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Abstract— Resource management in distributed sensor net-
works is a challenging problem. This can be attributed to
the fundamental trade-off between the value of information
contained in a distributed set of measurements versus the energy
costs of acquiring measurements, fusing them into a model of un-
certainty, and transmitting the resulting model. Communications
is commonly the highest contributor among these costs, typically
by orders of magnitude. Failure to consider this trade-off can
significantly reduce the operational lifetime of a sensor network.
While a variety of methods have been proposed that treat a subset
of these issues, the approaches are indirect and usually consider
at most a single time step. In the context of object tracking
with a distributed sensor network we propose an approximate
dynamic programming approach which integrates the value of
information and the cost of transmitting data over a rolling time
horizon. We formulate this trade-off as a dynamic program, and
use an approximation based on a linearization of the sensor model
about a nominal trajectory to simultaneously find a tractable
solution to the leader node selection problem and the sensor
subset selection problem. Simulation results demonstrate that the
resulting algorithm can provide similar estimation performance
to that of the common most informative sensor selection method
for a fraction of the communication cost.

I. INTRODUCTION

Networks of intelligent sensors have the potential to pro-
vide unique capabilities for monitoring wide geographic areas
through the intelligent exploitation of local computation (so
called in-network computing) and the judicious use of inter-
sensor communication. In many sensor networks energy is a
dear resource to be conserved so as to prolong the network’s
operational lifetime. Additionally, it is typically the case that
the energy cost of communications is orders of magnitude
greater than the energy cost of local computation [1], [2].

Tracking moving objects is a common application in which
the quantities of interest (i.e., kinematic state) are inferred
largely from sensor measurements which are in proximity to
the object (e.g. [3]). Consequently, local fusion of sensor data
is sufficient for computing an accurate model of the object
state and associated uncertainty, as captured by the posterior
distribution. This property, combined with the need to conserve
energy, has led to a variety of approaches [4], [5] which
effectively designate the responsibility of computing the model
to one sensor node (referred to as the leader node) in the
network. Over time the leader node changes dynamically as

function of the kinematic state of the object. This leads to an
inevitable trade-off between the accuracy of the model, the
cost of acquiring measurements, and the cost of propagating
the model through the network. In this paper we examine
this trade-off in the context of object tracking in distributed
sensor networks. In doing so, we consider the aggregate cost
over a rolling time horizon using an approximate dynamic
programming approach. Our results show that, as compared
to pure information-driven approaches, comparable tracking
performance can be obtained at a fraction of the communica-
tions cost.

We consider a sensor network consisting of Ns sensors, in
which the sensing model is assumed to be such that the mea-
surement provided by the sensor is highly informative in the
region close to the node, and uninformative in regions far from
the node. For purposes of addressing the primary issue, trading
off energy consumption for accuracy, we restrict ourselves
to sensor resource planning issues associated with tracking a
single object. While additional complexities certainly arise in
the multi-object case (e.g. data association) they do not change
the basic problem formulation or conclusions.

If the energy consumed by sensing and communication was
unconstrained, then the optimal solution would be to collect
and fuse the measurements provided by all sensors in the
network. We consider a scheme in which, at each time step,
a subset of sensors is selected to take a measurement and
transmit to a sensor referred to as the leader node [4], which
fuses the measurements with the a priori model and tasks
sensors at the next time step. The questions which must be
answered by the controller are how to select the subset of
sensors at each point in time, and how to select the leader
node at each point in time.

The controller developed in Section III extends [6] by
utilizing multiple sensors at each time step rather than only
activating the leader node, incorporating a subgradient update
step to adapt the dual variable (Section III-H), and introducing
a heuristic cost-to-go in the terminal cost to avoid anomalous
behavior (Section III-I). Our formulation is closely related to
[7], and provides an approximation which extends the La-
grangian relaxation approach to problems involving sequential
replanning.



II. PROBLEM FORMULATION

The tracking problem naturally fits into the Bayesian state
estimation formulation, such that the role of the sensor network
is to maintain a representation of the probability distribution
of the object state (i.e., position, velocity, etc) conditioned on
the measurements.

