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ABSTRACT

Wide-angle synthetic aperture radar imaging presents numerous
challenges, but also opportunities to extract object-level infor-
mation. We present a methodology using an overcomplete dic-
tionary and sparsifying regularization to characterize anisotropy
(aspect-dependent scattering amplitude), and migration (aspect-
dependent scattering center spatial location), into the image for-
mation process. We also introduce regularization terms in the
normal parameter space of the Hough transform that favor so-
lutions with sparsity along a line and consequently parsimony
in the representation of glint anisotropy. The characterization
of scatterer migration directly gives information about size and
shape of objects in the spatial domain and such information can
also be inferred from the parsimonious representations we ex-
tract for glint-type scattering.

1. INTRODUCTION

The ultimate goal in imaging is understanding what is out in the
scene being observed. First steps towards this goal include the col-
lection of measurements and the formation of imagery from those
measurements. In synthetic aperture radar (SAR) imaging, data
collected over wide-angle apertures permits, in principle, the re-
construction of images with high cross-range resolution. However,
conventional SAR image formation techniques, such as the polar
format algorithm [1], do not account for certain physical phenom-
ena that arise in wide-angle imaging, leading to inaccurate scatter-
ing estimates. In addition, conventional techniques do not extract
all possible information from SAR measurements that could be
used in higher level scene understanding tasks. In this paper, we
propose methods that mitigate these shortcomings of conventional
image formation techniques.

In spotlight-mode SAR, measurements are acquired using a
radar set mounted on an aircraft. As the aircraft proceeds along its
flight path, the radar is continually steered so that it illuminates the
same ground patch from all aspect angles of data collection. Re-
cent advances in navigation and avionics technologies now allow
long flight paths, or wide-angle apertures. However, dependence
of scattering behavior on aspect angle, termed anisotropy, becomes
an issue because objects are viewed from different sides rather
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than from nearly the same point of view. For example, a mirror or
flat metal sheet may reflect strongly when viewed straight on, but
barely reflect at all from an oblique angle. This is in opposition to
narrow-angle imaging, where it is a fairly reasonable assumption
that scattering amplitude is constant over the aperture. In addition,
certain scattering mechanisms, such as tophats and cylinders, ap-
pear to migrate or move in their spatial location as a function of
aspect angle with wide-angle apertures [2].

There are various approaches for anisotropy characterization
including parametric methods [3, 4, 5] and methods based on sub-
aperture analysis, in which the full collection of SAR measure-
ments is divided into smaller segments covering only parts of the
wide-angle aperture and a different image is formed for each sub-
aperture [6, 7, 8]. In our previous work, we developed a method
for joint image formation and anisotropy characterization based on
an overcomplete dictionary and sparsifying regularization [9]. The
characterization of migratory scattering has not been given much
heed in previous work. In the first part of this paper, we extend our
overcomplete dictionary for characterizing anisotropy to account
for migratory scattering.

Non-migratory scattering exhibits an interesting relationship
between anisotropy and physical extent in the spatial domain. Scat-
tering response over only a very small range of aspect angles,
known as glint or flash, arises from long, flat plates, and the thinner
the anisotropic response, the longer the spatial extent of the plate.
The aspect angle of the glint is also the orientation of the object in
space. In the second part of the paper, utilizing Hough transform
properties, we introduce new regularization terms to favor solu-
tions that concentrate the representation of glint anisotropy across
a spatially distributed area into a single scatterer.

2. SAR OBSERVATION MODEL WITH ANISOTROPIC
AND MIGRATORY SCATTERING

The response to radar illumination by the ground patch being ob-
served may be expressed as a complex-valued scattering function
s(x, y), wherex andy are coordinates on the ground. It is this
s(x, y) that conventional image formation techniques attempt to
recover. With anisotropy, the scattering function also depends on
aspect angleθ, and is thuss(x, y, θ). At typical operating frequen-
cies of SAR, it is a reasonable assumption that scattering comes
from a discrete set of points rather than a continuous field [10].
Measurements are obtained in what is known as the phase history
domain. Setting aside migratory scattering in this preliminary ex-
position, withP point-scatterers the measurements and scattering



function are related by the following expression:

r (f, θ) =

PX
p=1

s (xp, yp, θ) e−j 4πf
c (xp cos θ+yp sin θ), (1)

wherec is the speed of propagation andf is frequency. Measure-
ments are discrete, atN anglesθn andK frequenciesfk.

