through the design, construction, operation,
and analysis of a multimodal, robotic vehicle prototype called MARVIN, that seeks
to enhance navigational ability in diverse, unstructured environments. While we
have only produced a basic prototype, we envision that with further development
MARVIN could eventually be suitable for major applications both on earth and in
space. While deployed on remote celestial bodies, such as the Moon or Mars, where
energy is limited, efficient locomotion over unstructured environments is important.
A planetary rover might face anything from flat crust, to sharp rocks that would
puncture wheels, to uneven boulder-strewn landscapes. On Earth, MARVIN’s terrain
robustness and path-planning capabilities give it potential as an Urban Search and
Rescue (USAR) robot, or in multiple other roles in remote exploration or the military.

1Flexible control is proposed and developed as a design feature in this report. However, due to
time constraints, MARVIN’s prototypical, physical implementation does not take advantage of this
feature, and it remains a rich area for future, real-world experimentation.

2

1.2 The Legs vs. Wheels Tradeoff

Prior to delving into hybridization methods, we first explore the mechanical attributes
of legs and wheels in greater depth to gain a better understanding of the tradeoffs. In
the design of dynamical systems — and in robotics in particular — naturally evolved,
biological systems often serve as sources of inspiration. Nature favors legs as a means
of locomotion in most organisms, but the motorized wheel is a human invention that
dominates on flat surfaces [40]. The main benefit of wheels is their ability to roll
and coast. When driving on suitable terrain, the main energy losses for a wheeled
robot come only from friction in the motor shafts and wheel axles, as well as limited
aerodynamic drag at higher speeds. This is significant: consequently, on flat surfaces
wheeled locomotion can be up to two orders of magnitude more efficient than legged
locomotion [40].

Rolling motion has several other desirable qualities in addition to power efficiency.
The movement of the robot is smooth; the wheel’s rotation is transferred directly into
translation, and oscillations of the robot’s center of gravity are avoided. This creates
less wear and tear on mechanical parts. Moreover, acceleration of a conventional
wheel is a simple process to actuate and large accelerations can be generated without
unreasonable effort. Given their efficiency and ability to accelerate easily, wheeled
robots can achieve and maintain high speeds, even when carrying heavier payloads.

However, the effectiveness of wheels deteriorates rapidly with increasing terrain
roughness. On soft, readily deformable surfaces, rolling friction begins to have a
pronounced effect. When the ground surface is depressed, asymmetrical pressure
distributions form on the wheel, producing counter-moments that impede the rolling
motion. Loose terrain, such as sand, is also difficult for wheeled robots to traverse [17].
For example, in 2009, the Mars rover Spirit became stuck in a sand trap and never
recovered. With loose substrates, wheels no longer maintain a no-slip condition at the
surface. Additionally, since wheels maintain continuous contact with the ground, they
tend to have a plowing effect on the ground material in front of them. Eventually,
this buildup can become severe enough to completely stop the robot.

Wheels are also not particularly proficient at maneuvering over obstacles. Stan-
dard wheels are typically only capable of surmounting steps of heights less than their
radius. Furthermore, wheels have to always maintain contact with the ground to
move. Thus, discontinuous terrain, where there are gaps in the path, is very chal-
lenging for wheeled robots to navigate.

Legged robot designs succeed in many of the situations where wheeled robots

3

(a) (b)

Figure 1.1: (a) The Mars rover Spirit stuck in sand in 2009 [34]. (b) BigDog performs
well on rugged terrain, but is limited to slow speeds [15].

fail. With legs, a robot only maintains a discrete number of contact points with the
ground. As long as the robot has adequate leg clearance over obstacles, the quality
of the ground between each contact point along the path does not matter as much
[40]. This lends itself to a large boost in maneuverability in rough environments.
Furthermore, legs can be manipulated strategically to allow the robot to surmount
taller barriers. For example, a robot might be able to lift its legs up to directly step
on or over a vertical obstacle — an action that cannot be done with wheels.

Still, legged motion comes at a steep price. While leg designs vary widely in their
implementation, they all have inherent inefficiencies. In most designs, energy is lost
in each leg collision with the ground [8]. Moreover, dynamic instabilities may be
introduced at high velocities. Finally, the legs must be capable of raising, sustaining,
and lowering the robot’s total weight, a task made more difficult in view of only a
few contact points with the ground.

1.3 Prior Work

As previously mentioned, hybridized robotics is now an area of rapid development and
active experimentation [1, 5, 42]. Creating a robust and adaptive robot encourages
creativity. As a result, the existing body of research is remarkably diverse. At
the highest level, however, many of the designs can be sorted into two fundamental
categories: integrated versus non-integrated leg-wheels [26]. Non-integrated leg-wheel
designs have individually distinguishable leg and wheel components. In contrast,

4

Figure 1.2: Examples from the hybridized mobile robot design space.

integrated leg-wheels seek to incorporate leg-like performance characteristics into their
design by using novel wheels with specially altered physical structures.

Both approaches and their variations have advantages as well as drawbacks. Non-
integrated designs typically are able to carry a heavier payload. However, their mech-
anisms can become very complex, requiring intensive control efforts and maintenance
[40]. Additionally, robots that transform their shape often experience a dead-time
period as the change takes place. Meanwhile, integrated wheel-leg robots often min-
imize design complexity and mode switching latency. Still, these approaches have
to compromise between the idealized performances of wheels and legs. Often the
resulting wheel-leg is neither great at rolling nor particularly impressive at walking.
Furthermore, hybrid wheels generally have some aspect of disjoint geometry. This
can cause robot stability to suffer at high speeds.

In order to obtain a deeper appreciation of the existing research, explain the
origins of MARVIN’s structure, and better define where our contributions align with
the current literature, we now address a few of the more compelling and successful
designs referenced in Fig. 1.2.

5

(a) (b) (c)

(d) (e) (f)

Figure 1.3: Non-Integrated hybrid robot designs: (a) ATHLETE [47], (b) HyLos [18],
(c) Sample Return Robot [21], (d) Quattroped [7], (e) Chariot [10], and (f) Mantis
[6].

1.3.1 Non-Integrated Designs

The Jet Propulsion Laboratory (JPL) and NASA have been at the forefront of the
field, given the interest in hybrid robotics’ promising potential in space applica-
tions. Both JPL and NASA have developed many leading designs, especially in
non-integrated designs. The NASA ATHLETE robot for planetary exploration is
an example of an approach that uses wheels attached to the bottom of several leg-
like appendages [47]. When necessary, each wheel can be locked and treated as a
foot while the limbs are used to walk out of extreme terrain. JPL’s Sample Re-
turn Robot achieves robust performance on rough terrain by manipulating its chassis
joints to shift itself and accommodate for obstacles [21]. HyLos, a smaller-scale,
well-popularized variant built by the Laboratoire de Robotique de Paris (LRP), is
similar to the ATHLETE, except that it extends the functionality of the leg mode
even further by giving the hybrid limbs 16 degrees of freedom [18].

Different non-integrated designs avoid using wheeled appendages, because of the
complex dynamics and often convoluted designs that they entail. Robots like the
Chariot robot made at Tohoku University take a more straightforward approach, and
have legs and wheels that are completely mechanically separated from each other [10].

6

(a) (b) (c)

(d) (e) (f)

Figure 1.4: Integrated hybrid robot designs: (a) Whegs [35], (b) RHex [39], (c)
Wheel-Transformer [25], (d) Scout [13], (e) AZIMUT [30], and (f) IMPASS [26].

The legs lift and push the wheeled system, similar in nature to a scooter or skate-
board. The Mantis robot, a University of Genova design, employs related tactics with
separate, rotating hooks that can be used to drag the robot up and over obstructions
[6].

Other robots undergo extensive physical transformations when switching between
modes. Quattroped, developed by the National Taiwan University, is such a design
[7]. It stops, folds its wheels into semicircles, switches the rotation point to the outside
of the wheel, and begins to operate as a four-legged robot.

1.3.2 Integrated Designs

While not yet deployed in important space exploration missions like some of their
non-integrated wheel cousins produced by NASA, integrated-wheel designs are rising
in popularity. In general, the integrated-wheel robots are small and low-weight. The
Actuating Wheel Scout robot is a notable example of a diminutive, cheap, no frills
robot designed to be used as part of a distributed reconnaissance team in challenging
environments [13]. When faced with an obstacle that might be too tall to climb
over and too low to roll under, the Scout uses a single degree of freedom umbrella
mechanism wheel to either increase or decrease its wheel diameter accordingly.

7

The AZIMUT robot is also able to change the orientation of its wheels. Here
AZIMUT’s “wheels” are actually four, independent, elongated leg-track-wheel articu-
lations [30]. Depending on the scenario, AZIMUT can operate with its wheels pointed
up, down, or straight. This feature makes AZIMUT capable of remarkably versatile
motions and of negotiating difficult, three-dimensional obstacles like stairs.

Within the category of multi-wheeled and legged vehicles, RHex is a well-known
hexapodal robot developed at the University of Michigan and then the University
of Pennsylvania, as well as other robotics laboratories like Boston Dynamics [39]. A
variant on the RHex model was also studied in 2013 as part of a senior thesis at
Princeton [28]. The RHex design consists of six rotary, compliant, curved leg blades.
It is the unique nature of the wheel-like legs that enables RHex to achieve fast and
robust forward locomotion.

Related to RHex, the Whegs robot, first conceived at Case Western University, is
another prominent example of a successful integrated wheel-leg design. Biologically
inspired by insects, Whegs uses rigid, rimless “spoke wheels” for excellent speed and
mobility over varied terrain [35]. In many ways, RHex is the single-spoked version
of Whegs [26]. Furthermore, since its popularization, the Whegs robot has inspired
many spin-offs, including the IMPASS [20, 26] and Wheel-Transformer [25] designs.
IMPASS, the Intelligent Mobility Platform with Active Spoke System, uses a Whegs-
based model, however the legs are individually actuated to change the length of the
leg touching the ground — allowing the robot to generate a more stable gait.

Last but not least, as mentioned in the introduction, the Wheel-Transformer uses
a passive mechanism that allows the robot to morph between wheeled and “Whegged”
modes [25]. In its wheeled mode, the Wheel-Transformers curved, thick legs roughly
join end-to-end to make up the perimeter of a wheel. In leg mode, these legs are
unfurled into a star-like configuration. Interestingly, the robot does not cause the
transformation by choice. Rather, as it collides with a step or similar obstacle, friction
drives the legs out. This passive actuation allows the design to be implemented
on a small robot with limited power consumption. This design lies somewhere at
the intersection of integrated and non-integrated design, and serves as a primary
motivator for MARVIN’s own hybrid design.

1.4 MARVIN

A comprehensive evaluation of the existing hybrid designs led us to focus our efforts
on an attempt to come up with an approach that attempted to address a few aspects

8

that we perceived as systematic deficiencies in the field. We consider the speed and
energy advantages of wheels to be extremely valuable, especially in areas where the
majority of the terrain is flat. The main shortcoming in most integrated designs is
that pure, efficient rolling is compromised. At the same time, when driving, non-
integrated designs often have to waste effort locking or stabilizing the extra degrees
of freedom fully articulated legs introduce. For MARVIN, we wanted to accomplish
a design that preserved the integrity of the wheel mode. Additionally, we wanted to
preserve certain desirable characteristics from integrated designs, such as rapid or no
switches between modes, and design simplicity.

Consequently, MARVIN’s final design, pictured in Fig. 1.6, lies on the intersection
of integrated and non-integrated approaches. It leverages the geometry of the wheel
to either conceal or extend spoke legs with a simple internal rotation. As illustrated
in a simplified diagram in Fig. 1.5, MARVIN’s wheels are comprised of two coaxial
disks, one of radius r1 and the other of radius r2, connected by slotted legs. The
conception of this layout was inspired by camera apertures that change size when
turning the focusing dial. Here, when the disks move relative to each other, the slots
allow the legs to rotate in and out. Folded in, the legs become less of protrusion, and
more a part of the rolling wheel. At the right length, they are completely contained
inside the wheel. Extended, they form a spoke wheel similar to the Whegs design.

Similar to IMPASS, MARVIN can change its behavior at the spoke level. In
a feature unique to our design, MARVIN can control the relative extension of the

Figure 1.5: Internals of the leg extension mechanism. Spoke legs are retracted (l) or
extended (r) via a relative rotation of the coaxial disks.

9

legs by changing the phase difference between the rotating disks. At the complete
transformation level, the leg rotation angle, φ, is equal to φmin. This maximizes
the manifestation of leg-like characteristics. This is ideal for the roughest terrain.
However, not all terrain demands the use of legs to the same extent. Furthermore, as
we explore in Chapter 2, when spoke legs are more emphasized they incur increasingly
expensive costs. Therefore, complete freedom over φ allows MARVIN to react to the
terrain at an even higher level of specificity. A limited rotation can expose the legs
just enough to traverse moderately rough ground while sacrificing minimal energy
and stability.

Finally, MARVIN’s design meets our specifications for a rapid transfer time be-
tween modes. In fact, there is no dead-time, as MARVIN can deploy its legs as
it continues to move forward. This allows for fluid and frequent mode changes in
response to intermittent obstacles, such as curbs or bumps in an otherwise smooth
path. This is a significant improvement over designs like Quattroped that can take
several seconds to complete a transformation.

It should be noted that the emphasis of this thesis is on MARVIN’s theoretical
design and potential for improved navigation through intelligent mode selection. As
such, the physical implementation of MARVIN is a “Version 1.0” prototype, mainly
intended for testing and design validation. Details on the construction process are
given in Appendix B, while recommendations for implementation specific improve-
ments are discussed in Chapter 7.

The following sections of this report conduct a rigorous analysis of MARVIN’s
design. First, we probe latent performance characteristics influenced by MARVIN’s
unique geometry and explore the complex dynamics of the leg mode. Then, both high
and low level control laws for the leg-wheel mechanisms are developed and integrated
into MARVIN’s onboard software. This is followed by a discussion of MARVIN’s elec-
tronics subsystem, including sensors for monitoring the robots energy consumption
and dynamic stability during experimental tests. Findings from preliminary perfor-
mance tests are subsequently presented and processed into the cost functions MAR-
VIN uses for determining optimal, low cost, hybrid paths through varied terrain. In
general, the material is presented in a more pedantic manner so that a future student
or less experienced reader might be able to easily reproduce and continue research.
Appendices are included for supplementary, detailed, technical information.

10

Figure 1.6: Top view of MARVIN.

Figure 1.7: MARVIN side views.

11

Chapter 2

Mechanical Design Analysis

At its core, MARVIN’s leg mode is a variant of the Whegs robot. Hence, a significant
understanding of the methodology can be drawn from the prior research on Whegs
models, such as [35], [31], or [46]. However, there are several new design challenges
and considerations that are introduced due to the unique geometry of MARVIN’s
wheels and its active transition from wheels to legs.

In the following sections we examine the specifics of MARVIN’s mechanical design
in depth. In particular, we explore the effects of three primary, independent, free
variables that determine much of the robot’s performance:

1. The radius, r1, of the inner disk.

2. The radius, r2, of the outer disk.

3. The number of legs, N , used per wheel.

The selection of these dimensions has a widespread impact on important end
behavior, such as climbing ability, dynamics, and torque requirements.

2.1 Retractable Leg Length

In order for MARVIN to roll smoothly in wheel mode, the legs must be able to
retract far enough so that they fit perfectly within the outer perimeter of the wheel.
Consequently, this condition places a constraint on the length of each leg. This
dimension depends on a number of geometric interdependencies — primarily the
radii of the two internal coaxial disks and the total number of legs per wheel.

12

Figure 2.1: Determining the critical leg retraction angle.

The legs retract by pivoting inwards. However, since the legs occupy physical
space inside the wheel, the legs are restricted from rotating past a critical retraction
angle, φmax. As shown in Fig. 2.1, φmax for a leg is reached when it contacts the base
pivot of the adjacent leg. The leg pivots are evenly distributed around the inner disk,
thus as the number of legs increases, adjacent legs are positioned closer together. As
a result, φmax necessarily shrinks with increasing N.