A. Object dynamics and sensor models

In order to be concrete we now discuss specific object dy-
namics and sensor measurement models. However, we empha-
size that the underlying principles have general applicability.
Denoting xk as the state of the object (or ‘object state’) at
time k, we assume that object dynamics evolve according to
a linear Gaussian model:

xk+1 = Fxk + wk (1)

where wk ∼ N{wk;0,Q}1 is a white Gaussian noise process,
and F and Q are known matrices. For the simulations in this
paper, we track position and velocity in two dimensions (xk =
[px vx py vy]T ), where velocity is modelled as a random
walk with constant diffusion strength q (independently in each
dimension), and position is the integral of velocity. Denoting
the sampling interval as T , the corresponding discrete-time
model is:

F =




1 T 0 0
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0 0 1 T
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
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(2)

Denoting the measurement taken by sensor s ∈ S = {1 :
Ns} (where Ns is the number of sensors) at time k as zs

k, a
nonlinear measurement model is assumed:

zs
k = h(xk, s) + vs

k (3)

where vs
k ∼ N{vs

k;0,Rs} is a white Gaussian noise process,
independent of wk ∀ k and of vj

k, j �= s ∀ k. Rs is a
known matrix for each s, and h(·, s) is a known, vector-valued
function for each s. For the simulations in this paper, we set
the measurement model to a quasi-range measurement:

h(xk, s) =
a

||Lxk − ls||22 + b
(4)

where L is the matrix which extracts the position of the
object from the object state (such that Lxk is the location
of the object), and ls is the location of the s-th sensor. The
constants a and b can be tuned to model the signal-to-noise
ratio of the sensor, and the fall-off in the region close to the
sensor (allowing a saturation effect to be approximated). The
measurement has additive Gaussian noise as per Eq. (3), with
variance R. The information provided by the measurement
reduces as the range increases due to the nonlinearity.

1We use the notation wk ∼ N{wk;0,Q} as short-hand for
p(wk) = N{wk;0,Q}, where N{x; µ,P} = |2πP|− 1

2 exp{−0.5(x −
µ)T P−1(x− µ)}.

The measurement function h(·, s) has sufficient smoothness
that, in a small vicinity around a nominal point x0, it can be
approximated through a first-order Taylor series truncation as:

zs
k ≈ h(x0, s) + Hs(x0)(xk − x0) + vs

k (5)

Hs(x0) = ∇xh(x, s)|x=x0 (6)

The linearization of the model in Eq. (4) is:

Hs(x0) =
−2a

(||Lx0 − ls||22 + b)2
(Lx0 − ls)T L (7)

This specific model, which will be utilized in the simula-
tions in Section IV, has been specified for concreteness; we
reiterate that the approach described has general applicability.

B. Estimation

The motivation for sensor networks is to utilize many
small sensors with limited local sensing capability to provide
surveillance of a larger region. Because sensors focus on their
local region, the nonlinearity in a measurement model such
as the quasi-range measurement of Eq. (4) is significant, and
substantial multimodality can result. Accordingly, we utilize a
particle filter approximation for the dynamic state estimation,
whereby the Probability Density Function (PDF) of object
state xk conditioned on measurements received up to and
including time k, z0:k, is approximated through a set of Np

weighted samples:

p(xk|z0:k) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (8)

To calculate the same distribution at the next time step,
p(xk+1|z0:k+1), we utilize an approximate Sequential Im-
portance Sampling (SIS) algorithm [8] with resampling at
each step. Under this algorithm, for each previous sample
xi

k, we draw a new sample at the next time step, xk+1,
from the distribution q(xk+1|xi

k,zk+1) which results from
the linearization of the measurement model for zk+1 (Eq. (3))
about the point Fxi

k, as described in Eq. (5). This distribution
can be obtained using the extended Kalman filter equations:
the Dirac delta function δ(xk − xi

k) at time k will diffuse to
give:

p(xk+1|xi
k) = N (xk+1;Fxi

k;Q) (9)

at time (k + 1). This distribution can be updated using the
extended Kalman filter update equation [9] to obtain:

q(xk+1|xi
k,zk+1) = N (xk+1; x̂

i
k+1,P

i
k+1) (10)

where

x̂i
k+1 = Fxi

k + Ki
k+1[zk+1 − h(Fxi

k, s)] (11)

Pi
k+1 = Q − Ki

k+1H
s(Fxi

k)Q (12)

Ki
k+1 = Q{Hs(Fxi

k)}T ·
· [Hs(Fxi

k)Q{Hs(Fxi
k)}T + Rs]−1 (13)