Another domain in which SAR data may be viewed is the
range profile domain. The phase history domain and range pro-
file domain are related by a one-dimensional Fourier transform;
ideally, the range profile expression is:

R̂ (ρ, θ) =

PX
p=1

s (xp, yp, θ) δ (ρ− xp cos θ − yp sin θ) , (2)

whereρ parameterizes distance along the line of sight of the radar
at aspect angleθ, but because measurements are at a finite set of
frequenciesfk within a certain frequency band, there are sidelobe
effects. For a single point-scatterer, ideally the range profile is
non-zero on a sinusoidρ(θ) = x0 cos θ + y0 sin θ.

Now, let us consider migratory scattering. Migration occurs
when radar pulses bounce back from the closest surface of a phys-
ical object, but the closest surface of the object is different from
different viewing angles; the physical object is not really mov-
ing, but appears to move in the measurement domain. For the
moment restricting ourselves to migration around a circle with
center(xc, yc) and radiusR0, which could be due to a cylin-
der or tophat, we note that the point on the circle at angleθ is
(xc − R0 cos θ, yc − R0 sin θ). Thus, the sinusoid expression
changes to:

ρ(θ) = (xc −R0 cos θ) cos θ + (yc −R0 sin θ) sin θ

= xc cos θ + yc sin θ −R0. (3)

Another way to come upon this expression is to consider the fact
that at all aspect angles, the surface of the circle is closer to the
radar byR0 than the center. For any general convex shape of mi-
gration, the formxc cos θ + yc sin θ −R(θ) is taken.

In discussing stationary scattering centers, the spatial location
(xp, yp) and the scattering centerp are synonymous. However,
care must be taken when discussing migratory scattering centers
— some invariant location(x̄p, ȳp) is needed to discuss the func-
tion s(x̄p, ȳp, θ) for example. We take this invariant spatial lo-
cation(x̄p, ȳp) to be the location the scattering center appears at
whenθ = 0. Whenθ = 0, x̄ = xc − R(0) andȳ = yc, leading
to the following expression for phase history with migratory point
scatterers:

r (f, θ) =

PX
p=1

s (x̄p, ȳp, θ) e−j 4πf
c ((x̄p+Rp(0)) cos θ+ȳp sin θ−Rp(θ)). (4)

3. OVERCOMPLETE DICTIONARY AND SPARSIFYING
REGULARIZATION FORMULATION

The approach we followed in [9] for anisotropy characterization
was to construct an overcomplete expansion of aspect-dependent
scattering withM > N atoms per spatial location. We extend that
approach here by takingLM atoms per spatial location, where

we do a further expansion in radius of migration withL different
values for the radius. (We have once again restricted ourselves to
the important case of migration in a circle.)

Specifically, we havePLM coefficientsap,l,m and the over-
complete expansion in the phase history domain is as follows:

r (f, θ) =

PX
p=1

LX
l=1

MX
m=1

ap,l,mbm (θ) e−j 4πf
c ((x̄p+Rl) cos θ+ȳp sin θ−Rl).

(5)

Thebm(θ) represent different persistence widths and center angles
of contiguous intervals of anisotropy; more details may be found
in [9]. Making the appropriate definitions, the expansion into the
overcomplete dictionary can be expressed as:

r (f, θ) =

PX
p=1

LX
l=1

MX
m=1

ap,l,mφp,l,m (θ) . (6)

Each atomφp,l,m(θ) corresponds to a different invariant spatial
location, different radius of migration, and different anisotropy.
By appropriately stacking the phase history measurements into an
NK × 1 vectorr, concatenating all of the atoms into anNK ×
LMP matrixΦ, and taking the coefficients as anLMP×1 vector
a, we can also write the overcomplete expansion asr = Φa. The
anisotropy and migration characterization problem is thus reduced
to solving the inverse problemr = Φa for the coefficient vector
a.

SinceΦ is overcomplete, we have an underdetermined set of
linear equations and the solution is not unique. However, the dic-
tionary is designed such that a sparse collection of atoms approx-
imates commonly encountered scattering behaviors well. Thus,
from the infinite subspace of solutions, we favor those solutionsa
that are sparse, i.e. having mostly zero coefficients and a few non-
zero coefficients, through a sparsifying regularization approach.

The optimally sparse solution is the solution with the mini-
mum `0-norm, as thè 0-norm simply counts the number of non-
zero entries in a vector; however, finding this sparsest solution is
a combinatorial optimization problem in general. The approach
we take instead is to minimize a regularization cost function of the
form:

J (a) = ‖r−Φa‖2
2 + α ‖a‖k

k , 0 < k < 1, (7)

for which efficient optimization techniques exist [11, 9]. The first
term is for data fidelity and the second term is for sparsity, with
the tradeoff being controlled by the regularization parameterα;
we usek = 0.1 for the norm in the remainder of this paper.