Fig. 2.1 also depicts the pivot points of two adjacent legs, separated by an angle
θ = 2π/N . This angle is the vertex of an isosceles triangle, with base angle ρ. Using
this observation, φmax is calculated through basic trigonometry:

π = θ + 2ρ

ρ = 1
2
(
π − 2π

N

)
φmax = π

2 − ρ

φmax = π

N
(2.1.1)

In Eq. 2.1.1 we discount the effect of the thickness of the leg, assuming that it is
small compared to the radii of the disks. It is important to note, however, that the
true φmax will be smaller — especially for thicker legs. Knowing φmax then enables
us to determine the maximum allowable leg length by locating the intersection point
between a fully retracted leg and the outer disk radius. Fig. 2.2 shows that this
point (x, y) is r2 units from the disk origin, (0, r1). It follows that the length of leg
contained within the wheel is simply the distance between (x, y) and the coordinate
system origin, (0, 0).

13

Figure 2.2: Determining the maximum leg length, l.

(x, y) = (l cosφmax, l sinφmax) (2.1.2)

r2 =
√

(l cosφmax)2 + (l sinφmax − r1)2 (2.1.3)

r2
2 = l2(cos2 φmax + sin2 φmax)− 2r1l sinφmax + r2

1 (2.1.4)

Nondimensionalizing by introducing l′ = l/r2 and r′ = r1/r2 we have:

1 = l′2 − 2r′l′ sinφmax + r′2 (2.1.5)

The positive solution of this quadratic form gives l′ as a function of r′ and φmax:

l′ = r′ sinφmax +
√
r′2(sin2 φmax − 1) + 1

= r′ sinφmax +
√

1− (r′ cosφmax)2 (2.1.6)

Substituting Eq. 2.1.1 into Eq. 2.1.6 gives l′ as a function of N and r′. This
relationship is plotted in Fig. 2.3 for several values of r′. We see that smaller N and
r2 ≈ r1 results in longer legs. Additionally, it is important to examine not just the
absolute leg length, but also the extension past the outer radius, r2. By inspection,
this relative extension is maximized for φ = −π/2. For future use, we define this

14

maximum relative extension as le:

le ≡ l − (r2 − r1) (2.1.7)

As N increases, l approaches (r2 − r1) and the le goes to 0.

Figure 2.3: Nondimensional leg length l′ = l/r2 vs. number of legs.

2.2 Leg-Assisted Climbing

A significant advantage that spoke wheels have over conventional wheels is the ability
to surmount taller obstacles. Obstacle traversal is largely limited by the amount of
lifting force that the wheel or leg is able to generate on the vertical surface of the
object. Normal wheels generally fail to produce a sufficient force when the obstacle
height approaches the radius of the wheel. MARVIN’s spoke design, however, gives a
literal leg up to the robot, and allows it to generate force on higher points of contact
not accessible to a solid wheel. This feature greatly improves climbing performance.

Fig. 2.4 illustrates quasi-static force balance conditions for a standard wheel of
radius r approaching a step. Here, F1 is the forward drive force applied to the robot
body (possibly from multiple wheels), N1 is the robot body weight, N2 is the normal
force from the step, F2 is the frictional force applied to the step by the wheel motor
torque τ , and µ is the coefficient of friction between the wheel and step surfaces.

15

Figure 2.4: Forces on a regular wheel when climbing over a bump.

Previous work by [45] and [44] present a critical value for θ above which climbing
is unlikely to be successful. This equation is arrived at through simple force balance
in x and y:

θmax = cot−1
(
N1 − µF1

µN1 + F1

)
(2.2.1)

The critical angle, θmax, can be solved for given µ and the weight N1. For 0 < θmax <

π/2, the corresponding step height h is then r cos θmax. For θmax ≥ π/2 where h ≥ r,
the wheel relies entirely on frictional force to climb vertically up the step surface.
For that to be achieved, we must have F1 ≥ N1/µ and τ ≥ N1r. However, for heavy
robots or surfaces with poor to mediocre traction, these demands on F1 or τ can often
be unattainable.

Figure 2.5: Forces on a wheel with spoke legs when climbing over a bump.

The capability to switch to a legged mode lends several benefits to step climbing.
First, the effective radius of the wheel system increases from r2 to r2 + le. We can

16

write the new effective radius in non-dimensional terms by scaling by 1/r2 as before:

re = r2 + le = l + r1

r′e = l′ + r′ (2.2.2)

Second, the geometry of the legs allows MARVIN to reach up at higher angles,
as shown in Fig. 2.5. Here we measure α, the angle between the vertical and the
supporting leg, and β, the angle between the stepping leg and the horizontal. We
define the supporting leg as the leg in contact with the ground and the stepping leg
as the leg closest to the step.

In an analysis of Whegs, Tantichattanont et al. [45] give an equation for βmax.
Again, using static force balance in x and y, they get:

βmax = cot−1
(
N1 − µF1

µN1 + F1

)
(2.2.3)

This is in the same form as Eq. 2.2.1, but the equivalent θ is shifted: equal to β+π/2.
Thus the climbing ability of a spoke-legged wheel is automatically higher than its
wheel radius [35]. The maximum step height H’ (non-dimensionalized as H/r2) for
MARVIN’s leg mode is given by:

H ′ = r′e(sin β + cosα) (2.2.4)

As evident from Eq. 2.2.4, H ′ depends on the approach conditions α and β. Under
the assumption that force requirements are met for all combinations of α and β,
a spoke wheel will have optimal approach angles that maximize the step height.
Examples of optimal and non-optimal wheel orientations for a three-spoke wheel are
shown in Fig. 2.6.

Optimal configurations and the resulting climbing ability H ′ were calculated nu-
merically for Eq. 2.2.4 for varying numbers of legs. Fig. 2.7(a) shows the isolated
effects of improved geometry, where r′e in Eq. 2.2.4 is replaced with a unit length.
Fig. 2.7(b) combines the effect of increased r′e, for a fixed r′ of 0.6. We see that H ′

is higher for fewer legs, and as the number of legs grows, H ′ goes to 1 — which is
consistent with a solid wheel. Again, it should be noted that Figs. 2.7(a)-(b) present
theoretical limits to step heights that MARVIN can physically touch. While the trend
will remain, the realizable steps heights are likely lower, and depend on the motor.

17

Figure 2.6: An example of a non-optimal (l) vs optimal (r) approach to a step.

(a) (b)

Figure 2.7: Step height ratio H’ vs. number of spoke legs. Graph (a) holds re = 1,
while (b) combines both the effects of geometry and increased re.

2.3 Leg Mode Dynamics

2.3.1 “Walking”

As the spoke legs are deployed and MARVIN switches modes to a form of “walking”,
the dynamics change dramatically. When using wheels, the trajectory of the center
of mass (COM) is smooth and stable, and the only torque requirements are due
to overcoming friction in internal components. In leg mode, however, as shown in
Fig. 2.8, the robot pivots from leg to leg — changing both the COM path and motor
requirements.

These dynamics are closely related to those of rimless wheels and passive walkers1

[29, 8]. Here we apply a similar, simple analysis to MARVIN’s specific situation.
1Engineering Dynamics by Professor N. J. Kasdin [23] was particularly helpful for the derivation

of this model. This solution is based on his example on the dynamics of passive walkers (Ex. 4.1).

18

Figure 2.8: Wheel trajectory during leg mode.

Suppose that MARVIN’s leg mode wheel system is modeled as single point mass
with N massless legs of length l = re extending radially outward. We can then show
(see Eq. 2.3.5) that the intra-stride kinematics become that of an inverted pendulum.
At the end of each pivot, the leg makes contact with the ground, which exerts a
linear impulse that pushes the system into the next stride. Throughout its motion,
the point mass is acted on by gravity, reaction forces with the ground, and a variable
applied motor torque, τ .

2.3.2 Forces and Reference Frames

Figure 2.9: Reference frames and free body diagram for the leg mode.

Fig. 2.9 illustrates the free body diagram and set of coordinate systems that
describe the wheel-leg system. I = (O, ex, ey, ez) is the inertial reference frame,
while B = (O1, er1 , eθ1 , ez) and C = (O2, er2 , eθ2 , ez) are polar frames fixed to the two
legs that come in contact with the ground. As shown in Fig. 2.9, B is related to I
through a rotation θ. The reference frame transformation is shown in Table 2.1.

19

ex ey
er1 − sin θ cos θ
eθ1 − cos θ − sin θ

Table 2.1: Transformation from inertial frame I to polar frame B.

Similarly, C is rotated from B by a fixed angle of −2π/N given by the geometry
of the legs. Thus, this reference frame transformation is given by Table 2.2.

er1 eθ1

er2 cos (2π/N) − sin (2π/N)
eθ2 sin (2π/N) cos (2π/N)

Table 2.2: Transformation from polar frame B to polar frame C.

2.3.3 Single Stride Dynamics

For conventional sign convenience, we now assume that the spoke wheel is rotating
positively, traveling in the −ex direction. During a pivot from O1 to O2, the system
behaves like an inverted pendulum about O1, with −π/N < θ < π/N . This motion
is illustrated in Fig. 2.10. From t0 → t1 the kinematics of p are:

rp/O1 = ler1 (2.3.1)

Ivp/O1 = lθ̇eθ1 (2.3.2)

Iap/O1 = lθ̈eθ1 − lθ̇2er1 (2.3.3)

Figure 2.10: Inverted pendulum dynamics about O1.

20

The angular momentum of p about O is written as:

Ihp/O1 = rp/O1 ×mIpvp/O1 = mpl
2θ̇ez (2.3.4)

Using Newton’s second law for angular momentum and the moments from the FBD,
we can calculate the dynamics:

d

dt

[I
hp/O1

]
= Mp/O1

mpl
2θ̈ez = (rp/O1 ×−mpgey) + τez

mpl
2θ̈ez = ler1 ×−mpg(cos θer1 − sin θeθ1) + τez

mpl
2θ̈ez = (mplg sin θ + τ)ez

θ̈ = g

l
sin θ + τ

mpl2
(2.3.5)

From Eq. 2.3.5 we find that to maintain a constant angular speed, where θ̈ = 0, the
motor supplied torque must equal −mplg sin θ (−π/N < θ < π/N).

2.3.4 Pivot Leg Transition

During the stride phase, the COM traces out a circular arc around O1 with a central
angle of 2π/N . After pivoting 2π/N radians, the next leg comes into contact with the
ground and the current stride phase is over. At this moment the ground delivers an
impulse, Jp, that drives the system into the next stride phase centered around a new
pivot point, O2. The displacement of O2 relative to O1 is determined by the stride
length, which is equal to 2l sin(π/N).

To calculate this impulse we examine the change in velocity of p. During the
preceding stride phase from time t0 → t1, Eq. 2.3.2 shows that p’s velocity is entirely
in eθ1 . This is expected, given p’s circular motion about O1. After time t1, p’s velocity
changes to be entirely in the eθ2 direction; it is tangential to the circular pivot about
O2. Using the definition for a change in linear momentum, we have:

Jp = mIpvp/O2(t1)−mIpvp/O2(t0) (2.3.6)

Here Ivp/O2(t0) is equal to Ivp/O1(t0) as the relative velocity of O1 and O2 is 0 when

21

both legs are touching the ground — which is when the transition occurs.

Ivp/O2 = IvO1/O2 + Ivp/O1 = Ivp/O1 (2.3.7)

Substituting Eq. 2.3.2 for v, we can solve for Jp:

Jp = mplθ̇2(t1)eθ2 −mplθ̇1(t0)eθ1

= mplθ̇2(t1)eθ2 −mplθ̇1(t0)[− sin(2π/N)er2 + cos(2π/N)eθ2]

= mpl[θ̇2(t1)− θ̇1(t0) cos(2π/N)]eθ2 +mplθ̇1(t0) sin(2π/N)er2 (2.3.8)

If we assume that the legs are rigid and that there is conservation of momentum
in eθ2 , then θ̇2(t1) = θ̇1(t0) cos(2π/N). The impulse Jp is only in er2 with magnitude:

||Jp|| = mplθ̇1(t0) sin(2π/N) (2.3.9)

As 2π/N → 0 for increasing numbers of legs, the linear impulse applied by the ground
shrinks and the transfer of angular velocity becomes more complete. In the limit as
N → ∞, the leg mode becomes a standard wheel and rolls smoothly with O2 = O1

and θ̇2(t1) = θ̇1(t0). Using fewer legs, however, results in greater impulse forces from
each impact with the ground. The induced dynamic loads and stresses from these
impulses may be problematic for weaker materials and overall hardware health.

2.3.5 Trajectory

Fig. 2.11 plots simulated trajectories of the COM of several different leg-wheel models
with different numbers of legs. Each model is given a uniform unit length for re to
isolate the effects of N. While it was shown that fewer legs give a large theoretical
advantage in tasks such as obstacle climbing, we see now that having too few legs not
only increases the impulses, but also results in inefficient trajectories. The inefficiency
arises from the presumed practical inability to recover all the potential energy of a
raised center of mass in another form of energy as the center of mass is lowered.

The COM of leg-wheels oscillates up and down significantly. As the number of
legs increases, this vertical bouncing movement becomes less and less pronounced.
The stride length of each step decreases, and the steps pick up in cadence. In the
limit that the legs are dense enough to become a regular wheel, the trajectory of the
COM is flat, and the number of steps per distance traveled is infinite.

22

Figure 2.11: Trajectory of the wheel center of mass during leg mode operation.

2.4 Torque Requirements

In the derivation of the leg mode dynamics, we assumed that the extended legs formed
a rigid body. This assumption would be valid if MARVIN’s leg configuration were solid
like the Whegs design, and the structure was fixed. However, in reality, the motors
controlling the relative orientation of the inner and outer disks must supply internal
torques to prevent the legs from collapsing. To get an estimate of the additional
required torque, we treat the problem quasi-statically and balance moments about
the inner and outer motor axels as the legs pivot.

Fig. 2.12 depicts the relevant coordinate systems and forces acting on the system
for an arbitrary state during the pivot progression. We focus on the relative movement

Figure 2.12: Quasi-static moment analysis on the inner axel.

23

of the two internal disks, and treat the outer disk as stationary with respect to the
inner disk. Thus, the pin that rides in the leg slot is modeled as a roller support acting
at point a. Additionally, we consider only the configuration where the leg is fully
extended. The torque requirements do differ during the transformation period, or if
the leg is intentionally only partially extended. This is a topic for further investigation,
beyond the scope of this thesis. Here we present the results of the torque calculations
for the inner and outer motors both quantitatively and qualitatively. The tedious
specific steps of moment balance are included in slightly less detail.

2.4.1 Inner Motor

When a leg is in contact with the ground, it has to support one quarter of MAR-
VIN’s weight. This normal force, N , can be decomposed into components parallel
and orthogonal to the leg coordinate system, A. The orthogonal component is then
leveraged about a, transmitting a reversed force magnified by lab/lO1a

at O1. The
force at O1 then creates a moment about O:

MO1/O = − le
r2 − r1

Nr1 cos θez (2.4.1)

The corresponding counter-torque, once again scaled by r2, required from the inner
motor, can be rewritten as:

τ ′inner =
(

l′

1− r′ − 1
)
mrobotg

4 r′ cos θ (2.4.2)

By inspection, |τ ′inner| is maximized at the start and end at each pivot, where
θ = −π/2 + π/N or −π/2− π/N . Fig. 2.13(a) plots the maximum |τ ′inner| vs r’ for a
system of three legs with unit mass. We see from the graph, as well Eq. 2.4.4, that
as r′ → 1 the torque requirement blows up.