A new particle xi
k+1 is drawn from the distribution in

Eq. (10), and weighted by wi
k+1, calculated by

wi
k+1 = cwi

k

p(zk+1|xi
k+1)p(xi

k+1|xi
k)

q(xi
k+1|xi

k,zk+1)
(14)

where c is the normalization constant necessary to en-
sure that

∑Np

i=1 wi
k+1 = 1, and p(zk+1|xi

k+1) =
N{zk+1;h(xi

k+1, s),R
s}. The resulting approximation for

the distribution of xk+1 conditioned on the measurements
z0:k+1 is:

p(xk+1|z0:k+1) ≈
Np∑
i=1

wi
k+1δ(xk+1 − xi

k+1) (15)

At any point time, a Gaussian representation can be
moment-matched to the particle distribution by calculating the
mean and covariance:

µk =
Np∑
i=1

wi
kxi

k, Pk =
Np∑
i=1

wi
k(xi

k − µk)(xi
k − µk)T (16)

C. Communications

We assume that any sensor node can communicate with
any other sensor node in the network, and that the cost of
these communications is known at every sensor node (although
in practice this will only be required within a small region
around each node). In our simulations, the cost of direct
communication between two nodes is modelled as being
proportional to the square distance between the two sensors:

C̃ij ∝ ||li − lj ||22 (17)

Communications between distant nodes can be performed
more efficiently using a multi-hop scheme, in which several
sensors relay the message from source to destination. Hence
we model the cost of communicating between nodes i and j,
Cij , as the length of the shortest path between i and j, using
the distances from Eq. (17) as arc lengths:

Cij =
nij∑
k=1

C̃ik−1ik
(18)

where {i0, . . . , inij
} is the shortest path from node i = i0

to node j = inij
. The shortest path distances can be calcu-

lated using any shortest path algorithm, such as deterministic
dynamic programming or label correcting methods [10]. We
assume that the complexity of the probabilistic model (i.e.,
the number of bits required for transmission) is fixed, such
that the energy required to communicate the model from node
i to node j is directly proportional to Cij . The ratio of the
number of bits in a measurement to the number of bits in
the probabilistic model is denoted as r, such that the energy
required to transmit a measurement from node i to node j
is rCij . These costs may be amended to incorporate the cost
of activating the sensor, taking the measurement, etc, without
changing the structure of the solution.

D. Sensor management

As discussed in Section I, the role of the sensor manager in
a sensor network tracking problem is to trade off estimation
performance against energy consumed in obtaining that perfor-
mance. The first task in optimizing the estimation performance
of a system is to decide upon an objective function which
measures that performance. Recent research [11], [12] has
demonstrated the effectiveness of conditional entropy as an
objective function. A common sensor management algorithm
(e.g. [4]) is to select as the new leader node lk the sensor
whose measurement minimizes the expected posterior entropy,
and activate only that sensor:

lk = arg min
l

H(xk|z0:k−1,z
l
k) (19)

where the conditional entropy is defined as: [13]

H(xk|z0:k−1,z
l
k) = −

∫
p(zl

k|z0:k−1)·∫
p(xk|z0:k−1,z

l
k)log p(xk|z0:k−1,z

l
k)dxkdzl

k (20)

The conditioning in Eq. (19) is on the value of the previous
measurements z0:k−1, and on the random variable correspond-
ing to the new measurement zl

k, implying marginalization
over all possible values of the measurement. The mutual
information between the object state xk and measurement zl

k

conditioned on the previous measurement history is defined as
[13]:

I(xk;zl
k|z0:k−1) = H(xk|z0:k−1) − H(xk|z0:k−1,z

l
k)

= H(zl
k|z0:k−1) − H(zl

k|xk) (21)

Since the first term of the first form in Eq. (21) is independent
of the control decision (l), it is clear that minimization of
expected conditional entropy is equivalent to maximization of
mutual information [14]. The latter form, which is equivalent,
sometimes leads to a more efficient implementation.

Sensor management strategies which select the action that
minimizes the conditional entropy or that maximizes the
mutual information over the next time step are sometimes
referred to as greedy or myopic. Situations can arise (e.g., [15])
in which alternative strategies have poorer performance in the
next time step but better performance over several time steps.
In practice, greedy schemes have been seen to provide good
performance when estimation quality is the only objective.
When energy is limited, it must also be incorporated into the
objective, necessitating additional planning.

Another intuitive heuristic approach is to select as the new
leader node the sensor whose expected distance (according to
some norm) to the object is minimized:

lk = arg min
l

E
xk|z0:k−1

{||Lxk − ll||22} (22)

One would expect this scheme to result in a reasonably small
communication cost, as the active leader node will roughly
follow the object trajectory, although this may come at the
cost of poorer tracking performance, since the geometry of
sensor observations is not considered.