Let us now consider an example that shows the use of the over-
complete dictionary and sparsifying regularization formulation to
characterize both anisotropy and migration within SAR image for-
mation. There is one scattering center in the scene, i.e.P = 1,
with N = 15 angle samples equally-spaced over a14◦ aperture.
The scatterer has a certain anisotropy and has circular migration
with radius0.6 meters. The overcomplete dictionary hasL = 5
radii, with theRl being0, 1

4
, 1

2
, 3

4
, and1 meters. These different

Rl are illustrated in Fig. 1 along with the true radius of migration
overlaid on an image of the scene formed by conventional process-
ing.

The inverse problem is solved withK = 5 frequencies 9.00
GHz, 9.49 GHz, 9.98 GHz, 1.05 GHz, and 1.10 GHz, by the quasi-
Newton optimization method of [11]. As a baseline for compari-
son, we also solve the inverse problem by least-squares, i.e. the
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Figure 1: Illustration of atoms of different radii of migration along
with true radius of migration, the circle with dots, overlaid on con-
ventionally formed image.
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Figure 2: Magnitude of coefficients in (a) least-squares solution
and (b) sparsifying regularization solution.

regularization parameterα = 0 in (7) and we take the minimum
norm solution given by(ΦHΦ)−1ΦHr. The coefficient magni-
tudes of the two solutions are shown in Fig. 2 as a stem plot; for
ease of interpretation, the coefficientsal corresponding to each of
the L = 5 different radii have been put into separate subplots.
Within each subplot, the different coefficients correspond to dif-
ferent types of anisotropy; the coefficients on the left correspond
to more isotropic scattering and those to the right, to thin, highly
anisotropic scattering. In the least-squares solution many coef-
ficients are non-zero in all of the different radii, whereas in the
sparse solution, two of the radii,R3 = 1

2
andR4 = 3

4
, have non-

zero coefficients corresponding to the true anisotropy. The true ra-
dius, 0.6, falls between1

2
and 3

4
, so the solution follows expected

behavior.
Through the use of atoms in our overcomplete dictionary that

correspond to migratory scattering centers, we are able to parsi-
moniously represent this phenomenon, and consequently model a
region in space rather than a single point or pixel because the area
covered by the migration is fully described by the atom. The so-

lution compactly represents the scatterer at the object level. Sim-
ilarly, we would like to find parsimonious representations for sta-
tionary scattering centers that cover extended regions in the spatial
domain. An approach proposed in the next section uses properties
of the Hough Transform.

4. REGULARIZATION IN HOUGH SPACE FOR
GLINT ANISOTROPY

Pixels may be treated as scattering centers, but this ignores the
fact that a single point scatterer may correspond to a spatially dis-
tributed scattering mechanism. One important type of scattering
behavior, glint, which comes from long, flat metal plates is non-
migratory, has very thin anisotropy, and corresponds to a line seg-
ment in image space oriented at the same angle as the center angle
of the anisotropy. A parsimonious representation ought to explain
scattering with a single scatterer rather than a collection of scat-
terers along a line. We extend the regularization cost function (7)
to favor sparsity along lines in addition to favoring sparsity among
atoms, making use of Hough transform properties and the geomet-
ric interpretation they lend.

The Hough transform, which is not a transform in the strict
sense, but a method in image analysis for detecting straight lines
in binary images [12], uses aρ-θ normal parameter space that is
directly related to the SAR range profile domain, given in expres-
sion (2). The normal parameterization uses the angle of a line’s
normalθ and its algebraic distanceρ from the origin of the image.
With x andy as coordinates in the image plane, the equation for a
line isx cos θ + y sin θ = ρ.

The parameter space, theρ-θ plane, and the image space, the
x-y plane, are related by the following properties: a point in im-
age space corresponds to a sinusoid in parameter space and a set
of points lying on the same line in image space corresponds to
a set of sinusoids that intersect at a common point in parameter
space. Also, a point in parameter space corresponds to a line in
image space and a set of points lying on the same sinusoidal curve
in parameter space correspond to a set of lines that intersect at a
common point in image space. The Hough transform method of
detecting straight lines makes use of these properties.

Let the binary image be such that the background is made up
of zero-valued pixels and lines of one-valued pixels. Parameter
space is gridded intoρ-θ cells and each one-valued pixel ‘votes’
for all cells along the sinusoid corresponding to that pixel. If many
one-valued pixels are along a common straight line, then their cor-
responding sinusoids will intersect in one parameter space cell.
With parameter space cells acting as accumulators of votes from
image domain pixels, a cell with a high count indicates a line in
image space. The approach has been extended with different pa-
rameters looking for different parameterized curves.