2.4.2 Outer Motor

The outer motor has to supply the necessary support force acting at point a in eθ,
in addition to propulsive torque specified by Eq. 2.3.5 (and adapted to the current

24

definition of θ). The total torque is:

τouter = mrobotg

4

[(
le

r2 − r1
− 1

)
r1 cos θ + (r1 + l) cos θ

]
(2.4.3)

Dividing by r2 and simplifying this becomes:

τ ′outer = mrobotg

4

(
r′ + l′ + r′l′

1− r′
)

cos θ

= mrobotg

4

(
r′ + l′

1− r′
)

cos θ (2.4.4)

Like |τ ′inner|, |τ ′outer| is largest at the beginning and end of each pivot. Fig. 2.13(b)
plots the magnitude of Eq. 2.4.4 vs. r′ for three legs and unit robot mass, and exhibits
similar singular torque requirements at r′ = 1.

(a) (b)

Figure 2.13: Maximal torque requirements on the inner motor (a) and outer motor
(b) as a function of r′.

2.5 MARVIN Parameters

From the preceding analysis, it is clear that when choosing design parameters, there
is distinct tradeoff between increased benefits from having more pronounced leg ca-
pabilities and the detrimental side effects that has on system stability and motor
demands. Taking Figs. 2.3, 2.7, 2.11, and 2.13 into consideration, we identified a
three-leg layout and r′ = 0.7 as a desirable configuration for MARVIN.

25

In particular, MARVIN has radii of r1 = 3 in and r2 = 4.25 in, and its weight is
11.6 lbs. These values contribute to a slightly more aggressive design, and using four
legs was a close runner-up decision. However, there is still an acceptable balance be-
tween longer leg lengths and improved climbing ability, while avoiding unrealistically
large torque demands.

26

Chapter 3

Control System

MARVIN employs a mixture of automatic controls and user-inputs. Communication
with the operator is established over a wireless connection with an Xbox controller.
The user can specify the forward speed and turning rates, and choose between legs
or wheels for the locomotion mode. At the same time, feedback laws in MARVIN’s
software track the given reference speeds and maintain the proper extensions of the
legs according to the desired mode.

In order for MARVIN to achieve the desired speed and mode, the internal com-
ponents of each wheel must be carefully and continuously controlled. The motors
actuating the outer and inner disks must not only rotate at the correct speeds, but
also maintain the proper phase difference for the current driving condition. In our
design we chose to use classical proportional-integral-derivative (PID) controls to set
motor speed and position. PID controllers are quite common in industry, and are
useful for solving many control problems, from simple to complex [2].

The following sections cover derivations of the DC motor transfer functions, setup
of feedback loops, and parameter tunings1. First the system is developed as a con-
tinuous model, and then it is discretized and implemented digitally on an Arduino
microprocessor.

Due to the time constraints of the seven-month project, MARVIN currently only
employs controls at a per-wheel level. Each wheel can be independently controlled,
but inter-wheel phase differences are not calculated. As addressed in Section 7, we
anticipate that the overall driving performance and stability in leg mode would be
significantly enhanced by implementing system-wide gait control.

1Much of the following controls methodology was guided by homeworks, laboratory materials,
and course notes [37] from Professor Clarence Rowley’s MAE 433B Automatic Controls class.

27

3.1 DC Motor Model

3.1.1 Equation of Motion

To develop feedback laws, we first establish a dynamical model for the DC motors
controlling the wheels. A simple equation of motion for a DC model can be written
as [12, 37]:

ω̇m + c1ωm = c2va (3.1.1)

Here, ω is the angular velocity of the motor shaft, va is the applied voltage, and c1

and c2 represent combinations of parameters specific to the motor-load subsystem
such as the moment of inertia, efficiency, and coil resistance.

Certain adaptations of Eq. 3.1.1 are required for MARVIN. First, the motors used
are housed in a gearbox with a gearing ratio of 156.8:1. Employing a change of
variables from ωm to ωf = grω, we see this simply has a scaling effect by a factor of
the inverse gear ratio (gr) on the constants in the equation of motion:

ω̇f + 1
gr
c1ωf = 1

gr
c2va(t) (3.1.2)

Second, the motors used for MARVIN operate on a pulse width modification
(PWM) signal instead of an analog voltage. A PWM signal regulates the speed of a
motor by rapidly switching a full power supply, vsource, on and off. This eliminates the
need for a DAC from the computer to the motor, and also minimizes power dissipation
[24]. Varying the frequency, or duty cycle (D), of the PWM signal proportionally
affects the average voltage applied (v′a) to the motor. This is related by the rule of
thumb [49]:

v′a ∝ Dvsource (3.1.3)

In digital software implementation, the PWM signal D is constrained and linearly
mapped to a signed int8 number space, −255→ 255. Thus, without worrying about
the meaning of specific constants, we simply absorb all these factors to rewrite the
equation of motion in terms of final gearbox speed, applied PWM duty cycle, and
new parameters c1 and c2:

ω̇f + c1ωf = c2D(t) (3.1.4)

28

To solve for ωf (t), we rescale the differential equation to be in dimensionless time
units of T = t

τ
, where τ is selected to be 1/c1 and c = c2/c1.

ω̇f + ωf = cD(T) (3.1.5)

For a constant D(T) such that cD(T) = K and ω(0) = 0, we find:

ωf (t) = K(1− e− t
τ) (3.1.6)

Appendix A explains how we determined the motor constants K and τ from
experimental data. We estimated the parameters for the outer disk/motor system to
be τ = K = 0.07, and similarly τ = K = 0.09 for the inner disk/motor.

3.1.2 Transfer Function

To find the plant transfer function, we return to the original, unscaled ODE in
Eq. 3.1.4 and substitute τ and K divided by the PWM signal value used in the
experiment, K ′ = K/De.

ω̇f + 1
τ
ωf = K ′D(t) (3.1.7)

Taking the Laplace transform gives us the transfer function, as supported by [?]:

H(s) = W (s)
U(s) = C

τs+ 1 (3.1.8)

Here we have substituted C = K ′τ .

3.2 Controller Design

3.2.1 Network Level Control

To operate the wheel-leg system as a whole, the motors controlling the two indepen-
dent, internal disks must know how to cooperate. In order to monitor both angular
speed and relative position, we chose to split each wheel into a master and slave
follower subsystem, as illustrated in Fig. 3.1.

The outer motor is given reference commands for ω and determines the overall
speed of the system. Meanwhile, the inner motor’s input is latched onto the angular

29

Figure 3.1: High level representation of the Master-Slave control network.

position reading, θ, of the outer motor. When the system operates in wheel mode the
inner motor tracks the outer motor’s position, and the resulting zero phase difference
holds the legs in. Switching to leg mode simply involves the addition of a constant
angular offset φ to the phase difference, and the inner motor adjusts to extend the legs.
Finally, differential drive steering is accomplished by sending different ω references to
the right and left wheels, depending on the desired turning direction and radius.

3.2.2 Motor Level Control

Figure 3.2: Feedback Loop

Fig. 3.2 depicts a standard controller-plant feedback system. P (s) represents the
plant transfer function of the DC motor (Eq. 3.1.8), while C(s) represents the loop
controller. Here we are interested in developing C(s) such that we are able to robustly
and quickly influence the motor output y, and achieve good tracking of the reference
speed or angle, r.

For MARVIN’s purposes, good performance is characterized by a fast and stable

30

response from r → y, in addition to reliable disturbance rejection. The tracking
input for the motors is low-frequency, however periodic disturbances (d) will enter
the system through various sources. Primarily, the motor will have to react to an
increased demand for torque every time one of the legs hits the ground. When in
leg mode, the motors are not anticipated to be driven higher than 70 rpm. At that
speed, with three legs per wheel, ground collisions will occur at a frequency of 3.5
Hz. Additionally, aspects like non-uniform internal friction, changes in terrain, and
changes in components will all contribute to time-varying demands on the motor.

However, while the feedback system must have good tracking and disturbance
rejection, it also must be careful not to magnify noise. The output of the plant (y) is
measured with real sensors. Thus, it is possible that some high frequency, random,
low-amplitude sensor noise (n) can be introduced into the loop. Finally, the system
must be stable, with acceptable gain and phase margins. Various sources [2, 37] view
reasonable stability requirements as having a phase margin ≥ 30 − 60◦ and a gain
margin 2− 5, or higher. These features motivate the following specifications for the
feedback loop:

1. There must be good reference tracking at low frequencies, with a bandwidth at
least on the order of, or greater, than 3.5 Hz.

2. The controller must be a low-pass filter, with good noise attenuation at high
frequencies.

3. There must be zero steady-state error for both reference tracking of ω in the
master controller and θ in the slave controller.

4. The loop must have good stability margins, with a phase margin of at least 60◦

and a gain margin greater than 2.

To meet our performance requirements we look at both the sensitivity function for
reference tracking (t.f. from r → e) and the complementary sensitivity function for
noise magnification (t.f. from n → y). These are written in terms of the loop gain,
L = PC, as:

Sensitivity Function = 1
1 + L

(3.2.1)

Complementary Sensitivity Function = L

1 + L
(3.2.2)

31

For satisfactory reference tracking error, the sensitivity function should be small
for the appropriate frequency range. This means that the larger L is for frequencies
below 3.5 Hz, the better the performance. Meanwhile, for noise attenuation at high
frequencies, the complementary sensitivity function should be small. Thus, while L
should be large at low frequencies, it must start to roll off sharply for frequencies
above the bandwidth.

Outer Motor Controller

As the master component controlling the overall speed, the outer motor needs to track
a constant angular speed reference, ω. For this situation we chose to use PI control:

C(s) = kp + kp
s

(3.2.3)

This type of control is guaranteed to produce zero steady-state error for a constant
input by the Final Value Theorem [37]. For a system y(t) with only left-half plane
poles, the Final Value Theorem states:

lim
t→∞

y(t) = lim
s→0

sY (s) (3.2.4)

Applying the theorem to the sensitivity function, we see that the error, e(t), goes
to 0 for a step input ωr:

E(s) = 1
1 + P (s)C(s)U(s) (3.2.5)

lim
t→∞

e(t) = lim
s→0

(s)
(

1
1 + kps+ki

s
C

τs+1

)(ωr
s

)
(3.2.6)

= lim
s→0

ωrs(τs+ 1)
τs2 + (Ckp + 1)s+ Cki

(3.2.7)

= 0 (3.2.8)

After loop-shaping, we determined a set of satisfactory gain parameters to be
kp = 20 and ki = 300. This selection of kp and ki places a closed-loop pole near
the moderately slow plant zero of 1/τ , which improves the bandwidth of the system.
Fig. 3.3(a) shows the Bode plot of the open-loop transfer function L. We see that it
has good stability margins with an infinite gain margin and φm = 89.7◦. Additionally,

32

it has a bandwidth of approximately 21 rad/s. At high frequencies, the magnitude of
L rolls off.

Fig. 3.3(b) shows a simulated step response. From this graph we see that the
system has a quick rise time, no overshoot, and a settling time less than 0.25 seconds.

(a) (b)

Figure 3.3: Bode plot (a) and a step response (b) for the PI ω controller.

Inner Motor Controller

As the slave, the inner motor follows the position of the outer motor. Since the
input is now in terms of θ rather than ω, the motor plant transfer function must be
integrated:

P (s) = C

s(τs+ 1) (3.2.9)

For a constant outer motor speed, the reference input to the inner motor will be a
ramp function of the form r(t) = ωt. Here, we chose to use full PID control, with the
modification that we used low-pass filtered derivative control to avoid instabilities at
high noise frequencies:

C(s) = kp + ki
s

+ kds

s/50 + 1 (3.2.10)

Once again, we use the Final Value Theorem to show that this controller achieves
zero steady-state error for a ramp input with slope ωr:

33

E(s) = 1
1 + P (s)C(s)U(s) (3.2.11)

lim
t→∞

e(t) = lim
s→0

(s)
(

1
1 + kp(s2/50+s)+ki(s/50+1)+kds2

s2/50+s
C

τs2+s

)(
ωr
s2

)
(3.2.12)

= lim
s→0

ωrs(s/50 + 1)(τs+ 1)
τs4

50 + 50τ+1
50 s3 + (Ckd + Ckp

50 + 1)s2 + (Ckp + Cki
50)s+ Cki

(3.2.13)

= 0 (3.2.14)

We designed our gains to be kp = 225, ki = 400, and kd = 15. As for the outer
motor controller, this set of parameters helpfully places a closed-loop pole near the
slow motor plant zero. Figs. 3.4 (a) and (b) show the open-loop bode plot and closed-
loop ramp response, respectively, for the system. The phase margin is stable at 74.7◦,
and the gain margin is infinite. Finally, the open-loop gain rolls off as desired for
high frequencies. In (b) we see that the simulated system has a swift rise time, and
attains close tracking in about a second.

(a) (b)

Figure 3.4: Bode plot (a) and a linear input response (b) for the PID θ controller.

3.3 Real Systems Implementation

The preceding control laws were developed for continuous, linear systems. When tran-
sitioning from simulation to implementation on MARVIN’s real components, other
side effects are introduced that must be taken into consideration.

34

3.3.1 Motor Saturation and Integrator Anti-Windup

Figure 3.5: Feedback Loop

Both the inner and outer motor controllers assume that the plant can take an
unbounded control input u. In reality, the PWM signal that is generated in the real
system saturates. The viable operating range driven by the signal is between −Vs
and +Vs. When the control demand exceeds these limits, the feedback loop is broken,
and the error will begin to integrate to unbounded values. When the system recovers,
the accumulated error during the saturation period will cause a large overshoot. This
undesirable behavior is called windup [2].

For MARVIN, integrator windup is an issue — as it is not particularly unusual for
one wheel to stall until another wheel finds traction when attempting to traverse a tall
obstacle. In order to alleviate windup effects, we use back-calculation and tracking
to reset the integrator when the control output saturates, as shown in Fig. 3.5. The
input command u is subtracted from the output, v, of the controller and fed back with
a gain, T , to curb the integrating error. Since the actual PWM saturation limits of
our controller are determined in the software, this is a straightforward adjustment to
make. We chose T to be 1/kp, as suggested by [27]. If the controller is not saturated
this has no effect on the loop. Of the many existing anti-windup techniques, this
approach has been proven to be widely effective and does not exhibit detrimental
artifacts, such as output chatter [33, 3, 27].

35

Figure 3.6: Digital feedback loop [16].

3.3.2 Digital Control

In order to implement MARVIN’s controls on an Arduino, we converted the laws to
operate on discrete signals, rather than continuous inputs. The structure of a digital
control loop is shown in Fig. 3.6. The fundamental difference is that the computer
uses a clock to sample the sensors and update the control effort at regular intervals.
During the delay between loops the output is simply held constant — a behavior
termed zero order hold.

Furthermore, the digital system has to approximate the transfer function for the
controller with a set of difference equations [16]. We experimented with using Mat-
lab’s c2d and ss functions as well as Euler approximations to make this conversion.
Matlab’s discrete-time state-space form gives the following update relationship be-
tween our digital error input e(kt) and control output u(kt):

xn+1 = Adxn +Bden (3.3.1)

un = Cxn +Den (3.3.2)

Alternatively, Euler’s method [16, 2], estimates a continuous function ẋ(t) as:

ẋ(tk) ≈
x(k + 1)− x(k)

T
(3.3.3)

Where T is the sampling interval, tk = kT , and k is an integer. By applying reverse
Laplace transforms to the transfer functions, and then estimating the resulting dif-
ferential equation with Euler’s method, you can obtain a set of difference equations.
While a rather primitive approach to discretization, it gave good empirical results.

36

The delay in a digital controller can have adverse effects if it is too large relative to
the time scale of the system it is trying to control. The Arduino running MARVIN’s
software samples at 200 Hz, updating the states every 5 milliseconds. This is an order
of magnitude faster than our system dynamics. Matlab simulations of step and ramp
responses for discrete-time conversions of our controllers reveal little to no change
in performance. As shown in Fig. 3.7, acceptable results were obtained for the real
controllers. The system is slightly slow, but it is clear that the two signals move from
being synchronized, to out of phase, and then back to synchrony.

Figure 3.7: Experimental data of motor phase during a mode switch. From t = 4→ 6s
the system is in wheel mode, from t = 6→ 10s it is using legs, and then it returns to
wheel mode for t > 10s.