III. CONSTRAINED DYNAMIC PROGRAMMING

FORMULATION

As discussed in Section II-D, the sensor network object
tracking problem involves an inherent trade-off between per-
formance and energy expenditure. One way of incorporating
both estimation performance and communication cost into an
optimization procedure is to optimize one of the quantities
subject to a constraint on the other. In the development which
follows, we provide a framework which can be used to either
maximize the information obtained from the measurements
chosen subject to a constraint on the expected communication
cost, or to minimize the communication cost subject to a
constraint on the estimation quality. This can be formulated
as a constrained Markov Decision Process (MDP) [7], [16].
Similarly to imperfect state information problems [10], the
dynamic programming state is the PDF of object state con-
ditioned on previous controls and measurements. Throughout
the following, we denote the conditional belief state as Xk �
p(xk|z0:k−1);2 the decision state at time k will consist of Xk,
augmented with the leader node at the previous time step,
lk−1. The control at each time is denoted as uk = (lk,Sk),
where lk ∈ S is the leader node at time k and Sk ⊆ S is the
subset of sensors activated at time k (this departs from [6],
which activates only the leader node at each time step).

A. Constrained communication formulation

Following the discussion in Section II-D, we utilize mutual
information as our objective, and define the per-stage cost:

g(Xk, lk−1, uk) = −I(xk;zSk

k |z0:k−1) (23)

= −
|Sk|∑
j=1

I(xk;zSj
k

k |z0:k−1,z
S1:j−1

k

k ) (24)

where Sj
k is the j-th element of Sk and S1:j−1

k is the set
containing the first (j − 1) elements of Sk. The dynamic pro-
gram for minimizing Eq. (23) over the N -step rolling horizon
{k : k +N −1} subject to a communication constraint can be
described by the following recursive cost-to-go function:

Ji(Xi, li−1) = min
ui

{
g(Xi, li−1, ui)+ E

Xi+1|Xi,ui

Ji+1(Xi+1, li)
}

(25)
for i ∈ {k : k + N − 1}, terminated by
Jk+N (Xk+N , lk+N−1) = 0, subject to the communication
constraint:

G(Xk, lk−1) = E




k+N−1∑
i=k


Cli−1li +

∑
j∈Si

rClij


 − Cmax




≤ 0 (26)

The belief state at the next time Xi+1 is calculated using
the recursive Bayes update described in Section II-B. The

2Conditioning on previous control decisions is assumed throughout. In
contrast to the convention of [10], the measurements at time k, z

Sk
k , are

received after the control at time k, uk , has been applied, and the distribution
p(z

Sk
k |xk, uk) depends upon the value of the control applied at time k.

expectation in the communication constraint of Eq. (26) is
over the values of future measurements, noting that the future
control decisions ul depend on the values of the measure-
ments received in the interim. To address the inequality
constraint, we introduce a Lagrange multiplier λ and solve the
dual problem J̄k(Xk, lk−1) = maxλ≥0 J̄k(Xk, lk−1, λ), where
J̄k(Xk, lk−1, λ) is the Lagrangian, which incorporates the orig-
inal dynamic program, plus the constraint term λG(Xk, lk−1).
The dynamic programming cost recursion of Eq. (25) consists
of a sequence of nested expectations and minimizations; when
we integrate the constraint into the recursion, each term of the
summation must fall inside the corresponding nesting. A form
which achieves this, and leads to an efficient approximation,
is to integrate the cost elements into the per-stage cost:

ḡ(Xk, lk−1, uk, λ)

= g(Xk, lk−1, uk) + λ


Clk−1lk +

∑
j∈Sk

rClkj


 (27)

The recursion then follows a form identical to Eq. (25)
using the modified stage cost of Eq. (27), terminated by
J̄k+N (Xk+N , lk+N−1, λ) = −λCmax.

B. Constrained entropy formulation

The formulation above provides a means of optimizing the
information obtained subject to a constraint on the communi-
cation energy expended; there is also a closely-related formu-
lation which optimizes the communication energy subject to a
constraint on the object entropy. We commence by formulating
a constraint on the joint entropy of the state of the object at
each time in the planning horizon:

G(Xk, lk−1) = E {H(xk:k+N−1|z0:k+N−1) − Hmax} ≤ 0
(28)

Manipulating this expression using Eq. (21), we obtain

G(Xk, lk−1) =

− E




k+N−1∑
i=k

|Si|∑
j=1

I(xi;z
Sj

i
i |z0:i−1,z

S1:j−1
i

i ) − Imin


 (29)

where Imin = H(xk:k+N−1|z0:k−1) − Hmax. Following the
same procedure as described previously, the elements of the
information constraint in Eq. (29) can be integrated into the
per-stage cost (cf Eq. (27)), resulting in a formulation which
is identical to the previous one, except that the Lagrange
multiplier is on the mutual information terms, rather than the
communication cost terms.