In [13], a Hough space sparsifying regularization approach
is employed to enhance and detect straight lines in positive real-
valued images by imposing sparsity when taking the image data
to theρ-θ plane. Parameter space cells with small counts are sup-
pressed and cells with large counts are enhanced; thus, non-line
features are suppressed and line features are enhanced in image
space, making the line detection problem painless. The goals in
this paper are different from those in [13] and consequently, the
regularization terms are of a different flavor as well: the Hough
transform conception of accumulators to detect lines is turned on
its head.

The idea is to have sparsity in each cell of theρ-θ plane rather



than having sparsity among cells. As points on a line in the image
domain transform to sinusoids coincident at a point in the range
profile domain, sparsity among scatterers in individualρ-θ cells
achieves the goal of sparsity among points on a line. This qualita-
tive description is translated into mathematical terms in the sequel.

The regularization costJ(a) is a function of the coefficient
vectora; consequently, in order to work with range profiles, the
coefficients must be mapped to that domain first.P separate range
profile planes, coming from each of theP scatterers, are required
to achieve sparsity among the scatterers inρ-θ cells.

As mentioned in Sec. 2, the range profile domain and the phase
history domain are a single one-dimensional discrete Fourier trans-
form away from each other. Also, the overcomplete dictionaryΦ
is exactly the mapping from coefficients to the phase history do-
main. However, taking the coefficients through the overcomplete
dictionary inherently sums the contributions of each spatial loca-
tion coherently, which is undesirable when seeking to keep data
from theP scatterers separate. Hence, in mapping from coeffi-
cients to a set ofP range profile planes, a block diagonal matrixΦ̃
with Φp, submatrices containing atoms corresponding to spatial
locationp, on the diagonal is used in conjunction with a matrix
F, which is like a DFT matrix. The values are exactly those that
would appear in aK × K DFT matrix, but rearranged to fill an
NK by NK area and replicatedP times.

Additionally, to select data from a cell(ρ = ρk, θ = θn) in
the range profile domain, a matrixSk,n with P rows andNKP
columns composed of mostly zeroes andP ones is used. Specifi-
cally, Sk,n is defined as follows with entries indexed by rowi =
1, . . . , P , and columnj = 1, . . . , NKP :

(Sk,n)i,j =

(
1, j = (k − 1)N + n + (i− 1)NK

0, otherwise
. (8)

Thus, a lengthP vector of values for an individual range pro-
file cell (ρk, θn) is obtained by the multiplicationLk,na, where
Lk,n = Sk,nFΦ̃, and hasP rows andMP columns. TheLk,n

matrices need not be calculated through matrix multiplication; the
FΦ̃ product may be calculated analytically in a straightforward
manner based on the discrete Fourier transform of the atoms and
the operationSk,n simply involves extracting out the correct ele-
ments from the Fourier transform result.

It follows that for sparsity among scatterers in cell(ρk, θn), a
regularization term of the form‖|Lk,na|‖0.1

0.1 is used. Then, contin-
uing to maintain sparsity among atoms, the overall regularization
cost function including sparsity in all range profile cells is:

Jline (a) = ‖r−Φa‖2
2 + α0 ‖a‖0.1

0.1 + α1

KX
k=1

NX
n=1

‖|Lk,na|‖0.1
0.1,

(9)
where we have taken the regularization parameters for all cells to
be the same. This extended cost functionJline(a) may be mini-
mized using the quasi-Newton method of [11].

We now present an example that uses XPatch data of glint type
anisotropy and shows how the extended cost function with both
sparsifying terms, the original one and the new one, leads to a par-
simonious representation, whereas a cost with either of the sparsi-
fying terms alone with the data fidelity term does not. The scene
contains a single scatterer located at(0, 0) with aspect-dependent
scattering as shown in Fig. 3. There areN = 20 angles over a19◦

aperture centered around zero degrees. There is a spike in scatter-
ing response at5.5◦, which is the flash or glint. The figure shows
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Figure 3: True scattering magnitude of glint anisotropy from
XPatch data, with lines for ten different frequency measurements.

the magnitude of the scattering at ten different frequencies in this
XPatch data — since there is almost no frequency dependence, the
lines are nearly indistinguishable.

In a conventionally formed image using data with a bandwidth
of 2 GHz, Fig. 4, the glint shows up as a spread out line segment
oriented at5.5◦. From this image,P = 24 pixels are chosen as
spatial locations for joint anisotropy characterization and image
formation. The spatial locations range from− 9

90
m to− 1

90
m in

thex direction and from− 1
90

m to 2
90

m in they direction, with a
uniform pixel spacing of1

90
m in both directions.