37

Chapter 4

Electronics

4.1 Wireless Communication

MARVIN’s human-in-the-loop control system is accomplished through an off-the-
shelf Xbox 360 wireless gaming controller and an Xbox 360 wireless gaming receiver
for Windows1. The receiver is connected to the Arduino Mega by USB connection
through the USB Host Shield and mounted on to the chassis of the robot. The con-
troller communicates to the receiver at 2.4GHz through radio transmitters. The con-
troller has a range of up to 30 feet. Upon applying power, the wireless controller must
be synched with the receiver. For first time connections, the manual synchronization
process can be applied, however for recurring connections, the receiver remembers
the controller and the two devices synch automatically.

The Arduino Mega translates commands sent to it by the wireless controller by
using an open-source package for USB Host Shield connections. In our case, we
made use of the XBOXRECV and USB libraries for establishing a connection and
interpretting commands.

4.2 Power Analysis

4.2.1 Loads

1. Motors: MARVIN uses 2-wire 393 Motor from Vex Robotics2. These motors were
1http://support.xbox.com/en-US/xbox-on-other-devices/windows/xbox-360-wireless-gaming-

receiver-windows
2http://www.vexrobotics.com/276-2177.html

38

rated at a .37A free-current current draw and a 4.8A current draw at stall current,
at 7.2V. In practice, however, we noticed that the current draw from the motors
never exceeded 4A despite being applied at a sufficiently high torque, possibly due
to the batteries being charged beyond their 7.2V rating. Motors were powered
by applying nominal power to the Motor Controller 293, which has a max current
draw of 4A at 7.2V. Thus the maximum power draw from each motor is 28.8 W,
which extends to a maximum power draw from the entire motor system to be 230.4
W.

2. Arduino: Throughout testing, the Arduino Mega was powered through two sepa-
rate sources: remote laptop computer through USB connection and external power
supply through Vin pin. The microcontroller has a nominal input power supply
of 7-12 V but operates at a voltage of 5V through an on-board voltage regulator4.
The DC current draw of the Arduino depends on the number of I/O pins in use,
with each pin supplying a maximum of 40 mA. However, the maximum current
that the device can put out is 500mA. Calculating based on maximum current
output assumption, the Arduino draws 2.5W during normal operation.

3. Encoders: Initially, our motor encoders were supplied power by the 5V line from
the Arduino, however we quickly realized that they were drawing too much current
for the microcontroller to handle. We instead set up an independent 5V rail
through the output of an LM7805c Voltage Regulator, powered by an independent
9.6V, 2000mAh battery. While testing, this battery only powered the encoders,
which were drawing 300mA at 5V, or 1.5W. However, at times when data was
not being collected, we also powered the Arduino through the 9.6V line.

4.2.2 Batteries

External power was chosen based off of the power requirements of the major sub-
systems on board the robot. As mentioned above, the three main systems that
needed power management were the motor system, the Arduino, and the encoders.
Because the Arduino is known to “brown out” at low input voltage levels, we made
the decision to separate the power sources for the three sub-systems so that high loads
for the motors would not cause erratic behavior for the robot. Both sets of batteries
were charged using a standard Vex Smart Charger with a Tamiya Connector5.

3http://www.vexrobotics.com/276-2193.html
4http://arduino.cc/en/Main/arduinoBoardMega2560
5http://www.vexrobotics.com/smart-charger-v2.html

39

The batteries selected for our Vex motors were Vex 7.2V NiMH 3000 mAh Robot
Battery6. These batteries were chosen due to their known compatibility with our
Vex motors as well as their high capacity and relatively flat discharge curve. Load
discharge curves tests shown in Fig. 4.1 were conducted by Vex Robotics, and show
the rate of voltage decay at loads of 12A, 8A, and 4A. Based on these graphs, we
chose to split the power supply for the eight motors into two independent batteries
(with four motors per battery). This allowed for a more tractable operating time for
our maximum power ratings.

Empirical tests showed that the current draw from an individual motor did not
exceed 4A, thus at continuous full power, each battery would output 16A of current,
resulting in a maximum lifetime of around 10 minutes. However the average current
draw per motor for wheeled mode is approximately 1.05A, or 4.2A of required power
output per battery. The maximum lifetime in continuous wheeled mode operation
is thus 43 minutes. The battery life of the robot that intelligently switches between
both modes would will fall somewhere between these two bounds.

Figure 4.1: VEX Robotics battery load curves

As already mentioned, the Arduino requires much less power to operate, however
we did not wish to contaminate its power source with the large power draw of the
motor system. In order to ensure a long running time for the Arduino, we supplied
it with a 9.6V 2000mAh NiMH Battery. The Arduino draws a maximum and fairly
constant power draw of approximately 2.5W. Since we transitioned to also powering
the encoders from this battery, an extra 1.5W was being drawn. At a maximum

6http://www.vexrobotics.com/wiki/7.2v NiMH 3000mAh Robot Battery

40

capacity of 19.2 Wh, this battery can power the Arduino Mega and encoders for a
minimum of 4.8 hours of continuous operation.

4.3 Motors

Motors were sized based on estimated torque requirements as well as other factors
such as weight, price, and power consumption. Table 4.1 shows a comparison of the
different motors we considered. Ultimately, we chose the Vex 2-wire 393 Motor due
to its low price, power draw, and weight combination while maintaining a sufficient
torque rating.

Motor Weight
(kg)

Torque
(oz-in)

Free Speed
(rpm)

Cost
($)

Power
(W)

Stall Curr.
(A)

AndyMark (0912) .227 61 16000 14 179 64
AnyMark (0915) .726 1209 198 69 45 22

BaneBots
(M7-RS775-18)

.337 166 17040 17.50 273 130

CIM Motor 1.27 343 5310 28 337 133
Maxon DC Motor Cust. Cust. Cust. 100-600 Cust. Cust.

Vex 2-wire 393 .087 215 100 15 4 4

Table 4.1: Comparison of several commercial DC motor models.

Due to time constraints, we made an initial estimate for the required torque for
each motor to be .61 N ·m, and chose motors based on this value. Upon more in-depth
analysis, we found the required torque for motors in our original design to be quite
higher, however by adapting the wheel design slightly, we were able to successfully
operate the robot with the acquired Vex motors. Future designs would perform better
by incorporating a motor with higher torque ratings.

The motor controller we chose for our motors was the Vex Motor Controller 29, the
standard motor controller for Vex motors. The motor controller requires a maximum
input voltage of 8.5V and an input PWM signal which it relays as an oscillating signal
from 0V to Input voltage to the motor. The PWM input takes a 1-2ms duty cycle
with 1.5ms being neutral or stand-still speed. Through empirical testing, we noticed
that there is a “dead zone” around 1.5ms for which the motor will not turn due to a
small effective voltage. This dead zone occurs around 1.5 ± .06 ms. The input PWM
signal is supplied by the Arduino Mega.

41

In order to provide accurate closed-loop control for our motors, we implemented
a feedback system for position and speed of our motors. This functionality was
accomplished with the Motor 393 Integrated Encoder Module7. This encoder module
was easily compatible with the Vex Motor 393, and acted as a simple attachment to
the back of the motor module. The encoder module had two power ports, powered
by a 5V input signal, and two digital communication ports using I2C. The encoders
were rated at measuring ∼ 630 ticks per revolution of the output shaft.

Communication to the Arduino was done through I2C protocol. The encoder
defaulted to an address of 0x60 and is terminated upon power-up. In order to connect
several devices to the same I2C port, we connected the encoders through a process
known as “daisy-chaining,” illustrated in Fig. 4.2. The encoder module itself allowed
for an input and output set of ports to simplify the daisy-chaining process. In order
for communication from the Arduino to make it past the first encoder module, each
encoder in the sequence needed to be unterminated through software, to allow for
the I2C clock and data lines to talk to devices down the chain. Finally, the last
encoder in the chain needed to be terminated. The daisy-chaining process allowed
for communicating with up to 8 devices and the order of the devices was represented
by the order they were “attached” in the Arduino code.

Figure 4.2: Daisy chained encoder modules on the I2C line (courtesy of VEX7).

4.4 Arduino Microprocessor

We used the Arduino Mega 2560 as the primary controller for MARVIN [9]. The
Mega contains an ATmega2560 processor with 54 digital I/O pins, 16 analog inputs,

7http://www.vexrobotics.com/wiki/index.php/Intergrated Motor Encoders

42

and a USB connection and runs at a clock speed of 16 MHz. We powered the Arduino
using an independent power supply (see Power-Batteries) as well as through a remote
laptop during testing for Serial data collection. All of the control theory done for
coordinating movement amongst the motors was programmed in Arduino language,
a C-based coding language, and in the Arduino software environment. A variety of
libraries were imported from open-source Arduino packages that can be seen in the
appendix code section. On top of this code, we developed our own C-library in order
to increase modularity in our design of the control system. The Host Shield was used
as an attachment to the Mega Board in order to communicate with the wireless Xbox
controller [10]. The Host Shield is based on the MAX3421E8 and communicated to
the mainframe board using the SPI bus. As the main controller for our entire system,
the Arduino dealt with a variety of signals in controlling the sub-systems onboard.

• PWM: 8 of the 54 digital I/O pins were used to send a PWM signal to all 8 of the
motor controllers used to control the speed of the motors.

• I2C: SDA and SCL ports were used to implement I2C protocol for communicating
with the chain of motor encoders on board the robot. Each device was assigned an
address by the Arduino and the data and clock lines could communicate to any of
the 8 devices assuming they were un-terminated through software.

• USB: The USB Host Shield was used to connect to the wireless gaming receiver to
communicate user-input controls.

• Analog: Several sensors on board the robot used analog signals to communicate
data about stability and current/voltage levels of the batteries. These signals were
read through analog I/O pins and converted to digital values by an internal ADC.

4.5 Sensors

To measure robot stability, we used an onboard SparkFun Triple Axis Accelerometer
[13]. The accelerometer measured the variance in the z-axis in both wheeled and
legged mode on different types of terrains. The accelerometer is powered by the 3.3V
line from the Arduino, but operates at an extremely low power (drawing only 350
uA). More information can be seen in Section 5.

8http://www.maximintegrated.com/en/products/interface/controllers-
expanders/MAX3421E.html

43

Our motivation for this study was rooted in the optimization of robotic perfor-
mance over various types of terrain. One of the factors of this optimization is power
consumption. As stated earlier, we assumed that wheels consume less power than
legs. In order to validate and test the extent of this assumption, we used an At-
toPilot Current/Voltage Sensor Breakout Board to test the current draw and voltage
decay of our batteries as the robot performed in wheeled and legged mode [14]. Due
to the high current draw from our motors, we chose a sensor rated up to 45A. Voltage
levels are determined by the voltage drop across a pair of parallel shunt resistors and
then converted to an analog 3.3V scale. Results of the tests using this sensor can be
seen in the Section 5.

44

Chapter 5

Experimental Procedure

5.1 Methods

The theoretical understanding of the trade-offs between wheels and legs presented
in the preceding chapters, however extensive, remains insufficient to determine an
optimized design. What is needed is field test data. In order for MARVIN to make
informed cost-based path decisions, we must have a quantitative sense of the ac-
tual toll different terrains have on MARVIN in the real world. Thus, we examined
the effects of hybridization on MARVIN’s performance through a set of systematic
experiments.

As the advantages of multimodal locomotion are a function of the type of terrain
being traversed, we made sure to test on a wide variety of surfaces as part of our
experimental procedure. Both quantitative and qualitative results were recorded on
natural terrain, as well as an artificially constructed testbed in which we could control
the roughness of the landscape. Some examples of our natural terrain test field are
depicted in Fig. 5.1. In total, we conducted trials on gravel, sand, tall grass, curbs,
steps, and clumps of leaves. Our artificial testing arena is shown in Fig. 5.2.

In terms of collected data, quantitative metrics included real-time data of to-
tal current draw and stability. We also measured average speed. Qualitatively, we
observed less measurable nuances in how the different modes handled each type of
terrain. At the most basic level this entailed noting whether the robot failed or suc-
ceeded; at a more specific level we paid attention to overall perceived wear and tear
or ease of maneuverability.

Current draw was measured on each of the 7.2V Vex Motors onboard by a battery

45

(a) (b) (c)

(d) (e) (f)

Figure 5.1: Examples of natural terrains used for MARVIN’s performance tests.

(a) (b)

Figure 5.2: Artificial test field for controlled experimentation with MARVIN.

current and voltage sensor. Total current draw was monitored by taking the sum
of the current in the right and left batteries. We discounted the current draw from
the battery powering the encoders, as this is a steady power draw independent of
the motor effort and terrain roughness. A metric for stability was obtained with a
calibrated onboard three-axis accelerometer placed near the robot’s center of mass.
For our purposes, as discussed in Chapter 4, we defined stability as the variance of
the acceleration on the z-axis. Performance-wise, this corresponds to any noticeable,
vertical oscillations in the robot center of mass. Finally, average speed was taken
from stopwatch times over a pre-measured distance.

Current draw and stability measurements were collected through the USB/Serial

46

Port of the Arduino Mega and fed into a Matlab script that read the information
coming through the Serial line. The baud rate was set to 9600 for the Serial con-
nection, however current and accelerometer data was sampled on the order of at 100
Hz due to precautions over not straining shared time resources with the control law
software.

5.2 Controlled Environment

In order to study how wheels perform relative to legs as a function of terrain roughness,
we constructed an artificial testing environment out of MDF. As shown in Fig. 5.3,
the testbed consisted of periodic hurdles of adjustable height. These step heights were
increased by increments of 0.5 inches, and were placed 1.5 feet apart evenly along the
length of the 8-foot long pathway. In order to better standardize the type of terrain
being traversed for each step height, the RMS height roughness was calculated for
each step height.

Figure 5.3: Artificial test bed schematic.

This metric is given by the Eq. 5.2.1, which computes the root mean square of
the terrain elevation variance [11]:

RRMS =
√√√√ 1
n

n∑
i=1

(ymean − yi)2 (5.2.1)

Here ymean is the average ground height, and yi is the elevation of data point i. We
computed RRMS by discretizing our testbed into inch long segments, such that the
ith point corresponds to the ith inch along the course.

Each height to roughness value was traversed by both wheels and legs in order to
compare data between the two modes. For the last two RMS roughness values, the

47

wheels were unable to traverse the terrain at all — thus their power consumption,
stability, and speed data were not counted and left as 0.

Due to time constraints, total data collection was slightly limited. Nevertheless,
each mode was tested at least 3 times per height-roughness value (6 trials per testbed
setup). Furthermore, given the nature of the experiment, the typical number of test
runs is generally lower anyway in the robotics community. For example, our data
volume is consistent with the order of RHex, where 10-20 samples were recorded per
setup [39].

5.3 Data

5.3.1 Artificial Terrain

Here we present graphs of average current draw, average z-axis accelerations, and
average speeds versus terrain roughness, as recorded over all trials of the experiments
carried out on the artificial testbed. Error bars are included as well, to reflect a
significant amount of uncertainty due to the limited number of total test runs. A
discussion and interpretation of the data is left to Section 5.4.

Figure 5.4: Mean current draw vs. RMS roughness.

48

Figure 5.5: Mean z-axis acceleration variance vs. RMS roughness.

Figure 5.6: Mean speed vs. RMS roughness.

5.3.2 Natural Terrain

For the natural terrain experiments, we measured current draw and stability quanti-
tatively, and left speed to qualitative observations. While the raw readings are too
terrain dependent to give much general information, we compare the data of both
wheels and legs to shed an informative light on the relative benefits of either design.
Again, here the data is simply presented as is, while analysis is left to Section 5.4.

49

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparative data from natural terrain test runs. (a) Current draw when
going over a curb. (b) Current draw when going up long steps. (c) Current draw
when operating in sand. (d) Current draw when transversing a deep leaf pile. (e)
Accelerations in z on gravel. (f) Accelerations in z on sand.