C. Subgradient optimization

Conceptually, the dual problems in Section III-A and Sec-
tion III-B can be solved using a subgradient method [17]. The
following expression can be seen to be a subgradient of the
dual objective:

∂J̄k(Xk, lk−1, λ) 	
{

0, λ = 0, G(Xk, lk−1) ≤ 0
G(Xk, lk−1), otherwise

(30)



where ∂J̄k(Xk, lk−1, λ) is the subdifferential with respect to λ
(i.e., the set of subgradients). The subgradient method operates
according to the same principle as a gradient search, iteratively
stepping in the direction of a subgradient with a decreasing
step size. The practical implementation of the method is
discussed in Section III-H.

The optimization of the dual problem provides a lower
bound to the minimum value of the original constrained
problem; the presence of a duality gap is possible since
the optimization space is discrete. The dual problem is the
Lagrangian relaxation of the original constrained optimization,
which is a common approximation method for discrete opti-
mization problems.

The constrained dynamic program described above has
an infinite state space (the space of probability distributions
over object state), hence it cannot be evaluated exactly. The
following sections describe a series of approximations which
are utilized to obtain a practical implementation.

D. Evaluation through Monte Carlo simulation

Conceptually, the dynamic program of Eq. (25) could be
approximated by simulating sequences of measurements for
each possible sequence of controls. There are Ns2Ns pos-
sible controls at each time step, corresponding all possible
selections of leader node and subsets of sensors to activate.
The complexity of the simulation process is formidable: to
evaluate J̄k(Xk, lk−1, λ) for a given DP state and control,
we draw a set of Np samples of the set of measurements
zSk

k from the distribution p(zSk

k |z0:k−1) derived from Xk,
and evaluate the cost-to-go one step later J̄k+1(Xk+1, lk, λ)
corresponding to the DP state resulting from each set of
measurements. The evaluation of each cost-to-go one step
later will yield the same branching. A tree structure develops,
where for each previous leaf of the tree, Ns2NsNp new leaves
(samples) are drawn, such that the computational complexity
increases as O(Ns

N2NsNNp
N ) as the tree depth N (i.e.,

the lookahead length) increases. Such an approach quickly
becomes intractable even for a small number of possible
controls (Ns) and simulated measurement samples (Np), hence
we seek to exploit additional structure in the problem to find
a computable approximate solution.

E. Linearized Gaussian approximation

If the dynamics and measurement models were linear and
Gaussian, then the problem would be substantially easier.
The mutual information objective of a Gaussian PDF relates
directly to its variance: if a linear measurement model holds:

zSk

k = HSk

k xk + vSk

k (31)

and the a priori distribution of xk is N{xk;µk,Pk}, then
from Eq. (21):

I(xk;zSk

k |z0:k−1) = H(zSk

k |z0:k−1) − H(zSk

k |xk)

Noting that zSk

k |xk ∼ N (zSk

k ;HSk

k xk,RSk), we have:

H(zSk

k |xk) = 1
2 log |2πeRSk | (32)

Similarly, with the linear measurement model, zSk

k |z0:k−1 ∼
N (zSk

k ;HSk

k µk,HSk

k PkH
Sk

k

T
+ RSk) [18], thus

H(zSk

k |z0:k−1) = 1
2 log |2πe(HSk

k PkH
Sk

k

T
+ RSk)| (33)

Collecting results, we obtain

I(xk;zSk

k |z0:k−1) = 1
2 log [|HSk

k PkH
Sk

k

T
+ RSk |/|RSk |]

(34)
Combining this with the result that the a posteriori covariance
in a Kalman filter is independent of the measurement value,
we see that future rewards depend only on the value of the
control chosen (impacting HSk

k and RSk , and hence the a
posteriori covariance), and that they are invariant to the values
of the measurements which result from applying the controls.
Accordingly, the growth of the tree discussed in Section III-D
is reduced to O(Ns

N2NsN ) with the horizon length N , rather
than O(Ns

N2NsNNp
N ).