Then, withK = 10 frequencies in the range 9.00 GHz to 9.14
GHz, the anisotropy is characterized with three different pairs of
values for the regularization parametersα0 andα1. The first set
of regularization parameters isα0 = 30 andα1 = 0, i.e. without
the extension to the cost function given in (9). The magnitudes of
the coefficients for the twenty-four spatial locations are plotted in
Fig. 5, arranged as in an image, and the scattering function mag-
nitudes for each of the spatial locations are given in Fig. 6, also
arranged as in an image. The anisotropy has been characterized
correctly, but split up and assigned to all of the spatial locations.
This solution is parsimonious in atoms per spatial location, but is
not parsimonious in the number of spatial locations used.

The second set of regularization parameters isα0 = 0 and
α1 = 20: just sparsity among spatial locations along a line. As
seen in Fig. 7, the solution in this case has non-zero coefficients at
just one spatial location. This spatial location is the closest among
all P = 24 spatial locations to(0, 0), the true location of the scat-
terer. However, there are many coefficients with large values, not
just one as in the previous case. The coefficients and correspond-
ing atoms are such that they add to match the true anisotropy well,
as seen in Fig. 8, but the representation is not parsimonious in
terms of atoms per spatial location.

The third set of parameters is chosen such that both sparsifying
terms in the regularization cost function are significant. Withα0 =
30, α1 = 20, the solution coefficient vector has only one non-zero
coefficient seen in Fig. 9. The coefficient corresponds to an atom
with a single non-zero angle sample, shown in Fig. 10, and is thus
parsimonious in both spatial locations and atoms.
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Figure 4: Conventionally formed image of glint anisotropy.

Figure 5: Solution coefficients withα0 = 30, α1 = 0.

Figure 6: Solution scattering magnitudes withα0 = 30, α1 = 0.

Figure 7: Solution coefficients withα0 = 0, α1 = 20.

Figure 8: Solution scattering magnitudes withα0 = 0, α1 = 20.

Figure 9: Solution coefficients withα0 = 30, α1 = 20.



Figure 10: Solution scattering magnitudes withα0 = 30, α1 =
20.

The original sparsifying regularization cost function has the
effect of favoring solutions with sparsity among spatial locations
because the vectora has coefficients associated with all spatial lo-
cations. The additional regularization terms of this section also
favor sparsity among spatial locations because spatial locations
along a line are general spatial locations as well. However, the
distinguishing characteristic of the additional regularization terms
is that the favored sparsity is specially adapted for the object-level
idea that individual point-scattering centers affect linear regions in
space.

Through the example it has been seen that both types of spar-
sity — sparsity among atoms and sparsity among spatial locations
along a line — are necessary in the regularization in order to re-
cover a solution that represents the scattering as coming from a
single point and with very thin anisotropy explained by a single
atom. With this representation, spatial properties about the object
being imaged, such as orientation and physical extent, may be in-
ferred; thin anisotropy corresponds to objects of large physical ex-
tent and wider anisotropy to objects with smaller physical extent.
Also, the center angle of anisotropy indicates orientation in the
spatial domain. Although the same object-level inferences could
have been made with theα1 = 0 solution, in that case,P such
objects would be indicated rather than one and havingP objects
all with large spatial extent almost on top of each other does not
make physical sense. Points have more meaning than just pixels
with aspect-dependent amplitudes.

5. CONCLUSION

We have extended our overcomplete dictionary formulation for
anisotropy characterization in SAR imaging to include atoms rep-
resenting migratory scattering. By doing so, we move beyond stan-
dard pixel-based imaging and are able to describe structures with
greater semantic meaning within the image formation process. We
are also able to find solutions with higher-level meaning in glint-
type stationary scattering through an extension to the sparsifying
regularization cost function with additional regularization terms
operating in Hough space. These object-level descriptions take us
a step farther in the scene understanding chain than conventional
image formation while also taking into account phenomena such
as anisotropy that cause inaccuracies in conventional methods.

As presented, our approach for the characterization of migra-
tion limits solutions to migration along a circle, which often arise
with tophats and cylinders. The approach can be further extended
to handle non-circular migration through the use of subapertures
— finding the best circle over a subaperture and then stitching to-
gether circular segments over the full wide-angle aperture. Also,
glint and sparsity among points on a line is just one imaging sce-
nario, but an important one; other extensions to the regularization
cost function for other scattering phenomena and objects may be
developed, either based on properties of the Hough normal param-
eter space or other parameter spaces and domains.
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