50

5.4 Analysis

The data given in Sections 5.3.1 and 5.3.2 provide us with a good platform for which
to base a quantitative juxtaposition between legs and wheels. Now we merge both
the data from the controlled, artificial experiment and the more subjective natural
terrain tests and investigate the comparative differences legs and wheels offer in terms
of power consumption, stability, speed, and climbing ability.

5.4.1 Power Consumption

Experimentally, power consumption was the clearest gauge of the tradeoff between
wheeled and legged modes. From the results of the artificial terrain experiments,
we can see that current draw was always higher for legs than wheels. Therefore, by
extension, if we reasonable assume a fixed voltage supply throughout the short trial
run, the power, P = IV , is always higher.

Especially during the bumpy trajectories characteristic of the leg mode, current
draw was far from constant. As a result, some spikes on natural terrain showed ratios
of up to 8 : 1 for instantaneous power consumption values of legs to wheels. However,
the average ratio in the artificial terrain experiments was approximately 2.3 : 1. This
is the significant cost that we expected for using legs, and will indeed be a large
contributor to the distinct tradeoff of the two modes.

5.4.2 Stability

Similar to the current data, stability measurements clearly showed an advantage for
the wheeled-mode. In most instances in which both modes were able to successfully
traverse the terrain, the acceleration variance was much lower for wheels while legs
exhibited large amounts of jitter. In the artificial terrain experiments, the magnitude
of acceleration in the z-axis had a legs to wheels ratio as high as 12 : 1 (on flat ground)
and as low as 1.85 : 1 (in the roughest terrain over which wheels were still able to
function). On natural terrain, we saw analogous effects. Although, overall the effect
was slightly less pronounced as even flat natural terrain has inherent roughness that
results in bumpy rides for the wheel mode.

51

5.4.3 Speed

Average speed was recorded only for the artificial terrain experiments where all factors
that might affect performance could be kept in control. In Fig.5.6, the graph of speed
vs. terrain roughness, we see a clear trade-off between the effect of wheels and legs.
On flat ground, wheels were evidently faster than legs. This discrepancy is likely
even understated, because speed was averaged only over a rather short distance (8
ft). Furthermore, the overall speed were kept low, at speeds that legs could still keep
up with and remain stable. Yet, as the terrain became rougher, the advantage of
legs became evident, and gradually overcame wheels as the RMS roughness index
increased. Finally, the absolute, binary benefit of legs is seen for RMS roughness
indexes past ≈ 0.6, where wheels are simply unable to traverse the terrain at all.

5.4.4 Climbing Ability

While not displayed in Section 5.3, we performed additional experiments on MAR-
VIN’s maximum step climbing abilities. The highest tested height that the robot was
able to surmount was 7.75 inches — which is 3.1 times the radius of the retracted
wheel. For comparison, MARVIN could not climb over 2 inches while in default wheel
mode! This constitutes a significant advantage for obstacle traversal.

While MARVIN handles single steps with ease, flights of stairs remain more prob-
lematic. On stairs, a feature more commonly found in indoor environments, MAR-
VIN’s effectiveness is greatly dependent on the frequency of steps. For stairs with tall
rises and short runs, MARVIN can get stuck between steps, and has difficulty finding
purchase. A compliant spine or a refined gait control algorithm would likely improve
this shortcoming.

5.5 Cost Based Mode Selection

The above results illustrate the empirical tradeoff specific to MARVIN’s design, but
really are inherent in any hybrid robot model. In order to fully capitalize on the ad-
vantages of hybridization, an intelligent method for switching between modes should
be developed. At times this decision is an immediate binary — for example, when
approaching stairs or curbs for which wheels are not a viable option. However, as the
terrain decreases in roughness, the mode decision approaches a non-trivial, hard to
estimate, threshold [32].

52

Unfortunately, we recognize that our data for MARVIN is sparse and lacking in
resolution. Hence, predicting cost from our data will likely incur significant amounts
of generalization error. Nevertheless, we still propose a preliminary cost analysis that
serves to roughly guide the mode selection process. Given more data and experiments,
this model can easily be improved.

Investigation of the data in Section 5.3 gives us the following average tradeoffs
between legs and wheels for power, stability, and speed — the three most meaningful
performance measurements:

• Power → average = 2.3 : 1, peak = 8 : 1

• Stability → average = 4.7 : 1, peak = 12 : 1

• Speed → average = 1 : 1, peak = 1.1 : 1

We then formulate the cost ratio of using legs as opposed to wheels as a function,
G, where G is composed of a linear combination of our stated metrics. We define an
application-specific vector of preference weights, P = [p1, p2, p3] where ∑3

i=1 pi = 1.
Similar to the Q matrix in the LQR method for optimal control [2], P allows a user
to indicate how much they value power relative to stability or speed, and so forth.
Thus, this allows us to arrive at the following equation for G:

G = xTP (5.5.1)

where x is our vector of performance ratios: [2.3, 4.7, 1].
Equipped with this definition of cost associated with the terrain, in the next

section we leverage the hybridization tradeoffs with a proof of concept implementation
of optimal, least cost path planning.

53

Chapter 6

Least-Cost Hybrid Paths

Path planning for mobile ground robots is an integral part of their ability to navigate
various terrains. In essence, given a destination and a map, path planning is the
task of autonomously identifying a trajectory that brings the robot to the goal [40].
Clearly, however, some trajectories are more desirable than others. In this section we
demonstrate how hybridization allows allows robots to plan more efficient paths. This
accomplished by both lifting restrictions that the terrain would otherwise place on
wheeled robots, and also having to ability choosing the easier, drivable route where
applicable — an opportunity unavailable to legged robots.

Despite the significant amount of attention now being focused on the design of
various hybrid robots, there has been much less of a research effort towards opti-
mizing their path planning processes [36], but some exist. One method proposes a
algorithm that selects candidate paths based on an elevation map, and then analyzes
these paths for switching conditions (from default wheels to legs). Finally, it evalu-
ates the updated path with switching for performance characteristics such as energy
consumption and travel time [36]. The reasoning does not have to be exact, either.
Another method uses fuzzy logic at three separate scales of the path planning process
to incorporate hybrid advantages given a “traversability index” [48].

6.1 Hybrid Global Path Planning

In a more holistic definition of path planning, global path planning is the process of
optimizing an path from start to finish given a representation of the terrain, while
also reconciling the chosen trajectory with unforeseen obstacles that arise along the

54

way [40]. For the purpose of representing the robot’s terrain, the most prominent
methods include occupancy grids, configuration spaces, and potential field methods
[4, 32]. Of these methods, the occupancy grid is the simplest, but its most common
form is based on the assumption that occupied cells are to be avoided since they
are non-traversable [32]. While this might be true for wheeled robots, hybrid robots
might be able to overcome a subset of these “occupied” cells — resulting in a different
set of conditions.

Furthermore, while there are a many algorithms that are adept at path planning
[4], a fundamental feature common to all of them is that the calculations depend on
the inherent costs assigned to each cell. As examined in Section 5.5, hybridization
lends itself to a new form of cost function. A basic example is that of a robot trapped
inside a fence. If the robot is wheeled, and the cost of climbing the fence is infinite,
the robot will have to move on (possibly fruitlessly) in the hopes of finding an exit.
A hybrid robot, however, can instead view the fence as a high, but finite cost, and
weigh the effort of climbing it against the effort of searching all over for another way.
More generally, any optimal path can now be reevaluated using this updated cost
function, and lower cost paths in terms of distance or time might be found.

Furthermore, hybridization also allows for more robustness to errors in the occu-
pancy grid. A mobile robot may need to react to unforeseen disturbances along its
path. Hybridization affords the robot a larger margin of error in which to still be
able to function — without having to continually update and recompute new paths.

6.2 A* with Hybrid Costs

Using our cost function from Section 5.5, we now implement a novel path planning
algorithm for MARVIN, and show its effects. We represent the environment as an
occupancy grid with three types of values: wheeled-terrain, legged-terrain, and in-
surmountable obstacles. Wheeled-terrain boxes are simply areas of terrain that are
suitable for the default wheel mode (e.g. flat terrain), legged-terrain boxes represents
intermediate, rough terrain, and finally obstacle boxes symbolize terrain that strictly
cannot be traversed, even with legs. While eventually this process should seek to
be autonomous, with terrain locally mapped by onboard robotic sensors, for now we
assume a complete knowledge of the terrain, its costs, as well as the coordinates of
both the robot and the goal.

The algorithm we chose to use for finding the minimum-cost path to the goal is a
well-known algorithm called A*. This algorithm evaluates and chooses possible paths

55

until it gets to the goal by summing g(n), the cost to reach each node, with h(n), the
heuristic cost to get from each node to the goal node [38]. Formally, we have:

f(n) = g(n) + h(n) (6.2.1)

Where f(n) is the estimated cost of the cheapest path so far to node n. In our case,
we used the Euclidian Distance to the goal node for our heuristic h(n), and assigned
cost functions to each node based on what type of terrain it represented. The cost of
a wheeled-terrain node was set to a baseline value of 1. For our cost preference, we
chose to emphasize only power, picking a P vector of [1, 0, 0]. Thus the single node
cost of moving with legs is G = 2.3. In Fig. 6.1, we illustrate a few examples of our
new hybrid paths.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.1: Comparison of standard vs hybridized optimal paths. The wheeled ap-
proach is on the left, while the hybrid approach is shown to the right

In Figs. 6.1 (a) and (b), we see the robot traversing a winding path in non-hybrid
mode that results in it traversing the length of the terrain 5 times. By assigning
only a few of these obstacle nodes to be legged-terrain nodes, the robot finds a much
shorter and better path.

Figs. 6.1 (c) and (d) depict a situation in which hybridization does not affect the
outcome of the path. In this environment, a dense obstacle blocks the robot from his
goal, causing the robot to choose the default wheel-only path due to the large cost of
using legs.

56

Figs. 6.1(e) and (f) show a similar situation to the one in (c)-(d), however this
time the obstacle is not as dense and the goal node, closer. The robot deems the
benefit of the shorter path to be greater than the cost of using legs to traverse the
rough terrain.

Finally, Figs. 6.1 (g) and (h) depict a combination of using wheels and legs given
two different types of obstacles. The first obstacle is too dense, thus the robot chooses
to use wheel mode to get around it, however the second obstacle is small enough to
switch to leg mode. The total path length is still shorter than in the case without
hybridization.

6.3 Discussion

The method presented here is a simplification of a hybrid path planning system in an
attempt to depict how hybridization provides advantages to the field of global path
planning. In order to extend this method, one might incorporate other cost metrics
other than power consumption, such as speed and stability or safety. However, even
when only considering power consumption estimated from a cost metric derived from
real experimental data, we have shown, to some extent, that MARVIN would benefit
from a hybrid path planning system. In fact, MARVIN is particularly well suited
for hybrid path planning given the ease and quickness with which mode switching is
performed. In an improvement from the robot in [36], which could only switch modes
under specific conditions and needed to evaluate whether switching was worth the
time and energy, MARVIN can make this switch almost instantaneously. This avoids
transition costs that would otherwise overshadow the benefits of making specific,
low-level terrain adjustments.

57

Chapter 7

Future Work and Improvements

7.1 Design Improvements

Moving forward, we believe there are a number of improvements that can be made
with our current design that would help optimize weight and power considerations of
MARVIN. Given time constraints, we were unable to implement these improvements
ourselves but realized their usefulness through the design process.

Firstly, we believe a more efficient design with fewer (but more powerful) motors
is both plausible and desirable. The current design that uses one motor per axle
was decided upon because of its simplicity over one-motor-per-wheel designs, and
due to our confidence that we could build a rapid prototype in the time allotted
given this method. Through experimentation, however, we have realized that the
two-motor-per-wheel design as implemented in MARVIN, places too much stress on
the individual motors in terms of torque requirements as well as control effort. We
envision future designs to implement some version of a clutch or ratchet system to
reduce the load on the motors, as well as allow for a one-motor-per-wheel design.
Other additions such as suspension or torsion springs in the design of the wheel can
further decrease the load placed on the motors and control algorithms as well as help
to ensure a smoother ride.

From a systems-level view point, one of the first improvements to be made is to
implement a version of gait coordination. This would not only improve the perfor-
mance of the robot in climbing and rough terrain traversal tasks, but also help to
better realize the true tradeoffs in power consumption, stability, and speed between
wheels and legs. An open-loop gait control similar to the design in RHex [39] would

58

be a tractable first step in this direction.

7.2 Scaling Considerations

Once efficient mechanical and electrical systems have been designed, there are a num-
ber of additions that need to be made to MARVIN in order for it to move toward
our higher goal of an efficient autonomous hybrid robot with improved navigation.
The most obvious fields in which improvements on this front could be made are an
intelligent vision system and robust navigation techniques.

Vision systems are an integral part of autonomy in robotics. Complex vision sys-
tems has been accomplished on various mobile ground robots through a combination
of laser and stereo camera sensor systems [19, 9]. These systems require reliable hard-
ware that can work in a variety of conditions as well as robust software in order to
create an accurate model of the environment. This accurate environment model would
allow MARVIN to transition between modes autonomously based on the roughness
of the surrounding terrain.

Improved navigation starts with a robust vision system to accurately represent
the environment around the robot, however it extends beyond that. A great deal
of research has been conducted on efficient path planning algorithms for exactly this
purpose [41, 4]. Localization algorithms such as SLAM and integrated sensor systems
such as high-precision GPS would ensure a knowledge of the robotÕs location within
his environment that would undoubtedly lead to more robust navigation [14, 38,
22]. However, as mentioned before, path planning for hybrid robots is a relatively
unexplored area. If MARVIN’s hybrid ability is to be fully capitalized upon, a deep
understanding of the cost tradeoffs between different modes of operation as a function
of terrain roughness needs to be developed. The potential of such an understanding
was shown in the previous section, however future work should look to refine the cost
functions and tradeoffs between the two modes in order to better reflect the reality
of hybridization tradeoffs.

59

Chapter 8

Conclusion

The design of hybrid robotics promises to continue to be a rich, exciting, and applica-
ble area of research. Here we presented MARVIN, a contribution that is intended to
improve upon existing hybrid robot designs by focusing on three fundamental features:
a fast and smooth transition mechanism, good realizations of the major performance
characteristics of both wheel and leg designs, and finally, a unique capacity for flexible
control.

The elimination of an expensive transformation time allows for greater maneuver-
ability in varied terrain — as well as a better realization of the advantages of a hybrid
system. The transition to using spoke-legs acts as a natural extension of the wheel
functionality, rather than as a cumbersome, disjoint appendage. However, when the
spoke legs are not in use, MARVIN is able to stow them away completely — a feature
not all hybrid design can claim. This allows the robot to make full use of the speed
and stability inherent to wheels, while maintaining the option of switching to legs at
any instant.

Finally, while not the main topic of this thesis, MARVIN was also designed to not
just have control over which locomotion mode is used, but also the extent to which
hybridization is realized. This capability stems from MARVIN’s complete control over
the degree to which the legs are extended. An exciting area of future research is how
MARVIN might be able to leverage the idea of flexible control to better discriminate
between types of terrain, and choose the leg extension that achieves the best stability
and performance.

These attributes are all pointed towards one common goal: improved navigation
over varied, unstructured terrain. We showed that with better adaptability to terrain
and a personalized cost function, MARVIN can theoretically generate lower cost paths

60

from point A to point B on terrains with scattered obstacles.
While the thesis advanced here contains several innovations to hybrid locomotion,

it comes with several caveats. MARVIN’s implementation is just a prototype. As dis-
cussed in Section 7, certain design flaws were identified along with solutions that can
be fixed with further iteration. Those improvements include motors better matched
to the task requirements. The cost algorithm can be improved upon, in part with
more data. MARVIN could be equipped with vision, in order to navigate terrain with
path-finding autonomously updated.