While this is a useful result, its applicability to this problem
is not immediately clear, as the measurement model of interest
is non-linear, as discussed in Section II-A. However, let us
suppose that the measurement model can be approximated by
linearizing about a nominal state trajectory. If the strength
of the dynamics noise is relatively low and the planning
horizon length is relatively short (such that deviation from
the nominal trajectory is small), then such a linearization
approximation may provide adequate fidelity for planning of
future actions (this approximation is not utilized for inference:
the SIS algorithm of Section II-B is used with the nonlinear
measurement function to maintain the probabilistic model). To
obtain the linearization, we suppose that the a priori distribu-
tion of object state at time k is N (xk;µk,Pk); in practice we
moment-match a Gaussian distribution to the current particle
distribution through Eq. (16). We then calculate the nominal
trajectory as the mean at each of the following N steps:

x0
k = µk (35)

x0
i = Fx0

i−1, i ∈ {k + 1 : k + N − 1} (36)

Subsequently, the measurement model of Eq. (3) is approx-
imated using Eq. (5) where the linearization point at time i
is x0

i . This well-known approximation is referred to as the
linearized Kalman filter [9]. The controller which results has
a structure similar to the Open Loop Feedback Controller
(OLFC) [10]: at each stage a plan for the next N time steps is
generated, the first step of the plan executed, and then a new
plan for the following N steps is generated, having relinearized
after incorporating the newly received measurements.

A significant horizon length is required in order to provide
an effective trade-off between communication cost and infer-
ence quality, since many time steps are required for the long-
term communication cost saved and information gained from
a leader node change to outweigh the immediate communica-
tion cost incurred. While the linear Gaussian approximation
eliminates the O(Np

N ) factor in the growth of computational
complexity with planning horizon length, the complexity is
still exponential in both time and the number of sensors, grow-
ing as O(Ns

N2NsN ). The following two sections describe two



tree pruning approximations we introduce to obtain a tractable
implementation.

F. Greedy sensor subset selection

To avoid the combinatorial complexity associated with
optimization over subsets of sensors, we break each decision
stage into a number of substages, indexed by i′. The control
choices at each substage are to select another (previously
unselected) sensor, or to terminate with the current set of
selections (similar to the generalized stopping problem [10]).
The DP recursion becomes:

J̄i(Xi, li−1, λ) = min
li

{λCli−1li + J̄i,0(Xi, li, {∅}, λ)} (37)

where

J̄i,i′(Xi, li,Si,i′ , λ) = min
{

E
Xi+1|Xi,Si,i′

J̄i+1(Xi+1, li, λ),

min
si,i′∈S\Si,i′

{ḡ(Xi, li,Si,i′ , si,i′ , λ)

+ J̄i,i′+1(Xi, li,Si,i′ ∪ si,i′ , λ)}
}

(38)

and the substage cost ḡ(Xi, li,Si,i′ , si,i′ , λ) is

ḡ(Xi, li,Si,i′ , si,i′ , λ) = λrClisi,i′ −I(xi;z
si,i′
i |z0:i−1,z

Si,i′
i )
(39)

While this formulation is algebraically equivalent to the one
described previously, it is in a form which is more suited
to approximation. Namely, the substage optimization may
be performed using a greedy method, in which, at each
stage, if there is no sensor si,i′ for which the substage cost
ḡ(Xi, li,Si,i′ , si,i′ , λ) ≤ 0, then we progress to the next
stage; otherwise the sensor si,i′ with the lowest substage cost
is added. The dissemination of the constraint terms of the
Lagrangian into the per-stage and per-substage cost allows the
greedy approximation to be used in a way which trades off
estimation quality and communication cost.

The worst-case complexity of this algorithm is O(N2
s ). In

practice, the set of sensors from which the subset selection
is performed would be limited to sensors close to the object,
reducing computational complexity when dealing with large
networks.

G. n-Scan pruning

The algorithm described above is embedded within a
slightly less coarse approximation for leader node selection,
which incorporates costs over multiple time stages. This
approximation operates similarly to the n-scan pruning algo-
rithm, commonly used to control computational complexity
in the Multiple Hypothesis Tracker [19]. Setting n = 1, the
algorithm commences by calculating the above greedy sensor
subset selection for each candidate leader node (the set of
candidate leader nodes would, in practice, be limited to sensors
close to the object, similar to the sensor subset selection). The
sensor selections for each leader node are then extended with
each candidate leader node at the following time step. All
sequences ending with each new candidate leader node are

...
...

...

l1k l2k l3k

l1k+1 l2k+1 l3k+1

l1k+2 l2k+2 l3k+2

G

G G G

G G

Fig. 1. Tree structure for n-scan pruning algorithm with n = 1. At each
stage new leaves are generated extending each remaining sequence with using
each new leader node. Subsequently, all but the best sequence ending with
each leader node is discarded (marked with ‘×’), and the remaining sequences
are extended using greedy sensor subset selection (marked with ‘G’).

compared, the one with the lowest cost value is kept, and the
other sequences are discarded. Thus, at each stage, we keep the
best control trajectory which ends with each sensor as leader
node. Using such an algorithm, the tree width is constrained
to the number of sensors, and the computational complexity is
O(NNs

3). The resulting tree structure is illustrated in Fig. 1.
Because the communication cost structure is Markovian

(i.e., the communication cost of a particular future control
trajectory is unaffected by the control history given the current
leader node), it is captured perfectly by this model. The
information reward structure, which is not Markovian, is
approximated using the greedy method.

H. Sequential subgradient update

The previous two sections provide an efficient algorithm
for generating a plan for the next N steps given a particular
value of the dual variable λ. Substituting the resulting plan
into Eq. (30) yields a subgradient which can be used to update
the dual variables (under the linear Gaussian approximation,
feedback policies correspond to open loop plans, hence the
argument of the expectation in G(Xk, lk−1) is deterministic).
A full subgradient implementation would require evaluation
for many different values of the dual variable at each time step,
which is undesirable since each evaluation incurs a substantial
computational cost.3 Since the planning is over many time
steps, in practice the level of the constraint (i.e., the value
of G(Xk, lk−1)) will vary little between time steps, hence
the slow adaptation of the dual variable provided by a single
subgradient step in each iteration may provide an adequate
approximation.

In the experiments which follow, at each time step we plan
using a single value of the dual variable, and then update it
for the next time step utilizing either an additive update:

λk+1 =

{
min{λk + γ+, λmax}, G(Xk, lk−1) > 0
max{λk − γ−, λmin}, G(Xk, lk−1) ≤ 0

(40)

or a multiplicative update:

λk+1 =

{
min{λkβ+, λmax}, G(Xk, lk−1) > 0
max{λk/β−, λmin}, G(Xk, lk−1) ≤ 0

(41)

3The rolling horizon formulation necessitates reoptimization of the dual
variable at every time step, as opposed to [7].



where γ+ and γ− are the increment and decrement sizes,
β+ and β− are the increment and decrement factors, and
λmax and λmin are the maximum and minimum values of the
dual variable. It is necessary to limit the values of the dual
variable since the constrained problem may not be feasible.
If the variable is not constrained, undesirable behavior can
result such as utilizing every sensor in a sensor network in
order to meet an information constraint which cannot be met
in any case, or because the dual variable in the communication
constraint was adapted such that it became too low.

I. Roll-out

If the horizon length is set to be too small in the commu-
nications constrained formulation, then the resulting solution
will be to hold the leader node fixed, and take progressively
fewer measurements. To prevent this degenerate behavior, we
add to the terminal cost in the DP recursion (Eq. (25)) the cost
of transmitting the probabilistic model to the sensor with the
smallest expected distance to the object at the final stage (this
is effectively the base policy in a roll-out [10]). This constructs
a plan which assumes that, at the final stage, the leader node
will have to be transferred to the closest sensor, hence there
is no benefit in holding it at its existing location indefinitely.
This modification will often make the problem infeasible for
short planning horizons, but the limiting of the dual variables
discussed in Section III-H should avoid anomalous behavior.

J. Surrogate constraints

A form of information constraint which is often more
desirable is one which captures the notion that it is acceptable
for the uncertainty in object state to increase for short periods
of time if informative measurements are likely to become
available later, such as the minimum entropy constraint:

G̃(Xk, lk−1) = E
{

min
i∈{k:k+N−1}

H(xi|z0:i−1) − Hmax

}
≤ 0

(42)
While constraint in Eq. (42) does not lead to a form which
can be incorporated into the per-stage and per-substage cost (cf
Eq. (29)), we can use the constraint in Eq. (29) to generate
plans for a given value of the dual variable λ, and perform
the dual variable update using the desired constraint, Eq. (42).
This effectively uses the constraint G(Xk, lk−1) in Eq. (29) as
a surrogate for the desired constraint G̃(Xk, lk−1) in Eq. (42),
allowing us to use the computationally convenient method
described above with a more meaningful criterion.