Yet, in practice, MARVIN did perform well. Preliminary experiments with our
constructed prototype do demonstrate, unmistakably, the intended advantages —
described in this report and shown in videos on the referenced YouTube channel.
MARVIN is able to traverse curbs and low-frequency stairs by approaching with
wheels, deploying legs in order to overcome the hurdle, and then quickly returning to
wheel mode. Furthermore, data gathered on power, stability, and speed showed that
MARVIN’s wheels do offer a large improvement over legs on flat terrain. Clearly, the
two modes work together to reduce costs. Moreover, in deriving the rationale in detail
for design parameters here, we managed to identify the directions and the potential
for yet more efficient implementations of this approach.

61

Bibliography

[1] A Roadmap for U.S. Robotics: From Internet to Robotics. 2013.

[2] Karl Johan Astrom and Richard M. Murray. Feedback systems : an introduction
for scientists and engineers. Princeton university press, Princeton, Oxford, 2008.

[3] C. Bohn and D.P. Atherton. An analysis package comparing pid anti-windup
strategies. Control Systems, IEEE, 15(2):34–40, Apr 1995.

[4] Thomas Brunl. Embedded Robotics: Mobile Robot Design and Applications with
Embedded Systems. Springer Publishing Company, Incorporated, 3rd ed. edition,
2008.

[5] L. Bruzzone and G. Quaglia. Review article: locomotion systems for ground
mobile robots in unstructured environments. Mechanical Sciences, 3(2):49–62,
2012.

[6] Luca E. Bruzzone and Pietro Fanghella. Mantis: hybrid leg-wheel ground mobile
robot. Industrial Robot, 41(1):26–36, 2014.

[7] Shen-Chiang Chen, Ke-Jung Huang, Wei-Hsi Chen, Shuan-Yu Shen, Cheng-Hsin
Li, and Pei-Chun Lin. Quattroped: A leg–wheel transformable robot. Mecha-
tronics, IEEE/ASME Transactions on, 19(2):730–742, April 2014.

[8] Michael J. Coleman, Anindya Chatterjee, and Andy Ruina. Motions of a rimless
spoked wheel: a simple 3d system with impacts. pages 139–160, 1997.

[9] H. Dahlkamp, A. Kaehler, D. Stavens, S. Thrun, and G. Bradski. Self-supervised
monocular road detection in desert terrain. In Proceedings of Robotics: Science
and Systems, Philadelphia, USA, August 2006.

[10] Yu-Jie Dai, E. Nakano, T. Takahashi, and H. Ookubo. Motion control of leg-
wheel robot for an unexplored outdoor environment. In Intelligent Robots and

62

Systems ’96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Con-
ference on, volume 2, pages 402–409 vol.2, Nov 1996.

[11] E. Paul (Ernest Paul) DeGarmo, J. Temple Black, and Ronald A Kohser. Ma-
terials and processes in manufacturing. New York ; Chichester : Wiley, 9th
ed.,international ed edition, 2003. Previous ed.: London : Prentice-Hall Interna-
tional, 1997.

[12] Richard C. Dorf and Robert H. Bishop. Modern Control Systems. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 7th edition, 1994.

[13] A. Drenner, I. Burt, T. Dahlin, B. Kratochvil, C. McMillen, B. Nelson, N. Pa-
panikolopoulos, P.E. Rybski, K. Stubbs, D. Waletzko, and K.B. Yesin. Mobility
enhancements to the scout robot platform. In Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE International Conference on, volume 1, pages
1069–1074 vol.1, 2002.

[14] H. Durrant-Whyte and Tim Bailey. Simultaneous localization and mapping: part
i. Robotics Automation Magazine, IEEE, 13(2):99–110, June 2006.

[15] Boston Dynamics. Bigdog - the most advanced rough-terrain robot on earth.
http://www.bostondynamics.com/robot_bigdog.html.

[16] G.F. Franklin, J. Powell, and A. Emami-Naeini. Feedback Control of Dynamic
Systems, Global Edition. Pearson Education Limited, 2015.

[17] D. Goldman, H. Komsuoglu, and D. Koditschek. March of the sandbots. IEEE
Spectr., 46(4):30–35, April 2009.

[18] Christophe Grand, FaŢz Ben Amar, FrŐdŐric Plumet, and Philippe Bidaud.
Stability and traction optimization of a reconfigurable wheel-legged robot. I. J.
Robotic Res., 23(10-11):1041–1058, 2004.

[19] Raia Hadsell, Pierre Sermanet, Jan Ben Ayse Erkan, and Marco Scoffier. Learn-
ing long-range vision for autonomous off-road driving. Journal of Field Robotics,
pages 120–144, 2009.

[20] Dennis Hong and Doug Laney. Preliminary design and kinematic analysis of a
mobility platform with two actuated spoke wheels. In US-Korea Conference on
Science, Technology and Entrepreneurship (UKC2006), Mechanical Engineering
& Robotics Symposium, pages 03–03, 2005.

63

http://www.bostondynamics.com/robot_bigdog.html

[21] Karl Iagnemma, Adam Rzepniewski, Steven Dubowsky, and Paul Schenker. Con-
trol of robotic vehicles with actively articulated suspensions in rough terrain.
Autonomous Robots, 14(1):5–16, 2003.

[22] S. Jeschke, H. Liu, and D. Schilberg. Intelligent Robotics and Applications: 4th
International Conference, ICIRA 2011, Aachen, Germany, December 6-8, 2011,
Proceedings. ACM Digital Library. Springer, 2011.

[23] N.J. Kasdin and D.A. Paley. Engineering Dynamics: A Comprehensive Intro-
duction. Princeton University Press, 2011.

[24] C.T. Kilian. Modern Control Technology: Components and Systems. Student
Material TV Series. Delmar Thomson Learning, 2001.

[25] Yoo-Seok Kim, Gwang-Pil Jung, Haan Kim, Kyu-Jin Cho, and Chong-Nam Chu.
Wheel transformer: A miniaturized terrain adaptive robot with passively trans-
formed wheels. In Robotics and Automation (ICRA), 2013 IEEE International
Conference on, pages 5625–5630, May 2013.

[26] Shawn C Kimmel. Considerations for and implementations of deliberative and
reactive motion planning strategies for the novel actuated rimless spoke wheel
robot impass in the two-dimensional sagittal plane. Master’s thesis, Virginia
Polytechnic Institute and State University, Blacksburg, VA, May 2008.

[27] Xin-Lan Li, Jong-Gyu Park, and Hwi-Beom Shin. Comparison and evaluation
of anti-windup pi controllers. Journal of Power Electronics, 11(1):45–50, 2011.

[28] Hayk Martirosyan, Gregory Hughes, Christopher Payne, Thomas Owlett, and
Brendan O’Leary. xjus: A hexapedal robot with a passively flexible spine. Prince-
ton Senior Thesis, 2013.

[29] Tad McGeer. Passive dynamic walking. The International Journal of Robotics
Research, 9(2):62–82, 1990.

[30] FranÌďois Michaud, Dominic LÌľtourneau, Martin Arsenault, Yann Bergeron,
Richard Cadrin, FrÌľdÌľric Gagnon, Marc-Antoine Legault, Mathieu Millette,
Jean-FranÌďois ParÌľ, Marie-Christine Tremblay, Pierre Lepage, Yan Morin,
Jonathan Bisson, and Serge Caron. Multi-modal locomotion robotic platform
using leg-track-wheel articulations. Autonomous Robots, 18(2):137–156, 2005.

64

[31] J.M. Morrey, B. Lambrecht, Andrew D. Horchler, Roy E. Ritzmann, and R.D.
Quinn. Highly mobile and robust small quadruped robots. In Intelligent Robots
and Systems, 2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International
Conference on, volume 1, pages 82–87 vol.1, Oct 2003.

[32] Robin Murphy, R. Peter Bonasso, and David Kortenkamp. Artificial intelligence
and mobile robots : case studies of successful robot systems. AAAI Cambridge,
MA London, Menlo Park, 1998.

[33] Youbin Peng, D. Vrancic, and R. Hanus. Anti-windup, bumpless, and condi-
tioned transfer techniques for pid controllers. Control Systems, IEEE, 16(4):48–
57, Aug 1996.

[34] Tony Phillips. Spirit may never phone home again. http://science.nasa.gov/
science-news/science-at-nasa/2010/30jul_spirit2/, 2010.

[35] R.D. Quinn, J.T. Offi, D.A. Kingsley, and Roy E. Ritzmann. Improved mobility
through abstracted biological principles. In Intelligent Robots and Systems, 2002.
IEEE/RSJ International Conference on, volume 3, pages 2652–2657 vol.3, 2002.

[36] Eric Rohmer, Giulio Reina, and Kazuya Yoshida. Dynamic simulation-based
action planner for a reconfigurable hybrid leg-wheel planetary exploration rover.
Advanced Robotics, 24(8-9):1219–1238, 2010.

[37] Clarence Rowley. Mae 433: Automatic controls systems, 2014. Lecture notes,
homeworks, and lab materials from Professor C. Rowley’s controls class taught
at Princeton.

[38] Stuart Jonathan Russell and Peter Norvig. Artificial intelligence: a modern
approach (3rd edition). Prentice Hall, 2009.

[39] Uluc Saranli, Martin Buehler, and Daniel E. Koditschek. Rhex: A simple and
highly mobile hexapod robot. The International Journal of Robotics Research,
20(7):616–631, 2001.

[40] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. Introduction to
Autonomous Mobile Robots. The MIT Press, 2nd edition, 2011.

[41] A. Stentz. Optimal and efficient path planning for partially-known environments.
In Robotics and Automation, 1994. Proceedings., 1994 IEEE International Con-
ference on, pages 3310–3317 vol.4, May 1994.

65

http://science.nasa.gov/science-news/science-at-nasa/2010/30jul_spirit2/
http://science.nasa.gov/science-news/science-at-nasa/2010/30jul_spirit2/

[42] Adam Stokes, Robert F. Shepherd, Stephen A. Morin, Filip Ilievski, and George
M. Whitesides. A hybrid combining hard and soft robots. Soft Robotics, 1(1):70–
74, 2013.

[43] John D. Sutter. How 9/11 inspired a new era of robotics. http://www.cnn.com/
2011/TECH/innovation/09/07/911.robots.disaster.response/, 2011.

[44] M. Takahashi, K. Yoneda, and S. Hirose. Rough terrain locomotion of a leg-wheel
hybrid quadruped robot. In Robotics and Automation, 2006. ICRA 2006. Pro-
ceedings 2006 IEEE International Conference on, pages 1090–1095, May 2006.

[45] P. Tantichattanont, S. Songschon, and S. Laksanacharoen. Quasi-static analysis
of a leg-wheel hybrid vehicle for enhancing stair climbing ability. In Robotics
and Biomimetics, 2007. ROBIO 2007. IEEE International Conference on, pages
1601–1605, Dec 2007.

[46] B. K. Taylor, S. Balakirsky, E. Messina, and R. D. Quinn. Design and validation
of a whegs robot in usarsim. In Proceedings of the 2007 Workshop on Performance
Metrics for Intelligent Systems, PerMIS ’07, pages 105–112, New York, NY, USA,
2007. ACM.

[47] Richard Volpe. The athete rover. https://www-robotics.jpl.nasa.gov/
systems/system.cfm?System=11.

[48] Zhiying Wang and Xilun Ding. Path planning for mobile robots with leg/wheel
hybrid locomotion system on outdoor terrain. In Intelligent Control and Au-
tomation (WCICA), 2012 10th World Congress on, pages 3669–3674, July 2012.

[49] Wei Zhan. Robust design of motor pwm control using modeling and simula-
tion. In Sio-Iong Ao, Burghard Rieger, and Su-Shing Chen, editors, Advances
in Computational Algorithms and Data Analysis, volume 14 of Lecture Notes in
Electrical Engineering, pages 439–449. Springer Netherlands, 2009.

66

http://www.cnn.com/2011/TECH/innovation/09/07/911.robots.disaster.response/
http://www.cnn.com/2011/TECH/innovation/09/07/911.robots.disaster.response/
https://www-robotics.jpl.nasa.gov/systems/system.cfm?System=11
https://www-robotics.jpl.nasa.gov/systems/system.cfm?System=11

Appendix A

Motor Constants

In order to find the parameters K and τ for the motor-wheel systems we took exper-
imental data from a step response to a constant PWM signal, shown in Fig. A.1(a).
K is found by taking the average of the steady state response. Next, by transforming
Eq. 3.1.6 into the log space, we obtain a linear function with a slope of 1

τ
:

ωf = K −Ke−
t
τ

ln(K − ωf) = ln(Ke− t
τ)

− ln(K − ωf) = t

τ
+ lnK (A.0.1)

We use a best fit line in the well-behaved range of this equation to estimate τ .
The reconstructed model for one of our motors is shown in Fig. A.1(b).

(a) (b)

Figure A.1: Calibration of motor specific constants.

67

Appendix B

Manufacturing

The following sections detail the prototyping process that was taken to build MAR-
VIN.

B.1 Wheel Module

There were several iterations in our construction of the 3D wheel module before the
final structure was replicated and placed on the chassis. In the figure below you see
three steps in the manufacturing process. Our first version was a simple, laser-cut 2D
model used as a proof that the leg-extraction model worked. The second version of
the wheel was 3D-printed and made significantly larger than the first iteration. The
final version of the wheel was reduced in size and featured several improvements over
the previous version. Firstly, hollow metal rods were inserted into the pins around
screws in order to decrease friction in the mode-transition process. Also, through
experimentation, we became worried that the torsion force on the inner axle was too
great for the 3D printed material. We thus manufactured our own inner axle for all
4 motors using PVC so that the part would not shear off.

B.2 Gears and Gearbox

Due to the fact that both motors that actuated a single wheel needed to control coaxial
rings, we needed to develop a system for independently turning each axle. We decided
upon a gear system that connected the outer axle to its motor through a 1:1 gear
ratio. This system was then implemented in two steps: designing and manufacturing

68

Figure B.1: Iterations of the spoke wheel.

the gears themselves, and developing the box which would mount both gears and
motors to the same axis. The gears were designed in Creo and manufactured using a
CNC machine. The gearbox was also designed in Creo as an integrated system with
gears, motors, and wheel and then 3D printed.

Figure B.2: The gearboxes.

B.3 Chassis

The chassis for MARVIN was designed in Adobe Illustrator and manufactured using
Laser-cut Cast Acrylic material. The chassis itself went through two iterations in
terms of layout and overall design. The first prototype was used as a rapid test
platform to ensure MARVIN successfully was able to deploy legs and traverse rough
terrain. This initial design however did not efficiently use the space on top of the
chassis and was slightly long. The final design corrected these two deficiencies by

69

decreasing the length such that there was just 1.5Ó of clearance between the legs
when extracted, and more efficiently laid out systems on top of the chassis to better
optimize stability.

Figure B.3: Old chassis layout.

70

Figure B.4: The final chassis layout.

71

Appendix C

Electronics Schematic

Figure C.1: Electronics schematic.

72

Appendix D

Parts List

Manufacturer Part Name Description PartID

SparkFun
AttoPilot Voltage and
Current Sense
Breakout - 45A, 90A

Measures voltage and current
coming from the battery
and output to 3.3 V scale

SEN-10643,
SEN-09028

SparkFun
Triple Axis
Accelerometer
Breakout - ADXL335

Measures acceleration in
three axes up to +/- 3g
and outputs as analog value

SEN-09269

Vex 2-wire Motor 393
Brushed Motor with
157:1 gearbox included
in module

276-2177

Vex Motor 393 Integrated
Motor Encoder Module

Quadrature encoder that
replaces back of 2-wire
motor 393, communicates
through I2C

276-1321

Vex Motor Controller 29
Controller that connects to
2-wire motor 393, output
PWM signal 1-2ms

276-2193

Arduino Arduino Mega 2560 Rev3

Microcontroller based on
ATmega2560, includes
54 digital I/O, 16 analog I/O,
a USB connection and a
clock speed of 16 MHz

A000067

Arduino USB Host Shield Peripheral device for Arduino
Mega based on the MAX3421E A000004

Microsoft Xbox 360 Wireless
Gaming Receiver

Interface between Xbox
controller and the Arduino
USB Host Shield

SparkFun LM7805c Voltage Regulator Three terminal regulator that
steps down input voltage to 5V COM-00107

Vex 7.2V Robot Battery
NiMH 3000mAh

Rechargeable NiMH battery
with Tamiya Connector and
large capacity or motors

276-1491

Tenergy 9.6V 2000mAh battery
Rechargeable NiMH battery
with Tamiya Connector for
Arduino/Encoders

11401-01

73

Appendix E

Arduino Code

The controls for MARVIN were implemented entirely on the AtMega. We have two
main files: the control and sensor readings loop in the Arduino sketch file, and a VEX
motor library that we wrote specifically for this project.