IV. SIMULATION RESULTS

The model presented in Section II-A was simulated for
100 Monte Carlo trials using 20 sensors positioned randomly
according to a uniform distribution inside a 100×100 region;
each trial used a different sensor layout. The initial position
of the object is in one corner of the region, and the velocity is
2 units per second in each dimension, moving into the region.
The simulation ends when the object leaves the 100×100
region or after 200 time steps, which ever occurs sooner (the
average length is around 180 steps). The sample time was
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Fig. 2. Position entropy and communication cost for dynamic programming
method with communication constraint (DP CC) and information constraint
(DP IC) with different planning horizon lengths (N ), compared to the methods
selecting as leader node and activating the sensor with the largest mutual
information (greedy MI), and the sensor with the smallest expected square
distance to the object (min expect dist). Ellipse centers show the mean in
each axis over 100 Monte Carlo runs; ellipses illustrate covariance, providing
an indication of the variability across simulations (and hence error bounds).
Upper figure compares average position entropy to communication cost, while
lower figure compares average of the minimum entropy over blocks of the
same length as the planning horizon (i.e., the quantity to which the constraint
is applied) to communication cost.

T = 0.25 sec, diffusion strength was q = 10−2, and the
measurement model parameters were a = 2000, b = 100
and R = 1. For the communication-constrained problem, a
multiplicative update was used for the subgradient method,
with β+ = β− = 1.2, λmin = 10−5, λmax = 5 × 10−3, and
Cmax = 10N . For the information-constrained problem, an
additive update was used for the subgradient method, with
γ+ = 50, γ− = 250, λmin = 10−8, λmax = 500 and
Hmax = 2 (these parameters were determined experimentally).

The simulation results are summarized in Fig. 2. The
top diagram demonstrates that the communication-constrained
formulation provides a way of controlling sensor selection
and leader node which reduces the communication cost sub-
stantially over the myopic single-sensor methods, and im-
proves estimation performance substantially. The information-
constrained formulation allows for an additional saving in
communication cost while meeting an estimation criterion
wherever possible. The diagram also illustrates the improve-
ment which results from utilizing a longer planning horizon.
The constraint level in the communication-constrained case is
10 cost units per time step; since the average simulation is
180, the average communication cost if the constraint were
always met with equality would be 1800. However, because
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Fig. 3. Adaptation of communication constraint dual variable λk for different
horizon lengths for a single Monte Carlo run, and corresponding cumulative
communication costs.

this cost tends to occur in bursts (due to the irregular hand-off
of leader node from sensor to sensor as the object moves), the
practical behavior of the system is to reduce the dual variable
when there is no hand-off in the planning horizon (allowing
more sensor measurements to be utilized), and increase it when
there is a hand-off in the planning horizon (to come closer to
meeting the constraint). The adaptation of the dual variable
is shown in Fig. 3 for a single Monte Carlo run. A longer
planning horizon allows for more consistent behavior, since
there is a hand-off within the planning horizon for a larger
portion of the time.

In the information-constrained case, increasing the planning
horizon relaxes the constraint, since it requires the minimum
entropy within the planning horizon to be less than a given
value. Accordingly, using a longer planning horizon, the
average entropy is reduced, and additional communication
energy is saved. The lower diagram in Fig. 2 shows the average
minimum entropy in blocks of the same length as the planning
horizon, demonstrating that the information constraint is met
more often with a longer planning horizon (as well as resulting
in a larger communication saving).

V. CONCLUSION AND FUTURE WORK

This paper has demonstrated how an adaptive Lagrangian
relaxation can be utilized for sensor management in an energy-
constrained sensor network. The introduction of secondary
objectives as constraints provides a natural methodology to
address the trade-off between estimation performance and
communication cost. The simulation results in Section IV
demonstrate that approximations based on dynamic program-
ming are able to provide similar entropy to that achieved using
simple heuristics which consider estimation performance alone
and utilize a single sensor, for a fraction of the communication
cost. While the algorithm presented in Section III is com-
putationally tractable on a modern computer, the constraints

imposed by a wireless sensor network will typically require

further simplification. The structure of the dynamic program
developed in Section III provides a solid foundation which
could be analyzed to develop rule-based approximations which
maintain much of the performance benefit demonstrated in
the empirical results. Future work includes incorporation of
the impact on planning caused by the interaction between
objects when multiple objects are observed by a single sensor,
and developing approximations which are less coarse than the
linearized Gaussian model.
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