E.1 MotorController.ino

/∗∗/

/∗ M o t o r C o n t r o l l e r . i n o ∗/

/∗ Authors : Adam F i s c h and Max S h a t k h i n ∗/

/∗ use o u t e r w h e e l s f o r open / c l o s e

/∗∗/

#include <Wire . h>

#include <Servo . h>

#include <I2CEncoder . h>

#include <VexMotor . h>

#include <XBOXRECV. h>

#include <math . h>

/∗∗/

/∗ G l o b a l d r i v i n g c o n s t a n t s . ∗/

/∗∗/

const double DT = 5 ;

const int numSpeeds = 7 ;

const double SPEEDS [] = {3 . 5 , 4 . 5 , 5 . 5 , 6 . 5 , 7 . 5 , 8 . 5 , 9 . 5} ;

const int RIGHT SIDE = 0 ;

const int LEFT SIDE = 1 ;

long t0 = m i l l i s () ;

/∗∗/

/∗ Sensor c o n s t a n t s . ∗/

/∗∗/

const bool PRINT = f a l s e ;

const int SENSOR SAMPLE TIME = 1 5 0 ;

const f l o a t I s c a l e 4 5 = . 0 7 3 2 ;

const f l o a t V s c a l e 4 5 = . 2 4 1 5 ;

74

const f l o a t I s c a l e 9 0 = . 0 3 6 6 ;

const f l o a t V s c a l e 9 0 = . 0 6 3 0 ;

const f l o a t zeroG x = 5 0 7 . 5 ;

const f l o a t zeroG y = 5 0 7 . 0 ;

const f l o a t zeroG z = 6 2 0 . 0 ;

const f l o a t sca leX = 1 0 2 . 5 ;

const f l o a t sca leY = 1 0 2 . 0 ;

const f l o a t s c a l e Z = 1 0 1 . 0 ;

/∗∗/

/∗ Motor d e c l a r a t i o n s . ∗/

/∗ Motor paramaters : <Kp , Ki , Kd , I s o u t e r w h e e l?> ∗/

/∗ I nn er a x i s motors : PID c o n t r o l f o r a n g l e . ∗/

/∗ Outer a x i s motors : PI c o n t r o l f o r omega . ∗/

/∗∗/

VexMotor mFrontRightO (2 0 , 300 , 0 , true , 1) ;

VexMotor mFrontRightI (2 2 5 , 400 , 5 , fa lse , 1) ;

VexMotor mFrontLeftO (2 0 , 300 , 0 , true , −1);

VexMotor mFrontLeftI (2 2 5 , 400 , 15 , fa lse , −1);

VexMotor mBackRightO (2 2 , 300 , 0 , true , 1) ;

VexMotor mBackRightI (2 2 5 , 400 , 5 , fa lse , 1) ;

VexMotor mBackLeftO (2 0 , 300 , 0 , true , −1);

VexMotor mBackLeftI (2 2 5 , 400 , 15 , fa lse , −1);

/∗∗/

/∗ PWM p i n d e c l a r a t i o n s . Maps Arduino AtMega 2560 o u t p u t p i n s t o ∗/

/∗ motor c o n t r o l l e r s . ∗/

/∗∗/

int pinFRI = 2 ;

int pinFRO = 3 ;

int pinFLI = 4 ;

int pinFLO = 5 ;

int pinBRI = 6 ;

int pinBRO = 7 ;

int pinBLI = 1 2 ;

int pinBLO = 1 3 ;

/∗∗/

/∗ Analog p i n d e c l a r a t i o n s f o r s e n s o r r e a d i n g s . ∗/

/∗∗/

int b a t t l i = A0 ;

int b a t t l v = A1 ;

int b a t t r i = A2 ;

int b a t t r v = A3 ;

int a c c e l x = A4 ;

int a c c e l y = A5 ;

int a c c e l z = A7 ;

/∗∗/

/∗ USB and Xbox c o n t r o l l e r d e c l a r a t i o n s . ∗/

/∗ Used f o r u s e r i n p u t remote c o n t r o l . ∗/

/∗∗/

USB Usb ;

XBOXRECV Xbox(&Usb) ;

/∗∗/

/∗ I n i t i a l s e t u p code run once when t h e program i s s t a r t e d . ∗/

/∗∗/

75

void setup () {

// Begin I2C and S e r i a l p o r t communications .

Wire . begin () ;

S e r i a l . begin (9 6 0 0) ;

// A t t a c h motors t o PWM o u t p u t p i n s .

mFrontRightO . a t t a c h (pinFRO , f a l s e) ;

mFrontRightI . a t t a c h (pinFRI , f a l s e) ;

mFrontLeftO . a t t a c h (pinFLO , f a l s e) ;

mFrontLeftI . a t t a c h (pinFLI , f a l s e) ;

mBackRightO . a t t a c h (pinBRO , f a l s e) ;

mBackRightI . a t t a c h (pinBRI , f a l s e) ;

mBackLeftO . a t t a c h (pinBLO , f a l s e) ;

mBackLeftI . a t t a c h (pinBLI , true) ;

// I n i t i a l i z e USB p o r t

i f (Usb . I n i t () == −1) {

S e r i a l . p r i n t ((”\ r\nOSC did not s t a r t ”)) ;

while (1) ; // h a l t

}

// The r e f e r e n c e v o l t a g e f o r t h e a n a l o g s i g n a l s i s e x t e r n a l

a n a l o g R e f e r e n c e (EXTERNAL) ;

// Connect t o t h e XBox r e c e i v e r and w a i t f o r t h e s t a r t s i g n a l .

while (1) {

Usb . Task () ;

i f (Xbox . XboxReceiverConnected | | Xbox . Xbox360Connected [0]) {

i f (Xbox . getButtonCl ick (Y, 0)) break ;

}

}

}

/∗∗/

/∗ This e x e c u t e s c o n t i n u o u s l y w h i l e t h e Arduino i s powered . ∗/

/∗ O r c h e s t r a t e s c o n t r o l f o r t h e motors a f t e r r e a d i n g d e s i r e d ∗/

/∗ o u t p u t from s e n s o r s (Jetson , xBox c o n t r o l l e r) . ∗/

/∗∗/

void loop () {

s t a t i c bool TURBO = f a l s e ;

i f (Xbox . XboxReceiverConnected | | Xbox . Xbox360Connected [0]) {

i f (Xbox . getButtonCl ick (A, 0)) {

TURBO = !TURBO;

}

}

i f (m i l l i s () − t0 > SENSOR SAMPLE TIME && PRINT) {

printData () ;

t0 = m i l l i s () ;

}

// S e t t h e l o c o m o t i o n mode t o be used

setMode () ;

// Generate t h e smoothed r e f e r e n c e s p e e d

double goalOmega = readInputSpeed () ;

double rightOmega = c o n s t r a i n (goalOmega + s t e e r (RIGHT SIDE) , 0 . 5 , 9 . 5) ;

double leftOmega = c o n s t r a i n (goalOmega + s t e e r (LEFT SIDE) , 0 . 5 , 9 . 5) ;

76

S e r i a l . p r i n t l n (mBackLeftO . getOmega ()) ;

S e r i a l . p r i n t l n (mBackLeftI . getOmega ()) ;

S e r i a l . p r i n t l n (mBackLeftO . getTheta ()) ;

S e r i a l . p r i n t l n (mBackLeftI . getTheta ()) ;

i f (TURBO) {

mFrontRightO . w r i t e (2 5 5) ;

mFrontRightI . w r i t e (−255);

mFrontLeftO . w r i t e (−255);

mFrontLeftI . w r i t e (2 5 5) ;

mBackRightO . w r i t e (2 5 5) ;

mBackRightI . w r i t e (−255);

mBackLeftO . w r i t e (−255);

mBackLeftI . w r i t e (2 5 5) ;

}

e l s e {

mFrontRightO . w r i t e (PIDControl (mFrontRightO , rightOmega)) ;

double r e f T h e t a = mFrontRightO . getTheta () ;

mFrontRightI . w r i t e (PIDControl (mFrontRightI , r e f T h e t a)) ;

mFrontLeftO . w r i t e (PIDControl (mFrontLeftO , −leftOmega)) ;

r e f T h e t a = mFrontLeftO . getTheta () ;

mFrontLeftI . w r i t e (PIDControl (mFrontLeftI , r e f T h e t a)) ;

mBackRightO . w r i t e (PIDControl (mBackRightO , rightOmega)) ;

r e f T h e t a = mBackRightO . getTheta () ;

mBackRightI . w r i t e (PIDControl (mBackRightI , r e f T h e t a)) ;

mBackLeftO . w r i t e (PIDControl (mBackLeftO , −leftOmega)) ;

r e f T h e t a = mBackLeftO . getTheta () ;

mBackLeftI . w r i t e (PIDControl (mBackLeftI , r e f T h e t a)) ;

}

// Delay f o r a d i s c r e t e t i m e s t e p DT

delay (DT) ;

}

/∗∗/

/∗ Read s p e e d l e v e l i n p u t from t h e xBox c o n t r o l l e r . ∗/

/∗ Returns a d o u b l e t h a t i s t h e s p e e d i n rad / s . ∗/

/∗∗/

double readInputSpeed () {

s t a t i c int s p e e d L e v e l = 3 ;

Usb . Task () ;

i f (Xbox . XboxReceiverConnected | | Xbox . Xbox360Connected [0]) {

i f (Xbox . getButtonCl ick (UP, 0) && s p e e d L e v e l < numSpeeds − 1) {

s p e e d L e v e l++;

}

e l s e i f (Xbox . getButtonCl ick (DOWN, 0) && s p e e d L e v e l > 0) {

speedLevel−−;

}

}

return SPEEDS [s p e e d L e v e l] ;

}

/∗∗/

/∗ A d j u s t t h e omega r e f e r e n c e on a per s i d e b a s i s t o a l l o w f o r ∗/

/∗ d i f f e r e n t i a l d r i v e . ∗/

/∗∗/

77

double s t e e r (int s i d e) {

int d i f f e r e n t i a l = 0 ;

Usb . Task () ;

i f (Xbox . XboxReceiverConnected | | Xbox . Xbox360Connected [0]) {

int r i g h t v a l u e = Xbox . getButtonPress (R2 , 0) ;

int l e f t v a l u e = Xbox . getButtonPress (L2 , 0) ;

switch (s i d e) {

case LEFT SIDE :

d i f f e r e n t i a l = r i g h t v a l u e − l e f t v a l u e ;

break ;

case RIGHT SIDE :

d i f f e r e n t i a l = l e f t v a l u e − r i g h t v a l u e ;

break ;

}

i f (d i f f e r e n t i a l < 0) {

d i f f e r e n t i a l = map(d i f f e r e n t i a l , −255, 0 , −10, 0) ;

}

e l s e {

d i f f e r e n t i a l = map(d i f f e r e n t i a l , 0 , 255 , 0 , 1 0) ;

}

}

return d i f f e r e n t i a l ;

}

/∗∗/

/∗ Read i n s t r u c t i o n s on w h e t h e r t o use l e g s or w h e e l s . ∗/

/∗ Returns t r u e or f a l s e : ∗/

/∗ (t r u e) Open t h e w h e e l and use l e g s . ∗/

/∗ (f a l s e) C l o s e t h e w h e e l and use s t a n d a r d d r i v e . ∗/

/∗∗/

void setMode () {

double o f f s e t ;

s t a t i c bool useFrontLegs = f a l s e ;

s t a t i c bool useBackLegs = f a l s e ;

Usb . Task () ;

i f (Xbox . XboxReceiverConnected | | Xbox . Xbox360Connected [0]) {

i f (Xbox . getButtonCl ick (R1 , 0)) {

useFrontLegs = ! useFrontLegs ;

}

i f (Xbox . getButtonCl ick (L1 , 0)) {

useBackLegs = ! useBackLegs ;

}

}

i f (useFrontLegs) {

o f f s e t = OPEN ANGLE;

mFrontRightI . s e t O f f s e t (o f f s e t) ;

mFrontLeftI . s e t O f f s e t (o f f s e t) ;

}

e l s e {

o f f s e t = −0.005;

mFrontRightI . s e t O f f s e t (o f f s e t) ;

mFrontLeftI . s e t O f f s e t (o f f s e t) ;

}

i f (useBackLegs) {

o f f s e t = OPEN ANGLE;

mBackRightI . s e t O f f s e t (o f f s e t) ;

mBackLeftI . s e t O f f s e t (o f f s e t) ;

}

78

e l s e {

o f f s e t = −0.005;

mBackRightI . s e t O f f s e t (o f f s e t) ;

mBackLeftI . s e t O f f s e t (o f f s e t) ;

}

}

/∗∗/

/∗ C l a s s i c a l PID c o n t r o l . ∗/

/∗∗/

double PIDControl (VexMotor &motor , double r e f e r e n c e) {

// C a l c u l a t e e r r o r s

double e = motor . g e t E r r o r (r e f e r e n c e) ;

double p r o p o r t i o n a l E = motor . getEP (e) ;

double i n t e g r a t e d E = motor . getEI (e , DT) ;

double d e r i v a t i v e E l o w P = motor . getED (e , DT) ;

return (p r o p o r t i o n a l E + i n t e g r a t e d E + d e r i v a t i v e E l o w P) ;

}

/∗∗/

/∗ Output d a t a t o t h e s e r i a l p o r t f o r l o g g i n g . ∗/

/∗∗/

void printData () {

// b a t t e r y l e f t c u r r e n t

f l o a t i L = (f l o a t) analogRead (b a t t l i) ;

f l o a t i L 2 = (i L / 1 0 2 3)∗3 . 3 ;

f l o a t i L c a l = (f l o a t) i L 2 / I s c a l e 9 0 ;

// b a t t e r y l e f t v o l t a g e

f l o a t v L = (f l o a t) analogRead (b a t t l v) ;

f l o a t v L2 = (v L / 1 0 2 3)∗3 . 3 ;

f l o a t v L c a l = (f l o a t) v L2 / V s c a l e 9 0 ;

// b a t t e r y r i g h t c u r r e n t

f l o a t i R = (f l o a t) analogRead (b a t t r i) ;

f l o a t i R2 = (i R / 1 0 2 3)∗3 . 3 ;

f l o a t i R c a l = (f l o a t) i R2 / I s c a l e 4 5 ;

// b a t t e r y r i g h t v o l t a g e

f l o a t v R = (f l o a t) analogRead (b a t t r v) ;

f l o a t v R2 = (v R / 1 0 2 3)∗3 . 3 ;

f l o a t v Rcal = (f l o a t) v R2/ V s c a l e 4 5 ;

// a c c e l e r o m e t e r

int x v a l = analogRead (a c c e l x) ;

int y v a l = analogRead (a c c e l y) ;

int z v a l = analogRead (a c c e l z) ;

f l o a t a c c e l X c a l = ((f l o a t) x v a l − zeroG x)/ scaleX ;

f l o a t a c c e l Y c a l = ((f l o a t) y v a l − zeroG y)/ scaleY ;

f l o a t a c c e l Z c a l = ((f l o a t) z v a l − zeroG z)/ s c a l e Z ;

// P r i n t v o l t a g e and c u r r e n t d a t a t o s e r i a l p o r t

S e r i a l . p r i n t l n (i L c a l) ;

S e r i a l . p r i n t l n (v L c a l) ;

S e r i a l . p r i n t l n (i R c a l) ;

S e r i a l . p r i n t l n (v Rcal) ;

// P r i n t a c c e l e r a t i o n d a t a t o s e r i a l p o r t

S e r i a l . p r i n t l n (a c c e l X c a l) ;

S e r i a l . p r i n t l n (a c c e l Y c a l) ;

79

S e r i a l . p r i n t l n (a c c e l Z c a l) ;

// P r i n t s p e e d o f t h e w h e e l s

S e r i a l . p r i n t l n (mFrontRightO . getOmega ()) ;

S e r i a l . p r i n t l n (mFrontLeftO . getOmega ()) ;

S e r i a l . p r i n t l n (mBackRightO . getOmega ()) ;

S e r i a l . p r i n t l n (mBackLeftO . getOmega ()) ;

}

E.2 VexMotor.h
/∗∗∗/

/∗ VexMotor . h ∗/

/∗ Authors : Adam F i s c h and Max S h a t k h i n ∗/

/∗∗∗/

#ifndef VexMotor h

#define VexMotor h

#include ” Arduino . h”

#include <Servo . h>

#include <I2CEncoder . h>

#include <math . h>

const double POSITIVE DEAD BAND = 2 0 ;

const double NEGATIVE DEAD BAND = −20;

const double ENCODER OVERFLOW = 1 0 0 ; // True v a l u e i s 1 0 4 . 5

const double OPEN ANGLE = 1 . 8 ;

c l a s s VexMotor {

public :

VexMotor (double Kp, double Ki , double Kd, bool outer , int d i r) ;

int a t t a c h (int pin , bool l a s t) ;

void w r i t e (double value) ;

void s e t O f f s e t (double o f f s e t) ;

double getTheta () ;

double getOmega () ;

double g e t E r r o r (double r e f e r e n c e) ;

double getEP (double e r r o r) ;

double getEI (double e r r o r , double dt) ;

double getED (double e r r o r , double dt) ;

double t h e t a E r r o r (double r e f e r e n c e) ;

double omegaError (double r e f e r e n c e) ;

private :

int p i n ;

int s i g n ;

int d i r ;

bool i sOuterWheel ;

double o f f s e t ;

double o v e r f l o w ;

double kWeights [3] ;

double e r r o r I n t e g r a l ;

double e r r L a s t ;

double uDLast ;

double l a s t T h e t a ;

double k t ;

Servo motor ;

I2CEncoder e n c o d e r ;

} ;

80

#endif

E.3 VexMotor.cpp

/∗∗∗/

/∗ VexMotor . cpp ∗/

/∗ Authors : Adam F i s c h and Max S h a t k h i n ∗/

/∗ D e s c r i p t i o n : This i s a c l a s s f o r a VEX motor o b j e c t . The o b j e c t ∗/

/∗ e n c a p s u l a t e s s e v e r a l u s e f u l methods , such as r e a d i n g p o s i t i o n s and s p e e d s ∗/

/∗ from t h e e n c o d e r s and s t o r i n g i n s t a n c e s p e c i f i c c o n s t a t s . ∗/

/∗∗∗/

#include ” Arduino . h”

#include ”VexMotor . h”

#include <Servo . h>

#include <I2CEncoder . h>

#include <math . h>

VexMotor : : VexMotor (double Kp, double Ki , double Kd, bool outer , int d i r) {

// PID c o n t r o l w e i g h t s

kWeights [0] = Kp ;

kWeights [1] = Ki ;

kWeights [2] = Kd ;

// The o u t e r w h e e l s d i r e c t i o n i s r e v e r s e d due t o t h e g e a r c h a i n

i sOuterWheel = o u t e r ;

s i g n = (o u t e r) ? −1 : 1 ;

// Determines w h e t h e r t h e w h e e l i s on t h e r i g h t or l e f t s i d e

d i r = d i r ;

// Keep running c o u n t e r s o f t h e e r r o r s t a t e

e r r o r I n t e g r a l = 0 ;

e r r L a s t = 0 ;

uDLast = 0 ;

o f f s e t = 0 ;

// Keep e n c o d e r parameter t o know when t o r e s e t c o u n t e r and t e l l s i g n

o v e r f l o w = 0 ;

l a s t T h e t a = 0 ;

k t = 1/ kWeights [1] ;

}

int VexMotor : : a t t a c h (int pin , bool l a s t) {

motor . a t t a c h (pin) ;

e n c o d e r . i n i t (MOTOR 393 TORQUE ROTATIONS, MOTOR 393 TIME DELTA) ;

i f (! l a s t) {

e n c o d e r . unTerminate () ;

}

e l s e {

e n c o d e r . t e r m i n a t e () ;

}

return e n c o d e r . getAddress () ;

}

void VexMotor : : w r i t e (double value) {

double c o n s t r a i n e d = value ;

81

i f (c o n s t r a i n e d > 255) c o n s t r a i n e d = 2 5 5 ;

e l s e i f (c o n s t r a i n e d < −255) c o n s t r a i n e d = −255;

motor . w r i t e M i c r o s e c o n d s (map(c o n s t r a i n e d , −255, 255 , 1000 , 2 0 0 0)) ;

}

void VexMotor : : s e t O f f s e t (double o f f s e t) {

o f f s e t = o f f s e t ;

}

double VexMotor : : getEP (double e r r o r) {

return kWeights [0] ∗ e r r o r ;

}

double VexMotor : : getEI (double e r r o r , double dt ms) {

double d t s = dt ms / 1 0 0 0 ;

double prevEI = e r r o r I n t e g r a l ;

double uI = kWeights [1] ∗ prevEI ;

double s a t = 0 ;

i f (uI > 255) {

s a t = uI − 2 5 5 ;

}

e l s e i f (uI < −255) {

s a t = uI + 2 5 5 ;

}

e r r o r I n t e g r a l += d t s ∗ e r r o r + k t ∗ s a t ;

return kWeights [1] ∗ prevEI ;

}

double VexMotor : : getED (double e r r o r , double dt ms) {

double K = 1 5 ;

double d t s = dt ms / 1 0 0 0 ;

double uD = K ∗ kWeights [2] ∗ (e r r o r − e r r L a s t)

+ (1 − K ∗ d t s) ∗ uDLast ;

e r r L a s t = e r r o r ;

uDLast = uD ;

return uD ;

}

double VexMotor : : getTheta () {

double r e v o l u t i o n s = e n c o d e r . g e t P o s i t i o n () ;

i f (r e v o l u t i o n s > ENCODER OVERFLOW | | r e v o l u t i o n s < −ENCODER OVERFLOW) {

o v e r f l o w += r e v o l u t i o n s ;

r e v o l u t i o n s = 0 ;

e n c o d e r . z e r o () ;

}

r e v o l u t i o n s = r e v o l u t i o n s + o v e r f l o w ;

double t h e t a = r e v o l u t i o n s ∗ M PI ;

return t h e t a ;

}

double VexMotor : : getOmega () {

double currTheta = getTheta () ;

int d i r = (currTheta − l a s t T h e t a >= 0) ? 1 : −1;

l a s t T h e t a = currTheta ;

double rpm = d i r ∗ e n c o d e r . getSpeed () ;

double omega = (rpm ∗ 2 ∗ M PI) / 6 0 ;

return omega ;

}

double VexMotor : : g e t E r r o r (double r e f e r e n c e) {

return (isOuterWheel) ? omegaError (r e f e r e n c e) : t h e t a E r r o r (r e f e r e n c e) ;

82

}

double VexMotor : : t h e t a E r r o r (double r e f e r e n c e) {

double d i f f = − s i g n ∗ r e f e r e n c e − d i r ∗ o f f s e t − getTheta () ;

return d i f f ;

}

double VexMotor : : omegaError (double r e f e r e n c e) {

double d i f f ;

d i f f = r e f e r e n c e − getOmega () ;

return d i f f ;

}

83

Appendix F

A* Code

This is open-source code that implements a version of the A* algorithm in python.
This code was modified to assign grid nodes a cost dependent on what type of terrain
is represented by the node. By augmenting the code in this way, we were able to test
the effects of hybridization on this well-researched path planning algorithm.

F.1 example grid.py

C o p y r i g h t (C) 2012 J u s t i n P o l i e y < j u s t i n . d . p o l i e y @ g m a i l . com>

P e r m i s s i o n i s h e r e b y g r a n t e d , f r e e o f charge , t o any p e r s o n o b t a i n i n g a

copy o f t h i s s o f t w a r e and a s s o c i a t e d documentat ion f i l e s (t h e ” S o f t w a r e ”) ,

t o d e a l i n t h e S o f t w a r e w i t h o u t r e s t r i c t i o n , i n c l u d i n g w i t h o u t l i m i t a t i o n

t h e r i g h t s t o use , copy , modify , merge , p u b l i s h , d i s t r i b u t e , s u b l i c e n s e ,

and / or s e l l c o p i e s o f t h e S o f t wa r e , and t o p e r m i t p e r s o n s t o whom t h e S o f t w a r e

i s f u r n i s h e d t o do so , s u b j e c t t o t h e f o l l o w i n g c o n d i t i o n s :

The above c o p y r i g h t n o t i c e and t h i s p e r m i s s i o n n o t i c e s h a l l be i n c l u d e d

i n a l l c o p i e s or s u b s t a n t i a l p o r t i o n s o f t h e S o f t w a r e .

THE SOFTWARE IS PROVIDED ”AS IS ” , WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED , INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.

IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY , WHETHER IN AN ACTION OF CONTRACT,

TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE

OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

from a s t a r g r i d import AStarGrid , AStarGridNode

from i t e r t o o l s import product

#from random import r a n d i n t

#o b s t a c l e s = [] ;

84

def make graph (width , h e i g h t) :

nodes = [[AStarGridNode (x , y , 0) for y in range (h e i g h t)] for x in range (width)]

claw nodes

nodes [2] [4] = AStarGridNode (2 , 4 , 2)

nodes [2] [5] = AStarGridNode (2 , 5 , 2)

nodes [3] [3] = AStarGridNode (3 , 3 , 2)

nodes [3] [4] = AStarGridNode (3 , 4 , 2)

nodes [4] [2] = AStarGridNode (4 , 2 , 2)

nodes [4] [3] = AStarGridNode (4 , 3 , 2)

nodes [4] [7] = AStarGridNode (4 , 7 , 2)

nodes [5] [2] = AStarGridNode (5 , 2 , 2)

nodes [5] [3] = AStarGridNode (5 , 3 , 2)

nodes [5] [6] = AStarGridNode (5 , 6 , 2)

nodes [5] [7] = AStarGridNode (5 , 7 , 2)

nodes [6] [2] = AStarGridNode (6 , 2 , 2)

nodes [6] [3] = AStarGridNode (6 , 3 , 2)

nodes [6] [4] = AStarGridNode (6 , 4 , 2)

nodes [6] [5] = AStarGridNode (6 , 5 , 2)

nodes [6] [6] = AStarGridNode (6 , 6 , 2)

nodes [6] [7] = AStarGridNode (6 , 7 , 2)

nodes [7] [2] = AStarGridNode (7 , 2 , 2)

nodes [7] [3] = AStarGridNode (7 , 3 , 2)

nodes [7] [4] = AStarGridNode (7 , 4 , 2)

nodes [7] [5] = AStarGridNode (7 , 5 , 2)

graph = {}

for x , y in product (range (width) , range (h e i g h t)) :

node = nodes [x] [y]

graph [node] = []

for i , j in product ([−1 , 0 , 1] , [−1 , 0 , 1]) :

i f not (0 <= x + i < width) :

continue

i f not (0 <= y + j < h e i g h t) :

continue

graph [nodes [x] [y]] . append (nodes [x+i] [y+j])

return graph , nodes

graph , nodes = make graph (1 0 , 10)

paths = AStarGrid (graph)

s t a r t , end = nodes [8] [1] , nodes [5] [4]

print ’ s t a r t node : %s , %s ’ % (s t a r t . x , s t a r t . y)

print ’ end node : %s , %s ’ % (end . x , end . y)

path = paths . s e a r c h (s t a r t , end)

i f path i s None :

print ”No path found ”

e l s e :

print ” Path found : ”

for node in path :

print node . x , node . y

F.2 astar grid.py

85

from a s t a r import AStar , AStarNode

from math import s q r t

c l a s s AStarGrid (AStar) :

def h e u r i s t i c (s e l f , node , s t a r t , end) :

return s q r t ((end . x − node . x)∗∗2 + (end . y − node . y)∗∗2)

c l a s s AStarGridNode (AStarNode) :

def i n i t (s e l f , x , y , roughness) :

s e l f . x , s e l f . y , s e l f . roughness = x , y , roughness

super (AStarGridNode , s e l f) . i n i t ()

def move cost (s e l f , o t h e r) :

i f (o t h e r . roughness == 0) :

return 1

e l i f (o t h e r . roughness == 1) :

return 2 . 3

e l s e :

return 100

F.3 astar.py

c l a s s AStar (o b j e c t) :

def i n i t (s e l f , graph) :

s e l f . graph = graph

def h e u r i s t i c (s e l f , node , s t a r t , end) :

ra is e NotImplementedError

def s e a r c h (s e l f , s t a r t , end) :

openset = s e t ()

c l o s e d s e t = s e t ()

c u r r e n t = s t a r t

openset . add (c u r r e n t)

while openset :

c u r r e n t = min (openset , key=lambda o : o . g + o . h)

i f c u r r e n t == end :

path = []

while c u r r e n t . parent :

path . append (c u r r e n t)

c u r r e n t = c u r r e n t . parent

path . append (c u r r e n t)

return path [: : −1]

openset . remove (c u r r e n t)

c l o s e d s e t . add (c u r r e n t)

for node in s e l f . graph [c u r r e n t] :

i f node in c l o s e d s e t :

continue

i f node in openset :

new g = c u r r e n t . g + c u r r e n t . move cost (node)

i f node . g > new g :

node . g = new g

node . parent = c u r r e n t

e l s e :

node . g = c u r r e n t . g + c u r r e n t . move cost (node)

node . h = s e l f . h e u r i s t i c (node , s t a r t , end)

node . parent = c u r r e n t

86

openset . add (node)

return None

c l a s s AStarNode (o b j e c t) :

def i n i t (s e l f) :

s e l f . g = 0

s e l f . h = 0

s e l f . parent = None

def move cost (s e l f , o t h e r) :

ra is e NotImplementedError

87

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Introduction
	Hybrid Modes: An Optimization Approach
	The Legs vs. Wheels Tradeoff
	Prior Work
	Non-Integrated Designs
	Integrated Designs

	MARVIN

	Mechanical Design Analysis
	Retractable Leg Length
	Leg-Assisted Climbing
	Leg Mode Dynamics
	``Walking"
	Forces and Reference Frames
	Single Stride Dynamics
	Pivot Leg Transition
	Trajectory

	Torque Requirements
	Inner Motor
	Outer Motor

	MARVIN Parameters

	Control System
	DC Motor Model
	Equation of Motion
	Transfer Function

	Controller Design
	Network Level Control
	Motor Level Control

	Real Systems Implementation
	Motor Saturation and Integrator Anti-Windup
	Digital Control

	Electronics
	Wireless Communication
	Power Analysis
	Loads
	Batteries

	Motors
	Arduino Microprocessor
	Sensors

	Experimental Procedure
	Methods
	Controlled Environment
	Data
	Artificial Terrain
	Natural Terrain

	Analysis
	Power Consumption
	Stability
	Speed
	Climbing Ability

	Cost Based Mode Selection

	Least-Cost Hybrid Paths
	Hybrid Global Path Planning
	A* with Hybrid Costs
	Discussion

	Future Work and Improvements
	Design Improvements
	Scaling Considerations

	Conclusion
	 Motor Constants
	Manufacturing
	Wheel Module
	Gears and Gearbox
	Chassis

	Electronics Schematic
	Parts List
	Arduino Code
	MotorController.ino
	VexMotor.h
	VexMotor.cpp

	A* Code
	example_grid.py
	astar_grid.py
	astar.py

